
Expert Systems with Applications 40 (2013) 6601–6623
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Review
Formal Concept Analysis in knowledge processing: A survey on models
and techniques
0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.05.007

⇑ Corresponding author at: KU Leuven, Faculty of Business and Economics,
Naamsestraat 69, 3000 Leuven, Belgium.

E-mail addresses: Jonas.Poelmans@econ.kuleuven.be (J. Poelmans), skuznet-
sov@hse.ru (S.O. Kuznetsov), dignatov@hse.ru (D.I. Ignatov), Guido.Dedene@econ.-
kuleuven.be (G. Dedene).
Jonas Poelmans a,b,⇑, Sergei O. Kuznetsov b, Dmitry I. Ignatov b, Guido Dedene a,c

a KU Leuven, Faculty of Business and Economics, Naamsestraat 69, 3000 Leuven, Belgium
b National Research University Higher School of Economics, Pokrovsky Boulevard 11, 109028 Moscow, Russia
c Universiteit van Amsterdam Business School, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands

a r t i c l e i n f o
Keywords:
Formal Concept Analysis (FCA)
Knowledge discovery in databases
Text mining
Data analysis models
Systematic literature overview
a b s t r a c t

This is the first part of a large survey paper in which we analyze recent literature on Formal Concept Anal-
ysis (FCA) and some closely related disciplines using FCA. We collected 1072 papers published between
2003 and 2011 mentioning terms related to Formal Concept Analysis in the title, abstract and keywords.
We developed a knowledge browsing environment to support our literature analysis process. We use the
visualization capabilities of FCA to explore the literature, to discover and conceptually represent the main
research topics in the FCA community. In this first part, we zoom in on and give an extensive overview of
the papers published between 2003 and 2011 on developing FCA-based methods for knowledge process-
ing. We also give an overview of the literature on FCA extensions such as pattern structures, logical con-
cept analysis, relational concept analysis, power context families, fuzzy FCA, rough FCA, temporal and
triadic concept analysis and discuss scalability issues.
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1. Introduction them in a concept lattice. In Lakhal and Stumme (2005), a survey
Formal Concept Analysis (FCA) was introduced in the early
1980s by Rudolf Wille as a mathematical theory (Wille, 1982) tak-
ing its roots in the works of Birkhoff (1973) and Barbut and Mon-
jardet (1970) and others, for the formalization of concepts and
conceptual thinking. FCA has been applied in many disciplines
such as knowledge discovery, software engineering, and informa-
tion retrieval during the last 15 years. The mathematical founda-
tion of FCA is described by Ganter and Wille (1999) and
introductory courses were written by Wolff (1994) and Wille
(1997). An overview of a part of the literature published until the
year 2004 on the mathematical and philosophical background of
FCA, some of the applications of FCA in the information retrieval
and knowledge discovery field and in logic and AI given in Priss
(2006). A comparison of algorithms for generating concept lattices
is given by Kuznetsov and Obiedkov (2002). An overview of avail-
able FCA software is provided by Tilley (2004). Carpineto and Ro-
mano (2004a) present an overview of FCA applications in
information retrieval. In Tilley and Eklund (2007), an overview of
47 FCA-based software engineering papers is given. The authors
categorized these papers according to the 10 categories as defined
in the ISO 12207 software engineering standard and visualized
on FCA-based association rule mining techniques is given. Poel-
mans, Elzinga, Viaene, and Dedene (2010b) give a comprehensive
overview of FCA-based research in knowledge discovery and data
mining. Poelmans, Ignatov, Viaene, Dedene, and Kuznetsov
(2012b) survey research on FCA in information retrieval. Doerfel,
Jäschke, and Stumme (2012) investigated patterns and communi-
ties in co-author and citation contexts obtained from publications
in the International Conference on Formal Concept Analysis (ICF-
CA), International Conference on Conceptual Structures (ICCS)
and Concept Lattices and Applications (CLA).

