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Abstract In this paper we outline the approach of solving special type of navigation

tasks for robotic systems, when a coalition of robots (agents) acts in the 2D environ-

ment, which can be modified by the actions, and share the same goal location. The

latter is originally unreachable for some members of the coalition, but the common

task still can be accomplished as the agents can assist each other (e.g., by modify-

ing the environment). We call such tasks smart relocation tasks (as they cannot be

solved by pure path planning methods) and study spatial and behavior interaction

of robots while solving them. We use cognitive approach and introduce semiotic

knowledge representation—sign world model which underlines behavioral planning

methodology. Planning is viewed as a recursive search process in the hierarchical

state-space induced by sings with path planning signs residing on the lowest level.

Reaching this level triggers path planning which is accomplished by state-of-the-

art grid-based planners focused on producing smooth paths (e.g., LIAN) and thus

indirectly guarantying feasibility of that paths against agent’s dynamic constraints.

Keywords Behavior planning ⋅ Task planning ⋅ Coalition ⋅ Path planning ⋅ Sign

world model ⋅ Semiotic model ⋅ Knowledge representation ⋅ LIAN

1 Introduction

In pursuit of higher autonomy degree of modern robotics systems researchers com-

bine various methods and algorithms of artificial intelligence, cognitive science, con-

trol theory into so-called Intelligent Control Systems (ICS) [1, 2]. These systems are

the collections of software modules automating robot behavior and are convention-

ally organized in a hierarchical fashion. Usually three levels of control—strategic,

tactical, and reactive (or named in another way but still bearing the same sense)—
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are distinguished [3]. In this work, we address the planning problem and examine

planning methods on both strategic and tactical levels and their interaction. On the

strategic level, we assume that there exist a description of situations and goals, and

the search space induced by such descriptions is processed to produce a valid plan.

Typically in AI planning [4] first-order logic is used to model the world as well as spe-

cialized first-order logic languages—PDDL and its derivatives—are used to formal-

ize robot’s actions [5, 6]. Planning relying on these models and languages is known

as task planning. In our work a new formalism—sign world model—is introduced

which is based on cognitive theories, takes into account results of recent cognitive

and neurophysiologic research and thus makes robot’s behavior more human-like,

robust and versatile. We refer to planning based on sign world model as to behavior

planning. As for the tactical level of control system, it deals mainly with navigation

tasks so planning is considered in spatial (geometrical) sense and is aimed at finding

a path (feasible trajectory) for the robot. Both planning activities—behavior planning

and path planning—despite the common term involved in their names utilize differ-

ent models and algorithms and commonly are studied independently. In the present

work, we study them as a part of coherent framework. One should say that there

exists a limited number of the approaches of task (not behavior) and path planning

integration, see [7, 8] for example. These approaches mainly examine some aspects

of task and path planning integration when there is a single robot interacting with

the environment. In our work, we study the behavior of the coalition of robots and

how integration of planning activities on both strategic and tactical layer can affect

such behavior. We examine navigation tasks in 2D world which can be transformed

by the robots’ actions. More precisely, we investigate the case when unsolvable for

some member of the coalition problem can be solved if other robots alter their plans

and assist each other. We call such tasks—smart relocation tasks (as they cannot be

accomplished by path planning only methods).

The latter of the paper is organized as follows—in Sect. 2 related works regarding

task and path planning are discussed. Section 3 contains the description of the smart

relocation task we are interested in. Novel world modeling formalism, which utilizes

cognitive approach, is introduced in Sect. 4 and in Sect. 5 planning method based on

this formalism is described. Suggested path planning approach is discussed in Sect. 6.

Model example in studied in Sect. 7.

2 Related Works

2.1 World Modeling and Behavior Planning

Behavior (task) planning is the main objective of control systems based on cognitive

architectures. Well-known SOAR [9, 10] system is considered as the industry stan-

dard in this area. In SOAR, as well is in majority of other cognitive control systems,

agent’s memory is separated into the long-term memory, the short-term memory and
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the memory of estimates. Objects, situations and goals are represented in the short-

term memory in the form of attribute descriptions. The long-term memory contains

transitions (operators) between short-term memory states and is represented by AI

rules [11].

