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This supplement provides additional details to those provided in the main paper. Section 1 details the
derivation and proof of Equation 3 of the main paper. Section 2 details the derivation of an expression for
the asymptotic form of the covariance of Equation 3 of the main paper. Section 3 describes a statistical test
which supplements PLCC-test. Section 4 describes the software which is available by request.

1 Theory

We assume we are given two independent processes in discrete time, X1(t) and X2(t), such that X1(t) =
Xa

1 (t) +Xb
1(t) and X2(t) = Xa

2 (t) +Xb
2(t) where Xa

1 (t) and Xa
2 (t) are linear processes with auto-covariance

functions of the form: L1(t)t2H−2 and L2(t)t2G−2. The Li are slowly varying functions at infinity, i.e.
Li(t)/Li(ct)→ 1 as t→∞ for any c > 0 [1, 2], and the time-series Xb

i (t) are deterministic trends of a fixed
polynomial order d. This formulation allows for non-Gaussianity, for confounding non-stationarities and for
the presence of a high frequency component of the power-spectrum differing at those high frequencies from a
power law. This semi-parametric class includes the class analysed by [3], viz. stationary Gaussian time-series
with an auto covariance function proportional to t2H−2(1 +O(1/tβ)) since 1 +O(1/tβ) is slowly varying at
infinity. Moreover these assumptions rigourously formalize and generalize Equations (1) and (2) of the main
paper.

We denote the integrated time-series in the lower-case: x(t) =
∑t
i=1X(t) and fractional Gaussian

noise time series as XG(t) and use subscripts to distinguish time-series when we consider more than one,
e.g. xi(t), Xi(t), X

G
i (t).

The main result of this section is Theorem 1.9, a central limit theorem for the vector of DCCA cross
correlation coefficients; this corresponds to Equation 3 of the main paper. This is proved by first verifying
the statement for the special case of fractional Gaussian noise (Proposition 1.5) and then proving that the
DCCA coefficients converge to those of fractional Gaussian noise at large time-scales (Proposition 1.7).

Fractional Gaussian noise [4] is the unique Gaussian zero mean process, which is power-law auto-correlated
time series with Hurst exponent H, whose integral, fractional Brownian noise xGi (t) has autocovariance
function:

E(xG(s)xG(t)) =
σ2

2
(s2H + t2H − |t− s|2H)

In order to simplify notation we write F 2
DCCA(n) :=def F

2
X1,X2

(n). Thus F 2
DFA(n) = F 2

X,X(n).
In order that we can show that the DCCA coefficients are asymptotically normal, we first need to show

that the time-varying DCCA coefficients F 2
j,X1,X2

(n) are sufficiently uncorrelated for application of a central
limit result.

Lemma 1.1. The covariance function:
cov(F 2

1,XG1 ,X
G
2

(n), F 2
j,XG1 ,X

G
2

(m)) has order j2G+2H−8 for XGi independent fractional Gaussian noises.

cov(F 2
1,XG1 ,XG2

(n), F 2
j,XG1 ,XG2

(m)) = σ2
1σ

2
2g(H,G)nH+GmH+Gj2H+2G−8 (1 +O(1/min(n,m)) +O(1/j)) (1)

Proof. Define Qd = I − Pd which is the orthogonormal projection onto the complement of the polynomials
of degree d in Rn. Let ΣH be the univariate covariance matrix of the terms in the first and jth window of
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size n. Then for d = 1:

cov(F 2
1,XG1 ,XG2

(n), F 2
j,XG1 ,XG2

(m))

=
2

n2
trace(QdΣHQdΣ>G)

=
2

n2
trace(ΣHΣ>G − 2PdΣHΣ>G + PdΣHPdΣ>G)

= 2
σ2
1σ

2
2

4
n2H+2G (1 +O(1/n))

(∫ 1

0
(|x+ j|2H + y2H − |x− y + j|2H)(|x+ j|2G + y2G − |x− y + j|2G)dxdy

− 2

∫ 1

0
(4− 6(x+ y) + 12xy)(|y + j|2H + z2H − |z − y + j|2H)(|x+ j|2G + z2G − |z − x+ j|2G)dxdydz

+

∫ 1

0
(4− 6(x+ y) + 12xy)(y2H + |z + j|2H − |z − y + j|2H)

