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Abstract Recently, a three-stage version of K-Means has been introduced, at
which not only clusters and their centers, but also feature weights are adjusted
to minimize the summary p-th power of the Minkowski p-distance between
entities and centroids of their clusters. The value of the Minkowski exponent
p appears to be instrumental in the ability of the method to recover clusters
hidden in data. This paper advances into the problem of finding the best p for
a Minkowski metric based version of K-Means, in each of the following two
settings: semi-supervised and unsupervised. This paper presents experimental
evidence that solutions found with the proposed approaches are sufficiently
close to the optimum.

Keywords Clustering · Minkowski metric · Feature weighting · K-Means.

1 Motivation and background

Clustering is one of the key tools in data analysis. It is used particularly in the
creation of taxonomies when there are no accurate labels available identifying
any taxon, or not enough such labels to train a supervised algorithm. K-
Means is arguably the most popular clustering algorithm being actively used by
practitioners in data mining, marketing research, gene expression analysis, etc.
For example, a Google search made on the 15th of March 2013 returned 473 mln
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pages to the query “k-means” and only 198 mln pages to the query “cluster”,
even in spite of the latter being more general. Thanks to its popularity, K-
Means can be found in a number of software packages used in data analysis,
including MATLAB, R and SPSS.

K-Means aims to partition a dataset represented by a matrix Y = (yiv),
where yiv represents the value of feature v, v = 1,..., V , on entity i ∈ I, into K
homogeneous clusters Sk, together with their centroids ck(k = 1, 2, ...,K).Given
a measure of distance d(yi, ck), where yi denotes i-th row yi = (yi1, yi2, ..., yiV )
of Y , K-Means iteratively minimizes the summary distance between the enti-
ties yi and centroids ck of their clusters

W (S,C) =

K∑
k=1

∑
i∈Sk

d(yi, ck) (1)

The minimization process works according to the alternating optimization
scheme. Given the centroids ck, the optimal clusters Sk are found to minimize
criterion (1) over clusters. Given the found clusters Sk, the optimal centroids
ck are found by minimizing criterion (1) over centroids. This is especially
simple when the scoring function d(yi, ck) is the squared Euclidean distance
d(yi, ck) =

∑
v(yiv − ckv)2. In this case, the optimal centroids are the clusters

means, and the optimal clusters consist of entities that are nearest to their
centroids, clearly favouring spherical clusters. The iterations stop when the
centroids stabilize; the convergence is warranted by the fact that the criterion
decreases at every step, whereas the number of possible partitions is finite.

Being much intuitive and simple computationally, K-Means is known to
have a number of drawbacks; among them are the following: (i) the method
requires the number of clusters to be known beforehand; (ii) the final clustering
is highly dependent on the initial centroids it is fed; (iii) the results highly
depend on feature scaling.

Building on the work by Makarenkov and Legendre [11], Huang et al. [6,9,
10], Mirkin [12], and Chiang and Mirkin [7], Amorim and Mirkin have intro-
duced what they call the intelligent Minkowski Weighted K-Means (iMWK-
Means) algorithm which mitigates the mentioned drawbacks [3]. This approach
extends the K-Means criterion by distinguishing in it the feature weighting
component, while using the Minkowski metric and initializing the process with
anomalous clusters.

The superiority of iMWK-Means in relation to other feature-weight main-
taining algorithms was experimentally demonstrated on medium-sized datasets
[3,2] including a record minimum number of misclassified entities, 5, on the
celebrated Iris dataset [5]. Yet choosing the “right” exponent remains of an
issue. This has been addressed by Huang et al. [6,9,10] (weight exponent),
Amorim and Mirkin [3] (Minkowski exponent) by exploring the similarity be-
tween the found clustering and the “right” partition on a range of possible
values of the exponent and choosing the exponent value corresponding to the
best match between the clustering and the partition.
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In both cases the accuracy of cluster recovery appears to be highly depen-
dent on the exponent value, which may drastically differ at different datasets.
Yet in real-world problems the clusters in data are not known beforehand so
this approach would not work. There can be two types of real-world scenarios:

1. semi-supervised clustering in which right cluster labels can be supplied for
a small part of the data before the process of clustering;

2. unsupervised clustering in which no cluster labels are supplied beforehand
at all.

