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1 Introduction

The large central charge CFTs have been receiving much attention recently in the context

of the holographic duality. The Brown-Henneaux relation c ∼ 1/GN , where c is the central

charge and GN is the gravitational constant suggests that the large-c regime corresponds

to the semiclassical approximation in the gravity path integral calculations [1]. This brings

to light many issues regarding studying the leading saddle point gravity description of the

large-c CFT and finding the subleading 1/c corrections (see, e.g., [2–11] and references

therein).

In this paper we study one-point conformal blocks in various large-c regimes. We dis-

tinguish between different large-c torus blocks: the global, light, heavy-light, and classical

blocks. Three of them are known in the spherical case. We add another type of torus block

to this list: the light block. We show that all of them are related by a particular chain of

connections.

We shortly remind the definition of one-point torus conformal block (see, e.g., [12–

16]). Let q = e2πiτ parameterize the torus with the complex modulus τ . The conformal
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block V(∆, ∆̃, c|q) of the primary operator φ∆(z) with the conformal dimension ∆ and the

exchanged operator with the conformal dimension ∆̃ is given by

qc/24−∆̃ V(∆, ∆̃, c|q) =
∞
∑

n=0

qnVn(∆, ∆̃, c) = 1 +

[

1 +
(∆− 1)∆

2∆̃

]

q + . . . , (1.1)

where the expansion coefficients are defined as

Vn(∆, ∆̃, c) =
1

〈∆̃|φ∆(z)|∆̃〉
∑

n=|M |=|N |

BM |N 〈∆̃,M |φ∆(z)|N, ∆̃〉 , (1.2)

where |∆̃,M〉 = Li1
−m1

. . . Lik
−mk

|∆̃〉 are descendant vectors in the Verma module generated

from the primary state |∆̃〉. Here, M labels basis monomials, |M | = i1m1 + . . . + ikmk

denotes the sum of the Virasoro generator indices. The matrix BM |N is the inverse of the

Gram matrix BM |N = 〈∆̃,M |N, ∆̃〉. Note that the block does not depend on z by virtue

of the Ward identity.

We consider the large-c expansions of the block function (1.1). All associated conformal

blocks are referred to as semiclassical. There are different semiclassical blocks because (1.1)

also depends on conformal dimensions ∆ and ∆̃ which can be scaled in terms of the central

charge. We distinguish between the following four types.

• ∆ and ∆̃ are fixed in the limit c → ∞. Depending on the particular 1/c → 0

contraction of the Virasoro algebra we distinguish between the global and light blocks.

The light block is the leading asymptotic in the c-recursive representation of the torus

block (1.1).

• ∆ and ∆̃/c are fixed in the limit c → ∞. In this case we obtain the heavy-light block.

It follows that ∆̃ ≫ 1 and, therefore, ∆/∆̃ ≪ 1. Remarkably, the opposite regime of

heavy external operator and light exchanged operator does not exist for the one-point

torus block, cf. the first coefficient in (1.1). It follows that the concept of vacuum

block approximation used to calculate conformal blocks on the sphere [2, 4, 5, 17–19]

(see [20] for review) is not directly applicable to one-point torus blocks because the

exchanged operators wrap around non-vanishing cycle and, therefore, cannot be set

to 1.

• ∆/c and ∆̃/c stay fixed as c → ∞. The resulting asymptotic expansion of the block

function (1.1) is the exponential of the classical conformal block. The linearized

version of the classical torus block is obtained when the ratio ∆/∆̃ is small. Note

that the linearized classical block admits the holographic interpretation in the thermal

AdS3 space [21]. In the present paper we find the concise integral representation of

the linearized classical block.

The paper is organized as follows. Each of the following sections from 2 to 5 considers

a particular type of semiclassical torus blocks listed above and establishes their mutual

relations. In section 6 we discuss our conclusions and further perspectives. Appendix A

collects first four block coefficients, appendix B shows the relation between the global and

light blocks, appendix B.1 considers the Kac determinant in the c → ∞ limit, appendix C

describes the c-recursive representation of the one-point torus block.
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2 Global torus block

The Virasoro symmetry algebra Vir on any Riemann surface contains a finite-dimensional

subalgebra sl(2,C) ⊂ Vir. It follows that we can always restrict the general Virasoro block

to that of the sl(2,C) subalgebra. The resulting global block is a simpler function which

depends on the conformal dimensions and not on the central charge. Note that the general

conformal block of higher dimensional CFT being restricted to two dimensions yields the

global block.

In the torus case, the general formula (1.2) simplifies to yield the global torus block

F(∆, ∆̃|q) =
∞
∑

n=0

qnFn(∆, ∆̃) , Fn(∆, ∆̃) =
1

〈∆̃|φ∆(z)|∆̃〉
〈∆̃|Ln

1φ∆(z)L
n
−1|∆̃〉

〈∆̃|Ln
1L

n
−1|∆̃〉

, (2.1)

where L0,±1 are sl(2,C) basis elements. The coefficients can be found explicitly1

Fn(∆, ∆̃) =
n
∑

p=0

n!

(n− p)!(p!)2
Γ(2∆̃)

Γ(2∆̃ + p)

Γ(∆ + p)

Γ(∆− p)
. (2.2)

The global block coefficients are related to the hypergeometric function [15]

F(∆, ∆̃|q) = (1−q)−1
2F1

(

∆, 1−∆, 2∆̃ | q

q−1

)

= 1+

[

1+
(∆−1)∆

2∆̃

]

q+

[

1+
(∆−1)∆

2∆̃
+
(∆−1)∆(∆2−∆+4∆̃)

4∆̃(2∆̃+1)

]

q2+. . . .

(2.3)

The ∆̃ → ∞ global block coefficients can be equivalently described as the ∆ → 0

limiting case. In this case we arrive at the zero-point block coinciding with the sl(2,C)

character,

F(∆, ∆̃|q)
∣

∣

∣

∆̃→∞
=

1

1− q
= 1 + q + q2 + q3 + . . . , (2.4)

which indicates that there is just one state on each level of the corresponding sl(2,C)

module.

2.1 Large conformal dimensions

The expression (2.3) suggests that the global block function satisfies the Gauss hypergeo-

metric equation. To this end, using the Pfaff transformation the global torus block (2.3)

can be cast into the form2

F(∆, ∆̃|q) = (1− q)−∆
2F1(2∆̃−∆, 1−∆, 2∆̃ | q) . (2.5)

1A detailed derivation of sl(2,C) matrix elements can be found in [22].
2Recall that the 4-point global block on the sphere is also given by the hypergeometric function. It is

tempting to speculate that the recently established correspondence between the one-point torus block and

the four-point spherical block [13–15] is exact in the sl(2,C) case once the conformal dimensions satisfy

appropriate linear relations, while q and z are related in the standard way.
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Then, we find the second order differential equation

F ′′

+ 2

(

∆̃

q
− 1

1− q

)

F ′ −
(

∆(∆− 1)

q(1− q)2
+

2∆̃

q(1− q)

)

F = 0 , (2.6)

which has three singular points 0, 1 and ∞. One of two independent solutions is given

by (2.5). We note that global blocks on the sphere satisfy the analogous second order

differential equations following from imposing the sl(2,C) Casimir eigenvalue equations

in the exchanged channels [22, 23]. The torus case is more intricate because the global

symmetry here is u(1) ⊕ u(1) ⊂ sl(2,C) so that the term global is somewhat misleading.