· (4− 6(z + w) + 12zw)(x2G + |w + j|2H + |w − x+ j|2G)dxdydzdw

After computing the Taylor expansion of the integral around j =∞ in MAPLE we find it has order j2G+2H−8.
The extension to higher order detrending (d > 1) is staightforward. When H = G, then we have:

cov(F 2
1,X1,X2

(n), F 2
j,X1,X2

(m)) =
2

n2
trace(QdΣHQdΣ

>
H)

But trace(QdΣHQdΣ
>
H) < trace(Q1ΣHQ1Σ>H), since trace(QdΣHQdΣ

>
H) is the Froebenius norm of QdΣQd

and Qd projects to a subspace of the orthogonal complement of the polynomials of degree up to d. Moreover
using the Cauchy-Schwarz inequality for the inner-product trace(A,B>) on matrices, the result follows for
H 6= G. Thus, for higher degree polynomial detrending, the order of the covariance function is less than or
equal to that of DCCA(1).

Define Edj as the subspace of Rn spanned by (

×n︷ ︸︸ ︷
1, 1, . . . , 1), ((j − 1)n + 1, (j − 1)n + 2, . . . , jn), . . . , ((j −

1)n+ 1)d, ((j − 1)n+ 2)d, . . . , (jn)d).

Lemma 1.2. Ed1 = Edj for any d (detrending degree) and r ≥ 1.

Proof. This may be proven directly by looking at the binomial expansion of the coefficients of the vector
(((r − 1)n+ 1)d, ((r − 1)n+ 2)d, . . . , (rn)d).

Lemma 1.3. F 2
k,X1,X2

(n) is stationary for any n.

Proof. The proof that F 2
k,X1,X2

(ni) is stationary is identical for the proof for DFA in [3] using Lemma 1.2.
No modifications are necessary for polynomial trending.

Proposition 1.4. (

√
[T/n1]

nH+G
1

F 2
XG1 ,X

G
2

(n1), . . . ,

√
[T/nr]

nH+G
r

F 2
XG1 ,X

G
2

(nr)) → N (0,Γ(G,H)) as [T/ni] → ∞ and

ni → ∞, where Γ(G,H) is a covariance matrix which does not depend on ni or T and where the XGi are
independent fractional Gaussian noises.

Proof. Let xi(t) =
∑t
i=1X

G
i (t). Define zji =

(
x
(j)
1 − Pd

(
x
(j)
1

))
i

and wji =
(
x
(j)
2 − Pd

(
x
(j)
2

))
i
. Then

(zj1, z
j
2, . . . , z

j
n, w

j
1, . . . , w

j
n) is a stationary Gaussian vector in j. We may then use conditions on functions of

a Gaussian Vector sufficient for a central limit theorem ([5], Theorem 2). It is possible to show that in the
large n limit, the elements of the covariance matrix required by these conditions, which is proportional to
(I−P )Σ1,j(1−P ), decay faster than 1/j2, and thus the vector (zj1, . . . , z

j
n, w

j
1, . . . , w

j
n) satisfies the conditions

(since if the order is slower than this then the order of the DFA coefficients cov(F1,XG1 ,X
G
1

(n), Fj,XG1 ,X
G
1

(n))

is slower than j−4 which is impossible by an adaptation of Proposition 1.1). The generalization to the
multivariate case is straightforward by way of the Cramer Wold device [6].

Proposition 1.5. (
√

[T/n1]ρDCCA(n1, X
G
1 , X

G
2 ), ...,

√
[T/nr]ρDCCA(nr, X

G
1 , X

G
2 ))

d−→ N (0, C(H,G)) as
n1, . . . , nr → ∞ and [T/ni] → ∞ with limiting covariance C(H,G) depending only on H and G, where the
XGi are fractional Gaussian noises.
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Proof. This then follows from the Delta method [7] levering the results of the central limit theorem for DFA
[3] and DCCA (our Proposition 1.4).

Theorem 1.6. For n → ∞ we have that: Lj(n)−1/2x(nt)
d−→ σBH(nt) for some constant σ > 0, where

BH(nt) is fractional Brownian motion with Hurst exponent H.

Proof. See [8] for the proof.