Agent’s planning procedure in SOAR consists of a sequence of decisions, where

the aim of each decision is to select and apply an operator in service of the agent’s

goals. The simple decision circle contains five steps: encode perceptual input, acti-

vate rules to elaborate agent’s state (propose and evaluate operators) in parallel, select

an operator, activate rules in parallel that apply the operator and then process output

directives and retrievals from long-term memory.

Similar knowledge representation and planning method are implemented in other

cognitive control systems. In the Icarus project [12, 13] the division of the long-term

memory into conceptual and action memories was introduced. Planning procedure of

Icarus relies on recursive action decomposition up to low-level actions, called skills.

Skill sequence is executed when start situation is satisfied in short-term memory. In

Clarion [14, 15] some rules of action choosing are based on neural networks. Thus

knowledge representation in Clarion contains not only explicit (attributive) compo-

nent but also an implicit one. The learning process on the set of predefined precedents

is the distinctive feature of this system.

Modern algorithms of behavior (task) planning use so-called STRIPS description

of planning domain [16]. One of the main directions in task planning is the develop-

ment of special graph structures encoding both state descriptions and state transitions

for further search. The first algorithm using graph representation was Graphplan

[17]. Graphplan search procedure is executed on the special layered compact plan-

ning graph and returns a shortest-possible partial-order plan or state that indicates

the absence of the valid plan.

Further research in this area was concentrated on development of specialized

search algorithms for these graph structures. For example in the Fast Forward

(FF) [18] and the Fast Downward (FD) planning systems [19] heuristic search is

used. These planners are aimed at solving general deterministic planning problems

encoded in the propositional fragment of PDDL description [6] and search the state

space in the forward direction. FF, FD, and other widespread PDDL-based planners

use the propositional representation with special implicit constraints being consid-

ered in some cases. For example, FD planner computes its causal graph heuristic

function taking these implicit constraints into account as well as using hierarchical

decompositions of planning tasks.

Another remarkable heuristic planning system is LAMA [20]. It uses pseudo-

heuristic derived from landmarks—propositional formulas that must be true in every

solution of a planning task. The LAMA system builds plan using finite domain rather

than binary state variables as in the FF planner.

One should note that the propositional language for task description is not rel-

evant to many real problems. Thus extensions of the language and development

of hybrid planning domains is appealing research area. For example, UPMorphi

universal planner [21] is capable of reasoning with mixed discrete and continu-

ous domains and fully respect the semantics of PDDL+ [22]. UPMorhi performs
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universal planning on some initial discretization and checks the correctness of the

result. If the validation fails, discretization is refined and algorithm is reinvoked.

All of the above-mentioned and other existing planners are not suitable for the

cooperative behavior (task) planning. Special knowledge representation such as MA-

PDDL [23] should be used in this case. These representations and planners based on

them should solve symbol grounding problem [24] and support goal-setting and role

distribution procedures. Such requirements can be met by the sign representation,

which is based on the models of cognitive functions [25] and neurophysiological

studies of the cognition process [26, 27]. We will use this approach to realize com-

munication protocol for cooperative planning and providing a link between the sym-

bolic models and sensor (low level) data.

2.2 Spatial Modeling and Path Planning

Traditionally in artificial intelligence and robotics path planning is viewed as a graph

search process. Agent’s knowledge about the environment is encoded into the graph

model and the search for a path on that graph is performed. Typically, graph’s ver-

tices correspond to the locations an agent can occupy and edges—to the trajectories

it can traverse (for example—straight sections or curves of predefined lengths and

curvatures). Weighting function, which assigns weights to the edges, is commonly

used to quantitatively express any characteristics of the corresponding trajectories

(length, energy cost, risk of traversing, etc.). So to plan a path one needs to a) con-

struct a graph model out of the environment description available to an agent b) find

a (shortest) path on that graph.