This paper addresses the problem of choosing the Minkowski exponent
in both scenarios. We experimentally investigate how our semi-supervised al-
gorithm in scenario (i) works at different proportions of labelled data. We
empirically demonstrate that it is possible to recover a good Minkowski expo-
nent with as low as 5% of data being labelled, and that large increases in this
proportion of labelled data tend to have a small effect on cluster recovery. In
scenario (ii), we look at applying various characteristics of the cluster structure
as potential indexes for choosing the right Minkowski exponent. Among them
we introduce an index based on the iMWK-Means criterion and, also, indexes
related to the so-called silhouette width [13]. It appears our approaches show
rather satisfactory results.

The remainder is structured as follows. Section 2 describes the generic
iMWK-Means in a greater detail. Section 3 describes adaptations of iMWK-
Means to the supervised and unsupervised clustering situations. Section 4
presents our experimental setting, with both real-world benchmark data and
synthetic datasets, and the experimental results. Section 5 concludes the paper.

2 Minkowski Weighted K-Means and iMWK-Means

Weighted K-Means (WK-Means) automatically calculates the weight of each
feature conforming to the intuitive idea that features with low within-cluster
variances are more relevant for the clustering than those with high within-
cluster variances. Each weight can be computed both for the entire dataset,
wv, or within-clusters, wkv. We utilize the latter approach involving cluster
specific feature weights. The WK-Means criterion by Huang et al. [6] is as
follows:

W (S,C,w) =

K∑
k=1

∑
i∈Sk

V∑
v=1

wp
kv|yiv − ckv|

2 (2)

where V is the number of features in Y ; w = (wkv), the set of non-negative

within-cluster feature weights such that
∑V

v=1 wkv = 1 for each k = 1, 2,...,
K; and p, the adjustable weight exponent. This criterion is subjective to a
crisp clustering, in which a given entity yi can only be assigned to a single
cluster. The MWK-Means [3] is a further extension of the criterion, in which
the squared Euclidean distance is changed for the p-th power of the Minkowski
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p-distance. The Minkowski p-distance between a given entity yi and centroid
ck is defined below:

dp(yi, ck) = (

V∑
v=1

|yiv − ckv|p)1/p (3)

By separating positive measurement scales wkv of features v in the coordinates
of yi and ck, the p-th power of the Minkowski p-distance, hence without the
1/p exponent, can be expressed as:

dwp(yi, ck) =

V∑
v=1

wp
kv|yiv − ckv|

p (4)

Putting (4) into criterion (2), one arrives at the Minkowski Weighted K-Means
criterion:

W (S,C,w) =

K∑
k=1

∑
i∈Sk

V∑
v=1

wp
kv|yiv − ckv|

p (5)

Because of the additivity of the criterion, the weights can be set to be cluster-
specific, so that any feature v may have different weights at different clusters k
as reflected in 5. Given the partition and centroids; the weights are computed
according to equations derived from the first-order optimality condition for
criterion 5:

wkv =
1∑

u∈V [Dkv/Dku]1/(p−1)
(6)

where Dkv =
∑

i∈Sk
|yiv− ckv|p and k is an arbitrary cluster [3]. In our exper-

iments we have added a very small constant to the dispersions, avoiding any
issue related to a dispersion being equal to zero. Equation (6) at p = 0 may
seem problematic at first; however, such case is in fact of simple resolution. At
p = 0, Equation (6) is equivalent to a weight of one for the feature v with the
smallest dispersion, and weights of zero in the others, all cluster specific [3,6].
The MWK-Means iterative minimization of criterion (5) is similar to the K-
Means algorithm, but each iteration here consists of three stages, rather than
the two stages of the generic K-Means, to take the computation of weights
into account.

MWK-Means algorithm

1. Initialization. Define a value for the Minkowski exponent p. Select K cen-
troids from the dataset at random. Set vik = 1/V .

2. Cluster update. Assign each entity to its closest centroid applying the
Minkowski weighted distance (4).

3. Centroid update. Calculate the cluster centroids as the within-cluster Minkowski
centers. Should the centroids remain unchanged, stop the process and out-
put the results.

4. Weight update. Given clusters and centroids, compute the feature weights
using Equation (6). Go back to Step 2 for the next iteration.
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The original K-Means algorithm makes use of the squared Euclidean distance,
which favours spherical clusters. The MWK-Means criterion (5) favours any
interpolation between diamond and square shapes, depending on the value of
p. This property of MWK-Means makes the selection of p rather important
for cluster recovery.

