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Exotic Chekanov tori in toric symplectic varieties

Nikolay A. Tyurin

Bogolyubov Lab. of Theoretical Physics, JINR (Dubna), Joint Institute for Nuclear research,
Joliot - Curie, 6, Moscow region, Dubna 141980, Russia and Bogomolov Lab. of Algebraic
Geometry, HSE (Moscow), National Research University Higher School of Economics, 20
Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract. We present a generalization of toric structures on compact symplectic manifolds
called pseudotoric structure. In the present talk we show that every toric manifold admits
pseudotoric structures and then we show that the construction of exotic Chekanov tori can be
peformed in terms of pseudotoric structures.

Let (X,ω) be a symplectic manifold of real dimension 2n so it can be understood as the phase
space of a classical mechanical system. Lagrangian geometry of X is focused on the questions
about lagrangian submanifolds of X namely: which homology classes from Hn(X,Z) can be
realized by smooth lagrangian submanifolds; what are the topological types of these lagrangian
submanifolds; classification up to lagrangian deformations of lagrangian submanifolds of the
same topological type and homology class; classification up to Hamiltonian isotopy of lagrangian
submanifolds of the same deformation type; unification of all lagrangian submanifolds in an
appropriate category.

Recall that S ⊂ X is lagrangian if the restriction ω|S vanishes identically and real dimension
of S is maximal, equal to n. Thus at least the homology class of S must be perpendicular to the
cohomology class [ω]. Two lagrangian submanifolds S0, S1 ⊂ X are of the same deformation type
if there is a family of lagrangina submanifolds St, t ∈ [0, 1] which ends at S0 and S1. Hamiltonian
isotopy of lagrangian submanifold S0 ⊂ X is given by a time dependent Hamiltonian function
H(x, t) : X×R→ R which generates the flow φtH , and St = φtH(S0) is the corresponding isotopy.

Toy example: dim = 2. Let Σ be a Riemann surface equipped with a symplectic form.
Then since every loop is lagrangian (dimensional reason): every primitive homology class from
H1(Σ,Z) is realizable by a smooth lagrangian submanifold; every smooth lagrangian submanifold
is isomorphic to S1; two loops from the same homology class are deformation equivalent; two
loops are Hamiltonian isotopic if the symplectic area of the oriented film bounded by the loops
is zero; the Fukaya category for a curve of any genus exists.

Thus for this case the problem is completely solved!
But making one new step we face already highly nontrivial situation. Consider “the simplest

and basic” 4- dimensional compact symplectic manifold — the projective plane CP2. Fot the
projective plane we have that: since the cohomology group H2(CP2,Z) = Z, any lagrangian
submanifold must present trivial homology class; there are no lagrangian 2 - spheres (M.
Gromov), Riemannian surfaces of genus g > 1 (M. Audin), Klein bottles (S. Nemirovsky and
V. Shevchishin) — all these types are not realized by smooth lagrangian submanifolds of the
projective plane; it was believed that well known Clifford tori are unique examples of lagrangian
tori in CP2 since in 1996 Yu. Chekanov proposed a construction of lagrangian torus which is not
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Hamiltonian isotopic to a Clifford torus — and nobody knows are there other types of lagrangian
tori; nevertheless certain constructions of appropriate categories exist (Fukaya - Seidel).

Thus even for this basic case in dimension 4 the problem is not solved yet.
Why we are interested in lagrangian geometry? Lagrangian geometry is very important

in Mathematical physics; f.e. several approaches to Geometric Quantization are based on
Lagrangian geometry. In these approaches lagrangian submanifolds represent quantum states
so an old idea of P.M. Dirac, stated that the phase space of classical mechanical system should
contain the ingredients of a natural quantization procedure, is realized. Thus it is natural to
study all possible states so it is reasonable to find all types of lagrangian submanifolds (see, f.e.
[1]).

F.e. in ALAG - programme (abelian algebraic lagrangian geometry, see [2]) the Chekanov
result ensures that the moduli space of half weighted Bohr - Sommerfeld lagrangian cycles of

level 3, Bhw,rS,3 , has at least two disjoint components, and may be in a future one will find certain
connecting space with a tunneling effect between these components.

As well in a popular modern subject of Mathematical physics — Homological Mirror
symmetry — one should try to describe all objects in the Fukaya category, so all types of
nonisotopic lagrangian tori.