On the other hand, the equation (2.6) should be realized as the torus Casimir channel

condition.

We consider the regime where dimensions ∆ and ∆̃ tend to infinity in a coherent

manner. Namely, we introduce the scale parameter κ as

∆ = κσ , ∆̃ = κ σ̃ , (2.7)

where σ and σ̃ are rescaled conformal dimensions. Below we study the large-κ asymptotic

behavior of (2.5) given that σ and σ̃ are fixed. We prove the following

Proposition 2.1. The large-k asymptotic expansion of the global block function is expo-

nentiated

F(∆, ∆̃|q) = exp [κ g0(σ, σ̃|q)] , κ → ∞ , (2.8)

where g0(σ, σ̃|q) is given by the formal power series

g0(σ, σ̃|q) = σ̃
∞
∑

n=1

g0n(q)
(σ

σ̃

)2n
, g0n(q) =

qn

κn

qn−1 + γn,n−2q
n−2 + . . .+ γn,0

(1− q)2n−1
, (2.9)

where γn,i=(−1)n−i+1
(

2n−1
n+i

)

, i=0, 1, . . . , n− 1 are binomial coefficients, and κn=
4n(2n−1)n

2 .

The proof directly follows from the theory of differential equations with a large parameter.

In general, the large-κ asymptotic expansion takes the form

F(∆, ∆̃|q) = exp

[

∞
∑

n=0

κλ−ngn(σ, σ̃|q)
]

, (2.10)

where λ is a positive integer. The expansion coefficients gn(σ, σ̃|q) can be explicitly found

by substituting (2.10) into the original differential equation (2.6). The resulting recurrence

equations fix λ = 1, while the first coefficient g0(σ, σ̃|q) satisfies the first order differential

equation

(g′0(σ, σ̃|q))2 +
2σ̃

q
g′0(σ, σ̃|q)−

σ2

q(1− q)2
= 0 , (2.11)

where the prime denotes the q-derivative. All other coefficients in (2.10) are expressed in

terms of g0(σ, σ̃|q) and its derivatives. The quadratic equation (2.11) yields two values of
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the derivative of which we choose the solution perturbatively regular at q = 0. We integrate

to obtain

g0(σ, σ̃|q) =
∫ q

0
dx

(

− σ̃

x
+

√

σ̃2

x2
+

σ2

x(1− x)2

)

. (2.12)

The integration constant is chosen so that F(∆, ∆̃|0) = 1, or, equivalently, g0(σ, σ̃|0) = 0.

We first decompose the right-hand side of (2.12) with respect to the small parameter

δ = σ/σ̃. Expanding the integrand and integrating the resulting expression we arrive

at (2.9).

3 Light torus block

In general, the light block can be defined as the c → ∞ limit of the quantum conformal

block. For example, the limiting 4-point function on the sphere is known to be the hyper-

geometric function [24]. In the 5-point case this is the Horn hypergeometric series of two

variables [22], the n-point case was studied in [25]. The light blocks are also known in the

WN case [26, 27]. The light and global blocks on the sphere are identical.

We expand conformal blocks given that ∆ = O(c0) and ∆̃ = O(c0) as c → ∞. In this

regime the quantum torus block (1.1) is represented as

qc/24−∆̃ V(∆, ∆̃, c|q) = L(∆, ∆̃|q) +O(c−1) , (3.1)

where the leading term is the one-point light torus block. It turns out that global and light

blocks are different on a torus. The light block is a formal power series

L(∆, ∆̃|q) =
∞
∑

n=0

Ln(∆, ∆̃) qn

= 1+

[

1+
(∆−1)∆

2∆̃

]

q+

[

2+
(∆−1)∆

2∆̃
+
(∆−1)∆(∆2−∆+4∆̃)

4∆̃(2∆̃+1)

]

q2+. . . ,

(3.2)

cf. (2.3). There is the following

Proposition 3.1. The global and light blocks are related as

L(∆, ∆̃|q) = 1− q

ϕ(q)
F(∆, ∆̃|q) , (3.3)

where ϕ(q) =
∏∞

n=1(1− qn) is the Euler function (B.19).

The proof is given in appendix B. The component form of (3.3) reads

Ln(∆, ∆̃) =
n
∑

k=0

p1(n− k)Fk(∆, ∆̃) , (3.4)

where p1(n−k) is the number of partitions of n−k which does not contain 1 as a part, with

the convention that p1(0) = 1. Equivalently, Ln = [Fn + Fn−2 + Fn−3 + p1(4)Fn−4 + . . .].
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In brief, to prove proposition 3.1 we analyze the primary operator matrix and the

Gram matrix elements which are polynomial functions of the central charge.3 Note that

the n-th level block coefficients can be represented as a trace of the [n×n] matrix product,

see (1.2). Thus, the block coefficients are rational functions of c. In appendix B we show

that only diagonal elements contribute in the c → ∞ limit. On the other hand, the diagonal

elements are exactly the global block coefficients weighted with numbers of the sl(2,C) basis

elements L−1 on a given level. This explains the weight factor in (3.3).

3.1 Virasoro algebra contractions

We consider the Inönu-Wigner contraction [29] for the Virasoro algebra, where the defor-

mation parameter is the inverse central charge. In the c → ∞ limit, there are two different

types of contractions underlying the global and light torus blocks. One of contractions

gives rise to the Heisenberg algebra that explains the weight prefactor in (3.3).

We recall that the Virasoro algebra commutation relations are given by

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , m, n ∈ Z , (3.5)

while primary operators transform as

[Lm, φ∆] = zm(z∂z + (m+ 1)∆)φ∆ . (3.6)

The rescaled Virasoro generators are Lm → c−γ(m)Lm, where γ(m) is some function of the

label m ∈ Z. There are two natural cases: (A) γ(|m| ≤ 1) = 0 and γ(|m| ≥ 2) = 1; (B)

γ(|m| ≤ 1) = 0 and γ(|m| ≥ 2) = 1/2. We denote

L0,±1 → l0,±1 = L0,±1 , Lm → am = Lm/cγ , |m| ≥ 2 , (3.7)

where γ = 1 and γ = 1/2 correspond to the cases (A) and (B), respectively.

