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1. Introduction

We dedicate this paper to the memory of Leonid
Pavlovich Shilnikov, who was the founding father
of the theory of nonlocal bifurcations of multidi-
mensional dynamical systems.

In it, we discuss bifurcations of attracting (and
repelling) invariant sets of some classical dynamical
systems with a discrete time (i.e. dynamical systems
generated by diffeomorphisms). In many instances,
such an invariant set defines complete invariants of
topological conjugacy (see, for example, [Bonatti &
Grines, 2000; Franks, 1970; Grines & Zhuzhoma,
2005]).

In the early 1960’s, mathematicians realized
that structurally stable dynamical systems (flows
and diffeomorphisms of dimensions three and two,

and higher, resp.) could admit the occurrence of
rather complex limit sets; in particular, attracting
limit sets, which could not be locally homeomor-
phic to a direct product of a disk and Cantor set.
As follows from works of Shilnikov ([Shilnikov et al.,
1998, 2001] and references therein), attracting sets
of dynamical systems, which describe real physi-
cal processes (for example, geometric models of the
Lorenz attractor [Afraimovich et al., 1977, 1983])
can be even more complex.

In 1960, Smale [1960] introduced a new class
of dynamical systems (flows and diffeomorphisms),
which were later called Morse–Smale systems. It
was proved that Morse–Smale systems are struc-
turally stable, and have zero entropy [Palis, 1969;
Palis & Smale, 1970; Robinson, 1999]. Hence,
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Morse–Smale systems are viewed as the simplest
structurally stable system. A Morse–Smale sys-
tem can be defined as a structurally stable one
with a nonwandering set consisting of a finite
number of limit orbits. There is a tight connec-
tion between dynamics and the topological struc-
ture of manifolds, on which dynamical systems are
defined [Bonatti et al., 2001, 2002; Grines et al.,
2003; Medvedev & Zhuzhoma, 2008; Smale, 1960].
On a closed manifold, any Morse–Smale system
has at least one attracting orbit and at least one
repelling orbit. Thus, the simplest Morse–Smale
system has the nonwandering set consisting of two
points: a sink and source. For 3D Morse–Smale
diffeomorphisms, Bonatti et al. [2004] introduced
the special attracting and repelling sets to repre-
sent the dynamics in the sink-source spirit. In the
series of papers [Bonatti et al., 2004, 2005, 2006;
Pochinka, 2011] Bonatti, Grines, Medvedev, Pecou,
and Pochinka obtained the complete topological
classification of Morse–Smale diffeomorphisms on
closed 3D-manifolds. There is the high-dimensional
analog of the sink-source representation (see [Grines
et al., 2010]), which can be used in a future topo-
logical classification. In what follows, we will study
bifurcations of special attracting sets of 3D Morse–
Smale diffeomorphisms.

A well-known example of hyperbolic attractors
is the Smale solenoid [Smale, 1967]. The general-
ization of this Smale construction was proposed in
[Isaenkova & Zhuzhoma, 2009, 2011; Robinson &
Williams, 1976; Williams, 1967, 1974]. Shilnikov
and Turaev made use of the Smale construction
to study the onset of the so-called blue sky catas-
trophes [Shilnikov & Turaev, 1995]. Below, we will
also introduce Smale–Vietoris diffeomorphisms that
contain the generalizations of the Smale example,
and represent some bifurcations between different
types of solenoidal basic sets, which can lean to the
breakdown (or the birth) of the Smale solenoid.

Anosov diffeomorphisms on a compact man-
ifold are well known to be structurally stable.
Several papers have investigated the relationship
between the topology of underlying manifolds and
the dynamics of codimension one Anosov diffeo-
morphisms [Anosov, 1967]. Franks [1970], Manning
[1974] and Newhouse [1970] have shown that any
codimension one Anosov diffeomorphism is conju-
gated to a hyperbolic torus automorphism (as a
consequence, a manifold admitting such diffeomor-
phisms is homeomorphic to the torus T n, n ≥ 2).