Well known Clifford tori in CP2 comes from the toric geometry: the projective plane carries
two real Morse functions in involution with respect to the Poisson brackets induced by the
Kahler form of the standard Fubini - Study metric. These functions can be explicitly expressed
as:

f1 =
|z1|2 − |z2|2∑2

i=0 |zi|2
, f2 =

|z0|2 − |z1|2∑2
i=0 |zi|2

, {f1, f2}ω = 0

in homogeneous coordinates [z0 : z1 : z2]; the degeneration set

∆(f1, f2) = {df1 ∧ df2 = 0} ⊂ CP2

is formed by three lines li, li = {zi = 0}; the action map F = (f1, f2) : CP2 → PCP2 ⊂ R2 sends
∆(f1, f2) to the boundary component ∂PCP2 of the convex polytop PCP2 , and the preimage of
any inner point p ∈ PCP2 is a smooth lagrangian torus, labeled by values of f1, f2. Thus the
Clifford tori are just Liouville tori for this completely integrable system. And it is the standard
picture for any toric manifold.

In 1996 Yu. Chekanov in [3] proposed the construction of exotic lagrangian tori by the first
version to R4. The construction looks rather simple: fix a complex structure, so we have C2

with a coordinate system (z1, z2); choose a smooth contractible loop γ ⊂ C∗ which lies in a half
plane so Reγ > 0; consider two - dimensional subset given in the coordinates by the explicit
formula (z1, z2) = (eiφγ, e−iφγ) — and it is a lagrangian torus! Note however that if the loop γ
is not contractible, we get a torus which is equivalent to the standard one. Furthemore, since
the projective plane without projective line CP2\l is symplectomorphic to an open ball in R4

one implements the construction to the projective plane. Using certain special Hofer’s capacity
technique, Chekanov proved this torus is not equivalent to the standard one.

This exotic torus was called the Chekanov torus; the forthcoming paper by Yu. Chekanov
and F. Schlenk contains the details how to construct these nonstandard tori in the projective
space CPn for certain n, the products S1 × ...× S1, and some other cases, see [4].

An alternative description of the Chekanov tori based on the notion of pseudotoric structure.
We can produce the torus taking the pencil {Qw} such that Qw = {z1z2 = w} ⊂ C2 — one
dimensional complex family of quadratic surfaces given in the coordinate system (z1, z2) by the
quadratic equation which depends on complex parameter w ∈ C. Then one takes real Morse
function F = |z1|2 − |z2|2 and observes that the Hamiltonian vector field XF of this function F
preserves each quadric Qw from the family. Then one fixes a smooth contractible loop γ′ ⊂ C∗w
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where Cw parameterizes our family {Qw}. The choice of the value for our function F marks the
level set on each quadratic surface which is a loop, so taking smooth loops Sw = {F = 0} ∩Qw
on every quadratic surface Qw, w ∈ γ′ and collecting all these loops along γ′ one gets a torus:

T (γ′) =
⋃
w∈γ′

Sw;

it is not hard to see, that we again get the Chekanov torus from the previous construction, if
we put γ =

√
γ′.

Let’s repeat the construction for the projective plane. To do this consider pencil of quadrics
{Qp}, p 7→ [α : β] ⊂ CP1

α,β where Qp = {αz1z2 = βz2
0} ⊂ CP2. Take real Morse function F

explicitly given by the formula

F =
|z1|2 − |z2|2∑2

i=0 |zi|2

in homogenoues coordinates [z0 : z1 : z2]. It can be checked directly that its Hamiltonian vector
field XF preserves each element of the pencil, so we can proceed as in the previous noncompact
case. Let’s choose a smooth contractible loop γ ⊂ CP1

α,β\{[1 : 0], [0 : 1]} since the last points
are covered by singular quadrics; then on each quadric Qp, p ∈ γ we can take the level set
Sp = {F = 0} ∩Qp, and this level set is a smooth loop. Then we collect the level sets Sp along
the loop γ getting again a lagrangian torus T (γ) =

⋃
p∈γ Sp. The point is that the resulting

torus is exactly the Chekanov torus, given by the identification of symplectic ball in R4 and
CP2\line. On the other hand if γ ⊂ CP1

α,β was taken non contractible then the resulting torus
would be equivalent to a Clifford torus.

Therefore we get certain correspondence between the equivalence classes of lagrangian tori
and the fundamental group of the punctured projective line π1(CP1

α,β\{[0 : 1], [1 : 0]}) without
the north and the south poles.