In this paper, we describe how we used FCA to create a visual
overview of the existing literature on concept analysis published
between the years 2003 and 2011. The core contributions of this
paper are as follows. We visually represent the literature on FCA
using concept lattices, in which the objects are the scientific papers
and the attributes are the relevant terms available in the title, key-
words and abstract of the papers. We developed a toolset with a
central FCA component that we use to index the papers with a the-
saurus containing terms related to FCA research and to generate
the lattices. We zoom in on and give an extensive overview of
the papers published between 2003 and 2011 on using FCA for
knowledge discovery and ontology engineering in various applica-
tion domains. We also give an overview of the literature on FCA
extensions such as fuzzy FCA, logical concept analysis, pattern
structures, power context families, relational concept analysis,
rough FCA, temporal and triadic concept analysis and discuss sca-
lability issues.
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The remainder of this paper is composed as follows. In Section 2
we introduce the essentials of FCA theory and closely related disci-
plines such as description logics and conceptual graphs. In Section 3
we describe the dataset used and discuss the knowledge browsing
environment which was developed to support this literature anal-
ysis. In Section 4 we visualize the FCA literature on knowledge dis-
covery, using a lattice diagram. In Section 5, we discuss the models
and methods developed in FCA-based KDD research. Section 6 con-
cludes the paper.
2. Formal Concept Analysis and related disciplines

Formal Concept Analysis (Ganter et al., 1999; Wille, 1982) is a
mathematical framework that underlies many methods of knowl-
edge discovery and data analysis. Over the past 30 years the initial
theory has been combined with and enriched by other research do-
mains in mathematics including description logics and conceptual
graphs.

2.1. Basic notions of FCA

The initial structure of FCA is a triple of sets K ¼ ðG; M; IÞ called
a formal context, where I # G �M is a binary relation. This triple
can be represented by a cross table consisting of set of rows G
(called objects), columns M (called attributes) and crosses repre-
senting incidence relation I. An example of a cross table is displayed
in Table 1 where objects are papers, attributes are terms and the
incidence relation shows how terms occur in papers. In what fol-
lows, scientific papers (i.e. the objects) are related (i.e. the crosses)
to a number of terms (i.e. the attributes); here a paper is related to
a term if the title or abstract of the paper contains this term. The
dataset in Table 1 is an excerpt of the one we used in our research.
Given a formal context, we then derive concepts and order them
according to a subconcept-superconcept relation. This order makes
a lattice which can be visualized by a line diagram.

The notion of a formal concept is central to FCA. The way FCA
looks at concepts is in line with the international standard ISO
704, that formulates the following definition: ‘‘A concept is consid-
ered to be a unit of thought constituted of two parts: its extent and
its intent.’’ The extent consists of all objects belonging to the con-
cept, while the intent comprises all attributes shared by those ob-
jects. Let us illustrate the notion of concept of a formal context
using the data in Table 1. For a set of objects O # G, the set of com-
mon attributes can be defined by:

A ¼ O0 ¼ fm 2 Mjðo;mÞ 2 I for all o 2 Og

Take the attributes that describe paper 4 in Table 1, for instance. By
collecting all papers of this context that share these attributes, we
get to a set O # G consisting of papers 1 and 4. This set O of objects
is related to the set A consisting of the attributes ‘‘browsing’’, ‘‘soft-
ware’’ and ‘‘FCA.’’

O ¼ A0 ¼ fo 2 Gjðo;mÞ 2 I for all m 2 Ag

That is, O is the set of all objects sharing all attributes of A, and A is
the set of all attributes that are valid descriptions for all the objects
Table 1
Example of a formal context.

Browsing Mining Software

Paper 1 X X X
Paper 2 X
Paper 3 X
Paper 4 X X
Paper 5
contained in O. Each such pair (O,A) is called a formal concept (or
concept) of the given context. The set A = O0 is called the intent,
while O = A0 is called the extent of the concept (O,A).

There is a natural hierarchical ordering relation between the
concepts of a given context that is called the subconcept-supercon-
cept relation.

