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A hypercomplex manifold is a manifold equipped with a triple of complex structures sat-

isfying the quaternionic relations. A holomorphic Lagrangian variety on a hypercomplex

manifold with trivial canonical bundle is a holomorphic subvariety which is calibrated

by a form associated with the holomorphic volume form; this notion is a generalization

of the usual holomorphic Lagrangian subvarieties known in hyperKähler geometry. An

HKT (hyperKähler with torsion) metric on a hypercomplex manifold is a metric deter-

mined by a local potential, in a similar way to the Kähler metric. We prove that a base

of a holomorphic Lagrangian fibration is always Kähler, if its total space is HKT. This is

used to construct new examples of hypercomplex manifolds which do not admit an HKT

structure.

1 Introduction

1.1 HKT metrics and SL(n, H)-structures

Let I, J, and K be complex structures on a manifold M satisfying the quaternionic

relation I ◦ J = −J ◦ I = K. Then (M, I, J, K) is called a hypercomplex manifold. Hyper-

complex manifolds are quaternionic analogs of complex manifolds, in the same way

as hyperKähler manifolds are quaternionic analogs of Kähler manifolds. However, the
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2 A. Soldatenkov and M. Verbitsky

theory of hypercomplex manifolds is much richer in examples and (unlike that of

hyperKähler manifolds) still not well understood.

For more details on hypercomplex and hyperKähler structures, please see

Section 2.1.

The term hypercomplex is due to Boyer [4], who classified compact hypercom-

plex manifolds in dimH = 1. These are: K3 surfaces, compact 2D complex tori, and Hopf

surfaces. However, in dimension > 1 there is no classification apparent.

The notion of hypercomplex structure was considered as early as in 1955 by

Obata [18], who proved existence and uniqueness of a torsion-free connection preserv-

ing a hypercomplex structure. However, the first nontrivial examples were obtained only

in 1988 by physicists Spindel et al. [22], and the intensive study of hypercomplex struc-

tures began with the paper by Joyce [15], who classified hypercomplex structures on

homogeneous spaces, and constructed one on each compact Lie group multiplied by a

compact torus of appropriate dimension.

The main geometric tool allowing one to work with the hypercomplex manifolds

is a notion of an HKT metric, due to physicists Howe and Papadopoulos [14]. For a

definition and a discussion of HKT structure see Section 2.1. HKT structures were much

used in physics since mid-1990s [7, 10, 11], and then mathematicians also started using

HKT structures to study the hypercomplex manifolds.

In [25], the second-named author developed Hodge theory for HKT manifolds,

and it turned out to be quite useful. To illustrate the usability of HKT metrics, let us

quote the following result, obtained in [26]. Let (M, I, J, K) be a hypercomplex manifold

with (M, I ) a complex manifold of Kähler type. Then (M, I ) is in fact hyperKähler (i.e.,

admits a hyperKähler structure). The idea of the proof is that any Kähler metric on (M, I )

gives an HKT metric on (M, I, J, K), and this metric can be used to apply Hodge theory.

The interplay between Kähler geometry and HKT geometry is quite extensive, and can

be used to study the geometry of hypercomplex manifolds extensively.

In the present paper, we obtain a result in a similar vein, constructing a Kähler

metric on a base of holomorphic Lagrangian fibration on an HKT manifold.

Of course, the notion of “holomorphic Lagrangian fibration” is itself highly non-

trivial, because an HKT manifold is not necessarily holomorphically symplectic. It

was developed in [9], using the theory of calibrations and the holonomy of the Obata

connection.

The Obata connection is an immensely powerful tool, known since 1950s [18], but

even the most primitive invariants of Obata connection, such as its holonomy, are hard

to compute, and still unknown in most cases. When (M, I, J, K) admits a hyperKähler
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Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds 3

metric, Obata connection is equal to the Levi-Civita connection of the hyperKähler met-

ric and its holonomy is Sp(n). The converse is also true: whenever holonomy of a torsion-

free connection is Sp(n), it is a Levi-Civita connection of a hyperKähler manifold.

In a general situation, it is hard to say anything definite about the holonomy

Hol(∇) of the Obata connection. It is clear that Hol(∇) ⊂ GL(H, n), but the equality is

rarely realized. In fact, before the publication of the paper [20] in 2011, there was no sin-

gle example of a hypercomplex manifold with Hol(∇) = GL(H, n). In [20], the first-named

author provided an example of such a manifold, by proving that Hol(∇) = GL(H, 2) for

the homogeneous hypercomplex structure on SU(3), constructed by Joyce [15].