What is the difference between toric and pseudo toric considerations?
We illustrate it on the ideal level by the following diagramme:

R | C
real Morse function f | Lefschetz pencil {Qp}

‖ | ‖
f : X → R | ψ : X\B → CP1, Qp = ψ−1(p)

↓ | ↓
toric case | pseudtoric case

(f1, f2) on CP2 | (f, {Qp}) on CP2

such that {f1, f2}ω = 0 | such that Xf ‖ Qp
↑ | ↑

standard commutation rel. | new commutation rel.

A complex analog of a real Morse function is a Lefschetz pencil, roughly speaking it is just a
complex (or symplectic) map to the compactified complex space. The question is how to relate
the real data and new complex data, so what does it mean that a real function and a Lefschetz
pencil commute? We propose the following new commutation relation: pencil {Qp} commutes
with real function f if the Hamiltonian vector field Xf is parallel to each element Qp of the pencil
at each point. Geometrically (or dynamically) this means that the Hamiltonian flow generated
by f preserves the “level sets” of the Lefschetz pencil — but it is exactly the same as for the
real functions!

Leaving aside other speculative arguments, we summurize with the following
Definition ([5]): Pseudotoric structure on a compact symplectic manifold (X,ωX) consists

of
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· (real data) {f1, ..., fk} — algebraically independent almost everywhere real Morse functions in
involution, {fi, fj}ω = 0;
· (complex data) family of compact symplectic 2k -dimensional submanifolds {Qp}, Qp ⊂ X,
parameterized by a compact toric symplectic manifold (Y, ωY ) 3 p (or, equivalently, a map with
symplectic fibers

ψ : X\B → Y, Qp = ψ−1(p), B = base set

such that the following commutation relations hold:
· the Hamiltonian vector field Xfi of each Morse function fi from (real data) is parallel to each
Qp at each point (or, equivalently, each fi preserves the fibers of ψ by the Hamiltonian action);
· for each smooth function h ∈ C∞(Y,R) bi- vector field
Xψ∗h ∧∇ψXh ≡ 0 — identically vanishes on X\B.

In the last expression Xψ∗h ∧ ∇ψXh we take two vector fields for a function h ∈ C∞(Y,R)
taken on the base manifold Y , namely for the lifted function ψ∗h ∈ C∞(X\B,R) on X\B one
takes the Hamiltonian vector field with respect to the symplectic form ωX ; on the other hand
one takes the lift ∇ψXh of the Hamiltonian vector field Xh defined by the symplectic form ωY
on Y , and ∇ψ is the symplectic connection defined by ψ since this map has symplectic fibers:

∇ψ : Γ(TY )→ Γ(T (X\B)).

The last condition looks too horrible but in practice one avoids all the difficulties, taking in
mind the following remark: if X and Y are complex, k = n− 1, and ψ is complex then the last
commutation relation is automatically satisfied.

It’s easy to see that the base set B of the family {Qp} must be contained by the degeneration
locus ∆(f1, ..., fk) = {df1∧...∧dfk = 0}; the singular points of any fiber Qp must be contained by
the degeneration locus ∆(f1, ..., fk) as well; any fiber Qp = ψ−1(p)∪B endowed with restrictions
(f1|Qp , ...fk|Qp) — is a completely integrable system (= toric (perhaps non smooth) symplectic
manifold). Therefore pseudotoric structures supply us with the solutions of the following
problem: for non completely integrable Hamiltonian system with the integrals (f1, ..., fk) find
toric leaves of the Hamiltonian action.

The simplest (and the trivial) example of pseudotoric structure arises if one takes the direct
product of two toric manifolds Y1 × Y2. This structure is topologically trivial, as the product
vector bundle. In analogy with the theory of vector bundles we introduce the following

Definition ([5]): the number n − k = 1
2dimY is called the rank of pseudotoric structure

(f1, ..., fk, ψ, Y ).
Clearly it is parallel to the notion of the rank of vector bundle.
If singular points of fiber Qp lies in the base set B we say that the fiber Qp is regular; if generic

fiber Qp is regular then we say that pseudotoric structure is regular; it’s not hard to see that
in the regular case the image ψ(∆(f1, ..., fk)\B) = Dsing ⊂ Y is a proper compact symplectic

submanifold. This submanifold measures topological non triviality of the pseudotoric structure;
this subset is empty if and only if the peudotoric structure is topologically trivial so it is the
product of toric manifolds.