ðO1;A1Þ 6 ðO2;A2Þ () ðO1 # O2 () A2 # A1Þ

A concept C1 = (O1,A1) is called a subconcept of a concept C2 = (O2,A2)
(or equivalently, C2 is called a superconcept of a concept C1) if the ex-
tent of C1 is a subset of the extent of C2 (or equivalently, if the intent
of C1 is a superset of the intent of C2). For example, the concept with
intent ‘‘browsing’’, ‘‘software’’, ‘‘mining’’ and ‘‘FCA’’ is a subconcept
of a concept with intent ‘‘browsing’’, ‘‘software’’ and ‘‘FCA.’’ With
reference to Table 1, the extent of the latter is composed of papers
1 and 4, while the extent of the former is composed of paper 1.

The set of all concepts of a formal context ordered by the sub-
concept-superconcept relation 6 makes a complete lattice (called
the concept lattice of the context), i.e. every subset of concepts
has infimum (meet) and supremum (join) w.r.t. 6. Concept lattices,
like every ordered sets, can be visualized by line diagrams, where
nodes stay for concepts and edges connect pairs of neighboring
concept nodes, i.e. those that do not have any concept nodes be-
tween them. The line diagram in Fig. 1, for example, is a compact
representation of the concept lattice of the formal context gener-
ated from Table 1. The circles or nodes in this line diagram repre-
sent the formal concepts. The shaded boxes (upward) linked to a
node represent the attributes used to name the concept. The
non-shaded boxes (downward) linked to the node represent the
objects used to name the concept. The information contained in
the formal context of Table 1 can be derived from the line diagram
in Fig. 1 by applying the following reading rule: An object ‘‘g’’ is de-
scribed by an attribute ‘‘m’’ if and only if there is an ascending path
from the node named by ‘‘g’’ to the node named by ‘‘m.’’ For exam-
ple, paper 1 is described by the attributes ‘‘browsing’’, ‘‘software’’,
‘‘mining’’ and ‘‘FCA.’’.

Another important notion of FCA is that of attribute implica-
tion(see also Section 5.1.1). For subsets A,B # M one has A ? B if
A0 # B0. Implications obey Armstrong rules, which are valid for
functional dependencies in relational databases (Maier, 1983).
Moreover, there is a two-way reduction between implications
and functional dependencies. A minimal subset of implications
from which all the rest can be deduced by means of Armstrong
rules is called an implication base. Most well-known bases are
Duquenne-Guigues or stem base (Guigues & Duquenne, 1986),
which is cardinality minimal, and proper premise base (Ganter &
Wille, 1999). Implications can be read from the lattice diagram
too, implications with singleton premises of the form a ? B are
easily seen: the concept (a0,a00) lies below the concept (B0,B00). The
first and one of the most well-known knowledge discovery FCA-
based procedure is Attribute Exploration (Ganter & Wille, 1999),
at each step of which an implication base for the current context
representing domain data is generated and offered to a domain ex-
pert, who either accepts all implications of the base (in which case
the procedure terminates) or gives a counterexample to the impli-
cation he finds wrong. Data can be given in a more general way by
Web services FCA information retrieval

X
X X

X X
X

X X X



Fig. 1. Line diagram corresponding to the context from Table 1.
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many-valued contexts (relational tables), in which case they are re-
duced to binary contexts by means of conceptual scaling (Ganter &
Wille, 1999). Each type of scaling (nominal, ordinal, interordinal,
dichotomic, etc.) is given by a scaling context.

Retrieving the extent of a formal concept from a line diagram
such as the one in Fig. 1 implies collecting all objects on all
paths leading down from the corresponding node. To retrieve
the intent of a formal concept one traces all paths leading up
from the corresponding node in order to collect all attributes.
The top and bottom concepts in the lattice are special. The top
concept contains all objects in its extent. The bottom concept
contains all attributes in its intent. A concept is a subconcept
of all concepts that can be reached by traveling upward. This
concept will inherit all attributes associated with these
superconcepts.

