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a b s t r a c t

In this paper a novel clustering algorithm is proposed as a version of the seeded region growing (SRG)
approach for the automatic recognition of coastal upwelling from sea surface temperature (SST) images.

The new algorithm, one seed expanding cluster (SEC), takes advantage of the concept of approximate
clustering due to Mirkin (1996, 2013) to derive a homogeneity criterion in the format of a product rather
than the conventional difference between a pixel value and the mean of values over the region of in-
terest. It involves a boundary-oriented pixel labeling so that the cluster growing is performed by ex-
panding its boundary iteratively. The starting point is a cluster consisting of just one seed, the pixel with
the coldest temperature. The baseline version of the SEC algorithm uses Otsu's thresholding method to
fine-tune the homogeneity threshold. Unfortunately, this method does not always lead to a satisfactory
solution. Therefore, we introduce a self-tuning version of the algorithm in which the homogeneity
threshold is locally derived from the approximation criterion over a window around the pixel under
consideration. The window serves as a boundary regularizer.

These two unsupervised versions of the algorithm have been applied to a set of 28 SST images of the
western coast of mainland Portugal, and compared against a supervised version fine-tuned by max-
imizing the F-measure with respect to manually labeled ground-truth maps. The areas built by the
unsupervised versions of the SEC algorithm are significantly coincident over the ground-truth regions in
the cases at which the upwelling areas consist of a single continuous fragment of the SST map.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The coastal ocean of Portugal is under the influence of northerly
winds which are favorable to the occurrence of upwelling during the
summer. This is a phenomenon that manifests at the surface by cold,
less salty and nutrient-rich waters over the whole shelf, and by fi-
laments of upwelled waters penetrating into the open ocean.
Therefore, coastal upwelling is a phenomenon of ocean dynamics
whose study is fundamental to the development of climate models
and resulting applications relevant to fisheries, coastal monitoring
and detection of pollutants. The identification and continuing
monitoring of upwelling is thus a crucial part for the study of the
dynamics of the oceans, which involves analyzing large volumes of
data such as remote sensing images in the infrared range. The
identification of upwelling is frequently analyzed with sea surface
temperature (SST) images because of the temperature contrast be-
tween the cold7 upwelling waters and the warmer near-shore
oceanic waters. These SST maps are typically obtained with the
thermal infrared channels of the advanced very high resolution
radiometer (AVHRR) sensor on board NOAA-n satellite series.

Several approaches have been proposed for automatic upwel-
ling detection, each involving rather complex computations to
achieve satisfactory segmentation results. For example, the works
by Kriebel et al. (1998), Arriaza et al. (2003) and Chaudhari et al.
(2008), using artificial neural networks, require the extraction of
various morphological features followed by a region building using
an iterative thresholding process. Marcello et al. (2005) used an
extensive comparison of automatic thresholding techniques fol-
lowed by a combination of watershed transform and region
growing approaches. Nieto et al. (2012) developed an upwelling
front detection system based on edge detection using a combi-
nation of multiple windows followed by a thorough process of
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recovering missing segments.
In our previous work (Nascimento and Franco, 2009; Nascimento

et al., 2012), we characterized and automated the process of deli-
neation of upwelling regions and boundaries using a fuzzy clustering
method supplemented with what is referred to as anomalous cluster
initialization process. Our system, FuzzyUPWELL, has proven to work
rather reliably on the available collections of oceanographic images.
Yet the system has an evident empiric flavor. It operates over the
temperature data only, and uses no geographic information. Also,
the system needs some expert driven knowledge to fine-tune
thresholds which is not always easy to operationalize.

In this paper, we tackle the problem of determination of up-
welling regions by using pixels and their spatial arrangement on
temperature maps using a model inspired on the development of
the upwelling as a process of step-by-step adding pixels according
to the similarity of their temperatures to the temperatures of those
already in the region. To this end, we adopt and considerably
modify the popular seeded region growing (SRG) method in-
troduced by Adams and Bischof (1994) for region based segmen-
tation (see also e.g. Mehnert and Jackway, 1997; Freixenet et al.,
2002; Fan et al., 2005; Shih and Cheng, 2005; Verma et al., 2011).
This method tries to grow a region whenever its interior is
homogeneous according to a certain feature such as intensity,
color or texture, called the feature of interest (FoI). The algorithm
follows the strategy based on the growth of a region, starting from
one or several ‘seeds’ and by adding similar neighboring pixels.
The growth is controlled by using a homogeneity criterion so that
the merging decision is generally taken based only on the contrast
between the evaluated pixel and the region. However, it is not
always easy to decide when this difference is small (or large) en-
ough to make a reasonable decision (Freixenet et al., 2002).

The seeded region growing image segmentation approach has
been widely used in various medical image applications like mag-
netic resonance image analysis and unsupervised image retrieval in
clinical databases (Mancas et al., 2005; Whitney et al. (2006); Wu
et al., 2009; Harikrishna-Rai and Gopalakrishnan-Nair, 2010; Zanaty,
2013). The approach has been also successfully applied in color
image segmentation with applications in medical imaging, content-
based image retrieval, and video (Fan et al., 2001; Shih and Cheng,
2005; Ugarriza et al., 2009; Verma et al., 2011), and yet in remote
sensing image analysis (Wang et al., 2010; Byun et al., 2011; Zhang
et al., 2013).