The most widespread graph models used as the spatial world model of an agent

are Visibility Graphs [28], Voronoi Diagrams [29], Navigation Meshes [30], Regu-

lar Grids [31] etc. Each of them needs its own algorithm to be executed to transform

raw information about the environment to the model. In case environment is com-

pound of the free space and the polygonal obstacles (the most widespread case), two

graph models are typically used—visibility graphs and regular grids. Constructing

visibility graph is computationally burdensome and each time goal position changes

additional calculations should be performed to add corresponding edges to VG [32].

Algorithm of grid construction is much more simple—its complexity is a constant

in respect of number of obstacles’ vertices and edges, and no additional calculations

should be made when goal or start position alters. So, grids can be referred to as sim-

ple yet informative graph models, and in most cases it is the grids that are used for

path planning. Another reason grids are so widespread is that new knowledge on the

environment gained via sensor information processing can be easily integrated into

them [33] without the necessity to re-invoke graph construction algorithm, which

significantly saves computational resources.

After the graph is constructed, the search for a path is performed (typically,

the shortest path is targeted). There exist a handful of algorithms for that: Dijkstra

[34], A* [35]—which is the heuristic modification of Dijkstra, and many of their
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derivatives: R* [36], Theta* [37], JPS [38], D* Lite [39] etc. Some of these

algorithms are specifically tailored to grid path planning (like JPS or Theta*) some

work on any graphs (D* Lite, R*) with A* and Dijkstra being the most universal ones

(and the most computationally ineffective while solving practical tasks as well).

If we are talking not about an abstract agent, which can move in any directions,

with any speed and acceleration, and stop instantly, we need to take into account

agent dynamic constraints while searching for a path. Common way to consider these

constraints is to incorporate them somehow into the graph model or, which is nearly

the same, into the search space—see [40] for example. The main problem here is

that the search space becomes orders of magnitude times larger, especially when an

agent exhibits rather complex dynamics (for example—multirotor UAV). Another

problem here is that admissible, monotone, well-informed heuristics utilized to guide

the search can be easily introduced only for the spatial-only search spaces, which is

not the case anymore. Summing up that mentioned above, one can claim that it may

be beneficial to stay within spatial-only search spaces but search for such paths that

indirectly guarantee feasibility against the agent’s dynamic constraints, e.g., smooth

paths not containing sharp turns. One of the recently introduced approaches in this

area, is planning for angle-constrained paths [41]. We believe that this approach is

very promising and suggest using LIAN algorithm [42] for agent’s path planning. To

the best of our knowledge it is the only angle-constrained path planning algorithm

which is sound and complete (in respect to its input parameters).

When talking about coalitions of agents and multi-agent grid path planning the

most well-studied problem is resolving spatial conflicts for groups of agents with

primitive dynamics, e.g., agents that can move from an arbitrary grid cell to any

of its eight adjacent neighbors and stop (and later on start) moving instantaneously.

There exist both sound and complete but very computationally expensive methods

of solving this task [43] and fast but incomplete algorithms [44, 45]. Much less

attention is paid to the problem of agents spatial interaction when planning for a

path—a problem which will be addressed in our work in more details.

2.3 Summary

Currently existing cognitive control systems and PDDL-based planners do not con-

sider some important features of the planning problem in case coalition of interacting

agents is involved. Dynamic formation of goals and goal sharing in the context of

changing environment impose special restrictions on the knowledge representation

to be used by planning systems. Necessity to divide beliefs of a single agent into com-

municable and personal parts presents another restriction. It is also worth noting that

within existing task planning frameworks little attention is paid to coordination of

path planning process and behavior knowledge about the environment. Regarding

path planning itself one can state that grid-based path planning is the most wide-

spread methodology as grids are simple yet informative spatial models and a hand-

ful of methods tailored to grid path finding exist. Unfortunately grid-based paths
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do not take into account agent’s dynamic constraints while incorporating dynamic

laws encodings into the search process severely degrades overall performance (due

to the enormous extension of the search space). So it can be beneficial to stay within

spatial only search spaces but search for a specific, geometrically constrained class

of paths and thus indirectly guaranty path’s feasibility. Further on we will present a

coherent task-path planning framework which addresses all the mentioned concerns

and bottlenecks.