2.2. Description logics

Description logics (DLs) provide a structured language for repre-
senting knowledge in a certain domain (Baader, Calvanese,
McGuinness, Nardi, & Patel-Schneider, 2003). Concept descriptions,
i.e. expressions built from unary and binary predicates using con-
structors provided by the DL language, are used to formally express
important notions in the domain. Concept descriptions are used in
combination with a terminology box, defining the terminology of
the domain, and an assertion box, stating facts about a specific
world. A terminology box can consist of e.g. definitions N � C
assigning name N to description C. An interpretation R is a pair (do-
main D, interpretation function f) which maps each concept in the
terminology box to a subset of the domain, every role to a binary
relation on the domain, and each name in the assertion box to an
element of the domain. Checking of subsumption C v D, where C
and D are concept descriptions, means checking if concept descrip-
tion D is more general than concept description C.

Two main research directions have emerged from attempts to
combine DL and FCA (Sertkaya, 2010):

1. Enriching FCA by using constructors from DL languages
� Prediger and Stumme (1999) have introduced theory driven

scaling by combining DLs with attribute exploration. DLs are
used to indicate restrictions on co-occurrence of FCA attri-
butes, a DL reasoner is used during the attribute exploration
to confirm or to provide a counterexample if the implication
is valid or not respectively.

� Prediger (2000a), Prediger (2000b) enriched FCA with logical
constructors including relations, existential and universal
quantifiers, and negation.

� Rouane-Hacene, Huchard, Napoli, and Valtchev (2007)
extended FCA with inter object and concept links encoded
by description logics resulting in Relational Concept Analysis
(see also Section 5.3.3).

2. Using FCA for improving the potential of DLs in knowledge
representation
� Baader (1995); Baader and Sertkaya (2004) used attribute

exploration for computing the subsumption hierarchy of
all conjunctions of a set of DL concepts.

� Stumme (1996) extended the subsumption hierarchy of
Baader (1995) with disjunctions of DL concepts and used
distributive concept exploration instead of attribute
exploration.

� Baader and Molitor (2000) used FCA for bottom-up construc-
tion of DL knowledge bases, i.e. the concepts of the domain
are not defined, rather examples of a concept are given
and the system composes a concept description.
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� Rudolph (2006) proposed relational exploration, where DLs
are used to specify FCA attributes, and FCA to refine DL
knowledge bases.

� Baader and Distel (2008, 2009) and Distel (2010a) Distel
(2010b) replaced the atomic attributes in FCA by complex
formulae in a DL language.

2.3. Conceptual graphs

Sowa (1976) wrote the first paper (followed by the book Sowa
(1984)) introducing the notion of Conceptual Graphs (CGs). Concep-
tual graphs were used as intermediate language for mapping nat-
ural language questions and assertions to a relational database.
Many types of CGs have been proposed since the initial papers of
John Sowa, cf. the books Dau (2003) and Chein and Mugnier
(2009). For a simple CG, the knowledge base structure consists of
two entities: the vocabulary which encodes hierarchies of types
and the conceptual graph itself which represents entities and rela-
tions between them. A vocabulary is a triple

V ¼ TC ; TR ¼ T1
R; . . . ; TK

R

� �
; I

� �

where TC is a partially ordered set of concept types, each is a partially
ordered set of relation types of arity i, and I is a set of individual
markers. These sets are pairwise disjoint and all partial orders are
denoted by 6. Other features may also appear in a vocabulary
(Baget, Croitoru, Gutierrez, Leclere, & Mugnier, 2010; Baget & Fortin,
2010). A conjunctive concept type over a vocabulary V is a set T =
{t1, . . . , tp} of concept types. If T = {t1, . . . ,tp} and T 0 ¼ t01; . . . ; t0q

n o
are two conjunctive concept types, then we also note

T 6 T 0 () 8t0I 2 T 0; 9tj 2 T

such that tj 6 t0i. The signature r maps each relation type of arity k to
a k-tuple of conjunctive concept types, that encodes the maximal
type of its arguments. The signature has the covariance property,
meaning that if r2 6 r1, then the ith argument of r2 is a specialization
of the ith argument of r1.