Main challenging issues that arise with SRG methods are as
follows:
(i)
 How to select the initial seeds in practice, and how critical is
the seed selection to getting a good segmentation?
(ii)
 How to choose the region homogeneity criterion and how to
specify its threshold?
(iii)
 How to organize the pixel labeling procedure efficiently?
Most approaches to SRG involve homogeneity criteria in the
format of difference of the feature of interest between that at the
pixel to be labeled and the mean value at the region of interest
(Adams and Bischof, 1994; Zhou et al., 2004; Fan et al., 2005; Shih
and Cheng, 2005; Ibrahim et al., 2010; Verma et al., 2011). A weak
point of these algorithms is the definition of the non-homogeneity
threshold at which the pixels under consideration are considered as
failing the homogeneity test and, therefore, cannot be added to the
region. Such a definition is either expert driven or supervised in
most of the currently available algorithms (Zhou et al., 2004; Fan
et al., 2005; Mat-Isa et al., 2005; Shih and Cheng, 2005; Ibrahim
et al., 2010; Verma et al., 2011). Another issue of the SRG methods is
the pixel ordering for testing them on joining the growth region and
labeling (Mehnert and Jackway, 1997). Many SRG algorithms grow
the regions using a sequential list sorted according to the
dissimilarity of unlabeled pixels to the growth region (Adams and
Bischof, 1994; Grinias and Tziritas, 2001; Harikrishna-Rai and Go-
palakrishnan-Nair, 2010; Verma et al., 2011). The disadvantage is
that the segmentation results are very much sensitive to this order.

To meaningfully overcome these issues, we apply the concept of
approximate cluster fromMirkin (1996, 2013) to the SRG framework.
This approximation approach leads us to accept a mathematically
equivalent, though somewhat unusual, homogeneity criterion, in the
format of a product rather than the conventional difference between
the pixel and the mean of the region of interest. Specifically, to
segment an SST map, we first subtract the average temperature
value from all the temperature values. After this, a pixel p under
consideration is added to the cluster if and only if c t p π× ( ) ≥ where
c is the average temperature of the pixels already in the cluster, t(p)
the temperature of the pixel p, and π a threshold defined by the
maximum difference between cold water pixels and the rest. This
process is moderated via usage of the concept of window of a pre-
specified size around the pixels under consideration: only those
within the window are involved in the comparison processes. This
provides for the spatial homogeneity and smoothness of the grow-
ing region. Indeed, only borderline pixels are subject to joining in
because the windows around remote pixels just do not overlap the
growing region. Therefore, there is no need in specifying the order of
testing for labeling among pixels: all those borderline pixels can be
considered and decided upon simultaneously. The process starts
from a cluster consisting of just one pixel, the coldest one, according
to the approximation clustering criterion. The preprocessed tem-
perature of this pixel is negative with a relatively large absolute
value. Since the temperature is a rather conservative characteristic
and would not change sharply with respect to space, there must be a
bulk of pixels within the window centered at the starting point that
will have similarly cold temperatures so that the products of those
by the preprocessed temperature at the seed have large positive
values and thus have to join in the growing region. This shows that
our region growing process initializes with a fragment of the coldest
pixels, which is rather robust. Using the window as a constraint
brings forth another desirable property. The growing region in our
process normally would cover a continuous fragment of the ocean.
To warrant this, we tried an additional homogeneity condition: the
density of the cluster being built should be greater than or equal to a
threshold α. The density is defined locally as the fraction of pixels
belonging to the cluster in the window surrounding the pixel under
consideration. Yet this proved unnecessary in our experimental
computations: the spatial continuity of the region has been war-
ranted by the step-by-step procedure of the growing region to reach
out of the boundary in all directions. The proposed method, one
seed expanding cluster (SEC), holds out of the issue of dependence
on the pixel sorting order. Moreover, the simultaneous borderline
labeling considerably speeds up the SRG procedure.

To specify the similarity threshold to judge whether the pixel
under consideration should be added to the growing region or not,
we take Otsu's (1979) thresholding method. This method fine-
tunes the similarity threshold by finding the maximum inter-class
variance that splits between warm and cold waters. This defines
what we refer to as the baseline version of the SEC algorithm. Also,
we introduce a self-tuning version of the algorithm, SelfT-SEC, at
which the homogeneity threshold parameter is derived from the
cluster approximation criterion.

These two unsupervised versions of the SEC algorithm have
been applied to a set of 28 SST images of the western coast of
mainland Portugal, and compared against a supervised version
fine-tuned by maximizing the F-measure with respect to ground-
truth maps annotated by expert oceanographers.

The rest of the paper is organized as follows. Section 2 describes
the original SRG method. In Section 3 we describe the new seed
expanding cluster algorithm, derive its optimal homogeneity
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criterion, and present an extension of the algorithm to its self-tuning
version. Section 4 presents the imagery data of SST's and
discusses the results of the experimental study comparing two un-
supervised thresholding versions of the SEC algorithm against the
supervised thresholding version. Conclusions and future work are in
Section 5.
2. The seeded region growing method

The original seeded region growing (SRG) method by Adams
and Bischof (1994) can be summarized as follows.

Choose K initial sets of seeds A A A, , , K1 2 … , each one being a set
of image neighboring pixels taking the feature of interest for
analysis. From the initial seeds grow homogeneous regions
C C C, , , K1 2 … by merging the additional pixels one by one according
to a similarity criterion, with the seeds being replaced by centroids
of the homogeneous regions. The pixels belonging to the same
region C k K, 1, 2, ,k ( = … ) are labeled by k, and pixels in different
regions are labeled differently. The result of the algorithm is a
segmentation map C C C, , , K1 2( … ) with A Ck k⊆ and C Ck l∩ = ⊘,
k l( ≠ ), where Ck

K
k1 Ω⋃ == covers the whole image.