The Minkowski centers can be computed using a steepest descent algorithm
from Amorim and Mirkin [3]. More precisely, given a series of reals, y1, ..., yn,
its Minkowski p-center is defined as c minimizing the summary value

d(c) =

n∑
i=1

|yi − c|p (7)

The algorithm is based on the property that d(c) in (7) is convex for p > 1,
and it uses the first derivative of d(c) equal to ′d(c) = p(

∑
i∈I+(c − yi)p−1 −∑

i∈I−(yi − c)p−1, where I+ is the set of indices i at which c > yi, and I− is
the set of indices i at which c ≤ yi, i = 1, ..., n.

Minkowski center algorithm

1. Sort given reals in the ascending order so that y1 ≤ y2 ≤ ... ≤ yn.
2. Initialize with c0 = yi∗ , the minimizer of d(c) on the set yi and a positive

learning rate λ that can be taken, say, as 10% of the range yn − y1.
3. Compute c0−λd′(c0) and take it as c1 if it falls within the minimal interval

(yi′ , yi′′) containing yi∗ and such that d(yi′) > d(yi∗), d(yi′′) > d(yi∗).
Otherwise, decrease λ a bit, say, by 10%, and repeat the step.

4. Test whether c1 and c0 coincide up to a pre-specified precision threshold. If
yes, halt the process and output c1 as the optimal value of c. If not, move
on.

5. Test whether d(c1) ≤ d(c0). If yes, set c0 = c1 and d(c0) = d(c1), and go
to step 2. If not, decrease λ a bit, say by 10%, and go to step 3 without
changing c0.

Similarly to K-Means, the MWK-Means results highly depend on the choice of
the initial centroids. This problem has been addressed for K-Means by using
initialization algorithms that provide K-Means with a set of good centroids.
Taking this into account, we have adapted the Anomalous Pattern algorithm
from Mirkin [12] to supply MWK-Means with initial centroids. A combination
of K-Means with the preceding Anomalous Pattern algorithm is referred to as
the intelligent K-Means, iK-Means, in Mirkin [12]. The iK-Means has proved
superior in cluster recovery over several popular criteria in experiments re-
ported by Chiang and Mirkin [7]. The modified Anomalous Pattern algorithm
involves the weighted Minkowski metric (4) with the weights computed ac-
cording to Equation (6). Together with the Anomalous Pattern initialization,
MWK-Means forms what is referred to as the intelligent Minkowski Weighted
K-Means algorithm (iMWK-Means), ceasing to be a non-deterministic algo-
rithm. Its formulation is as follows.

iMWK-Means algorithm
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1. Sort all the entities according to their Minkowski weighted distance (4)
to the Minkowski center of the dataset, cc, using the Minkowski weighted
metric and 1/V for each weight.

2. Select the farthest entity from the Minkowski centre, ct, as a tentative
anomalous centroid.

3. Assign each of the entities to its nearest centroid of the pair, cc and ct,
according to the Minkowski weighted metric.

4. Compute ct as the Minkowski center of its cluster.
5. Update the weights according to equation (6). If ct has moved on step 4,

return to step 3 for the next iteration.
6. Set all the entities assigned to ct as an anomalous cluster and remove it

from the dataset. If there are still unclustered entities remaining in the
dataset, return to step 2 to find the next anomalous cluster.

7. Run MWK-Means using the centroids of the K anomalous clusters with
the largest cardinality.

3 Selection of the Minkowski Exponent in the semi- and un-
supervised settings

In this section we present methods for selecting the Minkowski exponent in
each of the two settings, semi-supervised and unsupervised. The first utilizes
a small portion of data that have been labelled; the second, a cluster scoring
function over partitions.

3.1 Choosing the Minkowski exponent in the semi-supervised setting

The semi-supervised setting relates to the scenario in which the cluster labels
are known not for all, but only for a relatively small proportion q of the dataset
being clustered. Then either of two options can be taken: (a) first, cluster only
those labelled entities to learn the best value for the Minkowski exponent p
as that leading to the partition best matching the pre-specified labels, then
using the learnt p, cluster the entire dataset, or (b) to cluster all the entities
and learn the best p at the labelled part of the dataset. In Amorim and Mirkin
[3] the option (a) has been disapproved rather convincingly. Therefore, only
option (b) is tested in this paper at differing values of q.