A basic CG on a vocabulary V ¼ ðTC ; TRÞ is a bipartite graph. The
sets C and R contain a respectively concept and relation nodes. A
concept node c 2 C is labeled by a pair (type (c), marker (c)) where
type (c) is a conjunctive concept type built on TCand marker (c) is
either an individual marker of I , in which case c is called individual,
or the generic marker⁄, in which case c is called generic. A relation
node r 2 R is labeled by type (r) 2 TR and is linked to k concept
nodes, where k is the arity of type (r).

Concept nodes with the same marker refer to the same entity. A
CG is normal when no two distinct concept nodes denote the same
entity. A CG can be transformed into a normal graph by merging
nodes representing the same entity. CGs can be translated into first
order logic. Conceptual graphs are visualized as a combination of
rectangles representing concepts, circles representing names of
conceptual relations and arcs representing relations. An arc point-
ing from a rectangle to a circle indicates that the corresponding
concept is the first argument of the relation, and an arc pointing
from a circle to a rectangle indicates the corresponding concept
is the last argument. The relation between concept graphs and
FCA was studied in numerous papers, see Dau (2003, 2003b) and
Dau et al. (2005).

3. Dataset

This Systematic Literature Review (SLR) has been carried out by
considering a total of 1072 papers related to FCA published be-
tween 2003 and 2011 in the literature and extracted from the most
relevant scientific sources. The sources that were used in the
search for primary studies contain the work published in those
journals, conferences and workshops which are of recognized qual-
ity within the research community. These sources are:

� IEEE Xplore Digital Library
� ACM Digital Library
� Sciencedirect
� Springerlink
� EBSCOhost
� Google Scholar
� Conference repositories: ICFCA, ICCS and CLA conference

Other important sources such as DBLP or CiteSeer were not
explicitly included since they were indexed by some of the men-
tioned sources (e.g. Google Scholar). In the selected sources we
used various search strings including ‘‘Formal Concept Analysis’’,
‘‘FCA’’, ‘‘concept lattices’’, ‘‘Temporal Concept Analysis’’. To identify
the major categories for the literature survey we also took into ac-
count the number of citations of the FCA papers at CiteseerX. Per-
haps the major validity issue facing this systematic literature
review is whether we have failed to find all relevant studies,
although the scope of conferences and journals covered by the re-
view is sufficiently wide to achieve sufficient coverage. We also en-
sured that papers appearing in multiple sources were taken into
account only once, i.e. duplicate papers were removed.

The papers that were downloaded from the World Wide Web
were all in PDF format. These PDF-files were converted to ordinary
text and the abstract, title and keywords were extracted. We used
the knowledge browsing environment ‘‘COncept Relation Discov-
ery and Innovation Enabling Technology’’ (CORDIET, Elzinga,
2011; Poelmans et al., 2012a; Poelmans, Elzinga, Viaene, & Dedene,
2010a) to support our literature analysis process. One of the cen-
tral components of our text analysis environment is the thesaurus
containing the collection of terms describing the different research
topics. The initial thesaurus was constructed based on expert prior
knowledge and was incrementally improved by analyzing the con-
cept gaps and anomalies in the resulting lattices. The thesaurus is a
layered thesaurus containing multiple abstraction levels. The first
and finest level of granularity contains the search terms of which
most are grouped together based on their semantic meaning to
form the term clusters at the second level of granularity. CORDIET
was used to index the extracted parts of the papers using the the-
saurus. The result was a cross table describing the relationships be-
tween the papers and the term clusters or research topics from the
thesaurus. This cross table was used as a basis to generate the lat-
tices with Concept Explorer (Yevtushenko, 2000).
4. Literature overview