At each step of the algorithm, let B be the set of all yet un-
allocated pixels (i,j) which are adjacent to at least one of the al-
ready labeled regions Ck:

⎧⎨⎩
⎫⎬⎭B i j C N i j C, ,

1k

K

k
k

K

k
1 1

= ( ) ∉ ⋃ | ( ) ∩ ⋃ ≠ ⊘
( )= =

with N i j,( ) the set of immediate neighbors of the pixel.1

Then one pixel of the borderline set B, that one with the lowest
dissimilarity to the K regions, is removed from B and labeled. The
algorithm stops when the borderline set B is empty. The labeling
process proceeds as follows. For a pixel i j B,( ) ∈ , if N i j,( ) intersects
only one currently labeled region Ck, then, pixel (i,j) will be labeled
as i j k,ℓ( ) = (k K1, 2, ,∈ { … }). The similarity criterion i j C, , kδ(( ) ) is
defined as the difference between the pixel i j B,( ) ∈ and its ad-
jacent labeled region Ck, that is,

i j C g i j g i j, , , , 2k k kδ(( ) ) = | ( ) − ( )| ( )

where g i j,( ) indicates the value of the feature of interest at the test
pixel (i,j), and g i j,k k( ) represents the average value for all the pixels
belonging to region Ck, with i j,k k( ) the centroid point of Ck.

If N i j,( ) intersects two or more regions Ck, then (i,j) is assigned
to the region kn for which i j C, , kδ(( ) )⁎ is minimum over all neigh-
boring regions Ck, i j k,ℓ( ) = ⁎.

That means one takes among the points in B that one satisfying
the relation

i j i j C, argmin , , 3i j B i j, ,δ(^ ) = { (( ) )} ( )( )∈ ℓ( )

and append i j,(^ ) to C i j,ℓ( ).
The definitions (2) and (3) guarantee that the final segmenta-

tion corresponds to regions as homogeneous as possible subject to
a connectivity constraint.
3. One seed expanding cluster algorithm

3.1. The baseline algorithm

Let T R L,( ) be a sea surface temperature (SST) map, where R is
the set of rows and L the set of columns, and elements of R L× are
1 A neighborhood of 8-connectivity is typically used.
pixels. The process starts by centering the temperature, that is, by
subtraction of the average temperature t mean T R L,= ( ( ))⁎ of the
temperature map T from the temperature values at all pixels in
R� L. Let the centered values be denoted as t i j,( ), i j R L,( ) ∈ × . The
algorithm finds a cluster C R L⊆ × in the format of a binary map
Z R L,( ) with elements zij defined as z 1ij = if i j C,( ) ∈ and z 0ij = ,
otherwise. The algorithm involves a window system W where
W i j,( ) is rectangular window of a prespecified size centered at
pixel (i,j). Based on our experiments we take 7 (pixels) as the
window side so that a window is a square of the size 7�7.

The algorithm starts by selecting a seed pixel, o i j,o o= ( ), as the
pixel with the lowest temperature value (if several pixels satisfy
this condition, then o is chosen randomly among them). The
cluster C is initialized as the seed o i j,o o= ( ) together with pixels
within the window W i j,o o( ) satisfying the similarity condition

c t i j, , 4π× ( ) ≥ ( )

where c is the reference temperature taken at the start as the
temperature of the seed pixel o, and π, a similarity threshold.

Once cluster C is initialized, its cluster boundary set F is defined
as the set of such unlabeled pixels (i.e. those not assigned to the
cluster), that their 8-neighborhood intersects the cluster. This
means that boundary pixels are adjacent to the cluster with re-
spect to their 8- neighborhood. Therefore,

F i j C N i j C, , 5= {( ′ ′) ∉ | ( ′ ′) ∩ ≠ ⊘} ( )

with N i j,( ′ ′) being the 8-neighborhood of the pixel.
Then, the algorithm proceeds iteratively expanding the cluster

C step by step by dilatating its boundary F until it is empty. For
each boundary pixel i j,( ′ ′) in F we define the boundary expand
region as the subset of pixels (i,j) of C that intersect the exploring
window centered at pixel i j,( ′ ′), that is, i j W i j C, ,( ) ∈ ( ′ ′) ∩ and
define cn as the average temperature of those pixels.

The homogeneity criterion of the algorithm is defined by two
conditions: (i) the temperature similarity condition in (6) and (ii) a
density condition in (7). The similarity condition (6) involves the
reference temperature cn equal to the mean temperature of the
window pixels within the expanding region defined as c =⁎

mean T W i j C,( ( ( ′ ′) ∩ )) :

c t i j, 6π× ( ′ ′) ≥ ( )⁎

We define the density of points at a boundary pixel i j,( ′ ′) as the
number of pixels of cluster C falling within the exploring window
W i j,( ′ ′) related to the total number of pixels within W i j,( ′ ′). The
density of cluster points should be higher than a certain threshold
α. The density condition is thus defined as

W i j C
W i j

,
,

.
7

α| ( ′ ′) ∩ |
| ( ′ ′)|

≥
( )

This condition, basically, serves as a tool to keep the cluster
being built of a more or less smooth shape, without getting thin
irregular fragments.