The algorithm comprising both learning and testing p runs at a dataset,
at which all the pre-specified clustering labels are known, as follows:

Run R=50 times:

1. Get a random sample of labelled entities of size q: cluster labels on this set
are assumed to be known.

2. Run iMWK-Means over the whole dataset with p taken in the interval from
1 to 5 in steps of 0.1.

3. Select the Minkowski exponent with the highest accuracy achieved on the
entities whose labels are known as p∗.
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4. Calculate the accuracy using p∗ and the whole dataset by comparing the
found partition and that one pre-specified.

Calculate the average accuracy of the R runs and standard deviation.
Our search for a good p occurs in the interval [1, 5]. We have chosen the

lower bound of one because this is the minimum for which we can calculate a
Minkowski center (median), since Equation (7) is convex for p > 1. We have
chosen the upper bound of five following our previous experiments [3].

Of course, in a real-life clustering scenario one would not normally have
access to the labels of the whole dataset. Here we utilize it only for evaluation
purposes.

3.2 Choosing the Minkowski exponent in an unsupervised setting

When no prior information of the hidden partition is available, a reasonable
idea would be to find such a scoring function over the iMWK-Means parti-
tions, that reaches its extreme value, that is, the maximum or minimum, at a
resulting partition that is most similar to the hidden partition.

Under the original K-Means framework, one of the most popular scoring
functions is the output of the K-Means criterion itself. One simply runs K-
Means a number of times and sets the optimal partition to be that with the
smallest sum of distances between the entities and their respective centroids.
Unfortunately the iMWK-Means criterion (5) is not comparable at different
ps, making its raw value inappropriate for a scoring function. However, we
can normalize (5) in such a way that its dependence on p can be disregarded,
we called it the Minkowski clustering index (MCI). For comparison, we also
experiment with the so-called silhouette width [13] which has been reported as
a good index in various empirical studies, one of the latest being by Arbelaitz
et al. [4].

Let us define MCI, an index based on the minimized value of the MWK-
Means criterion. We normalize the criterion over what may be called the
Minkowski data p-scatter according to the feature weights found as an output
of a run of the iMWK-Means:

MCI =
Wp(S,C,w)∑K

k=1

∑
i∈Sk

∑V
v=1 |wkvyiv|p

(8)

This index is comparable at clusterings with different ps. We choose that
p at which the MCI is at its minimum.

Let us turn now to the silhouette width based indexes. Given a set of
clusters and an entity-to-entity dissimilarity measure, the silhouette width of
an entity is defined as the relative difference between the average dissimilarity
of that entity from the other entities in its cluster compared to its average
dissimilarities to other clusters according to formula:

S(yi) =
b(yi)− a(yi)

max{a(yi), b(yi)}
(9)
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where a(yi) is the average dissimilarity of yi ∈ Sk from all other entities in
its cluster Sk, and b(yi) the lowest average dissimilarity of the yi from another
cluster Sl at l 6= k. The larger the S(yi), the better the entity yi sits in its
cluster. The silhouette width of the partition is the sum of all S(yi) over all
i ∈ I.

We apply the concept of silhouette width over five different measures of
dissimilarity between vectors x = (xv) and y = (yv):

1. Squared Euclidean distance d(x, y) =
∑

v(xv − yv)2;

2. Cosine 1− c(x, y) where c(x, y) =
∑

v xvyv/
√∑

v x
2
v

√∑
v y

2
v ;

3. Correlation 1−r(x, y) where r(x, y) =
∑

v(xv−x̄)(yv−ȳ)/
√∑

v(xv − x̄)2
√∑

v(yv − ȳ)2;
4. Power p of Minkowski p-distance dpp(x, y) =

∑
v |xv − yv|p where p is the

same as in the tested run of iMWK-Means; and
5. A p-related analogue to the cosine dissimilarity defined as

cp(x, y) =
∑
v

| xv

p

√∑V
v=1 |xv|p

yv

p

√∑V
v=1 |yv|p

|p (10)

This definition is based on an analogue to the well-known equation relating
the squared Euclidean distance and cosine, d(x′, y′) = 2 − 2c(x′, y′), where
x′ = x

||x|| , y
′ = y

||y|| are normed versions of the vectors. We select the p with

the highest sum of silhouette widths.

4 Experiments

To validate the Minkowski exponent selection methods we experiment with, we
use both real-world and synthetic datasets. The six real-world datasets taken
from the UCI Irvine repository [5] are those that have been used by Huang et
al. [6,9] as well as by Amorim and Mirkin [3]. Also, versions of these datasets
obtained by adding uniformly random features are used to see the impact of
the noise on the recovery of the Minkowski exponent.

