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Wreath Macdonald polynomials and the categorical
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Roman Bezrukavnikov and Michael Finkelberg

with an Appendix by Vadim Vologodsky

To the memory of Andrei Zelevinsky

Mark Haiman has reduced Macdonald Positivity Conjecture to a
statement about geometry of the Hilbert scheme of points on the
plane, and formulated a generalization of the conjectures where the
symmetric group is replaced by the wreath product Sn� (Z/rZ)n.
He has proven the original conjecture by establishing the geometric
statement about the Hilbert scheme, as a byproduct he obtained
a derived equivalence between coherent sheaves on the Hilbert
scheme and coherent sheaves on the orbifold quotient of A2n by
the symmetric group Sn.

A short proof of a similar derived equivalence for any
symplectic quotient singularity has been obtained by the first
author and Kaledin [2] via quantization in positive characteristic.
In the present note we prove various properties of these derived
equivalences and then deduce generalized Macdonald positivity
for wreath products.
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1. Introduction

The celebrated Macdonald Positivity Conjecture asserts that the entries of
the matrix expressing the transformed Macdonald polynomials via Schur
polynomials have non-negative coefficients.

The following approach to the conjecture originated from and was com-
pleted in the work of M. Haiman [15].

Let Hilbn(A2) be the Hilbert scheme of n points on the plane. The
action of the two-dimensional torus T = G2

m on A2 induces an action of T
on Hilbn(A2). Let Λ be the ring of symmetric polynomials. According to
Haiman’s program, one can identify the space Λ[q±1, t±1] appearing in the
Positivity Conjecture with the Grothendieck group K0(CohT (Hilbn(A2))) in
such a way that the modified Macdonald polynomials correspond to classes
of sky-scrapers at the fixed points of T , while Schur functions correspond to
classes of indecomposable summands components of the Procesi bundle. The
latter is a certain vector bundle on Hilbn(A2) of rank n! carrying an action
of the symmetric group and a compatible action of the ring of polynomials
in 2n variables. An explicit construction of this bundle is the crucial and
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laborious ingredient in Haiman’s work. As a byproduct of this construction
Haiman obtained an equivalence of derived categories:

(1.1) Db(Coh(Hilbn(A2)) ∼= Db(CohSn(A2n))

and an isomorphism between Hilbn(A2) and the Hilbert quotient of A2n by
the action of Sn.

The existence of a rank n! bundle with an action of Sn and of the
polynomial ring which induces a derived equivalence (1.1) has been proven
in another, shorter way in [2] via quantization in positive characteristic.

The goal of the present note is to demonstrate that the information pro-
vided by [2] is sufficient to deduce the Positivity Conjecture, bypassing the
explicit construction of the Procesi bundle.1 Furthermore, Haiman [16] has
suggested an extension of the conjecture to the setting where Sn is replaced
by the wreath product Sn � (Z/rZ)n. We also confirm that previously un-
known conjecture.

We should mention that another proof of the Positivity Conjecture in-
dependent of Haiman’s construction of Procesi bundle has been obtained by
I. Gordon [14] based on a result of V. Ginzburg [10]. This approach employs
the theory of Hodge D-modules to pass from modules over a noncommuta-
tive algebra to modules over its commutative degeneration; in the present
article this is achieved by virtue of the p-center phenomenon in the the-
ory of D-modules in positive characteristic. There are other situations when
the two apparently very different constructions lead to the same structures,
see e.g. [4, §0.2; Remark 2.2.2.(2)]. It would be very interesting to find an
explanation for this parallelism.

1.1.

Let us formulate our result in more detail. We set Γ = Z/rZ. We consider the
cyclic quiver Q with the set of vertices I = {i0, . . . , ir−1} ∼= Z/rZ. Our basic
field k will be either C or Fp with p � 0. Given I-graded vector spaces W,V
of dimension vectors λ0 = (1, 0, . . . , 0), ν = (v0, . . . , vr−1), we consider the
Nakajima quiver varieties M(W,V )

π−→ M0(W,V ) over k. It is well known

1Notice however that we do not propose an alternative proof of the isomorphism
between Hilbn(A2) and the Hilbert quotient of A2n, which is one of the equivalent
statements of the n! conjecture. Existence of such an isomorphism is equivalent to
the fact that each fiber of the rank n! vector bundle is generated by an Sn invariant
vector under the action of the polynomial ring. We do not know how to deduce this
property of the vector bundle by our methods.
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(see e.g. [16, Section 7.2.3] or [13, Lemma 7.8]) that M0(W,V ) ∼= A2n/Γn

where Γn is the wreath product Z/rZ �Sn, where n depends on ν as follows.
Let δ stand for the dimension vector (1, . . . , 1). Then we have a unique
decomposition ν = ν0 + nδ where ν0 is the content vector of a certain r-
core partition. Moreover, M(W,V ) ∼= YΓ,ν , where YΓ,ν is a certain connected
component of the fixed point set (Hilbm(A2))Γ of a Hilbert scheme of points
on A2. Herem = v0+. . .+vr−1 [21, §4.2]. Finally, π is a symplectic semismall
resolution of singularities.

According to the result of [2] we have an equivalence of derived categories
Db(Coh(YΓ,ν)) ∼= Db(CohΓn(A2n)) provided that characteristic of k is zero
or sufficiently large. Let E ∈ Db(Coh(YΓ,ν)) be the image of O ⊗ k[Γn] ∈
CohΓn(A2n) under the equivalence constructed in [2]. Then it is shown in
loc. cit. that E is a vector bundle. It automatically carries an action of Γn,
thus it can canonically be written as E = ⊕ρ⊗Eρ where ρ runs over the set
of irreducible representations of Γn and Eρ is a vector bundle on YΓ,ν .

Furthermore, E carries an action of the polynomial algebra
k[x1, . . . , xn, y1, . . . , yn] = O(A2n). Let Eρ be the image of Eρ in the sheaf of
coinvariants E/(

∑n
i=1 xiE), and E′

ρ be the image of Eρ in E/(
∑n

i=1 yiE).
Our main result is (in the notations and conventions introduced below

in subsection 2.3.)

Theorem 1.1. If ρ = ρλ for a multi-partition λ, then the set of T -fixed
points in the support of Eρ consists of λ and some μ satisfying μ 	 λ, while
the set of T -fixed points in the support of E′

ρ consists of tλ and some μ
satisfying μ 
 tλ.

The proof of the Theorem appears in subsection 4.2. It is based on the
localization result of [2], while the analysis of partial orders on the set of fixed
points follows the results of I. Gordon [13]. Notice that Gordon worked in a
different setting, where the characteristic of the base field is zero, but one
of the deformation parameters for the deformation of O(A2n)Γn is also zero,
so one still gets an algebra with a large center. To relate the two settings
we include the equivalence of [2] in a family, see beginning of section 3 for
further comments.

The next statement follows from Corollary 4.3.

Corollary 1.2. Conjecture [16, 7.2.19] holds.

Notice that notations of [16] differ from ours by swapping the role of
letters q and t; also condition (ii) of loc. cit. appears below in an equivalent
form obtained by replacing (−t)−i by (−t)i and replacing Λi(h) by the dual
space tensored by the sign representation, which is equivalent to replacing
λ by λ′ (or tλ in our notation).
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2. Localization of modules over the invariants in the Weyl
algebra

2.1. Notations

From now on we assume that in case k = Fp, the characteristic p is bigger
than |Γn|. In that case, for an algebraic variety X over k we will denote by
X(1) its Frobenius twist, and by Fr : X → X(1) the Frobenius morphism.
Note that in the presentationM0(W,V ) ∼= A2n/Γn the vector space U = A2n

carries a Γn-invariant symplectic form ω. It gives rise to the Weyl algebra Wk

acted upon by Γn. According to [2, Lemma 6.1], for large p the WΓn

k −Wk�

k[Γn]-bimodule Wk gives rise to the Morita equivalence WΓn

k ∼ Wk � k[Γn].
We will denote YΓ,ν introduced in Section 1.1 by Y for short, and if we want
to stress the base field, we will denote it by Yk.