However, there are many examples of hypercomplex manifolds with Hol(∇)

� GL(H, n). Two biggest known families of hypercomplex manifolds are the Joyce’s

homogeneous manifolds from [15] and hypercomplex nilmanifolds [1]. As shown in [2],

for all nilmanifolds, the holonomy of the Obata connection lies in

SL(H, n) = [GL(H, n), GL(H, n)] ⊂ GL(H, n).

A hypercomplex manifold with holonomy in SL(n, H) is called an SL(n, H)-manifold.

Such manifold might have holonomy group which is strictly less than SL(n, H); in fact,

no example of a manifold with Hol(∇) = SL(H, n) is known so far.

For any SL(n, H)-manifold, the Obata connection on the canonical bundle

K(M, I ) = Λ2n,0(M, I ) of (M, I ) preserves a nontrivial section. This implies that K(M, I )

is holomorphically trivial (see [28]). In the presence of an HKT metric, the converse is

also true: any compact hypercomplex manifold with holomorphically trivial canonical

bundle K(M, I ) and an HKT metric satisfies Hol(∇) ⊂ SL(H, n). This result is obtained in

[28] using the Hodge theory for HKT manifolds developed in [25].

The Hodge-theoretic constructions of [25] work for SL(n, H)-manifolds with HKT-

structure especially well. For such manifolds, one obtains Hodge-type decomposition on

the holomorphic cohomology bundle H∗(O(M,I )).

1.2 Calibrations on manifolds and Lagrangian fibrations

Let M be a Riemannian manifold. A calibration on M is a closed k-form η, such that

η(x1, . . . , xk) ≤ 1 for each orthonormal k-tuple x1, . . . , xk ∈ T M. A k-dimensional oriented

subspace V ⊂ TxM is called calibrated if the Riemannian volume of V is equal to η |v ,

and a subvariety Z ⊂ M of dimension k is called calibrated if its singularities are of

Hausdorff codimension ≥ 1, and all smooth tangent planes TzZ ⊂ TzM are calibrated.
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4 A. Soldatenkov and M. Verbitsky

The theory of calibrations has a long and distinguished history, starting from the

work of Harvey and Lawson [12]. In [9], several families of calibrations were constructed

on hyperKähler manifolds, using the quaternionic linear algebra. Let (M, I, J, K) be a

hyperKähler manifold, and ωI , ωJ, and ωK its Kähler forms. These forms generate an

interesting commutative subalgebra in Λ∗(M) (see [9, 24] for structure results about this

algebra). Grantcharov and Verbitsky [9] discovered several new calibrations which are

expressed as polynomials of ωI , ωJ, and ωK . One of these calibrations, denoted as Ψ in

the sequel (see (2.2)), is called holomorphic Lagrangian calibration. On a hyperKähler

manifold, it calibrates holomorphic Lagrangian subvarieties in (M, I ).

It is surprising (and quite wonderful) that this form remains closed, even when

the metric is not hyperKähler, provided that the holonomy of the Obata connection

of (M, I, J, K) belongs to SL(n, H). The hyperKähler condition can be weakened dras-

tically: it suffices to assume that the metric g is quaternionic Hermitian, and the Obata-

parallel section of K(M, I ) has constant length with respect to g. In this case Ψ is

closed. If rescaled properly, this form is a calibration, calibrating a new class of com-

plex subvarieties of (M, I ) called holomorphic Lagrangian (see [9] and Definition 3.1 for

more details).

In [21], it was shown that holomorphic Lagrangian subvarieties of SL(n, H)-

manifolds exist only in a countable number of complex structure of the form

L = aI + bJ + cK (such complex structures are called induced by a hypercomplex struc-

ture, see Section 2.1). In the present paper, we study holomorphic Lagrangian fibrations

on hypercomplex manifolds. Such fibrations are often present in examples ([9]; see

also Section 3.2).

The holomorphic Lagrangian fibrations are of significant interest for mathemati-

cians and physicists; for an early survey of the subject, please see the paper [19], and for

applications, see e.g. [16]. The non-Kähler version of this geometry defined above should

be even more useful, because the number of examples is much greater.