The datasets are:

1. Iris. This dataset contains 150 flower specimens over four numerical fea-
tures; it is partitioned in three groups. We devised two more Iris dataset
versions by adding, respectively, extra two and extra four noise features.
These are uniformly random.

2. Wine. This dataset contains 178 wine specimens partitioned in three groups
and characterized by 13 numerical features that are chemical analysis re-
sults. We also use two more datasets by adding 7 and 13 noise features,
respectively.

3. Hepatitis. This dataset contains 155 cases over 19 features, some of them
categorical, partitioned in two groups. Two more versions of this dataset
have been obtained by adding, in respect, 10 and 20 noise features.

4. Pima Indians Diabetes. This dataset contains 768 cases over 8 numerical
features, partitioned in two groups. Two more versions of this dataset have
been obtained by adding, in respect, 4 and 8 noise features.
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5. Australian Credit Card Approval. This dataset contains 690 cases parti-
tioned in two groups, originally with 15 features, some of them categorical.
After a pre-processing step, described later in this section, we had a total
of 42 numerical features.

6. Heart Disease. This dataset contains 270 cases partitioned in two groups
referring to the presence or absence of a heart disease. This dataset has
originally 14 features, including categorical ones. After the pre-processing
step, there are 32 features in total.

Our synthetic data sets are of three formats:(F1) 1000x8-5: 1000 entities
over 8 features consisting of 5 Gaussian clusters; (F2) 1000x15-7: 1000 entities
over 15 features consisting of 7 Gaussian clusters; (F3) 1000x60-7: 1000 entities
over 60 features consisting of 7 Gaussian clusters.

All the generated Gaussian clusters are spherical so that the covariance
matrices are diagonal with the same diagonal value σ2 generated at each cluster
randomly between 0.5 and 1.5, and all centroid components independently
generated from the Gaussian distribution with zero mean and unity variance.
Cluster cardinalities are generated uniformly random, with a constraint that
each generated cluster has to have at least 20 entities.

We standardize all datasets by subtracting the feature average from all its
values, and dividing the result by half the feature’s range. The standardization
of categorical features follows a process described by Mirkin [12] to allow us
to remain within the original K-Means framework. In this, each category is
represented by a new binary feature, by assigning 1 to each entity which falls in
the category and zero, otherwise. We then standardize these binary features by
subtracting their grand mean, that is, the category’s frequency. By adopting
this method the centroids are represented by the proportions and conditional
proportions rather than modal values.

Since all class pre-specified labels are known to us, we are able to map the
clusters generated by iMWK-Means using a confusion matrix. We calculate the
accuracy as the proportion of entities correctly clustered by each algorithm.

4.1 Results for the semi-supervised settings

Table 1 presents the results of our experiments for the semi-supervised setting
at the real-world data. Different proportions of the labelled data are assumed
to be known: q = 5 , 10, 15, 20 and 25 percent. For the purposes of comparison,
the table also contains the results of a fully supervised experiment at which
q = 100% - the maximum accuracy. We have obtained these by running iMWK-
Means for every p from the range of 1 to 5 in steps of 0.1 and checking which one
had the highest accuracy using all the class labels at each dataset. The results
using the semi-supervised selection of p show that at q = 5% and q = 10% an
increase of 5% in the size of the learning data amounts to an increase of about
1% in the accuracy, with the accuracy reaching, at q = 15%, to about 1-2%
within the maximum. Further increases of q to 20% and 25% bring almost no
increase in the accuracy, except for the case of the noisy Hepatitis data.
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The results of our experiments using the semi-supervised algorithm on the
synthetic datasets, shown in Table 2, present the same pattern as in Table
1. An increase of 5% in the learning data produces an increase of around 1%
in the final accuracy of the algorithm till q = 15%. In these, even with only
5% of the data having been labelled, the algorithm still can reach accuracy of
within 1-2% of the maximum possible. Moreover, the exponent values stabilize
from the very beginning at q = 5%. This is an improvement over the real-
world datasets, probably, because of a more regular structure of the synthetic
datasets.

4.2 Results at the unsupervised setting

In this set of experiments there is no learning stage. Because of this we found
it reasonable to take p in the interval from 1.1 to 5 rather than 1 to 5, still in
steps of 0.1. At p = 1 iMWK-Means selects a single feature from the dataset
[3] putting a weight of zero in all others. In our view, there are only a few
scenarios in which the optimal p would be 1 and these would be very hard to
find without learning data.