The main reason for the introduction of this new structure is the possibility to construct
lagrangian fibrations on whole X starting with lagrangian fibrations on the base toric manifolds
and using the toric nature of the fibers. If we choose a system (h1, ..., hn−k) of commuting
moment maps on Y (since Y by the definition is toric) we get a lagrangian fibration on the base
Y but at the same time we have the following

Theorem ([6]): Choice of moment maps (h1, ..., hn−k) on the base Y of a regular pseudotoric
structure (f1, ..., fk, ψ, Y ) on a given X defines a lagrangian foliation on X whose generic fiber
is a smooth lagrangian torus.

The dimensional reduction which happens on ∆(h1, ..., hn−k) ⊂ Y is reflected by the fact that
the collection of fibers over ∆(h1, ..., hn−k) must be cutted from X, and then the resting part
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X\(
⋃
p∈∆(h1,...,hn−k)Qp) carries lagrangian fibration. This lagrangian fibration is only generically

smooth (so generic fiber is a smooth lagrangian torus), but the singular fibers have singularities
which are not of generic type. The type of the singularities is controlled and can be described
as follows. A Liouville torus in a completely integrable system carries periodic orbits and
unbounded real lines (if we consider irrational motion along the torus). Our singular tori admit
additionally trajectories of the separatrix type: take a periodic loop on a torus and contract it
to a point — then the torus turns to be singular and instead of periodic loop one gets a stable
point. This is the type of singularities which appear in our lagrangian fibration.

General scheme can be summarized by the following diagramme

(f1, ..., fk) : B −→ ∂PQp −boundary component
∩ ∩

(f1, ..., fk) : X −→ PQp −moment pol.for gen.fib.
ψ ↓ ×

(h1, ..., hn−k) : Y −→ PY −moment pol.for base
∪ ∪

(h1, ..., hn−k) : Dsing −→ N −hypersurface inPY

— here singular lagrangian tori in the fibration are parameterized by certain “incidence cycle”
appears from irregular singular fibers of the pseudotoric structure.

Now we slightly generalize the discussion concerning not lagrangian fibrations but lagrangian
tori. For this case we can say about possible lifting of lagrangian tori from the base manifold
the of pseudotoric structure, namely

Theorem ([7])Let (f1, ..., fk, ψ, Y ) be a regular pseudotoric structure on a compact symplectic
manifold X. Let S ⊂ Y be a smooth lagrangian torus which doesn’t intersect Dsing ⊂ Y .

Then the choice of non critical values (c1, ...ck) of f1, ..., fk defines a smooth lagrangian torus
T (S, c1, ..., ck) ⊂ X.

Shortly, the proof of the theorem based on the same procedure we’ve applied above to
construct the Chekanov tori. Taking a lagrangian torus on the base, we collect lagrangian
tori from the toric fiber — it can be done simulteneously thanks to the global functions f1, ..., fk
— and the commutation relations from the very definition of pseudotoric structure ensure that
the resulting figure is a lagrangian torus in X.

The last theorem shows that lagrangian tori from the base manifold after lifting could
give different types of lagrangian tori in whole X. We can take the homology group
Hn−k(Y \Dsing,Z) of the “punctured” base manifold and then attach to smooth lagrangian

tori in the punctured base manifold different classes from the group. Conjecturelly the different
classes from Hn−k(Y \Dsing,Z) can give different types of lagrangian tori in X. For example,

it is true for the projective plane — as we’ve seen for Clifford and Chekanov tori in CP2 the
following alternative appears:

Clifford type = primitive elem.
↗

H1(CP1\([1 : 0], [0 : 1]),Z)
↘

Chekanov type = trivial elem.

But is it possible to construct such exotic lagrangian tori for any compact toric variety? The
answer is an affirmative in view of the following

Theorem ([8]): Any smooth compact toric symplectic manifold admits regular pseudotoric
structure (f1, ..., fn−1, ψ,CP1) of rank one. For this structure the singular divisor Dsing ⊂ CP1
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consists of exactly two distinct points, pN , pS ⊂ CP1. The primitive and the trivial elements of
H1(CP1\(pN ∪ pS),Z) generates lagrangian tori of the standard type and of the Chekanov type
respectively.