Theorem 1.7. Assume that Pr(sups∈[0,t]xj(s) ≥ x) ≤ CxH

x and assume that the Hölder exponents of x1 and
x2 are greater than or equal to the exponents of fractional Brownian motion, then as n → ∞, bT/nc → ∞
and T = o

(
n2H+2G−δ) then 1

nH+GF
2
X1,X2

(n)
d−→
√
L1(n)L2(n)

nH+G F 2
XG1 ,X

G
2

(n), where XGi is a fractional Gaussian

noise with the same Hurst exponent as Xi.

Proof. Our proof consists of three steps; firstly we show that the DCCA coefficients of the process given by
subsampling x1 and x2 tend to those of fractional Brownian motion in the limit of subsampling, by using
Theorem 1.6. Secondly we show that for a given ratio of subsampling to window size the DCCA coefficients
of both the unsubsampled version and the subsampled version tend to each other. Thirdly we show that
these imply that in the limit of window size, the DCCA coefficients tend to the law of the coefficients of
fractional Gaussian noise.

Part I: We define the subsampled processes as Lj(n)−1/2Xj(nt). It is easy to show that the DCCA
coefficients of the subsampled process tend to those of fractional Gaussian noise; this follows by Theorem 1.6
for large window sizes.

Part II: We have:

F 2
1,X1,X2

(n) =
1

n2

n∑
t=1

(x1(t)− Pd(x1(t)))(x2(t)− Pd(x2(t)))

Let k(xj) = (xj(k), xj(2k), . . . , xj(n)) and k̂(xj) = (

×k︷ ︸︸ ︷
xj(k), . . . , xj(k), xj(2k), . . . , xj(2k), . . . , xj(n)) and let

f jn be the least squares poly. fit of degree d to xj and f jn/k to k(xj), but with terms repeated: f jn/k =

(

×k︷ ︸︸ ︷
f jn/k(k), . . . , f jn/k(k), f jn/k(2k), . . . , f jn/k(2k), . . . , f jn/k(n)). Then we can use the Cauchy Schwarz inequality:

|F 2
1,X1,X2

(n)− F 2
1,k(X1),k(X2)

(n/k)|2 (2)

= | < x1 − f1n, x2 − f2n > (3)

− < k̂(x1)− f1n/k, k̂(x2)− f2n/k > |
2 (4)

= | < x1 − f1n, x2 − f2n > − < k̂(x1)− f1n/k, x2 − f
2
n > (5)

+ < k̂(x1)− f1n/k, x2 − f
2
n > (6)

− < k̂(x1)− f1n/k, k̂(x2)− f2n/k > |
2 (7)

≤ 2

(
| < x1 − f1n − k̂(x1) + f1n/k, x2 − f

2
n > |2 (8)

+| < x2 − f2n − k̂(x2) + f2n/k, k̂(x1)− f1n/k > |
2

)
(9)

≤ 2

(
|x1 − f1n − k̂(x1) + f1n/k| × |x2 − f

2
n| (10)

+|x2 − f2n − k̂(x2) + f2n/k| × |k̂(x1)− f1n/k|
)

(11)

≤ 2

(
(|x1 − k̂(x1)|+ |f1n − f1n/k|)× |x2 − f

2
n| (12)

+(|x2 − k̂(x2)|+ |f2n − f2n/k|)× |k̂(x1)− f1n/k|
)

(13)
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It is possible to show, using Riemann sums, that, if f∗ is the poly. of degree d which minimizes the

generative mean squared error to x(t) (f∗ = minf
∫ 1

0
(f(nt)− x(nt))2) then:

|x− fn|2 =
1

n

n∑
i=1

(x(i)− fn)2 (14)

= |x− f∗|2 +O(max((x− f∗)2)/n2) (15)

Since least squares is a convex and differentiable optimization problem, we have that fn and f∗ are close
to one another and so are fn/k and f∗. Therefore we can obtain bounds for fn − fn/k since:

|fn/k − fn|2 ≤ 2
(
|fn/k − f∗|2 + |fn − f∗|2

)
To obtain rates bounding the right hand expressions we need to obtain the parameter of strong convexity

for the m.s.e. (
∫ 1

0
(f(nt) − x(nt))2dt). To do this we observe that the Hessian of the m.s.e. for the linear

polynomials is calculated, letting f(t) = a(t) + b, by:

∂a∂a

∫ 1

0

(ant+ b− x(nt))2dt = 1/3n2

∂a∂b

∫ 1

0

(ant+ b− x(nt))2dt = n

∂b∂a

∫ 1

0

(ant+ b− x(nt))2dt = n

∂b∂b

∫ 1

0

(ant+ b− x(nt))2dt = 1

This implies that the smallest eigenvalue λ1 of the Hessian matrix is a constant and greater than zero.
Similarly for the polynomials of degree d we have a non-degenerate and symmetric Hessian whose smallest
eigenvalue is thus greater than zero. Therefore ([9] (page 63–65)):

λ1
(
(an − a∗)2 + (bn − b∗)2

)
≤
∫ 1

0

(x1(nt)− f1n(nt))2dt−
∫ 1

0

(x1(nt)− f∗(nt))2dt (16)

Here we have the difference of two mean squared errors on the interval [0, n]. We have that with probability

1− CnH

n :

|fn − f∗|2 =
1

n

n∑
i

((an − a∗)i− (bn − b∗))2

≤ n− 1

2
((an − a∗)2 + (bn − b∗)2)

≤ D
n− 1

2
(max((x− f∗)2)/n2)

≤ D′n

The transition from the second to the third line uses Equation (16) and Equation (15). The transition to
the last line uses the assumption of the proposition.

Similarly with probability 1− C(n/k)H

n/k :

|fn/k − f∗|2 =
1

n/k

n/k∑
i

((an/k − a∗)i− (bn/k − b∗))2

≤ D′n/k

Moreover we have that x1 and x2 are almost surely Hölder continuous with exponent H−φ for any φ < 0
[10] and using the assumption of the proposition. Thus there exists E s.t.:
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|x1 − k̂(x1)|2 =
1

n

∑
(x1(i)− x1(i−mod(i, k) + k))2

≤ Ek2H−2φ

More by the assumption of the proposition, with probability 1− CnH

n :

|x1 − f1n| ≤ sup|x1|
≤ n

Equation 13 implies that with probability at least (1− 2n
max(H,G)

n ):

1

n2H+2G
|F 2

1,X1,X2
(n)− F 2

1,k(X1),k(X2)
(n/k)|2

≤ 2

n2H+2G

(
(|x1 − k̂(x1)|+ |f1n − f1n/k|)× |x2 − f

2
n|+ (|x2 − k̂(x2)|+ |f2n − f2n/k|)× |k̂(x1)− f1n/k|

)
≤Ank

H−φ + nkG−φ

n2H+2G

Thus let 0 < δ < 1 and k = nδ. Since F 2
j,X1,X2

is a stationary sequence (Lemma 1.3), then, with

probability at least (1− 2C n(1−δ)max(H,G)

n1−δ ), then:

1

n2H+2G
|F 2
j,X1,X2

(n)− F 2
j,k̂(X1),k̂(X2)

(n/k)|2 ≤ An(nδ)H−φ + n(nδ)G−φ

n2H+2G

Set ε′ = 2C n(1−δ)max(H,G)

n1−δ ). Then, with probability 1− ε′:

1

n2H+2G
|F 2
j,X1,X2

(n)− F 2
j,k̂(X1),k̂(X2)

(n/k)|2 ≤ A′

ε′
n(nδ)H−φ + n(nδ)G−φ

n2H+2G
n(1−δ)(max(H,G)−1)

Applying Boole’s equality:

Pr

(
1

n2H+2G
|F 2
X1,X2

(n)− F 2
k̂(X1),k̂(X2)

(n/k)|2 ≤ A′

ε′
n(nδ)H−φ + n(nδ)G−φ

n2H+2G
n(1−δ)(max(H,G)−1)

)
(17)

≥ 1− [T/n]ε′ (18)

Set ε′ = ε/[T/n] Then:

Pr

(
1

n2H+2G
|F 2
X1,X2

(n)− F 2
k̂(X1),k̂(X2)

(n/k)|2 ≤ A′

ε
[T/n]

n(nδ)H−φ + n(nδ)G−φ

n2H+2G
n(1−δ)(max(H,G)−1)