An important class of dynamical systems is com-
prised of the diffeomorphisms satisfying Smale’s
Axiom A [Smale, 1967], the so-called A-diffeomorp-
hisms. Given such a diffeomorphism, its recurrent
behavior is captured in its nonwandering set, which
can be decomposed into invariant topologically
transitive pieces (basic sets). One remarkable type
of basic sets is an expanding attractor, introduced
by Williams [1967, 1974]. A structurally stable
A-diffeomorphism of T n with an orientable codi-
mension one expanding attractor can be obtained
using Smale’s surgery [Smale, 1967], from a codi-
mension one Anosov diffeomorphism. Such diffeo-
morphisms are called DA-diffeomorphisms. Below,
we will consider bifurcations of DA-diffeomorphisms
as well.

2. An Array of Attracting Set

We consider dynamical systems with the discrete
time Z. This means that a dynamical system on an
n-manifold Mn is the family of iterations f i, i ∈ Z,
of some diffeomorphism f : Mn → Mn. An invari-
ant set of f is a subset Λ ⊂ Mn such that f(Λ) = Λ.
An invariant set Λ is called attractive if there is a
closed neighborhood N of Λ such that

f(N) ⊂ int N, Λ =
⋂
i≥0

f i(N).

The neighborhood N is called an isolated
(attractive) neighborhood.

2.1. Attractive sets of
Morse–Smale diffeomorphisms

Let f : Mn → Mn be an orientation-preserving
Morse–Smale diffeomorphism. Denote by Σf , ∆s

f
and ∆u

f all saddles, sinks, and sources of the diffeo-
morphism f , respectively. Let us divide the saddle
points Σf into two disjoint subsets ΣA

f and ΣR
f such

that the sets

Af = ∆s
f ∪ W u

ΣA
f

and Rf = ∆u
f ∪ W s

ΣR
f

are closed and invariant. Such a partition of the
set of saddle points is always possible. Moreover,
the sets Af and Rf are disjoint and their union
contains all periodic points of the diffeomorphism
f . The maximal dimension of the unstable (stable)
manifolds of the points in ΣA

f (ΣR
f ) will be referred

to as the dimension of Af (Rf ). The following result
was proved in [Grines et al., 2010].
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Theorem 1. Let f : Mn → Mn be a Morse–
Smale diffeomorphism. Then the set Af (resp., Rf )
is an attractor (repeller) of the diffeomorphism f .
Moreover, if the dimension of the attractor Af

(repeller Rf ) is at most (n − 2), then the repeller
Rf (attractor Af ) is connected.

We will call Af and Rf global attractor and a
global repeller, respectively, of the Morse–Smale dif-
feomorphism f : Mn → Mn.

2.2. Attractive sets of Smale–
Vietoris diffeomorphisms

The most important attractive set is an attractor.
There are several types of attractors: hyperbolic,
expanding, etc. An invariant set Λ ⊂ M is a hyper-
bolic attractor if the following conditions hold: (1)
there is an isolated neighborhood N of Λ; (2) any
point x ∈ Λ is nonwandering; (3) there is a con-
tinuous df -invariant splitting of the tangent bundle
TMΛ into stable and unstable bundles Es

Λ ⊕ Eu
Λ,

dim Es
x + dim Eu

x = dim M (x ∈ Λ), with

‖df i(v)‖ ≤ Csλ
i‖v‖, v ∈ Es

Λ,

‖df−i(v)‖ ≤ Cuλi‖v‖, v ∈ Eu
Λ, i > 0

for some fixed Cs > 0, Cu > 0, 0 < λ < 1.
The hyperbolic structure implies the existence

of stable and unstable manifolds W s(x), W u(x)
respectively through any point x ∈ Λ:

W s(x) =
{

y ∈ M : lim
j→∞

ρ(f j(x), f j(y)) → 0
}

,

W u(x) =
{

y ∈ M : lim
j→∞

ρ(f−j(x), f−j(y)) → 0
}

,

which are smooth, injective immersions of Es
x and

Eu
x into M . Moreover, W s(x), W u(x) are tangent

to Es
x and Eu

x at x, respectively.
A nontrivial hyperbolic attractor Λ is expanding

if the topological dimension of Λ equals the dimen-
sion of a fiber Eu

Λ, dimEu
x = dim Λ (x ∈ Λ). The

most familiar expanding attractors are: (1) Smale
solenoid; (2) DA-attractor (a nontrivial attractor of
a DA-diffeomorphism); (3) Plykin attractor [Plykin,
1974].