In the present paper, we consider HKT metrics on SL(n, H)-manifolds admitting

holomorphic Lagrangian fibrations. We prove that a base of such fibration is always

Kähler, if the fibration is smooth (3.4). This allows us to construct new examples of

hypercomplex manifolds admitting no HKT metrics.

Originally, it was conjectured that any compact hypercomplex manifold admits

an HKT metric. Examples of hypercomplex nilmanifolds not admitting HKT metrics

were constructed by Fino and Grantcharov [6]. Since then, hypercomplex nilmanifolds

admitting HKT metrics were classified completely in [2]. It was found that in fact most

of hypercomplex nilmanifolds are not HKT. However, the hypercomplex manifolds not
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Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds 5

admitting an HKT metrics are still rare. Another example of a non-HKT manifold is given

by Swann in [23, Theorem 5.8], using twisted torus bundle over a K3 surface.

2 Preliminaries

2.1 Hypercomplex manifolds and quaternionic Dolbeault complex

A C ∞-manifold M is called hypercomplex if M is equipped with complex structures I , J,

and K, that satisfy the quaternionic relations

I J = −J I = K.

It was shown in [18] that any hypercomplex manifold admits a unique torsion-

free connection that preserves I, J, and K. This connection is called the Obata connec-

tion. Note that the holonomy of the Obata connection is a subgroup of GL(n, H).

Any almost-complex structure which is preserved by a torsion-free connec-

tion is integrable (this follows from Newlander–Nirenberg theorem). Therefore, for any

a, b, c ∈ R with a2 + b2 + c2 = 1, the almost-complex structure L = aI + bJ + cK is inte-

grable. We denote by (M, L) the corresponding complex manifold. Such complex struc-

tures are called induced by quaternions.

Let (M, I, J, K) be a hypercomplex manifold of real dimension 4n. The hypercom-

plex structure induces the action of SU(2) on all tensor bundles over M. Recall that any

irreducible complex representation of SU(2) is of the form SkU , where U is the standard

2D representation and Sk denotes the symmetric power. We will refer to any representa-

tion of the form (Sk(U ))⊕m (for arbitrary m) as a weight k representation of SU(2).

We make the following observation about the weight decomposition of the exte-

rior algebra Λ∗
C

M = Λ∗M ⊗R C. First, note that Λ1
C

M is an SU(2) representation of weight

one. It follows from the Clebsch–Gordan formula that Λk
C

M is a sum of representations

of weight ≤ k. By duality, the same is true about Λ4n−k
C

M. Denote by Λk
+M the max-

imal subrepresentation of weight k for k≤ 2n and of weight 4n− k for k> 2n inside

Λk
C

M. Denote by Π+ : Λ∗M → Λ∗
+M the equivariant projection onto the component of

maximal weight.

Note that the Hodge decomposition with respect to an arbitrary complex

structure (we can pick I without loss of generality) is compatible with the weight

decomposition:

Λk
+M =

⊕
p+q=k

Λ
p,q
I,+M,
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6 A. Soldatenkov and M. Verbitsky

where Λ
p,q
I,+M = Λ

p,q
I M ∩ Λk

+M. This is actually a weight decomposition of an SU(2)-

representation for a special choice of Cartan subalgebra corresponding to I . Therefore,

Λk
+M is generated by Λ

k,0
I,+M = Λ

k,0
I M as an SU(2)-module. It follows that the summands

Λ
p,q
I,+M are of the same dimension and actually isomorphic to Λ

p+q,0
I M. We will denote

these isomorphisms by

Rp,q : Λ
p+q,0
I M→̃Λ

p,q
I,+M,

see [27] and formula (2.3) below.

Given a hyperhermitian metric g on M, we can consider the corresponding Kähler

forms ωI , ωJ, and ωK . It is easy to check that the form

ΩI = ωJ + √−1ωK

lies in Λ
2,0
I M. If dΩI = 0, then the manifold M is called hyperKähler. This condition

implies that g is Kähler with respect to any induced complex structure. If ΩI satisfies a

strictly weaker condition ∂ΩI = 0, then M is called an HKT manifold, and g is called an

HKT metric (HKT stands for HKT; see [8] for a general introduction to HKT geometry).