3 Considered Case

Further on we will use the term agent as well as robot (robotic system) following the

conventions of AI literature.

We consider the following task. The coalition of agents A = {A1,… ,AN} act in

the static environment (workspace) which is the rectangular area of 2D Euclidean

space U∶ xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax. U is comprised out of the free space Ufree
and the obstacles Uobs = {obs1,… , obsM}. Each obstacle is a polygon defined by the

set of its vertices’ coordinates obsi = {pi1, pi2,… , pij,… , piKi
}, pij = (xij, yij) ∈ U.

Obstacles are additionally characterized by types: type(obsi) = otj, otj ∈ OT , OT =
{ot1,… , otZ}. All agents have similar sizes and can be represented as the circles of

radius r in U (see Fig. 1).

Fig. 1 Considered case of the coalition relocation task: A1,A2—members of the coalition, G—the

goal area, obs1, obs2—obstacles of the ot1 type (inclined lines blocks) destroyable by agent A2



Behavior and Path Planning for the Coalition of Cognitive Robots . . . 9

We suppose that the agent’s movement dynamics is encoded as a set of differential

equations:

dx
dt

= f (x, u), (1)

where f (x, u)—vector function, x ∈ Rn
—vector of the phase coordinates, u ∈ Rr

—

control vector, t—time. Following [46] we assume that given dynamic constraints

can be transformed to geometry constraints, e.g., we assume that a feasible trajectory

for an agent is the angle-constrained path in U which is a sequence of line segments

such that the angle of alteration between two consecutive segments does not exceed

predefined threshold 𝛼m.

Agent’s knowledge base contains high-level representations of locations and dis-

tances as well as the mechanisms of mapping these representations to the workspace.

Set of agent’s actions are organized in a hierarchical structure and three types of

actions exist: transition actions, transforming actions, (which are limited to destroy-

ing obstacles of different types) and messaging actions. We consider the case when

each agent has its own planning focus containing current beliefs about external

objects and processes. Details of the knowledge representation will be described

further in Sect. 4.

Single agent’s task is reaching the predefined goal area which is the same for all

other agents. This common task description for an agent includes explicit constraint

that all the agents should reach the goal area (not the only one). We investigate scenar-

ios (as depicted on Fig. 1) when some agents cannot reach the goal area separately,

without the assistance from the other members of the coalition. As seen on Fig. 1

agent A1 cannot reach the goal as it is blocked by the obstacle obs1 which cannot be

destroyed by A1, while A2 can alter its plan, reach obs1 first and destroy this obstacle

assisting A1 in accomplishing the task). We call such tasks—smart relocation tasks.

4 Knowledge Representation

Agent’s knowledge base contains descriptions of objects, processes and properties

of the external environment and information about other members of the coalition.

To formalize the knowledge base we use the semiotic approach wherein all the

above entities are mediated by sings. Each sign is composed of a name and three

components—image, significance, personal meaning—which are used to implement

different functional steps of the planning process. Signs come with the special struc-

tured set of links to other sings and to data from inner and external sensors of the

agent. We will name these links as features (see Fig. 2).

The first component of a sign is image. Image is the set of structured sets of fea-

tures specific to the mediated entity. Each structured set of features (shown as square

in Fig. 2) corresponds to particular group of characteristic properties of the entity

mediated by sign and differs from the other by its structure as well as by the features

themselves. At the same time image also implements the process of recognizing the
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Fig. 2 Structure of the sign knowledge representation

entity based on the input data. Each set of features encapsulated in image contains

those features that are grouped together in the input data stream—shown as columns

inside the square in Fig. 2. Each column contains features that together form certain

part of the mediated entity description. Considering that features are links to other

signs, the hierarchy of signs is formed on the set of images. Lowest level of the hier-

archy consists of input data from sensors or information received from path planning

operators.