In case k = Fp, the Frobenius twist Y (1) carries a sheaf O of Azumaya
algebras such that H i(Y (1),O) = 0 for i > 0, and H0(Y (1),O) = WΓn

k ([2,
Lemma 6.2], see also correction below in section 5). From the point of view
of [7], O is the localization of the spherical subalgebra of the symplectic
reflection algebra H0 of (Γn, U) (rational Cherednik algebra) for the zero
value of parameters.

We choose a Γn-invariant Lagrangian vector subspace L ⊂ U . We will
denote the categorical quotient L/Γn ⊂ U/Γn by L0 ⊂ M0(W,V ). We will
denote the scheme-theoretic preimage π−1(L0) ⊂ M(W,V ) = Y by L ⊂ Y .
The completions of our schemes along their subschemes will be denoted like
ŶL. Note that the dilation action of Gm on Hom(Vi, Vi±1) descends to the
Gm-action on M0(W,V ), and then lifts to the Gm-action on Y .

We will also need another commuting action of Gm on Y : the hyper-
bolic one, preserving the symplectic form on Y . To distinguish it from
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the dilation action above, we will denote this copy of Gm by Gh
m. So if

a point y of Y is represented by a quadruple (Bi ∈ Hom(Vi, Vi+1), B′
i ∈

Hom(Vi, Vi−1), x0 ∈ V0, x∗0 ∈ V ∗
0 ), and c ∈ Gh

m, then cy is represented by

(cBi, c
−1B′

i, x0, x
∗
0).

2.2. Splitting bundles for Azumaya algebras

Lemma 2.1. a) There exists an Azumaya algebra A on (A2n)(1)/Γn, such

that the pull-back of A to Y (1) is Morita equivalent to O, while its pull-back

to (A2n)(1) is Γn-equivariantly Morita equivalent to W.

b) The Azumaya algebra A splits on the formal neighborhood of L(1)/Γn.

Proof. (a) is shown in [2, Proposition 6.5] (see also correction below in sec-

tion 5). We will use another construction of A, appearing in [1] and recalled

in the next section 3. (We do not address the question of comparing the

two constructions). More precisely, we set O = A1,0,..,0 in the notations of

Proposition 3.6 below.

To check (b) we first check that A|L(1)/Γn
splits. Since L(1)/Γn is smooth,

in view of [19, Corollary IV.2.6] (which says that the Brauer group of a reg-

ular scheme injects into the Brauer group of a dense open subscheme) it suf-

fices to check that the restriction of A to a nonempty open subset in L(1)/Γn

splits. Let L0 ⊂ L be the union of free Γn orbits. Then splitting of A|L(1)
0 /Γn

amounts to a Γn-equivariant splitting of Wk on L
(1)
0 . This is provided by the

module O(L) equipped with the natural action of Wk, where elements in L

act by multiplication by linear functions and elements in a fixed Γn-invariant

Lagrangian complement ′L act by derivatives. We now check by induction

that pull-back of A to the n-th infinitesimal neighborhood of L(1)/Γn splits;

moreover, given a choice of a splitting on the n-th infinitesimal neighbor-

hood, there exists a compatible splitting on the (n+1)st one, which clearly

implies statement (b). The compatible splitting on the (n + 1)st neighbor-

hood exists since the obstruction lies in the second cohomology of O on the

affine variety L(1)/Γn.

Corollary 2.2. a) The Azumaya algebra Wk splits Γn-equivariantly on

Û
(1)
L(1); Û

(1)
0 .

b) The Azumaya algebra O splits on Ŷ
(1)
L(1).

Now we have the following chain of equivalences of derived categories,

cf. [2, Remark 6.8 and the proof of Theorem 6.7]:
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(2.1)

DbCoh(Ŷ
(1)
L(1)) ∼= Db(O|

̂Y
(1)

L(1)

−Mod)
∼−→
RΓ

Db(WΓn

k |
̂M0(W,V )

(1)

L
(1)
0

−Mod)

∼= Db(Wk � k[Γn]|̂U (1)

L(1)

−Mod) ∼= DbCohΓn(Û
(1)
L(1)).

Notice that the first (respectively, the last) equivalence depends on the choice
of a splitting bundle whose existence is guaranteed by Corollary 2.2(b) (re-
spectively, a). We denote those splitting bundles by EL, EL respectively.

Proposition 2.3. There exists an equivalence of triangulated categories

Φk : D
bCohG

(1)
m ×(G(1)

m )h×Γn(U (1))
∼−→ DbCohG

(1)
m ×(G(1)

m )h(Y (1)),

which is compatible with the composed equivalence in (2.1) for an appropriate
choice of the splitting bundles in Corollary 2.2.

Proof. Let A be as in Lemma 2.1, and let Eres be a splitting bundle for
O ⊗O(Y (1)) π

∗(Aop). Then it is shown in [2] that the algebra End(Eres)
op

is Morita equivalent to Γn#O(A2n) and the functor F �→ RHom(Eres,F)
provides an equivalence

(2.2) Db(Coh(Y (1)))
∼−→ Db(End(Eres)

op −Modfg) ∼= CohΓn((A2n)(1)).

Here the first equivalence is given by F �→ RHom(Eres,F). To describe
the second equivalence we need to fix a Γn-equivariant splitting bundle Eorb

for Wk. Then we get:

End(Eres) = Γ(O)⊗O(A2n/Γn)(1) Γ(A) = WΓn ⊗O(A2n/Γn)(1) Γ(A)

∼ Γn#W⊗O(A2n/Γn)(1)Γ(A) = Γn#EndO(A2n)(1)(Eorb) ∼ Γn#O((A2n)(1)).

Here the first Morita equivalence is given by the bimodule W ⊗O(A2n/Γn)(1)

Γ(A), while the second one comes from the equivalence between the cat-
egories of Γn-equivariant coherent sheaves on (A2n)(1) and Γn-equivariant
modules over EndO(A2n)(1)(Eorb) given by F �→ F ⊗O Eorb, the latter tensor
product being equipped with the diagonal Γn-action.

Thus equivalence (2.2) depends on the choice of splitting bundles Eres,
Eorb in Corollary 2.2, which we assume to be fixed from now on. That choice
determines (up to an isomorphism) a choice of splitting bundles EL, EL in
the following manner. By Lemma 2.1(b) Azumaya algebra A splits on the
formal neighborhood of L(1)/Γn. The splitting bundle on that neighborhood
is determined uniquely up to twisting by a line bundle on the formal neigh-
borhood; since every such bundle is easily seen to be trivial, the splitting
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is unique up to an isomorphism. A diagram chase shows that under those
choices the equivalences (2.1) and (2.2) are compatible.

We claim that Eres carries a canonical G
(1)
m × (G

(1)
m )h-equivariant struc-

ture. This follows from (the proof of) [2, Proposition 4.3(i)] or Lemma 6.1
below.

The G
(1)
m × (G

(1)
m )h-equivariant structure on Eres induces a bigrading on

the ring End(Eres), it is easy to see that the category of bigraded modules

is canonically equivalent to CohΓn×G
(1)
m ×(G(1)

m )h(A2n).
Thus we get equivalences

Db(CohG
(1)
m ×(G(1)

m )h(Y (1))) ∼= Db(End(Eres)
op −Modbigrfg )(2.3)

∼= Db(CohΓn×G
(1)
m ×(G(1)

m )h(A2n)(1)),

where Modbigrfg denotes the category of finitely generated bigraded modules.
It is clear from the definition that the constructed equivalence is com-

patible with (2.2), hence with (2.1).

We will use the same notation Φk for the induced compatible equivalence

on categories with less equivariance: DbCohΓn(Û
(1)
L(1))

∼−→ DbCoh(Ŷ
(1)
L(1)) and

DbCohΓn×G
(1)
m (Û

(1)
L(1))

∼−→ DbCohG
(1)
m (Ŷ

(1)
L(1)).