The transformation law (3.6) is also rescaled. In the limit c → ∞, keeping the con-

formal dimension ∆ finite we find that in both cases (A) and (B) the primary operator

transforms as

[lm, φ∆] = zm(z∂z + (m+ 1)∆)φ∆ , [am, φ∆] = 0 . (3.8)

It follows that φ∆ are sl(2) conformal operators and am-singlets.

In the case (A), the contracted Virasoro algebra splits into sl(2) algebra and the infinite-

dimensional Abelian algebra A,

[lm, ln] = (m− n)lm+n , [am, an] = 0 ,

[lm, an] = (m− n)am+n , |m+ n| ≥ 2 ; [lm, an] = 0 , |m+ n| ≤ 1 .
(3.9)

The contracted algebra is the semidirect sum VirA = sl(2)⋉A, while the ± branches of A
are lowest weight sl(2)-modules.

3See the analogous discussion of the global blocks on the sphere using the projector technique [17]. Also,

see the large ∆̃ asymptotics analysis in the torus case [28].
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In the case (B), the contracted Virasoro algebra splits into sl(2) algebra and the infinite-

dimensional Heisenberg algebra H,

[lm, ln] = (m− n)lm+n , [am, an] =
m(m2 − 1)

12
δm+n,0 ,

[lm, an] = (m− n)am+n , |m+ n| ≥ 2 ; [lm, an] = 0 , |m+ n| ≤ 1 .

(3.10)

The contracted algebra in this case is the semidirect sum VirB = sl(2) ⋉ H, while the ±
branches of H are lowest weight sl(2)-modules. Comparing (3.9) and (3.10) we see that the

only difference is the central term in (3.10), which refers to that the Heisenberg algebra is

the centrally extended Abelian algebra.

We argue that the contracted algebras VirA and VirB underlie the global and light

torus blocks, respectively. Let the basis monomials be represented as

|M, ∆̃〉 = aM̄ ls−1|∆̃〉 , |M | = s+ |M̄ | , (3.11)

where we denoted aM̄ = ai1−m1
. . . aik−mk

and i1m1 + · · · + ikmk = |M̄ |. The standard

conjugation rules a−m = (am)† are assumed.

The global torus block corresponds to the case (A). We compute the block coeffi-

cients (1.2), where the basis monomials |∆̃,M〉 are elements of the contracted algebra VirA
module, while the primary operator satisfies (3.8). The Abelian factor A is trivially realized

and the only states contributing to the block coefficients are those with M̄ = 0. It follows

that the n-th level block coefficient contains the maximum number of l±1 generators, n = s

so that the resulting expression is just the global block (2.1). We note that truncating

the Virasoro algebra to the sl(2,C) subalgebra of section 2 is equivalent to considering the

contracted VirA with trivially realized Abelian factor.

The light torus block corresponds to the case (B). To compute the VirB block we

observe that the Gram matrix and the primary field matrix are diagonal, 〈∆̃,M |N, ∆̃〉 =
δMNαM 〈∆̃|ls1ls−1|∆̃〉 and 〈∆̃,M |φ∆|N, ∆̃〉 = δMNβM 〈∆̃|ls1φ∆l

s
−1|1∆̃〉, where αM = βN are

some non-zero constants, the bra and ket vectors are given in the basis (3.11). Using that

H is the ideal and am|∆̃〉 = 0 we find the relation [am, ls−1] |∆̃〉 = 0 used to show the first

equality above. The second equality follows from the first one and the commutator (3.8).

It follows that the number s of lm generators in the matrix elements on the n-th level varies

from 0 to n.

We see that, contrary to the case (A), the Heisenberg factor H is non-trivially realized

and, therefore, the global block associated to the sl(2) factor and the block of the full

VirB = sl(2) ⋉ H become related. When computing the expansion coefficients (1.2) on

the n-th level the infinite-dimensional Heisenberg algebra H can be effectively reduced to

the finite-dimensional Heisenberg algebra Hp(n)+1 with p(n)+1 basis elements, where k(n)

is a number of partitions of n. Then, using the diagonal matrix relations we find that

the corresponding conformal block is given by the sum of the global block coefficients Fi,

i = n, n−2, n−3, . . . , 1, 0 given by (2.1) with weights equal to the number of l−1 generators

in the basis monomials on the n-th level, cf. (3.4). Indeed, the basis (3.11) has a natural

grading which is the number of l−1 generators so that we can organize all basis elements

– 7 –
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according to the s-grading. Then, the first few elements on the n-th level are: ln−1|∆̃〉,
a−2l

n−2
−1 |∆̃〉, a−3l

n−3
−1 |∆̃〉, etc. Thus, we find that the VirB = sl(2) ⋉ H block indeed is

identified with the light block expressed in terms of the global block (3.3).

3.2 Torus c-recurrence

The light block can be considered as the leading O(c0) term of the so-called c-recursive

representation of the quantum conformal block, where sub-leading O(1/c) terms are simple

poles in c [24]. In the torus case, the c → ∞ limit of the original block function is identified

with the light block (3.1). The recursive relations are given by

Vn(∆, ∆̃, c) = Ln(∆, ∆̃)+

rs≤n
∑

r≥2,s≥1

(

− ∂cr,s

∂∆̃

)

Ars(∆̃)Prs(∆, ∆̃)

c− crs(∆̃)
Vn−rs(∆, ∆̃+ rs, c) , (3.12)

where the central charge values cr,s(∆̃) associated to the degenerate dimensions and the

functions Ars(∆̃), Prs(∆, ∆̃) are given in appendix C. Schematically, the recursive represen-

tation defines the n-th block coefficient as Vn = Ln+ηn−2Vn−2+ηn−3Vn−3+. . .+η1V1+η0V0,

where η-s are read off from (3.12).

4 Heavy-light torus block

The heavy-light limit of conformal blocks assumes that some dimensions scale linearly with

the central charge, while the others remain fixed [3, 17]. Thus, in the large-c regime we

distinguish between heavy and light operators.

The torus one-point block depends on two conformal dimensions, ∆ and ∆̃. In this

case, the heavy-light limit is defined by ∆ = O(c0) and ∆̃ = O(c1) as c → ∞. Note that

contrary to the spherical blocks the external operator is light and the exchanged operator

is heavy. In the opposite regime the torus block does not exit because the block function

diverges. It follows that there is just one heavy-light torus block defined as

H(∆, ǫ̃ |q) = lim
c→∞

∆,ǫ̃-fixed

qc/24−∆̃ V(∆, cǫ̃, c |q) , (4.1)

where ǫ̃ = ∆̃/c is the classical exchanged dimension. The block coefficients calculated to

high enough orders are given by

H(∆, ǫ̃ |q) = 1 + q + 2q2 + 3q3 + 5q4 + . . . =
1

ϕ(q)
, (4.2)

where ϕ(q) is the Euler function, cf. (3.3). Here, the last equality is the conjecture based on

the middle terms following from explicit calculations of the first few levels. Below we argue

that the heavy-light block is indeed the inverse Euler function. In this case, the heavy-light

block is just the zero-point block, or, equivalently, the Virasoro character. Note that the

heavy-light block turns out to be independent of conformal dimensions, H(∆, ǫ̃ |q) ≡ H(q).