The 1072 papers are grouped together according to a number of
features within the scope of FCA research. We visualized the pa-
pers using concept lattices, which facilitate our exploration and
analysis of the literature. The lattice diagram in Fig. 2 contains se-
ven categories which were prominent topics in the 1072 FCA pa-
pers. Knowledge discovery is the most popular research theme
covering 23% of the papers and will be analyzed in detail in this
survey. Recently, improving the scalability of FCA to larger and
complex datasets emerged as a new research topic covering 9%
of the 1072 FCA papers. In particular, we note that more than
one third of the papers dedicated to this topic work on issues in
the KDD domain. Scalability will be discussed in detail in Sec-
tion 5.5. Another important research topic in the FCA community
is information retrieval covering 13% of the papers. 36 of the pa-
pers on information retrieval describe a combination with a KDD
approach and in 27 IR papers authors make use of ontologies. 15
IR papers deal with the retrieval of software structures such as
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software components. The FCA papers on information retrieval are
discussed in detail in Poelmans et al. (2012b). In 13% of the FCA pa-
pers, FCA is used in combination with ontologies or for ontology
engineering. FCA research on ontology engineering will be dis-
cussed in part 2 of this survey (Poelmans, Ignatov, Kuznetsov, &
Dedene, 2013a). Another important topic is using FCA in software
engineering (13%), which is also discussed in part 2 of this survey.
Finally in 24% of all papers complex descriptions for FCA were
investigated, see Section 5.3 for a detailed overview.

5. Models and tools in FCA-based KDD research

Knowledge Discovery in Databases (KDD) and Data Mining
(DM) is a research field in which methodologies are developed
for extracting knowledge from data. In the past, the focus was on
developing fully automated tools and techniques that extract
new knowledge from data. These techniques assumed clear defini-
tions of the concepts available in the underlying data, which is of-
ten not the case. They allowed almost no interaction between the
human actor and the tool and failed in incorporating valuable ex-
pert knowledge into the discovery process (Keim, 2002), which is
needed to go beyond uncovering the fool’s gold. Visual data explo-
ration (Eidenberger, 2004) and visual analytics (Thomas & Cook,
2006) are especially useful when little is known about the data
and exploration goals are vague. Since the user is directly involved
in the exploration process, shifting and adjusting the exploration
goals is automatically done if necessary.

In Conceptual Knowledge Processing (CKP) the focus lies on
developing methods for processing information and knowledge
which stimulate conscious reflection, discursive argumentation
and human communication (Wille, 2006). The word ‘‘conceptual’’
underlines the constitutive role of the thinking, arguing and com-
municating human being and the term ‘‘processing’’ refers to the
process in which something is gained which may be knowledge.
An important subfield of CKP is Conceptual Knowledge Discovery
(Stumme, 2002, 2003; Stumme, Wille, & Wille, 1998). FCA is
Fig. 2. Lattice diagram contain
particularly suited for exploratory data analysis because of its hu-
man-centeredness (Hereth, Stumme, Wille, & Wille, 2003). The
generation of knowledge is promoted by the FCA representation
that makes the inherent logical structure of the information trans-
parent. The philosophical and mathematical foundations of FCA
tools for knowledge discovery have been briefly summarized in
Priss (2006). The systems TOSCANA (Vogt & Wille, 1994), Concept
Explorer (Yevtushenko, 2000), FcaStone (Priss, 2008), InClose (An-
drews, 2009), ToscanaJ (Becker, Hereth, & Stumme, 2002), Galicia
(Valtchev, Missaoui, & Godin, 2008) have been used as knowledge
discovery tools in various research and commercial projects.

In Section 5.1 we zoom in on the papers in the field of associa-
tion rule mining. In Section 5.2 the relation of FCA to some stan-
dard machine learning techniques is investigated. Section 5.3
discusses the complex descriptions of FCA theory for knowledge
discovery. The methods for dealing with uncertain data such as
fuzzy and rough FCA, will be discussed in Section 5.4. In Section 5.5
we discuss scalability issues in the KDD studies.

5.1. Association rule mining

Association rule mining (ARM) is one of the main models in Data
Mining (Agrawal et al., 1996). An association rule is just a state-
ment about conditional sample probability (called confidence) of
an event wrt. another one, together with the statement of the joint
sample probability of the two events (called support), where both
events are described in terms of attribute sets. In FCA terms, for
two subsets of attributes (called itemsets in Data Mining) Y1 and
Y2 # M the association rule Y1 ? Y2 has support

jðY1 [ Y2Þ0j
jGj

and confidence

jðY1 [ Y2Þ0j
jY 01j
ing 1072 papers on FCA.
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The rule Y1 ? Y2 is called frequent if supp(Y1 ? Y2)P minsupp for
some threshold minsupp. In FCA association rules were known un-
der the name of partial implications.