We can reformulate the HKT condition as follows. Denote by d+ : Λk
+M → Λk+1

+ M

the composition Π+ ◦ d of the de Rham differential and the projection onto the compo-

nent of maximal weight. Note that ωI ∈ Λ
1,1
I,+M. Then by [25, Theorem 5.7], the condition

∂ΩI = 0 is equivalent to

d+ωI = 0. (2.1)

That is, for a HKT metric g the exterior differential of its Kähler form dωI has weight

one. This observation will be important for the proof of the main theorem.

2.2 SL(n, H)-manifolds and holomorphic Lagrangian calibration

As was mentioned above, the holonomy of the Obata connection on a hypercomplex man-

ifold is a subgroup of GL(n, H). Recall that this group can be defined as follows. Consider

a vector space V of real dimension 4n with a quaternionic structure I, J, and K. Then

GL(n, H) consists of those linear transformations of V that commute with I , J, and K.

Consider the Hodge decomposition VC = V ⊗ C = V1,0
I ⊕ V0,1

I . The action of GL(n, H) pre-

serves this decomposition, hence it induces an action on all exterior powers of V1,0
I .

Denote by SL(n, H) the subgroup of GL(n, H) consisting of those elements that act iden-

tically on V2n,0
I .
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Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds 7

Consider a hypercomplex manifold (M, I, J, K). If the holonomy of the Obata con-

nection is contained in SL(n, H), then we call M an SL(n, H)-manifold. It follows almost

immediately from the definition (see [28, Claim 1.1]), that on an SL(n, H)-manifold the

canonical bundle Λ
2n,0
I M is flat with respect to the Obata connection. It also follows [28,

Claim 1.2], that any parallel section of Λ
2n,0
I M is holomorphic. Moreover, if the mani-

fold (M, I, J, K) is HKT and compact, the condition Hol(M) ⊂ SL(n, H) is equivalent to

holomorphic triviality of the canonical bundle [28, Theorem 2.3].

Denote by ΦI ∈ Λ
2n,0
I M a parallel section which we call a holomorphic volume

form. Note that the operator J defines a real structure (that is, a complex-antilinear

involution) on Λ
2n,0
I M by η �→ Jη. We can always assume that ΦI is real with respect to

this structure.

Given an SL(n, H)-manifold M with a hyperhermitian metric g, denote by ΦI the

holomorphic volume form and by ΩI = ωJ + √−1ωK the (2, 0)-form associated with the

metric. In [9], a number of calibrations (in the sense of [12]) on SL(n, H)-manifolds were

constructed. In particular, it was shown that the form

Ψ = (−√−1)nRn,n(ΦI ) ∈ Λ
n,n
I,+M (2.2)

is a calibration with respect to a properly rescaled metric. It was shown that this form

calibrates ΩI -Lagrangian subvarieties of M. Recall, that a complex (with respect to the

complex structure I ) subvariety N ⊂ M of complex dimension n is called ΩI -Lagrangian

if the restriction of ΩI to the smooth part of N vanishes. This condition is equiva-

lent to the following: TxN is orthogonal to J(TxN) with respect to the metric g at any

smooth point x ∈ N. To see this, observe that for any vector fields X, Y ∈ T1,0
I M, we have

ΩI (X, Y) = 2 g(J X, Y).

We will not need the construction from [9] in its full generality, but only some

basic properties of the form Ψ . For the convenience of the reader, we will formulate these

properties in the following lemma and give a short proof, independent of [9].

Lemma 2.1. Let (M, I, J, K) be an SL(n, H)-manifold of real dimension 4n, ΦI ∈ Λ
2n,0
I M a

holomorphic volume form and Ψ = (−√−1)nRn,n(ΦI ) ∈ Λ
n,n
I,+M. Let N ⊂ M be an I -complex

subvariety, dimC N = n, with TxN ∩ J(TxN) = 0 at all smooth points x ∈ N. Then:

(1) dΨ = 0,

(2) Ψ |N is a strictly positive volume form on the smooth part of N. �
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8 A. Soldatenkov and M. Verbitsky

Proof. (1) As was mentioned above (see also formula (2.3)), the operator Rn,n is induced

by the SU(2)-action on the exterior algebra of M. Since the Obata connection ∇ preserves

the hypercomplex structure, it commutes with the SU(2)-action and with the operator

Rn,n. It was explained above that ∇ΦI = 0, thus ∇Ψ = 0 also. The Obata connection is

torsion-free, hence ∇Ψ = 0 implies dΨ = 0.