Proposition 4.1. The heavy-light block is the limiting case of the light block

H(q) = lim
∆̃→∞

L(∆, ∆̃|q) . (4.3)
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The proof directly follows from the global/light block relation (3.3) and the large-∆̃ asymp-

totic of the global block (2.4).

The relation (4.3) is analogous to that between global and heavy-light blocks on the

sphere originally found in the 4-point case [3] and further developed in the higher-point

case [22]. Recall that two heavy external operators in spherical blocks can be generated by

the singular conformal map z → zα, where α is expressed in terms of the heavy dimensions.

Then the heavy-light block is just the global block with the light operator insertions evalu-

ated in the new coordinates supplemented with the corresponding Jacobian factors. From

the holographic perspective, the conformal map generates heavy insertions on the bound-

ary that corresponds to the conical singularity/BTZ in the bulk. In the torus case, the

external operator is lighter than the exchanged operator and therefore it cannot produce

a singularity like in the spherical case. The corresponding bulk geometry is the thermal

AdS space which is the standard AdS with periodic time [21]. Thus, there is no additional

Jacobian factors and the light torus block which replaces the global block in the spherical

case is related to the heavy-light block as in (4.3).

Similarly to the case of the global and light blocks, the heavy-light block (4.2) is related

to the particular contracted Virasoro algebra. Indeed, we rescale the Virasoro generators as

L0 → l0 = L0/c , Lm → lm = Lm/
√
2c , m 6= 0 , (4.4)

and find that in the limit c → ∞ the contracted Virasoro algebra commutation rela-

tions read

[lm, ln] = mδm+n,0 l0 +
m(m2 − 1)

24
δm+n,0 , m, n ∈ Z , (4.5)

while the primary operator transformation law is given by

[lm, φ∆(z)] = 0 , m ∈ Z . (4.6)

The contracted Virasoro algebra is the infinite-dimensional Heisenberg algebra H. The

commutation relations (4.5) can be cast into the standard form by linearly transforming

the basis elements lm. Note that the original sl(2) subalgebra is contracted4 into the three-

dimensional Heisenberg algebra H3 ⊂ H. Most importantly, the external operator is the

H-singlet. It follows that the resulting block coefficients (1.2) are simply the traces of the

[p(n)× p(n)] unit matrices,

Hn = Tr 1 p(n) ≡ p(n) , (4.7)

where p(n) is the partition of the level number n, cf. (4.2) and (B.19). The particular form

of the corresponding Gram matrix makes no difference.

5 Linearized classical torus block

As opposed to the limiting block functions considered in the previous sections, here we

study the large-c asymptotic expansion of the torus block, where all conformal dimensions

grow linearly with the central charge ∆ = O(c1) and ∆̃ = O(c1). It means that both the

4See also ref. [30].
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external and exchanged operators are heavy. Decomposing the block function (1.1) around

c = ∞ we arrive at the following Laurent series,

V(∆, ∆̃, c|q) =
∑

n∈N

vn(ǫ, ǫ̃|q)
cn

, (5.1)

where finite parameters

ǫ =
∆

c
and ǫ̃ =

∆̃

c
, (5.2)

are classical conformal dimensions, and vn(ǫ, ǫ̃|q) are formal power series in the modular

parameter q with expansion coefficients being rational functions in ǫ and ǫ̃. Note that the

expansion (5.1) is essentially different from the c-recursive representation (3.12) because of

the rescaling (5.2).

At large c the principle part of (5.1) tends to zero. Less obvious is the fact that the

regular part exponentiates [31]. It follows that the one-point torus block is asymptotically

equivalent to

V(∆, ∆̃, c|q) ∼ exp [ c f(ǫ, ǫ̃|q)] as c → ∞ . (5.3)

Here, the function f(ǫ, ǫ̃|q) is the classical conformal block [32],

f(ǫ, ǫ̃|q) = (ǫ̃− 1/4) log q +
∞
∑

n=1

qnfn(ǫ, ǫ̃) = (ǫ̃− 1/4) log q +
ǫ2

2ǫ̃
q + . . . , (5.4)

other lower level coefficients can be found in [21, 32]. Note that coefficients fn(ǫ, ǫ̃) are

combinations of the expansion coefficients of vm≥0(ǫ, ǫ̃|q) in (5.1).

The torus one-point linearized classical block is defined by introducing the lightness

parameter δ = ∆/∆̃ < 1, which measures the relative weight of dimensions at any value

of the central charge, ∆/∆̃ = ǫ/ǫ̃ [5, 22]. Changing from (ǫ, ǫ̃) to (δ, ǫ̃) we represent the

classical conformal block as a double series expansion in δ and ǫ̃,

f(δǫ̃, ǫ̃|q) =
∞
∑

n=2

ψn(ǫ̃|q) δn , where ψn(ǫ̃|q) =
∞
∑

m=0

ψ(m)
n (q)ǫ̃m . (5.5)

Keeping terms at most linear in ǫ̃ in the original classical block we obtain the linearized

version, f(ǫ, ǫ̃|q) = f lin(δ, ǫ̃|q) +O(ǫ̃2), where the lightness parameter is dimensionless [21].

The linearized classical block f lin(δ, ǫ̃|q) is given by the expansion coefficients ψ
(1)
n (q) (5.5).

It turns out that ψ
(1)
2k+1(q) = 0 at k = 1, 2, . . . . Denoting ψ

(1)
2k (q) ≡ f

(1)
k (q) we find the

linearized classical torus block

f lin(δ, ǫ̃|q) ≡ (ǫ̃− 1/4) log q + ǫ̃
∞
∑

n=1

f (1)
n (q)δ2n . (5.6)

The expansion coefficients in (5.6) can be explicitly calculated at n ≤ 5 that allows us to

conjecture the general formula [21]

f (1)
n =

qn

κn

qn−1 + γn,n−2q
n−2 + . . .+ γn,0

(1− q)2n−1
, (5.7)

– 10 –



J
H
E
P
0
4
(
2
0
1
7
)
0
7
0

where γn,i = (−1)n−i+1
(

2n−1
n+i

)

, i = 0, 1, . . . , n−1 are binomial coefficients, and κn are some

constants κ1 = 2, κ2 = 48, κ3 = 480, κ4 = 3584, κ5 = 23040, etc.5

Remarkably, the linearized classical torus block is related to the global block at large

dimensions. Namely, we put forward the following

Conjecture 5.1. Coefficients g0n(q) of the exponentited global block (2.9) and the lin-

earized classical block coefficients f
(1)
n (q) (5.6) are equal to each other,

f (1)
n (q) = g0n(q) . (5.8)

This can be verified by explicit calculation at n ≤ 5. Put differently, the relation (5.8) says

that changing from (κ, σ, σ̃) of the global block (2.7) to (c, ǫ, ǫ̃) of the classical block (5.2)

we find that the linearized classical block is exactly equal to the exponential factor of the

global block at large dimensions,

g0(ǫ, ǫ̃|q) = f lin(ǫ, ǫ̃|q) , (5.9)

cf. proposition 2.1. This relation re-expressed in the logarithmic form is analogous to that

between the global and linearized blocks on the sphere originally proposed in the 4-point

case [3] and further developed in the higher point case [22].