If both homogeneity conditions (6) and (7) hold, then the
boundary pixel i j,( ′ ′) is allocated to an auxiliary cluster C′ and con-
sequently labeled, and the corresponding boundary pixels N i j,( ′ ′)
are merged to the auxiliary boundary set F′ (both C′ and F′ are in-
itialized as empty sets). The process continues until all boundary
pixels of F have been treated. At the end, the new labeled pixels in C′
are merged with C and the corresponding boundary set F is updated
with the auxiliary boundary set F′. The iterative process of ex-
panding the boundary pixels of the cluster stops when the boundary
set F is empty, that is, when no more unlabeled pixels satisfy the
homogeneity conditions (6) and (7).

It is important to stress that this process of treating all frontline
pixels of the cluster before updating the cluster and the
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Fig. 1. Four SST images of Portugal showing different upwelling situations (left column) and corresponding binary ground-truth maps (right column).
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corresponding new boundary set, guarantees that the cluster expan-
sion does not depend on the order of selection of the boundary pixels
to be treated. Moreover, the process of density and similarity
conditions testing and labeling of the boundary pixels can be per-
formed in parallel. This algorithm, designated as seed expanding
cluster (SEC) algorithm, can be described by the following
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Table 1
Similarity threshold values and segmentation evaluation scores when applying the
SEC algorithm with supervised thresholding on the SST images of Portugal, orga-
nized in three groups: strong gradient, weak gradient, and noisy.

SST image Similarity thresh. π Precision Recall F-measure

Good
1998-08-01 0.03 0.987 0.980 0.984
1998-07-28 0.6 0.979 0.984 0.981
1998-07-18 0.08 0.975 0.981 0.978
1998-08-02 0.01 0.990 0.965 0.977
1998-08-12 0.01 0.990 0.956 0.973
1998-08-21 0.8 0.964 0.977 0.971
1998-06-28 0.5 0.962 0.974 0.968
1998-07-03 0.55 0.918 0.971 0.944
1998-07-24 0.09 0.892 0.998 0.942
1998-08-30 0.09 0.942 0.937 0.940
1998-08-19 0.09 0.909 0.970 0.939
1998-08-05 0.5 0.994 0.848 0.915
1998-09-15 0.09 0.905 0.918 0.912
1998-09-05 0.5 0.988 0.844 0.910
1998-07-21 0.08 0.827 0.979 0.897

Weak grad.
1998-09-08 0.70 0.984 0.967 0.976
1998-07-11 0.95 0.978 0.966 0.972
1998-06-25 0.65 0.968 0.971 0.969
1998-06-14 0.70 0.955 0.967 0.961
1998-06-23 0.60 0.949 0.953 0.951
1998-06-18 0.50 0.997 0.809 0.893
1998-07-15 0.65 0.976 0.800 0.879
1998-08-23 1.30 0.957 0.749 0.841
1998-09-24 1.05 0.809 0.532 0.642

Noisy
1998-09-11 0.80 0.878 0.945 0.910
1998-09-30 0.09 0.718 0.995 0.834
1998-07-07 0.50 0.919 0.660 0.768
1998-08-10 0.04 0.570 0.815 0.670
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computational scheme:
Ste

Ste

Ste
Input T R L, temperature( )− map, where R is the set of
rows and L the set of columns;

w- side of the exploring window W

π- threshold of (temperature) similarity

α- threshold of cluster density
Output One cluster C in the format of a binary map

Z R L,( ) over the same sets R and L with elements zij defined
as: z 1ij = if i j C,( ) ∈ and z 0ij = if i j C,( ) ∉ .

p 1 Pre-processing: Subtract the average temperature
t mean T R L,= ( ( ))⁎ from the original temperature value of
each pixel (i,j) of temperature map T. Let t i j,( ) be the tem-
perature values after subtraction.
p 2 Cluster Initialization: A seed pixel o i j,0 0= ( ) is taken as
that with the minimum temperature value c.

Set cluster C i j,0 0= {( )}.
Take the exploring window W centered at seed pixel o.

Each pixel (i,j) within W i j,0 0( ) is labeled as belonging into

cluster C iff the similarity criterion holds:
)
c t i j, 8π× ( ) ≥ (
p 3 Set Cluster Boundary: Define the set F of boundary
pixels of C as the unlabeled pixels i j,( ′ ′) lying within map
R L× that are adjacent to C, that is,
)
F i j C N i j C, , 9= {( ′ ′) ∉ | ( ′ ′) ∩ ≠ ⊘} (
with N i j,( ′ ′) the 8-neighborhood of the pixel.
p 4 Expansion: While boundary set F is not empty
tep 4.1 Set C′ = ⊘; F′ = ⊘;
tep 4.2 For each boundary pixel i j F,( ′ ′) ∈

Step 4.2.1 Consider the boundary expand region as
W i j C,( ′ ′) ∩ ; define cn as: c mean T W i j C,* = ( ( ( ′ ′) ∩ ))

Step 4.2.2 If both the similarity and density conditions
hold:
c t i j, 10π× ( ′ ′) ≥ (⁎

W i j C
W i j

,
, 11

α| ( ′ ′) ∩ |
| ( ′ ′)|

≥
(

then the frontline pixel is merged with the cluster and
the boundary set F is updated with the 8-neighbors pixels of
i j,( ′ ′) disjoint from C:
C C i j F F N i j C, ; , 12′ = ′ ∪ {( ′ ′)} ′ = ′ ∪ ( ′ ′) − (
tep 4.3 Update C and F: C C C= ∪ ′; F F F i j,= ∪ ′ − {( ′ ′)}
S