(2) Let x ∈ N be a smooth point. By the assumptions of the lemma, we can choose

a basis e1, . . . , en of T1,0
I,x N, such that e1, . . . , en, Jē1, . . . , Jēn will form a basis of T1,0

I,x M.

To show that Ψ |N is strictly positive, we have to evaluate the form Ψ on the polyvector

ξ = (−√−1)ne1 ∧ ē1 ∧ · · · ∧ en ∧ ēn ∈ Λ
n,n
I (TxM).

We will use the following explicit description of the operator Rn,n. Consider the

operators: H= −√−1I , X = 1
2 (

√−1K − J) and Y = 1
2 (

√−1K + J) acting on Λ1
C

M. It is

straightforward to check that these operators satisfy the standard sl2(C) commutator

relations: [X ,Y] =H, [H,X ] = 2X , [H,Y] = −2Y. Also observe that

H|Λ1,0
I M = 1, X |Λ1,0

I M = 0, Y|Λ1,0
I M = J,

H|Λ0,1
I M = −1, X |Λ0,1

I M = −J, Y|Λ0,1
I M = 0.

We can extend H, X , and Y as derivations to the whole exterior algebra. Then

we have

Rn,n =Yn (2.3)

and

〈Ψ, ξ 〉 = (−√−1)n〈YnΦI , ξ 〉 = (
√−1)n〈ΦI ,Ynξ 〉.

Observe, that Y|T1,0
I M = 0, Y|T0,1

I M = J, and since Y acts as a derivation, we have

Ynξ = n!(−√−1)ne1 ∧ Jē1 ∧ · · · ∧ en ∧ Jēn.

The volume form is given by ΦI = ae∗
1 ∧ Jē∗

1 ∧ · · · ∧ e∗
n ∧ Jē∗

n for some positive real number

a, and we see that 〈Ψ, ξ 〉 > 0. �

3 Holomorphic Lagrangian Fibrations on SL(n, H)-Manifolds

3.1 HKT structures and Lagrangian fibrations

Definition 3.1. A holomorphic Lagrangian subvariety of an SL(n, H)-manifold is a sub-

variety calibrated by the form Ψ of Lemma 2.1. �

 by guest on N
ovem

ber 29, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/
http://imrn.oxfordjournals.org/


Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds 9

Definition 3.2. Let M be an SL(n, H)-manifold, and φ : (M, I ) → X a smooth holomorphic

fibration. It is called a holomorphic Lagrangian fibration if all its fibers are holomorphic

Lagrangian subvarieties. We will say that the fibration φ : (M, I ) → X is smooth if φ is a

submersion (hence all the fibers are smooth). �

Remark 3.3. Suppose that we are given an arbitrary holomorphic fibration φ : (M, I ) →
X with M compact and dimC X = 1

2 dimC M. Denote by Fx the fiber of φ over x ∈ X. Con-

sider the set U = {x ∈ X : J(T Fx) ∩ T Fx = 0}. It is clear that U is open and all the fibers

over U can be made Lagrangian with respect to some hyperhermitian metric. Namely, the

condition J(T Fx) ∩ T Fx = 0 implies that each fiber of the vector bundle J(T Fx) projects

onto TxX by φ, so that we can lift any Hermitian metric from U to J(T Fx). Then we can

uniquely extend it to a hyperhermitian metric on φ−1(U ) with J(T Fx) orthogonal to T Fx.

This means that the set of Lagrangian fibers of φ is open in M. �

The main result of this paper is the following theorem.

Theorem 3.4. Let M be a compact SL(n, H)-manifold, and φ : (M, I ) → X a smooth holo-

morphic Lagrangian fibration. Assume that M admits an HKT-structure. Then X is

Kähler. �

Proof. Let ωI ∈ Λ
1,1
I M be a Kähler form, and Ψ the holomorphic Lagrangian calibration

defined by (2.2). Consider the form

Θ = Ψ ∧ ωI ∈ Λ
n+1,n+1
I M.

By Lemma 2.1, Ψ is closed, so we have dΘ = Ψ ∧ dωI ∈ Λ2n+3M. It follows from (2.1) that

dωI has weight one, hence Clebsch–Gordan formula implies that dΘ is a sum of weight

2n+ 1 and weight 2n− 1 components. But the weight decomposition of Λ2n+3M has com-

ponents only up to weight 2n− 3, so dΘ has to vanish.