Remark 2.4. One can construct a G
(1)
m × (G

(1)
m )h-equivariant bundle on Y (1)

providing an equivalence Φk in a different way which is probably better
suited for generalization to other symplectic resolutions of singularities. In-
stead of Lemma 2.1 one can use Corollary 2.2(b) to get a tilting bundle on
the formal neighborhood of π−1(0) in Y (1). That bundle can be equipped

with a G
(1)
m × (G

(1)
m )h-equivariant structure by Proposition 6.3 in the Ap-

pendix, which then can be shown to come from a uniquely defined vector
bundle on Y (1) (cf. [2, Lemma 2.12]).

Lemma 2.5. a) Assume that the splitting bundles Eres, EL and Eorb, EL

are chosen compatibly as in the proof of Proposition 2.3.
Then the following diagram is commutative:

DbCoh
G

(1)
m

L(1)(Y
(1))

Φ−1
k−−−−→ DbCoh

G
(1)
m ×Γn

L(1) (U (1))

F �→RΓ(F⊗EL)

⏐⏐� F �→F⊗EL

⏐⏐�
Db(WΓn

k −Mod
G

(1)
m

L
(1)
0

)
M �→Wk⊗W

Γn
k

M

−−−−−−−−−−→ Db(Wk � k[Γn]−Mod
G

(1)
m

L(1)),

where lower indices denote the set theoretic support condition on the coherent
sheaf/module/sheaf of modules.
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b) For any choice of a Γn-equivariant splitting ĒL for Wk on L(1) there
exists a splitting bundle Eorb compatible with ĒL.

Proof. a) follows by diagram chase. To check (b) notice that any two Γn-
equivariant splitting bundles for Wk on L(1) differ by a twist by a Γn-
equivariant line bundle. It is easy to see that the isomorphism class of such
a line bundle is determined by the character of Γn by which it acts on the
fiber of the line bundle at zero. Thus we can start with an arbitrary Eorb,
after possibly twisting it by a character of Γn we will achieve the desired
compatibility.

Notice that W|L(1) has a standard Γn-equivariant splitting provided by
the W module O(L) where elements in L ⊂ U ∼= U∗ act by multiplication
by linear functions and elements in a fixed Γn-invariant complement to L
act by derivatives. By Lemma 2.5(b) there exists a splitting bundle Eorb

which is compatible with that equivariant splitting of W|L(1) , from now on
we assume that the equivalence are defined using a choice of Eorb satisfying
that compatibility.

Given an irreducible k[Γn]-module ρ, we denote by Fρ the coherent sheaf
Φk(OL(1) ⊗ ρ).

2.3. Lagrangian components

We now fix the Lagrangian linear subspace L ⊂ U given by the condition of
nilpotency of the compositions of Bi’s. According to [16, Proposition 7.2.18]
or [13, Lemma 5.1], the Gh

m-fixed points Y G
h
m (recall that Y was introduced

in Section 2.1) are naturally labeled by r-partitions μ = (μ(1), . . . , μ(r)) of
total size |μ| =

∑
i |μ(i)| = n (recall that ν = ν0+nδ). We will abuse notation

by using the same letter for a multi-partition and for the corresponding fixed
point.

Now the Lagrangian subvariety L ⊂ Y is a union of locally closed La-
grangian subvarieties L◦

μ labeled by the set P(r, n) of r-partitions of total
size n. Each piece L◦

μ is isomorphic to the affine space An, and is defined

as the attracting set of the corresponding Gh
m-fixed point. We define Lμ as

the closure of L◦
μ. I. Gordon [13, Section 5.4] has defined a partial order on

P(r, n) generated by the rule μ
geo
≺λ if μ �= λ and Lλ ∩L◦

μ �= ∅. Moreover, he
has (at least partly) described this order combinatorially in [13, Sections 6,7].
In order to formulate the description, recall the bijection τs [13, 6.2], [16,
7.2.17] between the set P(r, n) of multipartitions, and the set Pν0

(|ν0|+ rn)
of usual partitions of size |ν0|+ rn having r-core ν0. Then according to [13,
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Proposition 7.10], we have μ
geo
≺λ ⇒ μ

com
≺ λ ⇔ tτs(

tμ) � tτs(
tλ), that is,

one transposed partition dominates the other.

2.4. Localization for Verma modules for Γn-invariants in the
Weyl algebra

According to [2, Theorem 6.3], the functor of global sections RΓ : Db(O−
mod) → Db(WΓn

k − mod) is an equivalence of categories. We denote the
quasiinverse equivalence by M �→ locM (localization).

We define Verma modules for Wk � C[Γn] by: Vμ := k[L]⊗ ρμ where μ
is an r-multipartition of n, and ρμ is the corresponding irreducible k[Γn]-
module. Under the Morita equivalence of Wk � k[Γn] and WΓn

k , the Verma
module Vμ goes to the module VΓn

μ = k[L]ρμ where the superscript denotes

the ρμ isotypic component. The modules VΓn
μ will be called the spherical

Verma modules.
The key step in our argument is provided by the following:

Proposition 2.6. The support supp( locVΓn
μ ) consists of L

(1)
μ and some L

(1)
λ

such that λ
com
≺ μ.

The proof of the Proposition appears at the end of the next section.

3. Spherical Cherednik algebras and localization in families

This section is devoted to the proof of Proposition 2.6. In order to carry out
the argument we need to include the varieties Y , A2n/Γn, the ring WΓn

k and
the sheaf of rings O in a family, as described in Proposition 3.6.

3.1. Quiver varieties and their quantization in mixed and
positive characteristic

We start by presenting the usual quiver variety construction in a slightly
generalized setting.

We consider an arbitrary quiver Q with the set of vertices Q0. We will
follow the notations of [18, 4.2] for general Nakajima quiver varieties. So DQ
is the double quiver, and given v,d ∈ NQ0 we consider a symplectic vector
space R(DQ,v,d) with a symplectic action of GL(v), and its Hamiltonian
reduction. More precisely, given a character θ : GL(v) → Gm (stability),
and a central element χ ∈ z(gl(v)) (moment level), we consider the Nakajima
quiver variety Mθ

χ(v,d). It is defined in loc. cit. as a complex quasiprojective
variety, but its GIT quotient construction works over any commutative ring
R and produces a scheme Mθ

χ(v,d)R. If χ varies in the family z(gl(v)), we

obtain a family of quiver varieties Mθ
z(v,d)R over z(gl(v))R � A

Q0

R .
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Furthermore, let W�

k (v,d) denote the asymptotic Weyl algebra of the
symplectic vector space R(DQ,v,d). Thus W�

k (v,d) is k[�]-algebra gener-
ated by R(DQ,v,d) subject to the relation [x, y] = �2 · (x, y); it can also
be described as the Rees algebra of the Weyl algebra Wk(v,d) equipped
with Bernstein filtration. The symplectic action of GL(v) on R(DQ,v,d)
gives rise to the map τ : gl(v) := LieGL(v) → W�

k (ν). For χ such that
χ · v :=

∑
i∈Q0

χivi = 0 we set τχ(ξ) := τ(ξ) − �2
∑

i∈Q0
χiTr ξi where

ξ = (ξi)i∈Q0
∈ gl(v).

The quantum Hamiltonian reduction is defined as W�

k (v,d)///χGL(v) :=
(W�

k (v,d))/W
�

k (v,d) · τχ(gl(v)))GL(v) (see [18, 4.2]). Once again, this con-
struction works over any ground ring R and produces a filtered R[�]-algebra
to be denoted Aχ(v,d)R. This is a specialization of the R[AQ0 ]-algebra
Az(v,d)R := (W�

k (v,d))/W
�

k (v,d) · τ(sl(v)))GL(v) at the maximal ideal (χ)
in R[AQ0 ] where sl(v) ⊂ gl(v) is the derived subalgebra.