3.2. Derivation of the similarity criterion and self-tuned threshold
value

The idea is to find such a subset C R L⊆ × that its binary matrix
z zij= ( ), where z 1ij = if i j C,( ) ∈ and z 0ij = otherwise, approx-
imates a given temperature map matrix T R L,( ) as close as possible.
To accommodate for the difference in the unit of measurement of
the similarity as well as for its zero point, matrix z should be also
supplied with (adjustable) scale shift and rescaling coefficients,
say λ and μ. That would mean that the approximation is sought in
the set of all binary /λ μ μ+ matrices zλ μ+ with 0λ > . Un-
fortunately, such an approximation, at least when follows the least
squares approach, would have little value as a tool for producing a
cluster, because the optimal values for λ and μ would not separate
the optimal C from the rest. Therefore, following Mirkin (1996,
2013), only one parameter λ, the change of the unit of measure-
ment, is utilized here. The issue of setting a similarity zero point is
moved then out of the modeling stage to the data pre-processing
stage. This should explain the subtraction of the average tem-
perature before doing data analysis as the setting of a proper si-
milarity zero point so that the structure is analyzed against a
backdrop of the mean.

Then the approximation model can be stated as

t z e 13ij ij ijλ= + ( )

where tij are the preprocessed temperature values, Z zij= ( ) is the
unknown cluster membership matrix and λ is the rescaling factor
value, also referred to as the cluster intensity value. The items eij
represent unspecified errors of the model, that should be made as
small as possible. To fit the model (13), only the least squares
criterion e t zi R j L ij i R j L ij ij

2 2 2Φ λ= ∑ ∑ = ∑ ∑ ( − )∈ ∈ ∈ ∈ is considered here.
First of all, note that at any given C, that is, matrix Z zij= ( ), the

optimal value of λ is determined as the average temperature tij
over all the within-C pixels i j C,( ) ∈ . This easily follows from the
first-order optimality condition for criterion Φ2.

Although more or less conventional mathematically, the cri-
terionΦ2 bears somewhat unusual meaning substantively. Indeed,
any z 0ij = contributes tij2 to Φ2 independently of the λ value.
Therefore, z 0ij = should correspond to those pixels whose pre-
processed temperatures t i j,( ) are zero or near zero. In contrast,
pixels of maximum or almost maximum absolute values of the
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Fig. 2. Upwelling area retrieved by the SEC algorithm with supervised thresholding on SST images of Portugal (left column) and binary ground-truth maps of the images
(right column).
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temperature should be assigned with z 1ij = . However, those must
be either warmest or coldest pixels because any mix of them
would make the optimal λ close to zero, thus keeping theΦ2 value
out of its minimum zone. The case is resolved based on our
substantive knowledge: the upwelling areas comprise coldest
waters. Therefore, cluster C should comprise negative temperature
pixels as far from zero as possible. This justifies taking the coldest
pixel as the starting point in SEC. Also, usefulness of initially
subtracting the mean temperature with this approach manifests



Table 2
Similarity threshold values and segmentation evaluation scores when applying the
SEC algorithmwith Otsu's thresholding on the SST images of Portugal, organized in
three groups: strong gradient, weak gradient, and noisy.

SST image Similarity thresh. π Precision Recall F-measure

Good
1998-07-28 0.702 0.988 0.966 0.977
1998-08-19 0.475 0.990 0.888 0.936
1998-08-02 0.226 1.000 0.873 0.932
1998-06-28 0.265 0.855 0.999 0.921
1998-08-05 0.407 0.990 0.861 0.921
1998-09-15 0.049 0.885 0.935 0.909
1998-08-30 0.597 0.978 0.845 0.907
1998-08-12 0.325 1.000 0.817 0.899
1998-08-21 1.386 0.998 0.813 0.896
1998-07-24 0.698 1.000 0.770 0.870
1998-07-03 0.127 0.717 1.000 0.835
1998-07-21 0.939 0.953 0.720 0.821
1998-08-01 1.418 1.000 0.689 0.816
1998-09-05 0.072 0.590 0.906 0.715
1998-07-18 0.881 1.000 0.496 0.663

Weak grad.
1998-06-18 0.479 0.996 0.820 0.900
1998-07-11 0.533 0.761 0.999 0.864
1998-07-15 0.911 0.997 0.746 0.853
1998-08-23 1.017 0.916 0.767 0.835
1998-09-08 0.088 0.705 1.000 0.827
1998-06-23 0.018 0.608 0.988 0.753
1998-06-25 0.064 0.542 1.000 0.703
1998-06-14 0.026 0.398 1.000 0.569
1998-09-24 0.077 0.390 0.667 0.492

Noisy
1998-09-11 0.068 0.721 0.992 0.835
1998-09-30 0.060 0.695 0.996 0.819
1998-08-10 0.020 0.565 0.822 0.669
1998-07-07 1.000 0.992 0.356 0.524
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itself once more.
Another observation comes from the expression for the criter-

ion Φ2 found by ‘opening’ parentheses in it. Specifically, since
z zij ij

2 = because zij accepts only 0 and 1 values, the least squares
criterion can be reformulated as