)
(19)

≥ 1− ε (20)

Since:

n(nδ)H−φ + n(nδ)G−φ

n2H+2G+1
n(1−δ)(max(H,G)−1)

≤ 1

n2H+2G−δ

Then

Pr

(
1

n2H+2G
|F 2
X1,X2

(n)− F 2
k̂(X1),k̂(X2)

(n/k)|2 ≤ A′

ε

T

n2H+2G−δ

)
(21)

≥ 1− ε (22)
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Thus provided:

T = o
(
n2H+2G−δ) (23)

then the convergence in probability holds.
PART III: to show convergence in distribution we use the Portmanteau theorem [11]. Let f be a bounded

continuous function and define SX1,X2(n) = 1
nH+GF

2
X1,X2

(n) and SXG1 ,X
G
2

(n) =

√
L1(n)L2(n)

nH+G F 2
XG1 ,X

G
2

(n) and

k = nδ.

|E(f(SX1,X2
(n))− E(f(S

XG1 ,XG2
(n)))| ≤|E(f(SX1,X2

(n))− E(f(S
k̂(X1),k̂(X2)

(n/k)))|

+ |E(f(S
k̂(X1),k̂(X2)

(n/k)))− E(f(S
k̂(XG1 ),k̂(XG2 )

(n/k)))|

+ |E(f(S
k̂(XG1 ),k̂(XG2 )

(n/k)))− E(f(S
XG1 ,XG2

(n)))|

The first and the last lines converge in virtue of Part II (conv. in prob. implies conv. in dist.) and the
second line converges in virtue of Part I.

Proposition 1.8. Under the assumptions of Proposition 1.7, as n→∞ and [T/n]→∞ then
1

nH+GF
2
Xj ,Xj

(n)
d−→ L(n)

nH+GF
2
XGj ,X

G
j

(n), where the XGj is a fractional Gaussian noise with the same Hurst

exponent as Xi.

Proof. The proof is identical to the proof for the DCCA coefficients.

Theorem 1.9. (
√

[T/n1]ρDCCA(n1, X1, X2), ...,
√

[T/nr]ρDCCA(nr, X1, X2))
d−→

N (0, C(H,G)) as n1, . . . , nr → ∞ and [T/ni] → ∞ with limiting covariance C(H,G) depending only on H
and G, provided T = o(nH+G−δ/2+1/2

√
L1(n)L2(n))

Proof. By Proposition 1.7, to apply the delta method we need that

√
bT/nc√

L1(n)L2(n)nG+H
F 2
X1,X2

(n) obeys the

central limit theorem. Equation (21) implies that we require:

1

L1(n)L2(n)
[T/n]

T

n2H+2G−δ → 0 (24)

This holds if

T = o(nH+G−δ/2+1/2
√
L1(n)L2(n)) (25)

2 Covariance Calculation
We now give an explicit form for the covariance of Theorem 1.9. Abbreviate Qd to Q, where the superscripts
Qn etc. denote the window size.

cov(F
j′,X1,X2

(n), Fj,X1,X2
(m)) =

1

nm
cov((Q

n
X

(j′)
1 )

>
Q
n
X

(j′)
2 , (Q

m
X

(j)
1 )
>
Q
m
X

(j)
2 )

=
1

nm
E((Q

n
X

(j′)
1 )

>
Q
n
X

(j′)
2 (Q

m
X

(j)
1 )
>
Q
m
X

(j)
2 ) − E((Q

n
X

(j′)
1 )

>
Q
n
X

(j′)
2 )E((Q

m
X

(j)
1 )
>
Q
m
X

(j)
2 )

=
1

nm

∑
i,k

E(Q
n
X

(j′)
1,i

Q
n
X

(j′)
2,i

Q
m
X
j
1,k

Q
m
X

(j)
2,k

) − E(Q
n
X

(j′)
1,i

Q
n
X

(j′)
2,i

)E(Q
m
X

(j)
1,k

Q
m
X

(j)
2,k

)

=
1

nm

∑
i,k

E(Q
n
X

(j′)
1,i

Q
m
X

(j)
1,k

)E(Q
n
X

(j′)
2,i

Q
m
X

(j)
2,k

)