Suppose additionaly that our given toric (X,ωX) is monotone, this means that the
cohomology class of the symplectic form is proportional to the canonical class of the associated
almost complex structure on X: KX = k[ωX ] ⊂ H2(X,Z); so f.e. Fano varieties in algebraic
geometry are monotone. Then the main conjecture we would like to propose in this circumstances
is based on the following remark: if there is a standard monotone lagrangian torus then there
exists a monotone lagrangian torus of the Chekanov type. And for the future work we have as
the major aim the following

Main conjecture.These monotone tori are not Hamiltonian isotopic.
The Theorem above which states the existence of pseudotoric structures on toric symplectic

manifolds can be proved as follows ([8]). Let’s take for a given toricX the set of commuting Morse
moment maps (f1, ...fn), which give the action map by “action coordinates” F = (f1, ..., fn) :
X → PX to convex moment polytop PX ⊂ Rn; then for the components Di of the boundary
divisor D = F−1(∂PX) one can find an integer combination

∑
λiDi equals to zero. This sum

can be rearranged to the form∑
λi>0

λiDi =
∑
λj<0

|λj |Dj , Di 6= Dj ;

therefore we have two divisors from the same linear system

D+ =
∑
λi>0

λiDi, D− =
∑
λj<0

|λj |Dj ∈ |
∑
λi>0

λiDi|.

Then one takes the pencil < D+, D− > spanned by two divisors D± with the base set
B = D+ ∩ D−, and it would be our pencil ψ from the definition of pseudotoric structure,
and for generic point p ∈ CP1, p 6= [1 : 0]( 7→ D+), [0 : 1]( 7→ D−), the divisor ψ−1(p) ⊂ X is
smooth outside the base set B. The same linear combination

∑
λiDi after substitution of linear

forms li which correspond to Di in Rn gives a linear relation on xi — and this relation derive
our real data f ′1, ...f

′
n−1 from f1, ..., fn just implying the corresponding linear condition.

Example: CP2
3 — del Pezzo surface of degree 6 is usually given by the blow up procedure

applied to the projective plane CP2 at three points. Explicitly it can be realized in the direct
product

CP2
x × CP2

y ⊃ U = {x0y0 = x1y1 = x2y2}

by the last equation, then the projection to the projective plane is given by px : U →
CP2

x, px(xi, yj) = [x0 : x1 : x2]. Thus p0
x : U\three lines ' CP2

x\three points, but
(p0
x)−1(TCh) ⊂ U is not lagrangian — so we can not lift the Chekanov torus using this standard

algebro geometric construction. But fortunately we can lift the corresponding pseudotoric
structure!

Indeed, let’s take the pencil

{Qα,β} = {αx0x1y
2
2 = βx2

2y0y1} ⊂ CP2
x × CP2

y,

on the whole direct product, and then the intersections Qα,β ∩ U would give us the Lefschetz
pencil ψ on U . Further, the real Morse function

F =
|x0|2 − |x1|2∑2

i=0 |xi|2
+
|y1|2 − |y0|2∑2

i=0 |yi|2
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preserves by the Hamiltonian action our surface U and at the same time does do it for
each element Qα,β of the pencil, therefore f = F |U must preserve the intersections and thus
would give the real data of the desired psedudotoric structure. The choice of a smooth loop
γ ⊂ CP1\([1 : 0], [0 : 1]) gives a lagrangian torus T (0, γ) =

⋃
p∈γ{f |ψ−1(p)

= 0}, and if γ is

contractible, we get a Chekanov torus in CP2
3

At the end I would like to mention several applications of this generalized notion, pseudotoric
structure.

Lots of methods in Mathematical Physics are invented and realized with great success in the
case of toric varities. In Geometric Quantization (see, f.e., [9]) we know what one should do in
the case when the phase space of classical mechanical system carries a real polarization, namely
one takes the Bohr - Sommerfeld fibers and spann the Hilbert space. In Homological Mirror
Symmetry (see, f.e., [10]) one takes the canonical fibration on lagrangian tori, counts the fibers
with non trivial Floer cohomologies — and then builds on these fibers the corresponding Fukaya
category. But all these methods can not be applied in non toric case since if one takes a non
toric variety — nobody knows in general how to slice it on lagrangian fibers.