Finally, recall that one associates with Q a Kac-Moody algebra gQ, and
its weight λ =

∑
i∈Q0

viωi−
∑

i∈Q0
diαi. The criterion of [5] for the moment

map in the Hamiltonian reduction construction of our quiver varieties to
be flat takes especially simple form when gQ is simple or affine: namely, the
flatness follows if λ is dominant, see e.g. [3, 2.1.4]. In our application we only
need the case of cyclic Ãr−1-quiver Q, and d = (1, 0, . . . , 0). In this case the
weight λ is dominant iff v = nδ = (n, . . . , n), n ∈ N.

Lemma 3.1. a) Consider the quiver variety Mθ
z(v,d)Z over SpecZ. There

exists a finite localization R of Z such that the base change of Mθ
z(V,W )R to

any algebraically closed field k is the corresponding quiver variety Mθ
z(v,d)k.

b) Assume that v, d are such that the corresponding moment map is flat
(e.g. in case Q is Dynkin or extended Dynkin the corresponding weight λ is
dominant). There exists a finite localization R of Z, such that the associated
graded of the natural filtration on Az(v,d)R is the ring of functions on the
affine quiver variety M0

z(v,d)R. In other words, the quantum Hamiltonian
reduction of the asymptotic Weyl algebra over R is flat over R[�].

c) Assume that v, d satisfies the assumption of (b) and R satisfies both
(a) and (b). Then we have

gr(Az(v,d)k) = O(M0
z(v,d)k),

gr(Aχ(v,d)k) = O(M0
χ(v,d)k),

for any field k with a homomorphism from R and χ ∈ z∗k.

Proof. a) Taking the preimage of z under the moment map commutes with
any base change. After base change to a finite localization of Z the categorical
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quotient by the action of GL(v) exists and commutes with any base change

by [8, Theorem 33].

b) The quantum Hamiltonian reduction is defined as the module of

GL(v,R) invariants in a quotient of the Weyl algebra by a left ideal. Thus

it carries a natural filtration whose associated graded is a submodule in the

module of GL(v,R) invariants of the associated graded of the quotient by the

left ideal. As pointed out above, the condition on the weight λ implies that

the moment map is flat. Flatness of the moment map implies in turn that

taking the quotient by the ideal commutes with taking associated graded,

thus we see that the associated graded of the filtration on the quantum

Hamiltonian reduction is a subring in the classical Hamiltonian reduction.

Furthermore, the ambient ring here is finitely generated and the embedding

becomes an isomorphism upon base change to C. It follows that the two

rings become equal upon base change to a finite localization of R.

c) follows since there is a natural injective map from the left hand side

to the right hand side, statements (a,b) together show these maps are sur-

jective.

In the rest of this subsection we work over a fixed field k = k of charac-

teristic p > 0.

Recall that for an algebraic variety X over k we denote by X(1) its

Frobenius twist and Fr : X → X(1) is the Frobenius morphism.

Lemma 3.2. Assume that p > vi for all i.

a) The ring Az(v,d)k has a natural structure of a ring over

O(M0
z(v,d)

(1) ×(AQ0 )(1) (A
1
�
× AQ0)), where we used the map ASQ : (�, χ0,

. . . , χr−1) �→ (χp
0 − �p−1χ0, . . . , χ

p
r−1 − �p−1χr−1), A1

�
× AQ0 → (AQ0)(1).

b) Reducing the structure described in (a) at � = 0 we get a map

O(M0
z(v,d)

(1) → O(M0
z(v,d)); this map equals pull-back under the Frobe-

nius morphism.

Proof. To check (a) we address following [1, Section 3] the special features

of Hamiltonian reduction in positive characteristic.

For a connected smooth linear algebraic group G over k we have an

exact sequence of groups 1 → G1 → G
Fr−→ G(1) → 1 where G1 stands for the

Frobenius kernel. The Lie algebra g of G is equipped with a natural structure

of a p-Lie algebra, and its universal enveloping algebra U(g) contains the

p-center Z(g).

We denote by X∗(G) the lattice of characters G → Gm and we set

X∗(g) = X∗(G)⊗ k. We have X∗(g) ⊂ g∗.



Wreath Macdonald polynomials 175

For χ ∈ X∗(g) we denote by Iχ the kernel of the corresponding homo-

morphism U(g) → k. We set I
(1)
χ := Iχ ∩ Z(g), a maximal ideal of Z(g). We

let uχ(g) denote the quotient of U(g) by the two-sided ideal generated by

I
(1)
χ . The image of Iχ in uχ(g) is denoted by iχ ⊂ u(g).

We now take G = GL(v) and we denote its Lie algebra by gl(v). Thus
X∗(g) = z∗ (where we used the assumption p > vi).

The center Z(v,d) of the Weyl algebra Wk(v,d) equals
k[R(DQ,v,d)(1)], while that of W �

k (v,d) equals k[A
1
�
×R(DQ,v,d)(1)].

Thus W �

k (v,d) can be viewed as a coherent sheaf of algebras over A1
�
×

R(DQ,v,d)(1).
The quantized moment map is the homomorphism gl(v) → W �

k (v,d).
Its restriction to Z(gl(v)) corresponds to the map of spectra μAS

�
: A1

�
×

R(DQ,v,d)(1) → (gl(v)∗)(1) given by μAS
�

(�, x) = ASQ(�, μ(x)), where μ :
R(DQ,v,d) → gl(v)∗ is the moment map [24, Proposition 2.1′].

We obtained a map from O(μAS
�

)−1(X∗(g))//GL(v)(1)) =
O(M0

z(v,d)
(1) × A1

�
) to the center of the quantum Hamiltonian reduc-

tion Z((W�

k (v,d)/ Im(sl(v))GL(v)). We also have a map from k[z] to
Z((W�

k (v,d)/ Im(sl(v))GL(v)).
Combining the two maps together we get a map

(3.1) O(M0
z(v,d)

(1)×(AQ0 )(1) (A
1
�×AQ0)) → Z((W�

k (v,d)/ Im(sl(v))GL(v)),

where the fiber product involves the map μAS
�

, this follows from the definition
of μAS

�
. This proves (a).

The specialization of the p-center of the Weyl algebra at � = 0 produces

the subring O(R(DQ,v,d))(1)
Fr∗−→ O(R(DQ,v,d)). Applying Hamiltonian

reduction we get (b).

Remark 3.3. It is not hard to see that at least for large p and v, d such that
the corresponding moment map is flat, the map from O(M0

z(v,d)
(1)×(AQ0 )(1)

(A1
�
× AQ0)) to the center of Az(v,d)k is an isomorphism.

We now combine Hamiltonian reduction in positive characteristic as re-
called in the proof of Lemma 3.2 with the GIT quotient procedure.

More precisely, we consider Ã := (W�

k (v,d)
(1)/Wk

�
(v,d)(1) · sl(v))GL(v)1 .

This is a sheaf of associative rings with a GL(v)(1) action. As in the proof
of the previous Lemma we have maps from O(μ−1(X∗(gl(v)))(1) and from
k[z ⊕ k · �] to the center Z(Ã); together they yield a GL(v)(1)-equivariant
map

(3.2) O(μ−1(X∗(gl(v)))(1) ×(AQ0 )(1) (A
1
� × AQ0)) → Z(Ã).



176 Roman Bezrukavnikov et al.

Thus we can view Ã as a GL(v)(1)-equivariant sheaf over
μ−1(X∗(gl(v)))(1) ×AQ0 (A1

�
× AQ0)).

We now fix a generic (i.e. lying off the walls, see [23, 2.3]) stability
parameter θ and let μ−1(X∗(gl(v)))θ ⊂ μ−1(X∗(gl(v))) be the subset of
θ-stable points. The quotient μ−1(X∗(gl(v)))θ/GL(v) is by definition the

family of quiver varieties Mθ
z. We set (Mθ

z)
AS = (μ−1(X∗(gl(v)))(1)θ ×AQ0

(A1
�
× AQ0)))/GL(v), clearly (Mθ

z)
AS = Mθ

z ×AQ0 (A1
�
× AQ0)).

Lemma 3.4. a) The sheaf Ã descends to a sheaf of rings Aθ
z over (Mθ

z)
AS.