The second component of a sign is significance. Significance is the set of proce-

dural features (or causal relations) and it is used to describe characteristic actions in

which mediated entity is engaged. A causal relation consists of the set of conditional

features or conditions (encountered before the execution of the action) and the set

of resultant features or effects (encountered after the execution of the action). Thus

procedural features are the models of AI rules [11]. Additionally, at least one feature

(condition or effect) is a link to the sign possessing the significance itself. Consid-

ering that features are links to other signs, another hierarchy of signs is formed on

the set of significances of mediated actions. Lowest level of the hierarchy contains

elementary skills. Significance components of common signs are the same for all

agents in the coalition.

Finally the third component of a sign is personal meaning and it also (like signif-

icance) describes actions involving the mediated entity. There exist a link between

a causal relation of the personal meaning and a causal relation of the significance

defined by the function 𝛯 . Unlike significance, personal meaning contains special
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type of features—personal features—in its causal relations. These features medi-

ate inner properties of the agent and replace elementary skills of the corresponding

significance. Personal meaning implements the process of applying agent’s actions.

Lowest level of the personal meanings hierarchy is comprised by path planning oper-

ators.

The structure of the sign corresponds to psychological models of high cogni-

tive functions [47, 48] and allows to separate generalized representation of actions

that are known to all members of the coalition and specific implementation of such

actions, which takes into account inner properties of the agent.

The hierarchy of signs (based on images, significances and personal meanings)

serves as a tool for the input signal (low-level features) recognition and for the corre-

sponding sign actualization. An algorithm of sign recognition is simple comparison

of input features with corresponding set of features predicted by upper level signal

on each level of the hierarchy [25]. In this way the recognition process is bottom-

up spreading of the activation in the hierarchy of features right down to levels where

there is correspondence between features and signs. This algorithm models function-

ing of the human cortex sensor regions [49, 50]. The set of activated (actualized)

signs at the moment represents the agent’s believe about the current environment

state. Since the hierarchy of signs encodes the set of agent’s actions via the proce-

dural features all transitions between states during behavior planning are executed as

top-down or bottom-up activation processes in the hierarchy. Low-level procedural

features include path planning operators and reaching this level while the activation

(planning) process triggers path planning procedures.

5 Behavior Planning Algorithm

On sign level behavior planning is realized in the situation space by PMA algorithm

proposed in [51]. The situation is defined as the set of signs structured in the same

way as the image components (see above), e.g., signs are split into groups which

describe different parts of the situation. Use of sign representation allows to com-

bine beliefs about relationships and beliefs about objects and consider all proper-

ties, processes and objects in a situation as signs. Transitions between situations are

implemented by casual relations contained in procedural features of significances or

personal meanings in dependence the planning step. The initial situation is defined

as the current observed situation, i.e., the current set of actualized signs. The goal

situation is agent’s belief about the result of the solving current problem, i.e., it is

the set of goal signs.

In relocation tasks low-level features are implemented by path planning algo-

rithms and are considered to be personal features included in agent’s personal mean-

ings. Thus the hierarchy of procedural features in fact is the action hierarchy and

low-level actions are performed by the subsystem of path planning which lies beyond

sign representation.
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The algorithm of behavior planning is an iterative process (PMA-procedure) con-

sisting of the following steps:

∙ search of relevant significances (the M-step),

∙ choose a personal meaning from the set of personal meanings corresponding to

the found significances (the A-step),

∙ send a message to other members of the coalition (part of the S-step),

∙ perform the action corresponding to the chosen personal meaning (part of the S-

step),

∙ construct the new current situation using the set of features from the condition of

performed action (the P-step).

Input of the PMA-procedure is the pair of two situations: start and final situa-

tions. On the first iteration of the algorithm the start situation is the current situation

(observed by the agent) and the final situation is the goal situation. Then the M-step

is done, e.g., the search on the significances of signs forming the final situation is

performed. Effect parts of each significances are considered and each effect is com-

pared to the set of signs of final situation (such comparison is valid as each effect is

a set of features linked to corresponding signs). After the comparison is done such

significances are selected which effect features matches maximum number of final

signs.