C t z t t z, 2 /2
14i R j L

ij ij
i R j L

ij
i R j L

ij ij
2 2 2∑ ∑ ∑ ∑ ∑ ∑Φ λ λ λ λ( ) = ( − ) = − ( − )

( )∈ ∈ ∈ ∈ ∈ ∈

As ti R j L ij
2∑ ∑∈ ∈ is constant, at 0λ > , minimizing (14) is equivalent

to maximizing the scoring function

f C t z t, /2 /2 .
15i R j L

ij ij
i j C

ij
,

∑ ∑ ∑λ λ λ λ λ( ) = ( − ) = ( − )
( )∈ ∈ ∈

Therefore, to maximize (15), pixels (i,j) at which t 0ijλ π− >
where /22π λ= should be added to C, whereas those at which
t 0ijλ π− < , should not. Since the optimal λ is the average tem-
perature within C, this not only justifies our similarity criterion in
(6) but also suggests that a self-tuned value of threshold π in
(4) and (6) should be /22π λ= .

Therefore, in the follow-up we take the self-tuned value for the
similarity threshold as half the squared average temperature over
the cluster C.

A more or less smooth shape of the growing region is war-
ranted by the averaging nature of the similarity criterion and by
involving windows around all pixels under consideration. This
structure of the clustering process allows us to abandon the den-
sity condition (7) in the self-tuning version of SEC algorithm.

3.3. Self-tuning version of the SEC algorithm

The SEC algorithm had been extended in order to automatically
take into account the similarity threshold π according to the de-
rivations in the previous section. In contrast to the baseline SEC
algorithm, the threshold π in this version is not constant but
changes depending on changes of C fragments falling in the win-
dows W i j,( ).

This version of SEC in general follows the outline above except
for the step of expanding the cluster (step 4.2.2 of the algorithm).
That is altered in two points:
(i)
 the similarity threshold π in condition (6) is specified as
mean T W i j C, /22( ( ( ( ′ ′) ∩ ))) ;
(ii)
 the density condition (7) is abolished.
This makes a version of the algorithm SEC, designated as self-
tuning seed expanding cluster algorithm, or ST-SEC for short. ST-
SEC runs exactly as the SEC, up to the two adjustments, (i) and (ii)
above.
4. Experimental study

4.1. Imagery data

A group of 28 AVHRR sea surface temperature (SST) images
obtained during the period of June 1998–September 1998 are used
in this study. A high resolution color scale (192 levels) was applied
to each SST image in order to have the best distribution of color
levels over the SST range in each individual image.

Each SST image, T, is represented by a 500�500 pixels map,
with each sea pixel assigned with the temperature in degrees
Celsius. The continuous white region on the right side of each SST
image corresponds to land, whereas white pixels in the ocean part
correspond to missing values during the satellite transmission,
typically due to cloud cover. Each SST image is named according to
the date of acquisition.

Fig. 1 (left column) shows four representative SST images se-
lected from the benchmark data sample of Portugal, illustrating
the variability of upwelling situations. Specifically: (i) SST images
with a well-characterized upwelling situation in terms of fairly
sharp boundaries between cold and warm surface waters mea-
sured by relatively contrasting thermal gradients and continuity
along the coast (two topmost images); (ii) SST images showing
distinct upwelling situations related to thermal transition zones
offshore from the North toward the South and with smooth
transition zones between upwelling regions; (iii) noisy SST images
with clouds, where information to define the upwelling front lacks
(fourth-line image). Each SST image has assigned a binary ground-
truth map, manually constructed by expert oceanographers, with
1/0 labels corresponding to ‘upwelling/non-upwelling’ designa-
tions. Fig. 1 (right column) shows the corresponding ground-truth
maps of the SST images on top.

4.2. Settings of the experiments

In this study we analyze the effectiveness of the SEC algorithm,
both the baseline and the self-tuning versions, on segmenting SST
images to automatically identify the upwelling area.

There is no generally accepted methodology for evaluating
segmentation algorithms (Pal and Pal, 1993; Muñoz et al., 2003).
We consider a supervised evaluation approach, also known as
empirical discrepancy method, to analyze segmentation results by
comparing them with corresponding manually segmented re-
ference images, the ground-truths. The degree of similarity be-
tween the human and machine segmented images determines the
quality of the segmentation. One benefit of supervised methods of
evaluation over unsupervised ones is that direct comparison
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Fig. 3. Upwelling area retrieved by the SEC algorithm with Otsu's thresholding on SST images of Portugal (left column) and binary ground-truth maps of the images (right
column).
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between a segmented image and a reference image provides a
finer resolution of evaluation and, as such, discrepancy methods
are commonly used for an objective evaluation (Zhang et al.,
2008).

To compare the performance of various results of seed region
growing algorithms, typical measures commonly applied include
precision, recall and the corresponding harmonic mean, the F-
measure (Van Rijsbergen, 1979). Precision is the proportion of the
predicted positive cases that are correctly real positives, while
recall, or true positive rate, is the proportion of true positive cases



Table 3
Segmentation evaluation scores when applying the self-tuning version of the SEC
algorithm on the SST images of Portugal, organized in three groups: strong gra-
dient, weak gradient, and noisy.