Recall that a topological solenoid was intro-
duced by Vietoris [1927] (independently, a solenoid
was introduced by Van Danzig [1930]). It can be
presented as the intersection of a nested sequence

of solid tori T1 ⊃ T1 ⊃ . . . Ti ⊃ . . ., where Ti+1 is
wrapped around inside Ti longitudinally pi times in
a smooth fashion without folding back.

The solenoids were introduced into dynamics by
Smale in his celebrated paper [Smale, 1967] as DE-
maps which arise from expanding maps (the abbre-
viation DE is formed by first letters of Derived from
Expanding map). Omitting details, one can say that
a DE map is the skew map

f : T × N → T × N, (x; y) 
→ (g1(x); g2(x, y)),

where g1 : T → T is an expanding map of degree
d ≥ 2, and g2|{x}×N : {x} × N → {g1(x)} × N is
an uniformly attracting map of n-disk {x}×N into
n-disk {g1(x)} × N for every x ∈ T . In addition, f
must be a diffeomorphism onto its image T ×N →
f(T×N). In the spirit of Smale construction of DE-
maps, one can introduce diffeomorphisms, called
Smale–Vietoris ones, which arise from nonsingular
endomorphisms. A skew-mapping:

F : T
k × N → T

k × N, (t, z) 
→ (g(t);ω(t, z))

is called a Smale skew-mapping if the following con-
ditions hold: (1) F : T

k × N → F (Tk × N) is a
diffeomorphism on its image; (2) g : T

k → T
k is a

d-cover, d ≥ 2; (3) given any t ∈ T
k, the restric-

tion w|{t}×N : {t} × N → T
k × N is the uniformly

attracting embedding {t} × N → int({g(t)} × N)
i.e. there are 0 < λ < 1, C > 0 such that

diam(Fn({t} × N))

≤ Cλndiam({t} × N), ∀n ∈ N.

When g = Ed, Smale skew-mapping is a DE-
mapping introduced by Smale [1967].

A diffeomorphism f : Mn → Mn is called a
Smale–Vietoris diffeomorphism if there is the n-
submanifold T

k × N ⊂ Mn such that the restric-
tion f |Tk×N

def= F is a Smale skew-mapping. The
submanifold T

k × N ⊂ Mn is called a support of
Smale skew-mapping.

By definition,
⋂
l≥0

F l(Tk × N) def= S(f).

It is easy to see that the set S(f) = S is attrac-
tive, invariant, and closed, so that the restriction
f |S : S → S is a homeomorphism. The following
theorem describes the symbolic model of the restric-
tion f |S. Following the classical results by Williams
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[1967, 1974], one can prove that the restriction f |S
is conjugate to the inverse limit of the mapping
g : T

k → T
k, where S = ∩l≥0F

l(Tk × N). Using
this result, one can prove the following statement
[Isaenkova & Zhuzhoma, 2011].

Theorem 2. Let f : Mn → Mn be a Smale–
Vietoris A-diffeomorphism of closed n-manifold Mn

and T
1 × N = B ⊂ Mn the support of Smale

skew-mapping f |B = F . Then the nonwandering
set NW (F ) of F belongs to S =

⋂
l≥0 F l(T1 × N),

and NW (F ) contains a unique nontrivial basic set
Λ(f) that is either

• a one-dimensional expanding attractor, and
Λ(f) = S; or

• a zero-dimensional basic set, and NW (F ) con-
sists of Λ(f) and finitely many (nonzero) iso-
lated attracting periodic points plus finitely many
(possibly, zero) saddle type isolated periodic
points of codimension one stable Morse index.

Both possibilities hold.

2.3. DA-attractor

A diffeomorphism with a DA-attractor is obtained
by a so-called Smale’s surgery performed on a codi-
mension one Anosov automorphism of the n-torus
T n. For this reason, it is called the Derived from
Anosov diffeomorphism or DA-diffeomorphism. It
was first introduced by Smale [1967].