We will obtain a Kähler metric on X as a push-forward π∗Θ, which is a (1, 1)-

current on X. We have to show that this current is strictly positive and smooth.

Consider any Hermitian metric on X and denote by η the corresponding (1, 1)-

form. It is always possible to rescale η so that it satisfies the condition π∗η ≤ ωI . In

this case, we have Θ = Ψ ∧ ωI ≥ Ψ ∧ π∗η. The inequality is preserved under taking push-

forwards, so we have π∗Θ ≥ π∗(Ψ ∧ π∗η).
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10 A. Soldatenkov and M. Verbitsky

For any test-form α ∈ Λ
n−1,n−1
I X, we have by definition

∫
X

π∗(Ψ ∧ π∗η) ∧ α =
∫

M
Ψ ∧ π∗η ∧ π∗α

=
∫

M
Ψ ∧ π∗(η ∧ α) =

∫
X

π∗Ψ ∧ η ∧ α.

Thus, we have the inequality π∗Θ ≥ π∗(Ψ ) ∧ η where π∗(Ψ ) is a closed 0-current

on X, that is a constant. To see that this constant is positive, take α = ηn−1 and observe

that Ψ ∧ π∗(ηn) is a smooth positive form of top degree on M. It suffices to check that

this form is nonzero at some point of M. Pick any noncritical point x of π and decompose

the tangent space TxM = V0 ⊕ V1, where V0 is tangent to the fiber and V1 is any comple-

mentary subspace. Since π∗ηn|V0 = 0 and π∗ηn|V1 is a volume form on V1, we should check

that Ψ |V0 is nonzero. But this follows from the second statement in Lemma 2.1, since the

fiber is Lagrangian.

It remains to check that π∗Θ is smooth. This follows from smoothness of the

fibration φ : (M, I ) → X. Since φ is a submersion, we can choose a splitting T M = V ⊕ H,

where V is a subbundle, tangent to the fibers of φ. Using this splitting, we can lift vector

field from X to M. Denote by Fx the fiber φ−1(x) over a point x ∈ X. Consider a (1, 1)-form

θ on X, which is given by

θ(ξ, η̄)x =
∫

Fx

(π∗ξ)� (π∗η̄)�Θ,

where ξ, η ∈ T1,0 X and π∗ξ , π∗η denote the lifts of these vector fields to H. Note, that

θ does not actually depend on the choice of H, since convolution of Θ with a vertical

vector field from V gives a differential form that restricts trivially to the fiber. The form

θ coincides with π∗Θ as a current, thanks to Fubini theorem. But it is clear from the

definition that θ is smooth. This completes the proof. �

Remark 3.5. Note that for a nonsmooth holomorphic Lagrangian fibration φ : (M, I ) →
X the above proof shows that π∗(Θ ∧ ωI ) is a Kähler current. Therefore, X is in Fujiki

class C, whenever M admits an HKT-structure (see [5]). �

3.2 Examples of Lagrangian fibrations

In this subsection, we construct a class of hypercomplex SL(n, H)-manifolds that do

not admit an HKT metric. The idea, which was also used in [17], is to consider a torus

fibration over an affine base.
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Holomorphic Lagrangian Fibrations on Hypercomplex Manifolds 11

Let (X, I ) be a complex manifold, dimC X = n. We call X an affine complex man-

ifold if there exists a torsion-free connection D : T X → T X ⊗ Λ1 X which is flat and pre-

serves the complex structure: DI = 0.

Fix a point x ∈ X and consider the holonomy group Holx(D) ⊂ GL(TxX). We call X

an affine manifold with integer monodromy if there exists a lattice Λx ⊂ TxX which is

preserved by holonomy: Holx(D)Λx = Λx. In this case, we can construct a subset Λ ⊂ T X

in the total space of the tangent bundle, obtained as parallel translation of Λx. For any

point y∈ X the intersection Λ ∩ TyX is a lattice in TyX.