The restriction of this sheaf to the open part � �= 0 is an Azumaya algebra,
while its restriction to the closed subvariety � = 0 is isomorphic to Fr∗(O).

b) Assume that (v,d) satisfy the condition of Lemma 3.1(b) and p � 0.
Then RΓ(Aθ

z) = Az(v,d), while for every χ we have RΓ(Aθ
χ) = Aχ(v,d).

Proof. a) The action of GL(v) on μ−1(X∗(gl(v)))θ is free. This is well known
in characteristic zero (see e.g. [25, Proposition 2.6]), and the case of positive
characteristic is checked by a similar argument.2

For a free action the factorization is a principal G-bundle, so descent
theory applies, see [20, Proposition 0.9]. Applying this to Ã we get a sheaf
of rings on (Mθ

z)
AS . The first property is established as in [1] and the second

one is clear from the construction.
Under the conditions of (b) the higher direct image of the structure sheaf

under the maps Mθ
z → M0

z , M
θ
χ → M0

χ vanish: in characteristic zero, this
follows from Grauert-Riemmenschneider Theorem, the case of large positive
characteristic follows since the support of the higher direct image of O under
the morphism of (the family of) quiver varieties over Z is a Gm-invariant
closed subset which does not intersect the fiber over the generic point of
Spec(Z), thus it is contained in the preimage of a finite subject in Spec(Z).

Hence the higher direct image of Fr∗(OMθ
z
), Fr∗(OMθ

χ
) also vanish, thus

the same is true for A. Thus its global sections is a Cohen-Macaulay OM0
z
-

(resp. OM0
χ
-) module. On the open part U where the map Mθ → M0 is

2In loc. cit. it is checked that the action of GL(v) on μ−1(X∗(gl(v)))θ has trivial
stabilizers. In general this does not imply that the action is free, see [20, Example
0.4] (recall that an action of G on X is free if the map (a×pr2) : G×X → X×X is
a closed embedding, where a is the action and pr2 is the second projection). How-
ever, here we are dealing with an action of GL(v) =

∏
GL(vi) on a locally closed

subvariety in the linear representation R(DQ,v,d). Given x, y ∈ R(DQ,v,d) and
g = (gi) ∈ GL(v) the equation g(x) = y is linear in the matrix coefficients of
gi ∈ GL(vi). By standard linear algebra, locally in x we have an algebraic expres-
sion for these matrix coefficients in terms of coordinates of x, y provided that a
unique solution exists. This shows that the action is free if the stabilizers are trivial.
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an isomorphism it is isomorphic to the restriction of Az(v,d) (respectively,
Aχ(v,d). This latter algebra is also a Cohen-Macaulay module in view of
Lemma 3.1(b). The complement to U has codimension at least two; more
precisely, Mθ

χ → M0
χ is semismall, while Mθ

z → M0
z is small (this is known

in characteristic zero [23], hence in large positive characteristic). Thus we
get (b).

3.2. The family of Cherednik algebras and their localization

Recall that the algebras WΓn

k ⊂ Wk � k[Γn] fit into the (r + 1)-parametric
family of (spherical) rational Cherednik algebras eHe ⊂ H, see e.g. [18, 6.1].
The parameters are denoted by �, c0, c1, . . . , cr−1 (in loc. cit. c0 is denoted k).
The case of the Weyl algebra corresponds to � = 1, c0 = c1 = . . . = cr−1 = 0.

Recall also that a spherical rational Cherednik algebra specialized at � =
0 is commutative, thus we get a family of affine cyclic Calogero-Moser spaces
Z, over the space Ar

c with coordinates c0, . . . , cr−1, namely Z = Spec(eHe),
and the fiber Zc = Spec(eH(0,c)e).

We now present a description of these algebras as a quantization of an
affine quiver variety constructed via quantum Hamiltonian reduction.

In order to be able to apply Lemma 3.1 we use quiver data different
from the one in §1.1. Namely, the smooth quasiprojective Nakajima quiver
variety M(V,W ) is defined as a GIT quotient with respect to the stability
vector θ = (1, . . . , 1), that is the character of Gν = GL(ν) :=

∏
i∈I GL(Vi)

equal to θ(g) =
∏

i∈I det(gi)
−1. We choose an element σ of the Ãr−1 affine

Weyl group such that σ(λ0 − nδ) = λ0 − ν, and consider θν = σ−1(θ). Then
the works of Lusztig, Nakajima and Maffei on reflection functors provide an
isomorphism M(V,W ) = Mθ(V,W )

∼−→ Mθν (V ′,W ) where dimV ′ = nδ,
and dimW = λ0 = (1, 0, . . . , 0), see e.g. [3, §2.1.3] and references therein.
These references treat the case of a coefficient field of characteristic zero,
but the same argument applies for a field of large positive characteristic.

From now on we will replace the stability condition θ by θν , and V• by
V ′
• . Thus we have:

(3.3) Y = Mθν (V ′,W ).

Lemma 3.5. For an appropriate choice of isomorphism Ar
c → AI , c →

χ(c), we have eH(�,c)e ∼= W�

k (nδ)///χ(c)Gnδ.

More precisely, set η = exp(2πi/r) ∈ Z[ r
√
1] ⊂ C. Choose a prime ideal

p ⊂ Z[ r
√
1] over p, and keep the same notation for the reduction of η in

Z[ r
√
1]/p ⊂ Fp.
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Then χ(c)0 := c0+r−1(1−r−
∑r−1

m=1 cm), χ(c)l := r−1(1−
∑r−1

m=1 η
mlcm)

for 1 ≤ l ≤ r − 1.

Proof. A similar statement in characteristic zero is shown in [12, Theo-
rem 3.13]. To deduce the case of positive characteristic we use the following
easy general statement. Let R be a commutative ring finitely generated over
Z. Assume that two finitely presented algebras over R have isomorphic base
changes to C; then they become isomorphic after base change to some finitely
generated commutative flat R-algebra, in particular their base change to an
algebraically closed field of almost any prime characteristic. The two alge-
bras in question are the spherical rational DAHA and the algebra obtained
by quantum Hamiltonian reduction from the Weyl algebra over Z.

To make sure they are finitely presented it suffices to check that they
(or rather their base change to a finite localization of R) admit a filtration
with a commutative finitely generated associated graded. For the spheri-
cal Cherednik algebra this is clear, as it has a filtration whose associated
graded is the ring of Γn-invariants in the symmetric algebra. For the quan-
tum Hamiltonian reduction this follows from Lemma 3.1.

We now assume that char(k) = p � 0. We let ZAS = Z
(1)
k ×(Ar)(1) (A

1
�
×

Ar), where the map ASQ : A1
�
× Ar → (Ar)(1) is used.

Proposition 3.6. Assume that char(k) = p � 0. There exists a smooth
family Y of algebraic varieties over the base Ar+1 = A1

�
×Ar

c with coordinates
�, c0, c1, . . . , cr−1, and a flat sheaf of algebras A on Y(1) with the following
properties.

(a) The fiber Y(1,0,...,0) equals Y (introduced in Section 2.1).

(b) We have a proper map from Y to ZAS. This map is an isomorphism
over an open subset (Z0)AS ⊂ ZAS, which contains the fiber Zc,k for a
generic c.

(c) We have A(0,c)
∼= Fr∗OY(0,c)

, while the restriction of A to the open
subspace � �= 0 is an Azumaya algebra.

(d) Γ(Y(1),A) = eHe.
(e) The dilation action of Gm on parameters, t : (�, c0, . . . , cr−1) �→

(t�, tc0, . . . , tcr−1) lifts to an action on Y; the sheaf A admits a
natural Gm-equivariant structure.

Proof. We let Y = (Mθν
z (nδ, λ0)

AS , and we consider the sheaf of algebras

A = Aθν
z .