Using conjecture 5.1 we can explicitly find coefficients κn in (5.7) as κn = 4n(2n−1)n
2 ,

cf. first 5 coefficients listed below (5.7). Using the integral representation of the global

block (2.12) and the conjecture 5.1 we suggest the closed formula for the linearized classical

block

f lin(ǫ, ǫ̃|q) =
∫ q

0
dx

(

− ǫ̃

x
+

√

ǫ̃2

x2
+

ǫ2

(1− x)2x

)

. (5.10)

From the AdS/CFT perspective, the linearized block is naturally realized as the tadpole

geodesic graph in the thermal AdS space [21]. It would be interesting to reproduce this

integral formula in the bulk terms thereby proving the correspondence in all orders of the

lightness parameter δ = ǫ/ǫ̃.

6 Conclusion

The one-point torus block depends on three conformal parameters whose particular asymp-

totic behavior defines different type limiting block functions. In this paper we explicitly

described four torus blocks calculated at different scalings of conformal dimensions with

respect to the central charge which is either large or infinite. We showed that such semiclas-

sical blocks are related to each other. In particular, we found the integral representation

of the linearized classical torus block that is important from the AdS/CFT perspective.

We showed that semiclassical torus blocks corresponding to the infinite central charge are

associated to differently contracted Virasoro algebra. These are the global, light, and

heavy-light blocks.

5Typically, the linearized classical blocks both on the sphere and torus are infinite series in the dimen-

sionless lightness parameter [5, 21, 22]. An exception to this is the 4-point linearized classical block on the

sphere which is a linear function in conformal dimensions [4, 17].
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On the other hand, the (linearized) classical block one defines as large central charge

asymptotic expansion of the original Virasoro block can be related to 1/c deformations of

one of the contracted Virasoro algebras considered in this paper. Indeed, the representation

theory of the contracted Lie algebras [29] is essentially based on the limiting relation εν ∼ 1

between the contraction parameter ε → 0 and dimensions ν of the non-contracted algebra

representations. In other words, the dimension infinitely grows when the contraction pa-

rameter goes to zero. In our case, this relation is reproduced by the condition ∆/c ∼ 1,

see (5.2). We expect that the semiclassical blocks can be entirely reformulated in terms of

the representation theory of the contracted Virasoro algebras and their deformations.

The same contraction procedure can be equally applied in the case of the sphere as well

as in CFTs on surfaces of any genus. We note also that the Virasoro algebra contractions

and associated blocks studied in this paper has much in common with the so-called irregular

conformal blocks and their semiclassical limits, see, e.g., [33–36]. In that case the irregular

blocks are associated to the particularly truncated Virasoro algebra and demonstrate the

exponential behavior in the limit c → ∞.

Hopefully, further study of the symmetry arguments underlying various semiclassical

blocks will improve our understanding of the AdS/CFT duality in the large-c regime. In

particular, that will help to clarify how the contracted Virasoro algebras are realized in

terms of the bulk geometry and the associated geodesic networks.
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A Torus block coefficients

A few first expansion coefficients of the torus block (1.2) are given by

V0(∆,∆̃,c) = 1 , V1(∆,∆̃,c) = 1+
(∆−1)∆

2∆̃
, (A.1)

V2(∆,∆̃,c) =
1

4∆̃
(

c−10∆̃+2c∆̃+16∆̃2

)

×
{

−2c∆+3c∆2
−2c∆3+c∆4+8c∆̃−8c∆∆̃+56∆2∆̃+8c∆2∆̃−64∆3∆̃+8∆4∆̃−80∆̃2+16c∆̃2

−128∆∆̃2+128∆2∆̃2+128∆̃3

}

, (A.2)

V3(∆,∆̃,c) =
1

24∆̃
(

2+c−7∆̃+c∆̃+3∆̃2

)(

c−10∆̃+2c∆̃+16∆̃2

)

×
{

−48c∆−24c2∆+176c∆2+34c2∆2
−312c∆3

−21c2∆3+248c∆4+13c2∆4
−72c∆5

−3c2∆5

+8c∆6+c
2∆6+144c∆̃+72c2∆̃+240∆∆̃+12c∆∆̃−108c2∆∆̃−668∆2∆̃+890c∆2∆̃+126c2∆2∆̃

+1794∆3∆̃−1383c∆3∆̃−36c2∆3∆̃−1754∆4∆̃+647c∆4∆̃+18c2∆4∆̃+414∆5∆̃−177c∆5∆̃
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−26∆6∆̃+11c∆6∆̃−1440∆̃2
−936c∆̃2+216c2∆̃2

−1440∆∆̃2
−696c∆∆̃2

−96c2∆∆̃2
−2748∆2∆̃2

+1950c∆2∆̃2+96c2∆2∆̃2+3024∆3∆̃2
−1644c∆3∆̃2+1644∆4∆̃2+390c∆4∆̃2

−504∆5∆̃2

+24∆6∆̃2+7344∆̃3
−360c∆̃3+144c2∆̃3+6408∆∆̃3

−1656c∆∆̃3+72∆2∆̃3+1656c∆2∆̃3

−7488∆3∆̃3+1008∆4∆̃3
−10224∆̃4+1584c∆̃4

−5184∆∆̃4+5184∆2∆̃4+3456∆̃5

}

. (A.3)

B Proof of proposition 3.1

Lower levels. We analyze the c-dependence of the first two block coefficients (1.2). The

first level coefficient does not depend on c so that V1 = L1 = F1, cf. (3.2). Now, we

explicitly calculate the second level coefficient,

V2 =
1

〈∆̃|φ∆|∆̃〉
[

〈∆̃, 0, 2|φ∆|0, 2, ∆̃〉B0,2|0,2 + 〈∆̃, 0, 2|φ∆|1, 1, ∆̃〉B1,1|0,2

+〈∆̃, 1, 1|φ∆|0, 2, ∆̃〉B0,2|1,1 + 〈∆̃, 1, 1|φ∆|1, 1, ∆̃〉B1,1|1,1
]

,

(B.1)

where BM |N are elements of the inverse Gram matrix, and |0, 2, ∆̃〉=L−2|∆̃〉 and |1, 1, ∆̃〉 =
L2
−1|∆̃〉. The Gram matrix B and its inverse B−1 are given by

B =

(

c
2 + 4∆̃ 6∆̃

6∆̃ 4∆̃(2∆̃ + 1)

)

, B−1 =





4∆̃+2
2∆̃c+c+2∆̃(8∆̃−5)

− 3
2∆̃c+c+2∆̃(8∆̃−5)

− 3
2∆̃c+c+2∆̃(8∆̃−5)

c+8∆̃
4∆̃(2∆̃c+c+2∆̃(8∆̃−5))



 .