Table 3 presents the results of our experiments with the silhouette width
for five dissimilarity measures; three Euclidean: squared distance, cosine, cor-
relation, and two Minkowski’s: distance and cosine. When using the latter two,
the exponent p is the same as the one used in the iMWK-Means clustering.

For the sake of comparison, the Table 3 also presents the maximum ac-
curacy for each dataset. The table shows that it is indeed possible to select
a good p without having labels for a given dataset. For example, silhouette
width based on Minkowski distance works well on Iris and Heart, based on Eu-
clidean squared distance, on Wine, Pima, and Heart, and MCI works well on
Hepatitis. Overall, the best performance has shown the Minkowski clustering
index MCI as it has the best worst case scenario among all the indexes under
consideration. Its highest difference between its accuracy and the maximum
possible is equal to -12.24% (on Pima), whereas the other indexes lead to the
highest difference between 24% to 38.71%. Yet none of the indexes is reliable
enough to be used with no reservations. Taking into account the fact that dif-
ferent indexes lead to different solutions, one may suggest using a consensus
rule.

Specifically, let us take the MCI index and two silhouette width indexes,
that based on the Euclidean squared distance (SWE) and that based on
Minkowski distance (SWM), and, when they are in disagreement, use the value
of p that is the average of those two that are in agreement (see Table 5).When
iMWK-Means is unable to find the required number of clusters using the p
agreed between two indexes, as with the Hepatitis + 20 at p = 1.3, we use the
p from the remaining index in our experiments The results of experiments in
the unsupervised setting at the synthetic data sets are presented in Table 5. At
the synthetic datasets we can observe a different pattern. The Minkowski clus-
tering index is no longer the most promising algorithm to select p. In these the
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Table 1 Results of semi- and fully- supervised experiments with the real-world datasets
and their noisy versions. The accuracy and exponent shown are the averages and, after slash,
standard deviations, over R=50 runs.

Semi-supervised at different q Supervised
5% 10% 15% 20% 25% 100%

Acc p Acc p Acc p Acc p Acc p Acc p
Iris 93.09/6.07 1.14/0.53 94.60/1.96 1.07/0.09 95.15/1.94 1.23/0.62 95.63/1.69 1.10/0.08 95.60/1.75 1.16/0.44 96.67 1.1
Iris+2 93.55/2.19 1.150.52 94.28/1.94 1.05/0.07 94.95/1.97 1.13/0.28 95.12/1.93 1.14/0.28 95.81/1.53 1.10/0.06 96.67 1.1
Iris+4 93.39/3.89 1.20/0.73 94.53/1.59 1.07/0.06 94.76/1.46 1.10/0.09 94.36/1.79 1.14/0.37 95.19/1.21 1.13/0.11 96.00 1.1
Wine 87.64/6.30 1.48/0.84 90.87/3.85 1.60/0.87 91.88/2.28 1.88/1.06 92.53/1.04 1.98/1.04 92.45/1.09 2.13/1.19 93.82 1.6
Wine+7 89.22/4.51 1.13/0.22 91.43/1.76 1.32/0.45 91.81/1.77 1.44/0.50 92.33/1.80 1.61/0.56 92.85/1.46 1.55/0.48 94.38 2.2
Wine+13 90.18/7.40 1.21/0.53 92.74/2.09 1.09/0.08 93.24/1.73 1.13/0.10 93.44/1.61 1.13/0.10 93.63/1.44 1.13/0.09 94.38 1.1
Hepatitis 65.12/8.78 1.69/0.75 71.63/5.75 2.26/0.43 72.65/3.56 2.44/0.73 73.37/2.70 2.27/0.39 73.32/2.17 2.61/0.91 74.84 2.1
Hepatitis+10 69.16/9.13 2.31/1.52 75.33/7.78 2.86/1.51 76.59/7.74 3.46/1.24 78.82/5.28 3.76/1.07 80.10/4.09 3.90/1.04 82.58 4.3
Hepatitis+20 74.85/9.14 2.2/1.24 80.94/3.67 2.81/1.13 81.44/4.29 2.80/1.08 82.70/3.65 2.85/0.93 83.25/3.17 2.99/0.80 85.81 3.1
Pima 64.09/4.60 3.2/1.29 66.25/3.07 3.74/1.11 67.67/2.33 4.28/0.89 67.97/1.99 4.38/0.80 68.09/1.73 4.48/0.57 69.14 4.9
Pima+4 65.86/1.44 2.51/1.14 66.42/1.43 2.34/0.94 66.47/1.13 2.61/1.14 66.51/1.09 2.64/1.07 66.70/0.97 2.45/0.92 67.71 1.8
Pima+8 66.51/2.90 2.28/0.95 67.05/2.62 1.96/0.66 68.06/1.39 2.11/0.72 68.84/1.16 1.92/0.63 68.74/1.14 1.93/0.41 69.66 1.8
Austral CC 83.81/3.36 1.66/0.62 84.71/1.20 1.60/0.50 84.76/1.14 1.59/0.50 85.19/0.67 1.38/0.39 85.07/1.06 1.41/0.42 85.51 1.2
Heart 80.00/5.09 2.27/0.72 82.11/2.94 2.45/0.51 82.46/2.58 2.52/0.43 82.29/2.71 2.52/0.44 82.61/2.43 2.51/0.43 83.70 2.7