Take a codimension one Anosov automorphism
A : T n → T n with one-dimensional stable splitting
and codimension one unstable splitting. Let p0 be a
fixed point of A. One can carefully insert at point
p0 a tiny ball with a source P0 and two saddle type
fixed points, see Fig. 1, in such a way that we get
a diffeomorphism, say f : T n → T n, with a codi-
mension one expanding attractor Λ = T n\W u(P0)
which is called a DA-attractor. Smale’s surgery is
similar to the Poincare–Denjoy blowing up opera-
tion producing a Denjoy foliation from a minimal
foliation on 2-torus.

In 1979, Grines and Zhuzhoma considered the
following problem. Let f1, f2 : T n → T n be two
diffeomorphisms of the n-torus T n, n ≥ 3, having
orientable expanding attractors of codimension one
Λ1 and Λ2, respectively. When there exists a home-
omorphism ϕ: T n → T n such that

ϕ(Λ1) = Λ2 and f2|Λ2 = ϕf1ϕ
−1|Λ2 .

Fig. 1. Smale’s surgery.

Following ideas of Newhouse [1970], one proved that
given any orientable expanding attractor Λ of a dif-
feomorphism f : T n → T n, there is a neighbor-
hood U(Λ) of Λ such that: (1) U(Λ) ⊂ W s(Λ);
(2) T n\U(Λ) consists of a finitely many n-balls
B1, . . . , Bm; and (3) f−j(Bi) ⊂ Bi for some j ∈ N

and any 1 ≤ i ≤ m. It means that f looks like
a DA-diffeomorphism up to dynamics in balls Bi

where it globally remains the dynamics of a peri-
odic repelling point. Moreover, with the additional
restriction for f being structurally stable, Grines
and Zhuzhoma [2005] proved that f must be almost
DA-diffeomorphism of the n-torus:

Theorem 3. Suppose f is a structurally stable dif-
feomorphism of a closed n-manifold Mn (n ≥ 3)
and Λ is a codimension one orientable expanding
attractor of f . Then:

(1) Mn is homeomorphic to T n.
(2) The spectral decomposition of f consists of

Λ, and a finite nonzero number of repelling

Fig. 2. Structurally stable diffeomorphism of T
3 with a 2D

orientable expanding attractor.
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periodic orbits of index1 n, and a finite number
(maybe zero) of periodic saddle orbits of index
n − 1.

Figure 2 sketches a phase portrait of a struc-
turally stable diffeomorphism on T

3 with a two-
dimensional orientable expanding attractor.

3. Bifurcations of Attractive
and Repelling Sets

In the given paper we consider special pathways
(or one-parameter families) in a space of diffeo-
morphisms with a nonempty set of bifurcation
parameters.

3.1. On a simple isotopy class
of sink-source diffeomorphism
on a 3-sphere

This section deals with the Palis–Pugh problem
on the existence of an arc with finitely or count-
ably many bifurcations joining two Morse–Smale
systems on a closed smooth manifold [Palis &
Pugh, 1975]. In [Newhouse & Peixoto, 1976], the
authors proved that any Morse–Smale vector fields
are joined by a simple arc. Simplicity means that
the entire arc, except finitely many points, consists
of Morse–Smale systems, and at the exceptional
points, a minimal (in a certain sense) deviation of
the vector field from a Morse–Smale system occurs.
The situation with discrete dynamical systems is
different. Two orientation-preserving Morse–Smale
diffeomorphisms on the circle can be joined by
a simple arc if and only if they have the same
rotation number. As follows from results of Mat-
sumoto [1979] and Blanchard [1980], any orientable
closed surface admits isotopic Morse–Smale diffeo-
morphisms which cannot be joined by a simple arc.
We say that two isotopic Morse–Smale diffeomor-
phisms belong to the same simple isotopy class if
they can be joined by a simple arc. According to
the paper [Blanchard, 1980], there exist infinitely
many simple isotopy classes of Morse–Smale diffeo-
morphisms on any orientable surface inside an iso-
topy class admitting Morse–Smale diffeomorphisms.