Let M = T X/Λ, that is, a manifold obtained as a fiberwise quotient of T X. We

will introduce a pair of anticommuting complex structures on T X that will descend to

M. The connection D defines a splitting

T(T X) = V ⊕ H (3.1)

into a direct sum of the vertical subbundle V which is tangent to the fibers of the projec-

tion T X → X, and a horizontal complement H. Note that for any point (x, v) ∈ T X with

v ∈ TxX we have natural isomorphisms H(x,v) � TxX � V(x,v), thus we can identify the com-

ponents of the splitting (3.1). This also shows that the complex structure I acts natu-

rally on both H and V. With these observations in mind, define a pair of operators from

End(T(T M)):

I =
(

−I 0

0 I

)
, J =

(
0 Id

−Id 0

)
,

where the block-matrix form corresponds to the decomposition (3.1). It is clear that these

operators define a pair of anticommuting almost-complex structures. We need to check

that these structures are integrable. This can be done locally.

Using the fact that the connection D is flat and I is parallel, we can choose a par-

allel local frame in T X of the form e1, I e1, . . . en, I en. Since D is torsion-free, these vector

fields commute, hence they define a local coordinate system on X. Since the sections ei

and I ei are flat, they are tangent to the subbundle H. Therefore, they also define a local

coordinate system in the total space of T X in which the complex structures I and J act

as standard complex structures of Hn. Thus, they are integrable.

This construction gives a hypercomplex structure on the total space of T X.

Observe that this structure is invariant with respect to translations along the fiber.

This implies that the hypercomplex structure descends to M. We call the manifold M

constructed this way quaternionic double of an affine complex manifold X.
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12 A. Soldatenkov and M. Verbitsky

The hypercomplex structure on the quaternionic double M is locally modeled on

Hn by construction. Thus, the Obata connection on this manifold is flat (and it is actually

induced from the flat connection D on X). Since the connection D preserves the lattice in

the tangent bundle, it also preserves the holomorphic volume form. To see this, we can

again choose a local frame e1, I e1, . . . en, I en as above. We can assume that the elements

of this frame form a local basis for the lattice Λ preserved by D. Then the volume form

(e∗
1 − √−1I e∗

1) ∧ · · · ∧ (e∗
n − √−1I e∗

n) is well-defined globally and parallel with respect to

D, hence holomorphic. It follows that the Obata connection on M also preserves an I -

holomorphic volume form. We conclude that the manifold M is an SL(n, H)-manifold.

Theorem 3.6. Let M be a quaternionic double of an affine complex manifold X. If X is

not Kähler, then M does not admit an HKT metric. �

Proof. We can choose a Hermitian metric g on X. Then we can define a hyperhermitian

metric h= g ⊕ g on M, using the decomposition (3.1). With respect to this metric the

fibers of the projection M → X are Lagrangian, hence we can apply Theorem 3.4. �

We conclude this section by some examples of affine complex manifolds with

integer monodromy. We remark that the manifolds in the examples will be non-Kähler

(actually any complex affine manifold admitting a Kähler metric is a quotient of a torus,

as follows from the Calabi–Yau theorem and the Bieberbach’s solution of Hilbert’s 18th

problem; see e.g., [3]). Therefore, the corresponding quaternionic doubles possess no

HKT metrics.

Example 3.7. Let N be a 3D real Heisenberg group, that is the group of upper-triangular

unipotent 3 × 3 matrices with real elements. Consider the nilpotent Lie group G = N × R.

Then G is diffeomorphic to C2 and one can check (see [13, Example 2]) that the structure

of the Lie group on C2 can be explicitly given by

(w1, w2) · (z1, z2) = (w1 + z1, w2 − √−1w̄1z1 + z2).

It is clear from this formula, that left translations are holomorphic affine transforma-

tions of C2, so G has a left-invariant complex structure which is preserved by a flat

torsion-free connection. We can choose a lattice in C2, say Λ = Z[
√−1]2. Then the man-

ifold X = Λ\G (which is called a primary Kodaira surface) will be an affine complex

manifold with integer monodromy. �
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Example 3.8. Let G be a 3D complex Heisenberg group. It can be described (see [13]) as

C3 with multiplication given by

(w1, w2, w3) · (z1, z2, z3) = (w1 + z1, w2 + z2, w3 + z3 + w1z2).

We can choose a lattice in G, for example, Λ = Z[
√−1]3 and take a quotient X = Λ\G.

This is an affine complex manifold with integer monodromy (which is called an Iwasawa

manifold). �
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