SST image Precision Recall F-measure

Good
1998-08-01 0.990 0.957 0.974
1998-08-02 0.997 0.919 0.956
1998-07-18 0.930 0.980 0.955
1998-08-12 0.997 0.893 0.942
1998-08-30 0.946 0.925 0.935
1998-08-19 0.837 0.970 0.898
1998-07-28 0.813 0.999 0.896
1998-07-24 0.812 0.993 0.893
1998-09-15 0.863 0.920 0.891
1998-07-21 0.809 0.978 0.885
1998-08-05 0.848 0.876 0.862
1998-06-28 0.658 0.997 0.793
1998-07-03 0.655 0.997 0.790
1998-08-21 0.560 0.997 0.717
1998-09-05 0.569 0.957 0.713

Weak grad.
1998-06-23 0.656 0.985 0.788
1998-07-15 0.645 0.991 0.781
1998-08-23 0.586 0.962 0.729
1998-09-08 0.533 0.997 0.695
1998-06-25 0.518 0.999 0.682
1998-06-14 0.479 0.997 0.647
1998-07-11 0.457 1.000 0.627
1998-06-18 0.422 0.980 0.590
1998-09-24 0.391 0.654 0.490

Noisy
1998-09-11 0.728 0.987 0.838
1998-09-30 0.707 0.987 0.824
1998-07-07 0.686 0.692 0.689
1998-08-10 0.522 0.662 0.584
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that are correctly identified. In other words, precision corresponds
to the probability that the detection is valid, and recall is the
probability that the ground truth is detected.

On running the baseline version of SEC algorithm we need a
strategy to fine-tune the density and similarity thresholds, α and
π. Preliminary experiments allow us to fix the density threshold at
a constant value. In the experiments described in this study α had
been fixed as the inverse of the size of windowW, that is, 1/49α = .
To fine-tune the similarity threshold π, two different approaches
have been considered: a supervised approach and an unsupervised
one. In the supervised case, taking advantage of the ground-truth
map, the threshold π is fixed as the one that maximizes the F-
measure, by running the SEC algorithm with π ranging between
0.01, 1.5[ ] with an incremental step of 0.01. The first unsupervised
approach is, Otsu's (1979) thresholding method, arguably the most
popular thresholding method in the literature (Sezgin and Sankur,
2004). In this case, the optimum threshold value is fixed as the one
presenting the minimum intra-class variance (i.e. the maximum
between-class variance) when dichotomizing the pixels of the SST
image in a bimodal histogram. Otsu's method is summarized in
Appendix. Finally, we analyze the performance of the self-tuning
thresholding version of the algorithm and make a comparative
analysis of both unsupervised versions of thresholding against the
supervised one.

4.3. Main results and discussion

Table 1 presents, for each SST image organized in the three
groups: good, weak gradients, and noisy, the similarity threshold
value obtained by maximizing the F-measure. For each group of
images the results are presented in the descending order of F-
measure values. The precision and recall values are also presented.
These results show that the segmentations are rather good,
with 93% of F-scores ranging between 0.768 and 0.985. To illus-
trate the quality of the segmentation results, Fig. 2 (left column)
presents the segmentations obtained by the SEC algorithm with
the supervised fine-tuning for the images shown in Fig. 1. By
comparing these results with the corresponding ground-truth
maps of the images (right column), we can observe a real good
matching that is reflected in the recall values close to 1.0.

The exceptions (with F-measure less than 0.7) occur for the
images of ‘1998-08-10’ and of ‘1998-09-24’, the first with a low
precision and high recall and the second with a high precision and
low recall, and consequent relatively low F-measures. The first
type of results corresponds to over-segmentation with ‘explosion’
in the North region covering a fraction of offshore area of cold
temperatures. The second type of results corresponds to a coarse
segmentation, meaning that the original image contains dis-
continuous upwelling areas, whereas the computation produces
just one sub-region, thus leading to a low true positive rate.

The results of applying Otsu's thresholding version of the SEC
algorithm are in Table 2. In this case 82% of segmentations present
high F-measures ranging between 0.70 and 0.977. Fig. 3 (left col-
umn) illustrates the segmentation results of our algorithm with
Otsu's thresholding. The results are very much coincident with the
corresponding ground-truth maps displayed on the right.

Only five images present low F-measures corresponding to ei-
ther small recall or precision values. In fact, the results with low
recall values ( 0.6≤ ) correspond to coarse segmentations due to the
discontinuity of the upwelling areas. On the contrary, the seg-
mentations with low precision ( 0.6≤ ) correspond to over-seg-
mented results, where the obtained cluster containing the total
original upwelling area, expanding offshore, mainly in the cold
waters of the North region. This type of unsuccessful results are
typically associated with images at which the upwelling areas
correspond to relatively small percentage of the SST image. This
result is justified by the fact that this method is biased toward the
components with larger class variance, tending to dichotomize an
image into the object and background of similar sizes (Hou et al.,
2006).

On analyzing segmentations obtained by the self-tuning
threshold version of the algorithm we obtained very good results
in 75% of the cases as shown by the evaluation scores presented in
Table 3 taking the F-measures higher than or equal to 0.7. The
majority of the lower value scores occur for the images with weak
gradients. All these results correspond to the scenario of over-
segmentation previously described where the obtained cluster
containing the original upwelling area explodes offshore, mainly
in the North region due to weak transaction of thermal bound-
aries. Fig. 4 (left column) illustrates the segmentation results ob-
tained by the self-tuning SEC algorithm for the SST images pre-
sented in Fig. 1.