The A-step is execution of 𝛯 procedure which associates the set of procedural

features of the selected significances with the procedural features of personal mean-

ings. Then the selection of one procedural feature of personal meaning is done. Tran-

sition to the P-step occurs. The P-step of the algorithm is combining of all features

included in conditions of personal meaning features. After P-step the new iteration

of PMA-procedure is executed with the same start situation and the new formed final

situation.

If new situation is the subset of start situation (the first argument of PMA-

procedure) then in some cases S-step occurs depending on cognitive qualities (para-

meters of planning process) of the agent. S-step results in defining the new goal

situation as a result of the action (rule) application. This application adds to current

situation description features from the image component corresponding to proce-

dural features of personal meanings defined on the A-step. The activation process

spreads top-down in the procedural features hierarchy (see Sect. 4). In some cases

activation process reaches the level where path planning operators are included in

personal features, so path planning is started. If path planner returns success PMA-

procedure also ends with success—behavior plan including valid path of relocation

to the goal area is constructed. If path planner returns failure along with the coor-

dinates of blocking obstacle (see below) then the new features (corresponding to

the identified obstacle) are added to the description of the current situation and the

PMA-procedure is repeated.

All changes arising in the current observed situation (for example, emerging unac-

counted obstacle detected by path planning process or the new task received from

other member of the coalition) triggers the re-execution of PMA-procedure with new

start or final situations.
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Fig. 3 Schema of behavior planning PMA-procedure

With new sign representation of agent’s knowledge about environment and its

own qualities we can describe and implement meta-cognitive regulation functions

of the agent behavior. These functions are realized by rule (mental action) appli-

cation mediated by personal meanings and significances during the selection of

PMA-procedure parameters. This regulation process executes some rules that change

personal features of the agent implemented parameters of planning and recognition

processes.

All members of the coalition have signs that mediate both objects of external

environment and other members of the coalition. The significances of these signs

include agent’s knowledge about actions available for corresponding agents. The

personal meanings of these signs include actions by sending them a communica-

tion messages. The constructed plan of behavior can contain personal meanings of

signs corresponding to other members of the coalition. In this case a message with

description of the significance obtained by the inverse procedure 𝛯 is sent to the cor-

responding member. This message plays the role of the new task for this agent and

triggers itsPMA-procedure re-execution. Thus the common plan of the task resolving

includes all sub-plans and all goal-setting messages of all members of the coalition

(Fig. 3).

6 Path Planning Algorithm

We suggest using grids as spatial representations for path planning as they are both

informative and easy-to-search graph models of the agents’ environment
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(as described in Sect. 3). Grid is constructed by overlaying regular square mesh over

the workspace U in such way that each grid element c, e.g., a cell corresponds to a

unique square area in U sized res × res, where res—is an input parameter. If this area

overlaps with any obstacle, cell is marked untraversable (traversable—otherwise).

We adopt center-based grid notation (in opposition to corner-based) meaning that a

path should start (and end) at the center of some grid cell c(x, y) (and thus it is sup-

posed that any agent is tied to the center of some grid cell initially). We also adopt

the idea of any-angle path finding [37] and consider the path as the sequence of tra-

versable but not obligatory adjacent cells 𝜋 = {c1, c2,… , cp}, such that an agent can

move from one cell to next one in the sequence following the straight line connect-

ing the centers of those cells. Function los(ci, cj) → {true, false} is given to check

this condition. If the size of the cell is big enough to accommodate an agent (e.g.,

res ≥ 2r) one can use well-known (and fast) Bresenham algorithm [52] to check

line-of-sight constraint. This algorithm identifies grid cells forming discrete repre-

sentation of straight line, so after that, one needs to check if they all are traversable.