Table 2 Semi-supervised setting experiments with synthetic datasets. The accuracy and
exponent shown are the averages, accompanied by the standard deviations, over 50 runs for
each of 10 Gaussian Model generated datasets.

Semi-supervised at different q MIC
5% 10% 15% 20% 25% 100%

Acc p Acc p Acc p Acc p Acc p Acc p
1000x8-5 80.45/5.34 3.79/0.63 81.76/4.45 3.81/0.59 82.40/3.91 3.81/0.64 82.57/3.80 3.86/0.65 82.75/3.67 3.82/0.63 82.94 3.83
1000x15-7 92.60/7.11 2.37/0.66 94.21/5.41 2.44/5.93 94.56/4.98 2.40/0.49 94.61/5.07 2.42/0.48 94.69/4.96 2.44/0.48 94.88 2.45
1000x60-7 99.19/3.09 1.56/0.41 99.89/0.89 1.51/0.33 99.87/1.43 1.48/0.22 100.0/0.00 1.47/0.19 100.0/0.00 1.47/0.19 100.0 1.48

Table 3 The values of Minkowski exponent p and the accuracy obtained at the maximum
of the silhouette width and minimum of MCI at the unsupervised experiments with the
real-world datasets and their noisy versions; the maximum achievable accuracies are in the
column on the left.

Max Silhouette width MIC
Sq. Euclid. Cos Corr. Mink Cosp

Acc p Acc p Acc p Acc p Acc p Acc p Acc p
Iris 96.67 1.1 93.33 3.7 90.67 5.0 94.00 3.4 96.00 1.3 90.67 2.3 96.67 1.1
Iris+2 96.67 1.1 84.00 4.4 87.33 3.7 90.00 1.8 96.67 1.1 90.00 1.8 96.67 1.1
Iris+4 96.00 1.1 72.00 4.7 72.00 4.7 72.00 4.7 96.00 1.1 93.33 1.9 95.33 1.4
Wine 93.82 1.6 93.82 1.6 93.82 1.6 92.13 2.2 92.70 1.4 92.13 2.2 90.45 1.2
Wine+7 94.38 2.2 93.26 2.0 91.57 1.9 90.45 2.5 92.70 1.3 92.13 2.3 89.89 1.2
Wine+13 94.38 1.1 93.82 1.3 93.26 1.6 89.89 2.2 94.38 1.1 92.13 1.9 93.82 1.3
Hepatitis 74.84 2.1 70.32 2.2 70.97 4.8 70.97 4.8 47.10 1.1 47.10 2.9 74.19 2.4
Hepatitis+10 82.58 4.3 81.94 5.0 63.23 3.6 63.23 3.6 76.13 1.4 62.58 1.8 52.9 1.9
Hepatitis+20 85.81 3.1 80.65 5.0 75.48 4.2 75.48 4.2 74.84 1.1 47.10 2.7 79.35 1.5
Pima 69.14 4.9 67.58 4.3 65.49 2.8 60.81 3.6 67.58 4.3 65.76 2.3 57.55 1.4
Pima+4 67.71 1.8 64.06 4.5 66.28 2.8 64.45 2.0 66.02 1.9 66.02 1.9 60.94 1.4
Pima+8 69.66 1.8 63.93 4.8 65.76 1.9 65.76 1.9 65.76 1.9 65.10 4.5 68.49 1.5
Aust CC 85.51 1.2 85.51 1.2 85.55 1.2 85.55 1.2 85.51 1.2 73.33 3.8 78.84 2.4
Heart 83.70 2.7 83.33 2.6 83.33 2.6 83.33 2.6 75.19 1.1 83.33 2.6 75.19 1.9
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cosine and correlation are those recovering the adequate ps and, thus, having
considerably better results.