Then part (a) follows from (3.3), part (d) from Lemma 3.4(b) and
Lemma 3.5, part (c) from Lemma 3.4(a), and (e) is clear from the con-
struction. Part (b) follows from part (d) and Lemma 3.5.
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3.3. Verma modules

According to [1, Theorem 7.2.4], the functor of global sections RΓ :
Db(A�,χ(c) − mod) → Db(eH(�,c)e − mod) is an equivalence of categories
provided that A�,c has finite homological dimension; parameters (�, c)
satisfying this property will be called good.

Good parameters form a dense Zariski open subset in the space of pa-
rameters. While it is possible to describe this set explicitly (for large p) based
on results of [6], we will only need the following easily available information:
(� = 1, c = 0) is good; for a generic c the pair (�, c) is good for any �.

We denote the quasiinverse equivalence by M �→ locM (localization).
We will apply this notation both for a specific good parameter and for

a family of such.
Recall Verma modules for Wk � k[Γn] and WΓn

k introduced in 2.4. The
same construction applied to the Cherednik algebra with variable param-
eters produces the Verma H-modules Vμ, and the spherical Verma eHe-
modules VΓn

μ . The specialization of VΓn
μ to (�, c) ∈ A1

�
× Ar

c will be de-

noted by VΓn

μ,(�,c): a spherical Verma module over eH(�,c)e. So for example

VΓn

μ,(1,0,...,0) = VΓn
μ .

Lemma 3.7. We have locVΓn
μ ∈ Aχ(0)−mod ⊂ Db(Aχ(0)−mod), i.e. locVΓn

μ

is an Aχ(0)-module (as opposed to a complex of modules).

Proof. We choose a complementary Γn-invariant Lagrangian subspace ′L :
′L ⊕ L = U . The composed projection Y → A2n/Γn → ′L/Γn = An/Γn

is flat since all the fibers are of the same dimension n. Hence a sequence
e1, . . . , en of generators of k[An/Γn] is a regular sequence for OY , hence

so is the sequence ep1, . . . , e
p
n. Thus e

(1)
1 , . . . , e

(1)
n is a regular sequence for

Fr∗OY on Y (1), where e
(1)
i is the function epi viewed as a function on Y (1).

Using Proposition 3.6(c,e) we see that e
(1)
1 , . . . , e

(1)
n is a regular sequence

for the Azumaya algebra O = Aχ(0) on Y (1). According to Corollary 2.2,
on the formal neighborhood of the central fiber, Aχ(0) � End(E) splits.
Since E contains OY (1) as a direct summand, End(E) contains E as a direct

summand, hence e
(1)
1 , . . . , e

(1)
n forms a regular sequence for E as well.

To finish the proof observe that VΓn
μ is direct summand in WΓn⊗k[e1,...,en]

k: in characteristic zero this is clear since category O for c = 0 is semi-simple,
while the Morita equivalenceWΓn ∼ W sendsWΓn⊗k[e1,...,en]k toW⊗k[e1,...,en]

k = W ⊗k[′L] (k[
′L]/(e1, . . . en)) which carries a filtration whose associated

graded is a direct sum of Verma modules, each one appearing with a nonzero
multiplicity. It follows that VΓn

μ is direct summand in WΓn ⊗k[e1,...,en] k also
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when k has a large positive characteristic. Now it is clear that WΓn⊗k[e1,...,en]

k = RΓ(O
L
⊗k[e1,...,en]k) thus

locVΓn
μ is a direct summand in O

L
⊗k[e1,...,en]k.

3.4. Supports of Verma modules

We need some properties of the bijection between irreducible Γn modules

and (Gm)2-fixed points, which will be presently deduced from the results

of [11]. In fact, loc. cit. establishes similar results for some spherical Chered-

nik algebras over a field of zero characteristic. Passage between the present

setting and that of loc. cit. is done in several steps, which schematically can

be depicted as follows:

Here the first two degenerations are analyzed in Lemma 3.9, while the

last one will be treated using Lemmas 3.7, 3.8.

We start with a geometric Lemma on the behavior of our Lagrangian

subvarieties under the degeneration c → 0; it will be applied for varieties

over a field of characteristic p � 0.

The hyperbolic Gh
m of Section 2.3 acts on Y, and the Gh

m-fixed points

in a general fiber are uniformly numbered by the set of r-partitions of n,

according to [13, 3.8–3.10]. As in Section 2.3, we define L◦
λ,c ⊂ Zc as the

attracting set of the corresponding Gh
m-fixed point. Contrary to the situation

of Section 2.3, for a general (c) the Lagrangian subvariety L◦
λ,c ⊂ Zc is closed,

i.e. equals its closure Lλ,c.

As c goes to 0, the Lagrangian subvariety Lμ,c degenerates into the

(closed) Lagrangian subvariety contained in Lμ ∪
⋃

λ
com
≺ μ

Lλ. In effect, let
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Lμ ⊂ Y be the closed irreducible subvariety of Y whose fiber over general
(�, c) is Lμ,cp−�p−1c. The following lemma is well known to the experts.3

Lemma 3.8. The intersection Lμ ∩ Y contains Lμ ∪
⋃

λ
geo

≺μ
Lλ and is con-

tained in Lμ ∪
⋃

λ
com
≺ μ

Lλ.

Proof. The intersection Lμ ∩ Y is Lagrangian in Y since it is contained
in π−1L0 = L. Since Lμ ∩ Y is closed and contains Lμ, it must contain

Lμ ∪
⋃

λ
geo

≺μ
Lλ. Conversely, if Lλ ⊂ Lμ ∩ Y , then λ

com
≺ μ. To see this let

us consider first the case r = 1 (no cyclic group). Then both the geometric
and combinatorial orders are nothing but the dominance order on partitions.
The parameter c is just one number c, and Y is just the family degener-
ating the Calogero-Moser space into the Hilbert scheme. The equivariant

Borel-Moore étale homology groups H
G

h
m

BM (Y(�,c)) are canonically identified
for all the fibers of Y. The fundamental classes of Lμ,cp−�p−1c form a basis in

H
G

h
m

BM (Y(�,c)). For c
p−�p−1c �= 0, when Lμ,cp−�p−1c is closed, its fundamental

class in the localized equivariant Borel-Moore homology is proportional to
the class of the fixed point μ. On the other hand, under the above iden-

tification, this class equals a class in H
G

h
m

BM (Y ) supported in Lμ ∩ Y (and
proportional to the fixed point class). Now under the well known identifi-

cation of H
G

h
m

BM (Y ) with the degree n part of the Fock space of symmetric
functions, the fixed point classes correspond to the Schur functions, while
the fundamental classes of Lλ correspond to the monomial functions (see
e.g. [22]). The transition matrix between these two bases is upper triangular
in the dominance order, hence we are done.

For general r, recall that Y = YΓ,ν is a connected component of the fixed
point set (Hilbm(A2))Γ where m = v0+ . . .+ vr−1. A fixed point λ ∈ Y goes
to the fixed point tτs(λ) (a partition of m; notations of 2.3) of Hilbm(A2). If
λ lies in Lμ∩Y , then tτs(λ) lies in Ltτs(μ)∩Hilbm(A2), hence tτs(λ)� tτs(μ),

that is λ
com
	 μ.

Lemma 3.9. For a general (c), the support supp( locVΓn

μ,(�,c)) equals

L
(1)
μ,(cp−�p−1c).

Proof. As the Verma module Vμ,(�,c) as well as its spherical counterpart

VΓn

μ,(�,c) is indecomposable, the support supp( locVΓn

μ,(�,c)) must be contained

in exactly one component L
(1)
λ,(cp−�p−1c). It is easy to see that dimension of

3We thank Ben Webster who explained it to us.
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the support equals n which is also the dimension of L
(1)
λ,(cp−�p−1c), thus

supp( locVΓn

μ,(�,c)) = L
(1)
λ,(cp−�p−1c).

It remains to prove that λ = μ. It follows from the last displayed equal-
ity that any finite dimensional Gh

m-equivariant quotient of Vμ,(�,c) is sup-
ported at the point λ of the spectrum of the p-center of the Cherednik
algebra H(�,c). On the other hand, Vμ,(0,c) is the fiber over a prime over p

in SpecZ[ r
√
1] of the family of Verma modules over the family of Cherednik

algebras. Recall the family M(μ) of baby Verma modules over the family
of Cherednik algebras over SpecC → SpecZ[ r

√
1] introduced in [11, 4.1].