=
1

nm
trace(Q

n
Σ
j′,j
X1,X1

Q
m

(Q
n

Σ
j′,j
X2,X2

Q
m

)
>

)

=
1

nm
trace(Q

n
Σ
j′,j
X1,X1

Q
m

(Σ
j′,j
X2,X2

)
>

)

Following similar steps we find that

cov(Fj′,X1,X1
(n), Fj,X1,X1

(m)) =
2

n2
trace(QnΣj

′,j
X1,X1

Qm(Σj
′,j
X1,X1

)>)
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Moreover we find that:

cov(Fj′,X1,X2
(n), Fj,X1,X1

(m)) ∝ trace(QnΣj
′,j
X1
Qm(Σj

′,j
X1,X2

)>)

= 0

and:

cov(Fj′,X1,X1(n), Fj,X2,X2(m)) = 0

Then:

cov(F 2
X1,X2

(n), F 2
X1,X2

(m)) =
1

bN/ncbN/mc
∑
j′,j

cov(F 2
j′,X1,X2

(n), F 2
j,X1,X2

(m)) (26)

cov(F 2
X1,X1

(n), F 2
X1,X1

(m)) =
1

bN/ncbN/mc
∑
j′,j

cov(F 2
j′,X1,X1

(n), F 2
j,X1,X1

(m)) (27)

cov(F 2
X1,X1

(n), F 2
X1,X2

(m)) = cov(F 2
X1,X1

(n), F 2
X2,X2

(m)) (28)

= 0 (29)

To apply the delta method we consider the vector:

Z = (F 2
X1,X2

(n1), F
2
X1,X1

(n1), F
2
X2,X2

(n1), . . . , F
2
X1,X2

(nr), F
2
X1,X1

(nr), F
2
X2,X2

(nr))

which has covariance C ′, whose entries are given by Equations (26) to (29) and mean given by [3]:

µ = (0, f(H)n2H , f(G)n2G, . . . )

where f(H) = (1−H)
(2+2H)(H+1)(H+2) [3]. The covariance of the DCCA correlation coefficients is given by the

covariance of h(Z) = ( Z1√
Z2Z3

, . . . , Z3r−2√
Z3r−1Z3r

), which is given by:

∂h(Z)

∂Z
× C ′ ×

(
∂h(Z)

∂Z

)>
Thus since,

∂

∂Z1
h(Z)1 =

1√
Z2Z3

∂

∂Z2
h(Z)1 = − Z1

(Z2Z3)3/2

∂

∂Z3
h(Z)1 = − Z1

(Z2Z3)3/2

And since the mean under the null hypothesis of h(Z) is 0 (under H0), so that the second two derivative
terms are zero, then the delta method implies we have:

cov(ρDCCA(ni), ρDCCA(nj)) = (∇h(µ)>C′∇h(µ))i,j (30)

=
C′3(i−1)+1,3(j−1)+1√

E(Z3(i−1)+2)E(Z3(i−1)+2)
√

E(Z3(j−1)+2)E(Z3(j−1)+2)
(31)

Thus

Σ(H,G)i,j =
√
bT/nicbT/njc × cov(ρDCCA(ni), ρDCCA(nj)) (32)
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3 Test 2: Cross-Correlation between Power-Law Autocorrelated
Processes

The second test is a test for cross-correlation, which is not necessarily power-law cross-correlation. Its novelty
lies in the fact that it is valid for general power-law auto-correlated time-series, potentially contaminated
with non-stationary trends, and maximizes the test power among coefficients derived from our theory.

We find a positive measure w ∈ Rr so that w>ρDCCA(n) has maximum Σ variance.

w = argmaxu∈Rr:ui,≥0
∑r
i=1 u=1u

>Σu

The choice of Σ ensures that:

w>Σ(H,G)w < w>Σw

We proceed as for Test 1 (in the main paper), finding a such that in the large N,ni limit:

Pr(w>ρDCCA(n) < a) < α (33)

4 Software

rho DCCA.m calculates ρDCCA correlation coefficients over scales for arbitrary degree detrending.
test scaling region calculates p-values for the null-hypothesis of no power-law correlation.
test minimum variance calculates the p-values for the correlation coefficient maximizing test-power over a
specified range of scales.
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