The problem of the existence of a simple arc
in dimension three is complicated by the presence
of Morse–Smale diffeomorphisms whose saddle peri-
odic points have separatrices wildly embedded in the

underlying manifold. The first “wild” example on
the 3-sphere S3 was constructed by Pixton [1977].
This diffeomorphism belongs to the class (which we
called the Pixton class in [Grines & Pochinka, 2011])
formed by those three-dimensional Morse–Smale
diffeomorphisms whose nonwandering set consists
of precisely four points, namely, two sinks, a source,
and a saddle. According to [Bonatti et al., 2007],
any Pixton diffeomorphism is joined by a simple
arc to a source-sink diffeomorphism. This is caused
by the fact that, for any diffeomorphism from the
Pixton class, at least a one-dimensional separatrix
of its saddle point is tame [Bonatti & Grines, 2000].
By using the connected sum of two 3-spheres, it
is easy to construct a diffeomorphism for which all
separatrices of all saddles are wildly embedded (see
Fig. 3, in which the 3-balls used to obtain the con-
nected sum are shaded); one can prove that such a
diffeomorphism is not joined by a simple arc to any
source-sink diffeomorphism.

Let Diff(Mn) be the space of diffeomorphisms
on a closed manifold Mn endowed with the C1-
topology. A smooth arc in Diff(Mn) is defined as a
smooth map ξ : Mn× [0, 1] → Mn that gives a fam-
ily of diffeomorphisms {ξt ∈ Diff(Mn), t ∈ [0, 1]}.
Let KS (Mn) be the set of all Kupka–Smale dif-
feomorphisms, i.e. diffeomorphisms whose periodic
orbits are hyperbolic and have transversal stable
and unstable manifolds. The Kupka–Smale diffeo-
morphisms with finite nonwandering set form the
set MS (Mn) of Morse–Smale diffeomorphisms. For
a smooth arc ξ, the set B(ξ) = {b ∈ [0, 1], ξb /∈
KS(Mn)} is called the bifurcation set. According

Fig. 3. Connected sums of Pixton’s examples.

1Recall that if x is a periodic point, then the index at x is defined to be the dimension of the unstable manifold W u(fk(x)),
where k is the period of x. The index of a periodic orbit equals the index of any point of the orbit.
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to [Palis, 1975], for a generic set of arcs (which is
the intersection of open dense subsets in the space
of smooth arcs), the bifurcation set is countable,
and each diffeomorphism ξb, b ∈ B(ξ) experiences
one of the following bifurcations up to the direction
of motion along the arc: a saddle-node bifurcation,
a period-doubling, a Hopf bifurcation, and a hete-
roclinic tangency. An arc ξ is called simple if the
bifurcation set B(ξ) is finite, ξt is structurally sta-
ble for any t ∈ ([0, 1]\B(ξ)) and the bifurcations
are one of the following types: saddle-node, period-
doubling, heteroclinic tangency.

The simplest Morse–Smale diffeomorphism is a
source-sink diffeomorphism. The nonwandering set
of such a diffeomorphism consists of two points,
a source and a sink, and the ambient manifold is
homeomorphic to the sphere Sn. In [Bonatti et al.,
2007], it was proved that all source-sink diffeomor-
phisms on S

3 belong to the same simple isotopy
class, which we denote by INS. Let f ∈ MS(M3)
be a diffeomorphism with a saddle point σ and let
�u
σ be unstable separatrix (that is, a connected com-

ponent of the set Wu
σ\σ). If the separatrix �u

σ does
not participate in heteroclinic intersections (that is,
no intersections of stable and unstable manifolds
of different saddle points), then cl(�u

σ)\(�u
σ ∪ σ) =

{ω}, where ω is a sink periodic point. Moreover, if
dimW u

σ = 1 then cl(�u
σ) is a topologically embedded

arc in M3. The set �u
σ ∪ σ is a smooth submanifold

of M3. But cl(�u
σ) may be wild at the point ω; in

this case, the separatrix �u
σ is said to be wild, and

otherwise, it is said to be tame. The tameness and
the wildness of a stable one-dimensional separatrix
are defined in a similar way.

Fig. 4. Af and Rf are separated by a 2-sphere.