(B.2)

The matrix elements read

〈∆̃, 0, 2|φ∆|0, 2, ∆̃〉 =
(

4∆(∆−1)+(4∆̃+c/2)
)

〈∆̃|φ∆|∆̃〉 ,

〈∆̃, 0, 2|φ∆|1, 1, ∆̃〉 =
(

2(∆−1)∆(∆+1)+6∆̃
)

〈∆̃|φ∆|∆̃〉 , (B.3)

〈∆̃, 1, 1|φ∆|1, 1, ∆̃〉 = 4∆̃(2∆̃+1)

[

1+
(∆−1)∆

2∆̃
+
(∆−1)∆(∆2−∆+4∆̃)

4∆̃(2∆̃+1)

]

〈∆̃|φ∆|∆̃〉 .

Note that the last matrix element is proportional to the second coefficient of the global

block (2.3). Noting that any block coefficient (1.2) can be represented as a trace of the

matrix product we find that the second level coefficient can be represented as follows

V2 =
1

〈∆̃|φ∆|∆̃〉
Tr

(

O(c1) O(c0)

O(c0) O(c0)

)(

O(c−1) O(c−1)

O(c−1) O(c0)

)

= 〈∆̃, 0, 2|φ∆|0, 2, ∆̃〉B0,2|0,2 + 〈∆̃, 1, 1|φ∆|1, 1, ∆̃〉B1,1|1,1 +O(c−1) .

(B.4)

In the limit c → ∞ we find that the block coefficient is given by the sum of diagonal terms

while off-diagonal decay as 1/c. We obtain limc→∞ V2 ≡ L2 = 1 + F2. Thus, we have

reproduced relation (3.4) at n = 0, 1, 2. Indeed, L0 = F0 = 1, L1 = F1, and L2 = F2 +F0.
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Higher levels. Now, we analyze the general behavior of the Gram matrix and its inverse

in the c → ∞ limit. We show that the leading part of the Gram matrix determinant (the

Kac determinant) and the leading part of the product of diagonal elements are the same.

Lemma B.1. Let BM |N be elements of the Gram matrix B. Then,

lim
c→∞

∏

M BM |M

detB
= 1 , (B.5)

where detB is the Kac determinant.

The proof is given in appendix B.1.

Using the lemma we prove that the expansion coefficients (1.2) are of order O(1/cα),

where α = 0, 1, 2, . . . , while O(c0) terms come only from the diagonal elements of the

inverse Gram matrix BM |N and the primary operator matrix 〈∆̃,M |φ∆(z)|N, ∆̃〉, i.e. when
M = N . Any off-diagonal contributions decay at least as O(1/c). It follows that in the

c → ∞ limit just diagonal elements contribute. See our discussion surrounding the second

level case (B.4).

We note that the Gram matrix elements and the primary operator matrix have the

same behavior with respect to the central charge c. By this we mean that the commutation

relations of primary operators with any Virasoro generators do not depend on c so that

a power-law cβ , β = 0, 1, 2, . . . may arise only when commuting two or more Virasoro

generators, cf. (3.5) and (3.6). We conclude that estimating powers of the central charge

in the block coefficients we can trade the primary operator matrix elements for the Gram

matrix elements (cf. (B.2) and (B.3)).

We consider the inverse Gram matrix elements,

BM |N =
AM |N

detB
, detB =

∑

|M |=|N |=n

(−)M+NBM |NAM |N , (B.6)

where A is a minor of B. Let φM |N be a shorthand notation for the normalized primary

operator matrix element 〈∆̃,M |φ∆(z)|N,∆̃〉

〈∆̃|φ∆(z)|∆̃〉
. Then, the block coefficient (1.2) is given by

Vn =
∑

M

φM |MAM |M

detB
+

∑

M 6=N

φM |NAM |N

detB
, (B.7)

where we separated diagonal from off-diagonal contributions. We similarly represent the de-

terminant formula in (B.6) as detB =
∑

M BM |MAM |M +
∑

M 6=N (−)M+NBM |NAM |N . Us-

ing (B.5) we conclude that off-diagonal contribution in the determinant expansion is of less

order in c than the diagonal contribution which in the limit c → ∞ is equal to
∏

M BM |M .

Now, we are in a position to show that the off-diagonal contribution in (B.7) is of

order O(1/ck), k = 1, 2, . . . . Comparing φM |NAM |N in (B.7) with the determinant ex-

pansion, recalling that φM |N has the same c-dependence as BM |N , and using the lemma

statement (B.5) we conclude that φM |NAM |N is of less order in c than detB and, therefore,

the off-diagonal contribution to the block coefficient is suppressed at least as 1/c. On the
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other hand, the diagonal contribution is always of order O(c0) because φM |MAM |M has the

same power of c as
∏

M BM |M .

Finally, we can explicitly compute the diagonal contribution in (B.7). Indeed, from

the above it follows that in the c → ∞ limit the Gram matrix can be taken to be diagonal

and, therefore, we can easily find its inverse which is also a diagonal matrix. In particular,

we find that BM |M = 〈∆̃,M |M, ∆̃〉 = γM (c, s)〈∆̃|Ls
1L

s
−1|∆̃〉, where γM (c, s) are some

non-zero coefficients. Recalling that [φ∆, Lm] = O(c0) we similarly find that φM |M =

γM (c, s)〈∆̃|Ls
1φ∆L

s
−1|∆̃〉. On substituting these expressions into (1.2) we arrive at the

n-th level light block coefficient given by

Ln(∆, ∆̃) =
n
∑

k=0

p1(n− k)Fk(∆, ∆̃) , (B.8)

where p1(n − k) denotes the number of partitions of n − k which does not contain 1 as a

part, with the convention that p1(0) = 1, cf. (3.4). Coefficients p1(n−k) count the number

of basis ket vectors on the n-th level which contain k Virasoro generators L−1. Recalling

the global block (2.1) and using (B.8) and (B.18) we find that

1− q

ϕ(q)
F(∆, ∆̃|q) = p1(0) + p1(0)F1(∆, ∆̃)q +

(

p1(0)F2(∆, ∆̃) + p1(2)F0(∆, ∆̃)
)

q2 + . . . ,

(B.9)

and thereby show the relation between the light and global torus blocks (3.3).