5 Conclusion

The use of weights in K-Means clustering has shown good results [11,6,9,10,
8], in particular when utilizing the Minkowski distance metric [3,2]. Its version
oriented at determining the number of clusters and the initial centroids, the
intelligent Minkowski Weighted K-Means showed considerably better accuracy
results, at an appropriate Minkowski exponent p, than a number of other
algorithms [3]. However, finding an appropriate p remained an open issue.
This paper presents a study regarding the amount of labelled data necessary
for a good recovery of p under a semi-supervised approach, as well as an
unsupervised method based on indexes of correspondence between the found
partition and the dataset structure.

We have found that in most datasets it is possible to recover a good p
with as low as 5% of the data being labelled, and that reasonable results can
be obtained by using individual indexes over the clustering, the Minkowski
clustering index or silhouette width indexes, or a combined “consensus” rule.
It is quite likely that these findings can be relevant for the Minkowski partition
around medoids algorithm [1].

However, the iMWK-Means algorithm may have difficulties finding appro-
priate weights for datasets containing informative but redundant features. In
this case the algorithm sets the weights of all such features to high values
instead of removing some features by setting some weights to zero. This is an
issue that we intend to address in future research.
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Table 4 The values of Minkowski exponent p and the accuracy obtained at different rules
defined above.

Max Sq. Euclid. Mink MCI Consensus
Acc p Acc p Acc p Acc p p Acc

Iris 96.67 1.1 93.33 3.7 96.00 1.3 96.67 1.1 1.20 96.00
Iris+2 96.67 1.1 84.00 4.4 96.67 1.1 96.67 1.1 1.10 96.67
Iris+4 96.00 1.1 72.00 4.7 96.00 1.1 95.33 1.4 1.25 94.67
Wine 93.82 1.6 93.82 1.6 92.70 1.4 90.45 1.2 1.30 92.13
Wine+7 94.38 2.2 93.26 2.0 92.70 1.3 89.89 1.2 1.25 89.33
Wine+13 94.38 1.1 93.82 1.3 94.38 1.1 93.82 1.3 1.30 93.83
Hepatitis 74.84 2.1 70.32 2.2 47.10 1.1 74.19 2.4 2.30 60.00
Hepatitis+10 82.58 4.3 81.94 5.0 76.13 1.4 52.90 1.9 1.65 70.97
Hepatitis+20 85.81 3.1 80.65 5.0 74.84 1.1 79.35 1.5 5.00 80.65
Pima 69.14 4.9 67.58 4.3 67.58 4.3 57.55 1.4 4.30 67.58
Pima+4 67.71 1.8 64.06 4.5 66.02 1.9 60.94 1.4 1.65 66.41
Pima+8 69.66 1.8 63.93 4.8 65.76 1.9 68.49 1.5 1.70 69.53
Aust CC 85.51 1.2 85.51 1.2 85.51 1.2 78.84 2.4 1.20 85.51
Heart 83.70 2.7 83.33 2.6 75.19 1.1 75.19 1.9 1.50 75.19

Table 5 Results of searching for the best p at the unsupervised setting. The accuracy and
exponent values are the averages and standard deviations over each of the 10 GMs.

Max Silhouette width MIC
Sq. Euclid. Cos Corr. Mink Cosp

Acc p Acc p Acc p Acc p Acc p Acc p Acc p
1000x8-5 82.94 3.83 81.79/4.20 3.80/0.73 81.81/4.18 3.81/0.73 81.65/4.16 3.58/0.60 81.80/4.19 3.82/0.73 69.59/13.44 2.47/0.67 71.70/10.41 5.0/0.00
1000x15-7 94.88 2.45 92.28/8.77 2.63/0.60 93.47/7.42 2.46/0.37 93.47/7.42 2.46/0.37 92.00/8.91 2.91/0.86 93.22/8.38 2.16/0.15 76.49/7.98 4.99/0.03
1000x60-7 100.0 1.48 99.83/0.54 1.80/1.10 100.0/0.00 1.48/0.20 100.0/0.00 1.48/0.20 99.84/0.51 2.08/0.37 98.58/2.93 2.65/0.72 90.50/8.30 5.0/0.00