Occasionally it can happen so that Bresenham algorithm identifies cells that are all

traversable, although actual straight line intersect an untraversable cell (and thus,

possibly, an obstacle). To avoid this we suggest double-outlining the obstacles in

the following way: after the grid is constructed mark all the adjacent cells for each

untraversable and then put all the marked cells untraversable—see Fig. 4.

Fig. 4 Grid representation of the workspace. a Initial workspace. b Square pattern used for dis-

cretization. c Path on a grid colliding with the untraversable regions. d Double-outlining of the

obstacles and creating additional untraversable cells prevent from generating paths colliding with

true obstacles
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Fig. 5 LIAN algorithm details

We use two algorithms for path finding: Basic Theta* [37] and LIAN [42]. First

algorithm searches for any angled path on given grid, second searches for angle-

constrained path, e.g., for such a path 𝜋 = {c1, c2,… , cp} that an angle of alter-

ation between any consecutive sections ⟨ci−1, ci⟩, ⟨ci, ci+1⟩ is less than the predefined

threshold 𝛼m (see Fig. 5). Searching for the angle-constrained path is much more bur-

densome but such a path indirectly guarantees its feasibility, e.g., agent’s ability to

follow the trajectory in U defined by that path without violating the dynamic con-

straints (as described in Sect. 2).

So we search for any angle path first and if it is found start searching for the angle-

constrained path. If it is found, we report success to the upper level, e.g., behavior

planning module and wait for the next goal to be given. Failure to find a path means

that angle constraint is too strict (in respect to the current environment model, e.g.

grid, and start-goal locations) so the new subgoal is to be given by the behavior

planning module or the new angle constraint.

An interesting case occurs when any angle path planning returns failure, which

means that there is no path to given goal location not due to the angle constraints, but

due to the obstacles configuration, e.g., some obstacle is blocking the path (otherwise

it would have been found as Theta* is sound and complete). In this case it is useless

to ask for a new subgoal as a resultant path will not be found anyway. An obstacle

blocking the path should be identified and its coordinates should be transmitted to

the behavior planning module. To the best of authors’ knowledge currently there are

now works on the methods of identifying blocking obstacles, so this is an appealing

research area to be investigated further.

Previously, when describing the path planning process we supposed that the goal

cell is given, although, in the case sign-world model is used for behavior planning,

the fuzzy goal area is under concern. This area is characterized by the point cp(x, y)
and radius rg—if the agent reaches any point of the circle with radius rg and center

in cp(x, y) path planning is considered to be successfully accomplished. This can be

taken into account in the following way—execution of the LIAN algorithm should

be stopped when any cell of the circle is under consideration. We also perform the

consistency of the goal area check before path planning in the following manner: if

given center point belongs to the grid’s untraversable cell—choose one of its tra-

versable adjacent cells as cp. If all the neighbors are untraversable—examine their
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neighbors and so on up to the moment traversable cell of the goal area will be iden-

tified. If all cells forming the goal area are untraversable—report behavior planner

and wait for the new goal area.

7 Behavior and Path Planning: Case Study

Below we demonstrate implementation of the planning method in solving the smart

relocation task as described in Sect. 3. We consider a simple case when two agents

A1 and A2 form the coalition and share common goal area. Fragment of the agents

knowledge base (sign model) is depicted in Table 1. Arrows used in description of

image component split different columns of features (as described in Sect. 5).

We consider the planning process of the agentA1 whose goal situation is described

with signs “I—agent 1”, “agent 2”, “place X1”. As said above all of these signs must

be activated in knowledge base (sign word model) of agent A1 which means that both

“I agent 1” and “agent 2” should be in “placeX1”. Note that the description ofA2 goal

situation is similar (“I—agent 2”, “agent 1”, “place Y1”). Start situation for agent A1
is depicted on Fig. 6 and is described by the signs “I—agent 1”, “place X4” → “agent

2”, “place X5” (here → is used to split different parts of situation description).

PMA-procedure executes its first iteration with the start situation and goal situ-

ation as input arguments. The M-step searches for the maximal effect-covered pro-

cedural feature from the set of available significances (“move 1”, “send mes-sage”).