This family of Cherednik algebras comes from one over SpecZ[ r
√
1], and its

fiber over a prime over p coincides with the family H(0,c),k of Section 3.2.
The corresponding family of spherical Verma (resp. baby Verma) modules is
denoted VΓn

μ,(0,c),k (resp. M(μ)Γn

c,k). Now VΓn

μ,(0,c),k surjects onto the spherical

baby Verma module M(μ)Γn

c,k. The support of M(μ)Γn

c,k as a module over the
� = 0 spherical algebra eH(0,c)e = k[Zc] is the fixed point μ. Recall that

the p-center of the spherical algebra eH(�,c),ke equals k[Z
(1)
cp−�p−1c)], and the

map from the spectrum of the p-center to the spectrum of the � = 0 spher-
ical algebra is the Frobenius map (Lemma 3.5(c)), hence the p-support of
M(μ)Γn

c,k is also the fixed point μ. It follows that λ = μ. This completes the
proof of the lemma along with the proof of the proposition.

Proof. of Proposition 2.6. Recall the family of quiver varieties � : Y →
A1

�
× Ar

c introduced in Proposition 3.6. We need to show that

L
(1)
μ ⊂ supp( locVΓn

μ ) ⊂ L
(1)
μ ∪

⋃
λ

com
≺ μ

L
(1)
λ .

In view of Lemmas 3.8 and 3.9 this would follow once we check that

i) the support of supp( locVΓn
μ ) is irreducible and

ii) supp( locVΓn
μ ) = supp( locVΓn

μ ) ∩ �−1(1, 0, . . . , 0).

Now, locVΓn
μ is an object in the derived category of sheaves of mod-

ules over the Azumaya algebra A concentrated in non-positive homological
degrees. Clearly, locVΓn

μ is obtained from locVΓn
μ by derived tensor product

with skyscraper at � = 1, c = 0 over the ring of functions k[A1
�
× Ar

c].
Lemma 3.7 shows that the latter tensor product is concentrated in homo-
logical degree zero. It follows that in some Zariski neighborhood of the spe-
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cial fiber �−1(1, 0, . . . , 0) the complex locVΓn
μ is concentrated in homologi-

cal degree zero and is torsion free as a module over the ring of functions

k[A1
�
× Ar

c]. Thus every component of supp( locVΓn
μ ) whose closure inter-

sects �−1(1, 0, . . . , 0) maps dominantly to A1
�
× Ar

c. Since the support is

Gm-invariant under the Gm-action of Proposition 3.6(e), property (i) is es-

tablished. Since locVΓn
μ = locVΓn

μ ⊗k[A1
�
×Ar

c ]
k[�−1(1, 0, . . . , 0)], property (ii)

is also clear.

4. The proof of the main Theorem

4.1. Procesi bundle

Under the equivalence Φk of (2.1) the structure sheaf OU (1) � k[Γn] ∈
DbCohGm×Γn(U (1)) goes to E ∈ DbCohGm(Y (1)), to be called the Procesi

vector bundle. It splits into the direct sum E =
⊕

Eλ ⊗ ρ∗λ over the set of

r-partitions of n numbering the irreducible k[Γn]-representations; under the

above equivalence Eλ corresponds to OU (1) ⊗ ρλ ∈ DbCohGm×Γn(U (1)).

Recall that for an irreducible k[Γn]-module ρλ we denote by Fλ the

coherent sheaf Φk(OL(1) ⊗ ρλ).

We denote by ′L ⊂ U the Γn-invariant Lagrangian complement to L in

U . Repeating the definitions of Section 2.3 with L replaced by ′L we obtain

the Lagrangian components ′Lμ ⊂ Y numbered by the r-partitions of n.

Note that the adjacency order on these components is the inverse of the

order in loc. cit.: ′Lλ ∩ ′L◦
μ �= ∅ iff λ

geo
	μ.

We define the opposite Verma modules over Wk � k[Γn] as ′Vμ :=

k[ ′L] ⊗ ρtμ. Under the Morita equivalence they correspond to the WΓn

k -

modules ′VΓn
μ := k[ ′L]ρtμ . We have Ext•(Vλ,

′Vμ) = 0 iff λ �= μ, and

Extn(Vλ,
′Vλ) � k, since Ext•k[U ](k[L], k[

′L]) is a one-dimensional k-vector
space in degree n, and Γn acts on it via the sign representation detL, and

ρμ ⊗ detL � ρtμ.

Also, we define the sheaf ′Fμ := Φk(O′L(1) ⊗ ρtμ).

Proposition 4.1. We have suppFλ = supp( locVλ).

Proof. Recall that the Γn equivariant splitting bundle Eorb used in the def-

inition of the equivalence Φk is assumed to satisfy a compatibility stated

after the proof of Lemma 2.5 (end of section 2.2). It is clear that a Verma

module Vλ is isomorphic to O(L)⊗O
L(1)

(OL(1) ⊗ ρλ). Thus the Proposition

follows from the commutative diagram in Lemma 2.5(a).
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Corollary 4.2. If the Lagrangian component L
(1)
μ lies in the support of Fλ,

then μ
com
	 λ. If the Lagrangian component ′L(1)

μ lies in the support of ′Fλ,

then μ
com

 tλ.

Proof. We argued in the proof of Proposition 2.6 that the support of the

localized Verma module locVλ consists of L
(1)
λ and some smaller Lagrangian

components L
(1)
μ , μ

com
≺ λ. Thus Corollary follows from Proposition 4.1.

The second part is proved similarly.

4.2. Proof of Theorem 1.1

Note that the composed projection Y → A2n/Γn → An/Γn is flat since
all the fibers are of the same dimension n. It follows that Eρμ

∼= Fμ and

E′
ρμ

∼= ′Fμ; the required properties of Fμ,
′Fμ have been established

in Corollary 4.2.

4.3. Wreath Macdonald polynomials

The equivalence Φk extends to the same named equivalence
DbCohT (U (1))

∼−→ DbCohT (Y (1)) where T is the 2-dimensional
torus with coordinates (q, t) acting on A2 such that Gm is the diagonal
subtorus Gm = {(q, q)}, while Gh

m is the antidiagonal subtorus {(q, q−1)}.
We keep the same name for the induced isomorphism of the K-groups of
the categories in question. We identify the equivariant K-group KT (pt)
with Z[q±1, t±1]. We denote by ι∗λ : KT (Y (1)) → KT (pt) the fiber at the
torus fixed point λ ∈ Y (1).

Note that ι∗μE carries an action of Γn since E carries a fiberwise action
of Γn by construction. Thus [ι∗μE] ∈ Z[q±1, t±1][K(Γn)].

Corollary 4.3. ι∗μ[E]⊗
∑

i(−q)i[Λi( ′L(1))] ∈ Z[q±1, t±1][ρλ,
tλ

com

 μ]; also,

ι∗μ[E]⊗
∑

i(−t)i[Λi(L(1))] ∈ Z[q±1, t±1][ρλ,
tλ

com

 tμ].

Proof. (cf. [16, Proof of Proposition 5.4.2]). The Koszul resolution shows
that [O′L(1) ] = [OU (1) ] ⊗

∑
i(−t)i[Λi(L(1))]. We have TorOL(1) (ι∗μ(E), k) =

TorOU(1) (ι∗μ(E ⊗ O′L(1)), k). By the local duality, the second statement of
the corollary is equivalent to ExtO

U(1)�k[Γn](O′L(1) ⊗ ρλ, ι
∗
μ(E)) = 0 unless

λ
com

 tμ ⇔ tλ

com
	 μ. Since Φk(ι

∗
μ(E)) is the skyscraper sheaf at the point μ ∈

Y , the latter Ext-vanishing follows from suppΦk(O′L(1)⊗ρλ) ⊂
⋃

μ
com

� tλ

′Lμ.