Pseudotoric structure on a symplectic manifold X gives way to apply these methods in more
general setup. Indeed, the theorems above ensure that we can construct aslmost canonically
certain lagrangian fibrations in the presence of pseudotoric structures. What is the difference
with the “regular” toric case? It is in the appearence of singular lagrangian fibers. But as we’ve
seen the types of singularities which appear in the fibers are very special: for example the notion
of Bohr - Sommerfeld lagrangian cycle is still valid for these singular lagrangian tori without
any modification. One hopes that the definition of the Floer cohomology can be modified as
well. Then we can use the powerfull methods not only in toric geometry but in much more wider
context — since there are compact symplectic manifolds which are not toric but nevertheless
which admit pseudotoric structures. It is natural to call such a manifold pseudotoric: the
examples are complex quadrics and certain complete intersections in CPn, the flag variety F 3

and conjecturelly certain complex Grasmmanians. And coming back to the main subject of the
present talk we shoud say that in all these cases it is possible to construct lagrangian tori of
different type using the pseudtoric structure.

Thus the natural problem arises: which symplectic manifolds are pseudotoric? Toric
geometry itself concerns this question since in the framework of toric geometry one meets the
problem with induced objects. F.e. if one takes the projectivization of the (co)tangent bundle
of a toric variety – it is not longer toric (F 3 — the flag variety — is the projectivization of the
tangent bundle of the “most toric” one — the projective plane) but it admits the Hamitonian
action of an incomplete set of integrals lifted from the toric base. As well it could happen
for certain moduli spaces over toric varieties. The construction of a pseudotoric structure is a
solution of the toric leaves problem in general; and if this solution exists we can adopt the strong
methods from toric geometry to this case.

As a byproduct we’ve touched a classical problem from mechanics — the study of non
completely integrable systems. Again as we’ve seen the problem could be solved in the case when
the phase space admits a psuodotoric structure. Then the solutions can be described in terms
of the “action - angle” variables of the base manifold and the toric fibers. The difference with
the completely integrable case is in the appearance of singular lagrangian tori of the Liouville
type — and it is not problematic since it just means that some additional types of trajectories
— separatrices — are presented in the story.

Acknowledgments
I would like to thank Prof. C. Burdik for the warm invitiation to participate in the conference
and all his team in Praha who organized this inetersting meeting. The author was partially
supported by AG Laboratory NRU-HSE, RF government grant, ag. 11.G34.31.0023. This work

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012028 doi:10.1088/1742-6596/411/1/012028

7



was supported in parts by the RFBR (grant no.11-01-00980-?) and by the NRU HSE Academic
Fund Program (grant no.12-09-0064).

References
[1] N. A. Tyurin, “Geometric quantization and algebraic lagrangian geometry”, Surveys in Geometry and Number

theory, LMS Lect. Note Ser. 338 (2007), pp. 279 - 318;
[2] A. L. Gorodentsev, A. N. Tyurin, “Abelian lagrangian algebraic geometry”, Izvestiya: Math., 65:3 (2001),

pp. 437 -467;
[3] Yu. Chekanov, “Lagrangian tori in symplectic vector space and global symplectomorphisms”, Math. Zeitschrift,

223: 1 (1996), pp. 547 - 599;
[4] Yu. Chekanov, F. Schlenk, “Notes on monotone lagrangian twist tori”, arXiv:1003.5960;
[5] N. A. Tyurin, “pseudotoric lagrangian fibrations of toric and non toric Fano varieties”, Theor. Math. Physics,

162:3 (2010), pp. 307 -333;
[6] S. A. Belyov, N. A. Tyurin, “On nontoric lagrangian fibrations of toric Fano varieties”, Math. Notes, 87: 1

(2010), pp. 48 -59;
[7] S. A. Belyov, N. A. Tyurin, “Liftings of lagrangian tori”, Math. Notes, 91:5 (2012), pp. 784 - 786;
[8] S. A. Belyov, “Pseudotoric structures on toric varieties”, in preparation;
[9] N. Woodhouse, “Geometric Quantization”, The Clarendon press Oxford University press, New York, 1980;

[10] K. Fukaya, Y.-G. Oh, H. Ohta, K. Ono, “Lagrangian Floer theory on compact toric manifolds I”, Duke.
Math. J. 151 (2010), pp. 23-174.

XXth International Conference on Integrable Systems and Quantum Symmetries (ISQS-20) IOP Publishing
Journal of Physics: Conference Series 411 (2013) 012028 doi:10.1088/1742-6596/411/1/012028

8