Table 1 The fragment of the sign world model of agents
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Fig. 6 Representations of space in sign level. Xi—names of places associated with signs for the

agent A1, Y1—a name of the place associated with the sign for the agent A2

From the Table 1 we can find that it is significance m = “move 1” (transition ahead

and right). Then the A-step is executed and in our case the procedure gives the per-

sonal meaning that includes feature corresponding “I move 1”.

Suppose agent A1 has such a cognitive quality (introspection level) used as in-

put parameter for behavior planner that leads to S-step of PMA procedure. On the

S-step activation spreads top-down in procedural features hierarchy and the activa-

tion trace (see Table 1) is “I move 1” → “I move 3” → “path planning pro-cedures”).

So finally path planning process is invoked. On given map path cannot be found as

“obs 1” is blocking the way, so its coordinates are returned back to behavior plan-

ner. These coordinates are low-level image features so the im-age-base hierarchy is

traced bottom-up until the sign mediating the obstacle will be reached (activated),

e.g., “obstacle 1” sign. This sign is added now to the description of start situation:

“I—agent 1”, “place X4” → “agent 2”, “place X5” → “obstacle 1” and the description

of final situation: “I—agent 1”, “agent 2”, “place X1” → “obstacle 1”, “empty”. The

PMA-procedure re-executes on the newly defined start situation. Again at the M-step

the search for the maximal effect-covered procedural feature from the set of avail-

able significances (“move 1”, “send message”, “destroy 1”) is done and procedural

feature “destroying 1” is selected. The A-step fails to fine suitable personal meaning

(as agent A1 has no destroying action). Thus communication action will be selected.

So A1 sends message to the agent A2 with coordinates of obs1 and description of the

action (“destroy 1”), needed to be performed in order for the agent A1 to achieve the

goal (“agent 1”,“place X1”). The presence of the agent A1 in the goal area (“agent

1”,”place X1”) is required for A2 to reach its goal (“I—agent 2”, “agent 1”, “place

Y1”) so signs “obstacle 1” and “destroy 1” (contained in transferred message) are

added toA2 goal which becomes: “I—agent 2”, “agent 1”, “place Y1”→ “obstacle 1”,
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“empty”. As A2 has personal meaning “I destroy 1” A-step of the PMA-procedure for

A2 will be accomplished with success and the obstacle will be destroyed. So both of

the agents can now construct the plan of goal area achievement and thus accomplish

smart relocation task.

8 Conclusion

In this paper we have presented an approach to build a two-layered planner for the

robotic system which is a part of a coalition solving common task. We suggest fol-

lowing semiotic approach to develop cognitive top-level planner in order to make the

system more versatile, robust and human-like (in contrary to the existing logic based

approaches—PDDL languages etc.). We have introduced new knowledge represen-

tation formalism—sign world model—which aligns well with the results of recent

cognitive and neurophysiologic research. Path planning operators are the integral

part of this hierarchical model so task and path planning processes are tied together

as a parts of coherent framework. Behavior planning is a recursive search process in

the hierarchical state-space induced by sign representation ending up with path plan-

ner triggering: when behavior planning reaches the lowest level of sign world model

state-of-the-art grid-based planners are executed. We suggest focusing on searching

for the special type of smooth paths—angle-constrained paths—in order to indirectly

satisfy agent’s dynamic constraints and produce feasibly trajectories. We also discuss

involving sound and complete any angle path planner in the loop in order to be able

to better distinguish between different failure outcomes of the path planning process.

We believe that proposed approach leads not only to extensive flexibility of the

planning system which is now capable of solving collaborative navigation tasks

which are not solvable by the individual members implementing traditional path

planning algorithms, but also will significantly aid solving various human–robot

interaction problems. One of worth mentioning tasks which can be positively

impacted is natural language formulation of collaborative task to the group (coali-

tion) of robots. Regarding path planning, the task of the blocking areas identification

(in case of planner failure) is an appealing direction of further research.
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