B.1 Proof of lemma B.5

Kac determinant. In what follows we use the Liouville parametrization of the central

charge c = 1 + 6(b + b−1)2. Then, the limit c → ∞ can be replaced by b → 0 so that

c = 6/b2. The Kac determinant [37, 38] in our case is given by

detB =

rs≤n
∏

r,s≥1

((2r)ss!)m(r,s)(∆̃−∆r,s)
p(n−rs) , (B.10)

where p(n) is the number of all partitions of n, ∆r,s is the Liouville parametrization of the

degenerate conformal dimensions ∆r,s = (b+b−1)2

4 − (rb+sb−1)2

4 , and m(r, s) = p(n − rs) −
p(n− r(s+ 1)).

Considering factors with s = 1 and s ≥ 2 separately and taking the b → 0 limit we

find that the ∆̃−dependent term factorizes into the two parts

detB =
n
∏

k=1

(

∆̃ +
k − 1

2

)p(n−k) ij≤n
∏

j≥1,i≥2

(

i2 − 1

4b2

)p(n−ij) rs≤n
∏

r,s≥1

((2r)ss!)m(r,s) . (B.11)

Diagonal elements. We consider diagonal elements of the Gram matrix in the b → 0

limit. In a given diagonal element we take one Lm to the right,

〈∆̃|Li1
1 . . . Lim

m Lim
−m . . . Li1

−1|∆̃〉 = 〈∆̃|Li1
1 . . . Lim−1

m [Lm, Lim
−m . . . Li1

−1]|∆̃〉
= 〈∆̃|Li1

1 . . . Lim−1
m [Lm, L−m]Lim−1

−m . . . Lim
−1|∆̃〉

+ 〈∆̃|Li1
1 . . . Lim−1

m L−m[Lm, Lim−1
−m . . . Lim

−1]|∆̃〉 .
(B.12)
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The leading contribution comes from multiple commutators limb→0[Lm, L−m] = m(m2 −
1)/(2b2), cf. the central extension term in (3.5). Commuting all Lm to the right we find

that Lim
m Lim

−m contributes with the combinatorial factor im!. Finally, we are left only with

Li1
−1 giving rise to 〈∆̃|Li1

1 L
i1
−1|∆̃〉 = i1!(2∆̃)i1 .

Now, we describe the n-th level basis monomials Lim
−m . . . Li1

−1 and their conjugates

using partitions of n. It follows that the product of diagonal elements can be conveniently

represented in terms of restricted partitions as

∏

M

BM |M =
n
∏

k=1

(

k!(2∆̃)k

)p1(n−k) n
∏

i=2

(

i3 − i

2b2

)#(i,n) rs≤n
∏

r,s≥2

(s!)pr(n−rs) , (B.13)

where pd(n) is the number of partitions of n which does not contain d as a part and #(i, n)

is the number of all parts i in all partitions of n. The first product in (B.13) accounts for

the basis monomials that contain exactly k generators L−1 and p1(n− k) is the number of

partitions of n which contain exactly k units. The second product accounts for generators

L−i with i ≥ 2 in the set of all partitions. The third product is the combinatorial factor due

to that a partition may contain more than one L−i with i ≥ 2. To explain this we note that

a given partition contains two equal parts provided that k = 1, . . . , n can be represented

as a product of two natural numbers, k = rs, where r, s ∈ N. In what follows we express

the restricted partitions discussed above in terms of the standard partitions p(n).

Auxiliary relations. The following relations are useful in practice,

#(i, n) =

ki≤n
∑

k=1

kpi(n− ki) , (B.14)

p(n) =

kd≤n
∑

k=0

pd(n− kd) , (B.15)

m(r, s) = pr(n− rs) , (B.16)

ki≤n
∑

k=1

p(n− ki) =

ki≤n
∑

k=1

kpi(n− ki) . (B.17)

To show (B.14) we note that the total number of parts in all partitions of n can be

calculated as follows: a number of partitions containing exactly one part d is equal to

pd(n − d), a number of partitions containing exactly two parts d is equal to pd(n − 2d),

etc. Indeed, fixing a part d and and its number in a given partition k we split the number

n−kd into all parts except for d so that there are pd(n−kd) ways to do it. Thus, we obtain

the total number pd(n − d) + 2pd(n − 2d) + . . . + kpd(n − kd) , where k is the maximum

integer such that n− kd ≥ 0.

To show (B.15) we consider the generating functions for partitions pd(n− kd),

1− qd
∏∞

k=1(1− qk)
= pd(0) + pd(1)q + pd(2)q

2 + pd(3)q
3 + . . . , (B.18)
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see, e.g., [39], along with the inverse Euler function,

1
∏∞

k=1(1− qk)
= p(0) + p(1)q + . . .+ p(n)qn + . . . . (B.19)

The function (B.19) can be represented as a product of two series

1
∏∞

k=1(1− qk)
=

(

1

1− qd

)(

1− qd
∏∞

k=1(1− qk)

)

= pd(0)q
0+ . . .+

(

kd≤n
∑

k=0

pd(n− kd)

)

qn+ . . . .

(B.20)

Comparing the expansion coefficients in (B.19) and (B.20) we arrive at the relation (B.15).

The relation (B.16) follows from (B.15),

m(r, s) := p(n−rs)−p(n−r(s+1))

=
(

pr(n−rs)+pr(n−rs−r)+. . .
)

−
(

pr(n−r(s+1))+pr(n−r(s+1)−r)+. . .
)

= pr(n−rs) . (B.21)

Finally, to show (B.17) we write down (B.15) at different arguments,

p(n− d) =

kd≤n−d
∑

k=0

pd(n− d− kd) =

kd≤n
∑

k=1

pd(n− kd) ,

p(n− 2d) =

kd≤n−2d
∑

k=0

pd(n− 2d− kd) =

kd≤n
∑

k=2

pd(n− kd) ,

· · · · · · · · · · · · · · · · · · · · · · · ·
p(n− rd) = pd(n− kd) ,

(B.22)

where r is maximum integer such that n − rd ≥ 0. Summing up all the lines we ob-

tain (B.15).