Recall that the dynamics of any cascade f ∈
MS(M3) can be represented as follows. Let Ωq

f , q =
0, 1, 2, 3 denote the set of periodic points p for which
we have dimW u

p = q. Then Af = Wu
Ω0

f∪Ω1
f

is a

connected attractor, and Rf = W s
Ω3

f∪Ω2
f

is a con-

nected repeller with topological dimension at most
1. The sets Af and Rf do not intersect, and each
point from the set Vf = M3\(Af ∪ Rf ) is wander-
ing and moves from Rf to Af under the action of
f . We say that Af and Rf are separated by a 2-
sphere if there exists a smooth 2-sphere Σf ⊂ Vf

such that Af and Rf belong to different connected
components of M3\Σf . Let MS0(M3) denote the
class of Morse–Smale diffeomorphisms without het-
eroclinic intersections on a 3-manifold M3. Grines
and Pochinka proved the following criterion for the
existence of a simple arc joining a Morse–Smale dif-
feomorphism without heteroclinic intersections to a
source-sink diffeomorphism. The next theorem was
proved in [Grines & Pochinka, 2013].

Theorem 4. A diffeomorphism f ∈ MS0(S3)
belongs to the class INS if and only if the attractor
Af and the repeller Rf are separated by a 2-sphere.

3.2. On a breakdown of Smale
solenoids

After Theorem 2, it is natural to consider bifurca-
tions from one type of dynamics to another which
can be thought of as a destruction (or, a birth)
of Smale solenoid. For simplicity, we represent two
such bifurcations for M3 = S3 a 3-sphere.

Theorem 5. There is the family of Ω-stable Smale–
Vietoris diffeomorphisms fµ : S3 → S3, 0 ≤ µ ≤ 1,
continuously depending on the parameter µ such
that the nonwandering set NW (fµ) of fµ is the
following:

• NW (f0) consists of a one-dimensional expand-
ing attractor (Smale solenoid attractor) and one-
dimensional contracting repeller (Smale solenoid
repeller);

• for µ > 0, NW (fµ) consists of two nontrivial
zero-dimensional basic sets and finitely many iso-
lated periodic orbits.

Recall that a diffeomorphism f : M → M
is Ω-stable if there is a neighborhood U(f) of f
in the space of C1 diffeomorphisms Diff1(M) such
that f |NW(f) conjugate to every g|NW(g) provided
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g ∈ U(f). Therefore, there is no similar family
of Ω-stable diffeomorphisms which smoothly (at
least C1) depends on parameter. Actually, we have
to break an Ω-stability (hence, hyperbolicity) to
pass smoothly from an Ω-stable diffeomorphism to
another one. The following result was obtained in
collaboration with Gonchenko.

Theorem 6. There is the family of diffeomorphisms
fµ : S3 → S3, −1 ≤ µ ≤ 1, smoothly depending on
the parameter µ such that

• given any −1 ≤ µ < 0, fµ is Ω-stable, and the
nonwandering set NW (fµ) of fµ consists of a
(hyperbolic) one-dimensional expanding attractor
and one-dimensional contracting repeller (Smale
solenoid attractor and repeller);

• f0 is partially hyperbolic on the nonwander-
ing set NW (f0), and NW (f0) consisting of
(nonhyperbolic) Smale solenoid attractor and
Smale solenoid repeller;

• given any 0 < µ ≤ 1, fµ is Ω-stable, and
the nonwandering set NW (fµ) of fµ consists
of two (hyperbolic) nontrivial zero-dimensional
basic sets and finitely many isolated periodic
orbit.

3.3. Bifurcations of
DA-diffeomorphisms

Taking in mind Theorem 3, one can prove the fol-
lowing result [Medvedev & Zhuzhoma, 2003].

Theorem 7. Any structurally stable diffeomor-
phism f ∈ Diffr(Mn), n ≥ 4, with a codimension
one orientable expanding attractor can be connected
by a simple arc with a DA-diffeomorphism.

Theorem 7 does not hold true for n = 2. The
proof works for n = 3 because it is possible to show
that there are no wildly embedded separatrices of
saddle periodic points in this case.
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