In order to compare the relative performances of the two un-
supervised thresholding versions of SEC algorithm (Otsu-SEC and
SelfT-SEC), against the supervised tuning thresholding (S-SEC),
Table 4 summarizes the F-measures obtained for the three subsets
of images. In each row the higher F-value between Otsu's and self-
tuning versions of the SEC algorithm is marked in boldface. The
Otsu-SEC wins in 57% of the cases while the self-tuning version
wins in 43% of images. The best results mainly occur for the
images with good gradients but also some noisy images present
good results.

The three versions of the algorithm are implemented in MatLab
R2013a. The experiments have been run on a computer with a
2.67 GHz Intel(R) core(TM) i5 processor and 6 Gbytes of RAM. The
operating system is Windows 8.1 Pro, 64-bit. The elapsed time of
segmenting an SST image with each of the supervised version and
Otsu's thresholding version of our algorithm is 25 s. The self-
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Fig. 4. Upwelling area retrieved by the self-tuning version of SEC algorithm applied to SST images of Portugal (left column) and binary ground-truth maps of the images
(right column).
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tuning version of SEC algorithm takes 22 s to segment one SST
image.

5. Conclusion and future work

We have proposed a new method, one seed expanding cluster
(SEC), inspired by the SRG approach, for the automatic segmentation
of coastal upwelling from SST images. New contributions of this
algorithm are: a novel homogeneity criterion (6), no order depen-
dence of the pixel testing to be labeled, and a self-tuning version of
the algorithm with the threshold derived from the approximation
criterion.



Table 4
F-measures for the three versions of the SEC algorithm: supervised version of
tuning parameter (S-SEC), Otsu's thresholding (Otsu-SEC), and self-tuning version
(SelfT-SEC), when applied to the SST images of Portugal. In each row the higher F-
value between Otsu's and self-tuning versions of the algorithm is marked in
boldface.

SST image S-SEC Otsu-SEC SelfT-SEC

Good
1998-08-01 0.984 0.816 0.974
1998-08-02 0.977 0.932 0.956
1998-07-18 0.978 0.663 0.955
1998-08-12 0.973 0.899 0.942
1998-08-30 0.940 0.907 0.935
1998-08-19 0.939 0.936 0.898
1998-07-28 0.981 0.977 0.896
1998-07-24 0.942 0.870 0.893
1998-09-15 0.912 0.909 0.891
1998-07-21 0.897 0.821 0.885
1998-08-05 0.915 0.921 0.862
1998-06-28 0.968 0.921 0.793
1998-07-03 0.944 0.835 0.790
1998-08-21 0.971 0.896 0.717
1998-09-05 0.910 0.715 0.713

Weak grad.
1998-06-23 0.951 0.753 0.788
1998-07-15 0.879 0.853 0.781
1998-08-23 0.841 0.835 0.729
1998-09-08 0.976 0.827 0.695
1998-06-25 0.969 0.703 0.682
1998-06-14 0.961 0.569 0.647
1998-07-11 0.972 0.864 0.627
1998-06-18 0.893 0.900 0.590
1998-09-24 0.642 0.492 0.490

Noisy
1998-09-11 0.910 0.835 0.838
1998-09-30 0.834 0.819 0.824
1998-07-07 0.768 0.524 0.689
1998-08-10 0.670 0.669 0.584
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The supervised and Otsu's unsupervised version of the algorithm
both present very high F-measure on segmenting SST images showing
different upwelling situations. The self-tuning version of the algorithm
succeeds for all images presenting contrasting gradients between the
coastal cold waters and the warming offshore waters of the upwelling
region, and in some images with weak gradients for upwelling.

Further research should be directed toward the improvement
of the SEC algorithm and include the following:
(i)
 A sequentially extracting cluster version of the algorithm to
produce multi-clusters to segment the images with several
discontinuous areas of upwelling.
(ii)
 An extensive study to compare various automatic threshold-
ing methods, both those introduced by us and those available
in the literature. Several preliminary experiments have been
conducted using the Kittler and Illingworth (1986) method
and the entropy-based method of Kapur and co-authors
(Sezgin and Sankur, 2004) which typically lead to over-seg-
mented results.
(iii)
 A study of the problem of ‘explosion’ presented in the seg-
mentation of SST images with weak gradients. An explosion-
controlled strategy of cluster growing has to be investigated
for the self-tuning version of the algorithm to determine the
optimal threshold values.
Acknowledgments

The authors thank the colleagues of Centro de Oceanografia and
Department de Engenharia Geográfica, Geofísica e Energia (DEGGE),
Faculdade de Ciências, Universidade de Lisboa for providing the SST
images examined in this study. The authors are thankful to the
anonymous reviewers for their insightful and constructive com-
ments that allowed us to improve our paper.
Appendix A. Appendix

The Otsu's (1979) method is a nonparametric and unsupervised
method for automatic threshold selection in image segmentation,
taking particular importance in bimodal histograms. The method
is based on dichotomizing the pixels of the image, transforming
the original image into a binary one. The optimal threshold tn is
calculated starting from the calculation of the probabilities of
temperature pixels. Then it is calculated as a discriminant criter-
ion, that is, a measure of class separability, consisting on finding
the feature value (in our case the temperature), tn, for which a
discriminant function, tη( ) such as the between class variance, is
maximized. This corresponds to maximize the separability of the
resultant classes in a binary image.

More formally, let N be the number of distinct temperature
values of an image I. Let n be the total number of pixels of the
image, and ni be the number of pixels with temperature value i.
Then, the probability of occurrence of the temperature i is given by
p n n/i i= . The average temperature of the entire image is then
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The automatic optimal threshold tn is calculated as the max-
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