Equivalent representations. We prove that (B.11) and (B.13) are equal. On the

one hand,

detB=

n
∏

k=1

(

∆̃+
k−1

2

)p(n−k) ij≤n
∏

j≥1,i≥2

(

i2−1

4b2

)p(n−ij)rs≤n
∏

r,s≥1

((2r)ss!)m(r,s)

=

n
∏

k=1

(

∆̃+
k−1

2

)p(n−k) rs≤n
∏

i≥1,j≥2

(

i2−1

4b2

)p(n−ij) n
∏

s=1

2sp1(n−s)

rs≤n
∏

r≥2,s≥1

(2r)spr(n−rs)

rs≤n
∏

r,s≥1

(s!)pr(n−rs)

=

n
∏

k=1

(

∆̃+
k−1

2

)p(n−k) ij≤n
∏

j≥1,i≥2

(

i2−1

4b2

)p(n−ij) n
∏

s=1

2p(n−s)

rs≤n
∏

r≥2,s≥1

(2r)p(n−rs)

rs≤n
∏

r,s≥1

(s!)pr(n−rs)

=

n
∏

k=1

(

2∆̃+k−1

)p(n−k) ij≤n
∏

j≥1,i≥2

(

i3−i

2b2

)p(n−ij)rs≤n
∏

r,s≥1

(s!)pr(n−rs). (B.23)
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On the other hand,

∏

M

BM |M =
n
∏

k=1

(

k!(2∆̃)k

)p1(n−k) n
∏

i=2

(

i3 − i

2b2

)#(i,n) rs≤n
∏

r,s≥2

(s!)pr(n−rs)

=
n
∏

k=1

(

2∆̃ + k − 1

)

∑n
i=k p1(n−i) n

∏

i=2

(

i3 − i

2b2

)

∑ki≤n

k=1
kpi(n−ki) rs≤n

∏

s≥1,r≥2

(s!)pr(n−rs)

=
n
∏

k=1

(

2∆̃ + k − 1

)p(n−k) n
∏

i=2

(

i3 − i

2b2

)

∑ki≤n

k=1
p(n−ki) rs≤n

∏

s≥1,r≥2

(s!)pr(n−rs)

=
n
∏

k=1

(

2∆̃ + k − 1

)p(n−k) ij≤n
∏

i≥2,j≥1

(

i3 − i

2b2

)p(n−ij) rs≤n
∏

r,s≥1

(s!)pr(n−rs) . (B.24)

The last lines in (B.23) and (B.24) coincide, and, therefore, the relation (B.5) holds true.

C Recursive representation

The recursive representations split conformal blocks into the limiting function and the

singular part with respect to a given conformal parameter which is either the central

charge or the exchanged dimension. The ∆̃-recursion representation was proposed in [15].

In what follows we carefully derive the c-recursive representation.

Using the Liouville parametrization we change conformal parameters (∆, ∆̃, c) →
(λ, ∆̃, b) as follows

c(b) = 1 + 6(b+ b−1)2 , ∆ =
(b+ b−1)2

4
− λ2

4
. (C.1)

Conformal blocks have poles at ∆̃ = ∆r,s, which means that the exchanged channels can

be degenerate with dimensions

∆rs =
(b+ b−1)2

4
− (rb+ sb−1)2

4
. (C.2)

The ∆̃-recursive representation of 1-point torus blocks is given by [15]

Vn(λ, ∆̃, b) = Hn(λ, b) +

rs≤n
∑

r,s≥1

Ars(b)Prs(λ, b)

∆̃−∆rs(b)
Vn−rs(λ,∆rs + rs, b) , (C.3)

where Hn(λ, b) are the expansion coefficients of the ∆̃ → ∞ limiting conformal block given

by the inverse Euler function, cf. (B.19), and

Ars(b) =
1

2

r
∏

p=1−r
(p,q) 6=(0,0) 6=(r,s)

s
∏

q=1−s

(pb+ qb−1)−1 , (C.4)

Prs(λ, b) =

2r−1
∏

k=1,k=1 (mod 2)

2s−1
∏

l=1,l=1 (mod 2)

(

λ+ kb+ lb−1

2

)(

λ− kb+ lb−1

2

)

×
(

λ+ kb− lb−1

2

)(

λ− kb− lb−1

2

)

. (C.5)
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Using the recursive formula (C.3) we can elaborate the other recursive representation,

where poles are given on the c-plane rather than ∆̃-plane. Consequently, the leading

asymptotic in this case is the c → ∞ limiting block which is the light block (3.2). To

elaborate the c-recursive representation we first re-parameterize the conformal block poles

given by ∆̃ −∆rs(b) = 0, cf. (C.3) and (C.2). Considering this condition as the equation

on the b-plane

∆̃ =
(br,s + b−1

r,s )
2

4
−

(rbr,s + sb−1
r,s )

4
, (C.6)

we find that poles arise when the central charge b takes particular “degenerate” values,

b2r,s(∆̃) =
1

1− r2

(

2∆̃ + rs− 1 +

√

(r − s)2 + 4(rs− 1)∆̃ + 4∆̃2

)

. (C.7)

It follows that (C.3) can be equivalently represented as

Vn(λ, ∆̃, b) = Ln(λ, ∆̃) +

rs≤n
∑

r≥2,s≥1

(

− ∂br,s

∂∆̃

)

Ars(br,s)Prs(λ, br,s)

b− brs(∆̃)
Vn−rs(λ, ∆̃ + rs, b) , (C.8)

where the leading term is the light block (3.2). The Jacobian prefactor follows from com-

paring the residua,

resbr,s Vn(λ, ∆̃, b) =
1

2πi

∮

br,s

Vn(λ, ∆̃, b)db

=
1

2πi

∮

∆r,s

Vn(λ, ∆̃, b)

(

∂c

∂∆̃

)

d∆̃ =

(

∂br,s

∂∆̃

)

res∆r,s
Vn(λ, ∆̃, b) .

(C.9)

The minus sign of the Jacobian in (C.8) is due to interchanging terms of the pole part

when coming from the ∆̃-plane to the b-plane.

Finally, using the standard parametrization

cr,s = 1 + 6(br,s + b−1
r,s )

2 ,

λ2 = (b+ b−1)2 − 4∆ ,

b2 =
c− 13 +

√
25− 26c+ c2

12
,

(C.10)

the recursive formula (C.8) can be rewritten as

Vn(∆, ∆̃, c) = Ln(∆, ∆̃) +

rs≤n
∑

r≥2,s≥1

(

− ∂cr,s

∂∆̃

)

Ars(cr,s)Prs(∆̃, cr,s)

c− crs(∆̃)
Vn−rs(∆, ∆̃ + rs, c) ,

(C.11)

where the Jacobian factor is given by

∂cr,s

∂∆̃
=

12

b2r,s

1− b4r,s

(b2r,s(r
2 − 1) + 2∆̃ + rs− 1)

. (C.12)

Using the recursive representation (C.11) we explicitly calculated the first few block coef-

ficients Vk(∆, ∆̃, c), k = 0, 1, 2, 3 and found that they reproduce the standard expressions

collected in appendix A.
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