The first statement of the corollary is proved similarly.
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5. Errata to [2]

We use this opportunity to correct some mistakes in [2].

Proof of Lemma 2.12 on p. 8: the action of Gm on XR induces an action
of the formal completion of Gm on the formal completion X, cf. Appendix
(section 6). So references to Gm-equivariant structures on the bundle on X

in the proof should be replaced by ones to equivariance with respect to the
formal completion of Gm.

Proposition 3.8 on p. 12: “restriction to the generic fiber of the formal
scheme X̂” should be removed, the statement of the Proposition should read
as follows: “The localization O� ⊗k[[�]] k((�)) is a sheaf of Azumaya algebras
over the sheaf of commutative rings OX̂ ⊗k[[�]] k((�)).”

The most essential correction4 is for section 5.1.3 on p. 20 which pro-
vides the central step in the proof of Proposition 5.3. It is claimed there
that the quantization of Kleinian singularity whose existence is claimed in
Proposition 5.3 is obtained from the Weyl algebra of the vector space M
by Hamiltonian reduction, using the quantum moment map described in
Example 5.7. This is false; e.g. in the example Γ = {±1} acting on the two
dimensional symplectic vector space, (the fiber at � = 1 of) the quantization
arising from Example 5.7 is identified with the enveloping algebra U(sl(2, k))
reduced at the singular Harish-Chandra central character −ρ = −1, while Γ-
invariants in the Weyl algebra are isomorphic to the reduction of U(sl(2, k))
by the regular central character −1

2 . The argument breaks down as the dis-
played isomorphism R�

∼= O� ⊗O
p
X0

⊗O
p
V0

does not hold, because, contrary

to the mistaken statement in [2], the commutative ring O(V (1))[[�]] does not
act on R� in a natural way.

In order to get the quantization claimed in Proposition 5.3 one has to use
a different quantum moment map, which differs from the one in [2, Example
5.7] by adding the character described in the next paragraph, this fact goes
back to [17]5 in the case of characteristic zero, the case of large positive
characteristic follows by the argument in the proof of Lemma 3.5.

Consider an extended Dynkin quiver with the set of vertices I and the
extending vertex i0 ∈ I. We set δi, i ∈ I, to be the i-th coordinate of the
corresponding minimal imaginary root vector (e.g. δi0 = 1). We choose an

4We thank Ivan Losev for pointing this out.
5Also the following special case of this fact coincides with the special case n = 1

of Lemma 3.5: we consider the quiver of type Âr−1, so I = Z/rZ, i0 = 0, the
orientation is chosen so that i is connected to i + 1 by an oriented edge for i ∈ I;
δi = 1 ∀i ∈ I, thus ∂i = 0 ∀i ∈ I.
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orientation of the extended Dynkin quiver. We define the defect vector ∂
with coordinates ∂i as follows: ∂i := −δi +

∑
δj where the sum is over the

set of vertices j such that there is an arrow i → j. Finally, Γ ⊂ SL(2) is the
finite subgroup corresponding to our quiver. Then the character producing
the Hamiltonian reduction equal to the Γ-invariants in the first Weyl algebra
has the following components: then χi0 = δi0/|Γ| − ∂0 − 1, χi = δi/|Γ| − ∂i
(i �= i0).

6. Appendix: Equivariant structure on rigid vector bundles6

Let T = (Gm)d be a d-dimensional torus. We begin with the following result.

Lemma 6.1. Let X be a proper (not necessarily smooth) scheme over an
algebraically closed field k, E a vector bundle over X such that Ext1(E;E) =
0. Assume that X is endowed with a T-action m : T × X → X. Then the
action of T lifts to E, i.e. E has a T-equivariant structure.

Proof. First, we claim that E is T-invariant, that is m∗E � p∗2E locally with
respect to T.

Indeed, since Ext1(E;E) = 0, the claim is true if we replace T by
its formal completion at 1. Now, let us consider the vector bundle F =
Hom(m∗E, p∗2E). Since X is proper, p1∗F is a coherent sheaf on T. Theorem
on Formal Functions implies that the formal completion of p1∗F at 1 is a
vector bundle. Therefore p1∗F is a vector bundle over some open neighbor-
hood U of 1 in T. Further, shrinking U , we may assume that there exists a
section s of p1∗F over U which is equal to Id ∈ (p1∗F )1 at the point 1 ∈ T.
It implies that m∗E � p∗2E over some open neighborhood of 1. Since the
subgroup of T generated by an open neighborhood of 1 coincides with T,
the claim follows.

We conclude that there exists an extension of affine algebraic groups

1 → Aut(E) → G → T → 1

such that the action of G on X (through T) lifts to E.
Note that the group Aut(E) is smooth and connected (since it is an open

subscheme of the affine space End(E)). Hence the lemma follows from the
next one.

Lemma 6.2. For a smooth connected group H, any extension

1 → H → G
h→ T → 1

6By Vadim Vologodsky.
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splits in the weak sense, i.e. there exists a homomorphism i : T → G such
that h ◦ i = Id.

Proof. The result is well known. We include the argument for the readers’
convenience.

Any affine algebraic group is a semidirect product of a reductive group
and a unipotent one. Therefore it is enough to prove the lemma in the
following two cases.

1. H is a unipotent group. In this case the lemma follows from the struc-
tural result cited above: if G = U × T is the semidirect factorization,
the morphism h factors through the second factor and, since the kernel
of h is connected, there exists a splitting.

2. H is a reductive group. In this case, rk(G) = rk(H) + dim(T). There-
fore, the intersection of a maximal torus T ⊂ G with H is a toral
subgroup of H of dimension rk(H). Hence its connected component is
a Cartan subgroup of H; the intersection T ∩ H is contained in the
centralizer of that Cartan subgroup, hence it coincides with the Car-
tan subgroup. Thus, the lemma reduces to the obvious case when G is
a torus.

Let X → Y be a morphism of schemes of finite type over an algebraically
closed field. Let yl (resp. ŷ) be the l-th infinitesimal neighborhood (resp. the
formal neighborhood) of a closed point y ∈ Y, and let Xyl

(resp. Xŷ) be the
preimage of yl (resp. ŷ) in X. Assume that Xyl

, (l = 1, 2, · · · ), are endowed
with compatible T-actions ml : T × Xyl

→ Xyl

7. We will need a version
of the notion of an equivariant bundle for formal neighborhoods. By a T-
equivariant structure on a vector bundle E over Xŷ we mean a compatible
system of T-equivariant structures on El := E|Xyl

. Equivalently, this is an

action of T̂ on E lifting the T̂-action on Xŷ such that for each l the T̂-action
on El can be extended to an action of T.

Proposition 6.3. Assume that X → Y is proper and that Ext1(E,E) = 0.
Then E admits a T-equivariant structure.

Proof. Consider the projective system of algebraic groups Hl = Aut(El).
Since Endk(El) is a finite-dimensional k-vector space, the projective system
above satisfies the Mittag-Leffler condition, i.e., for any integer l there exists
an integer N ≥ l such that

Im(Hk → Hl) = Im(HN → Hl), ∀k > N.

7In particular, Xŷ is equipped with an action of the formal completion T̂ of T.
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Similarly, using that Ext1(E,E) = 0 and that Ext1(El, El) is finite-dimen-
sional, we conclude that

Im(Ext1(EN , EN ) → Ext1(El, El)) = 0,

for N large enough.
Using the above assertions and arguing as in the proof of Lemma 6.1, we

conclude that, for every l, the bundle El admits a T-equivariant structure.
Next, consider a projective system of extensions

1 → Hl → Gl → T → 1,

where, for a scheme S, Gl(S) is the group of pairs (t : S → T, θ), where
θ is an isomorphism between (ml ◦ (t × Id))∗El and the pullback of El on
S × Xyl

with respect to the second projection. The Mittag-Leffler property
of Hl together with Lemma 6.2 ensures the existence of a weak splitting
T → lim←−Gl which defines a T-equivariant structure on E.
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