Recent approaches for FI mining use the closed itemset paradigm
to limit the mining effort to the subset of frequent closed itemsets
(FCIs). A frequent itemset Y # M is a frequent closed itemset if and
only if Y00 = Y, the intent of a concept C is a closed itemset. Several
FCA-based algorithms were developed for mining frequent closed
itemsets including CLOSE, PASCAL, CHARM, CLOSET and TITANIC
(Stumme, Bestride, Taouil, & Lakhal, 2002a) which mines frequent
closed itemsets by constructing an iceberg concept lattice. The
reader is kindly referred to Lakhal and Stumme (2005) for a de-
tailed overview.

5.1.1. Minimal generators and generic basis
For a context K, a set H # M is a minimal generator of a closed

set hence of the concept (Y0,Y) if and only if His a minimal subset of
Y such that H00 = Y. There can be multiple minimal generators for an
intent Y. Therefore we define the set-valued function mingen which
associates to concepts their minimal generator sets:

mingenðY 0;YÞ ¼ fH # YjH00 ¼ Y and for all E � H; E00 � Yg:

Minimal generators (Bastide, Pasquier, Taouil, Stumme, & Lakhal,
2000) were introduced in various fields under various names: min-
imal keys in the database field (Maier, 1983), irreducible gaps (Gui-
gues & Duquenne, 1986), minimal blockers (Pfaltz, 2002) and 0-free
itemsets (Boulicaut, Bykowski, & Rigotti, 2003). Minimal generators
have some nice properties: they have relatively small size and they
form an order ideal (downset) of (2M, 6). Recall that an order ideal
of an ordered set (P,6) is a subset Q # P such that if x 2 Q, y 6 x im-
plies y 2 Q. They were typically extracted to support frequent item-
set computation (Bastide et al., 2000), frequent closed itemset
computation (Pasquier, Taouil, Bastide, Stumme, & Lakhal, 2005),
iceberg lattice construction (Stumme et al., 2002), etc. Other appli-
cations of minimal generators include deriving a generic association
rule basis (Gasmi, Yahia, Nguifo, & Slimani, 2005a,Gasmi et al.,
2005b), obtaining concise representations of frequent itemsets
(Boulicaut, 2005) etc.

Implications or exact association rules are rules of the form r:
Y1? (Y2,Y1) between two frequent itemsets Y1 and Y2 whose clo-
sures are identical Y 001 ¼ Y 002, i.e. confidence (r) = 1. Let FCI be the
set of frequent closed itemsets extracted from the context K and,
for each frequent closed itemset F, let GF denote the set of genera-
tors of F. The generic basis for exact association rules is:

GB ¼ fr : H ! F n HjF 2 FCI ^ H 2 Gf ^ H – Fg:

All valid exact association rules, their supports and confidences can
be deduced from the rules of the generic basis and their supports. A
generic basis is a reduced set of association rules which preserves
the most relevant rules without loss of information (Bastide et al.,
2000). The generic basis for exact association rules contains only
minimal non-redundant rules. Each approximate association rule
Y1? (Y2nY1) relates two frequent itemsets Y1 and Y2 such that the
closure of Y1 is a subset of the closure of Y2 : Y 001 � Y 002, i.e.
confidence(r) < 1.

A cover of approximate association rules can be defined as fol-
lows: let FCI be the set of frequent closed itemsets and let mingen
denote the set of their minimal generators. Then (F0,F) � (H0,H) in
the order of the concept lattice. The informative cover for approx-
imate association rules is:

IC ¼ fr : H! F n HjF 2 FCI ^ H 2 mingenF ^ H00 � Fg:

All valid approximate association rules, their supports and confi-
dences, can be deduced from the rules of the informative cover,
their supports and their confidences. In terms of a concept lattice
a rule from IC corresponds to a descending path in the lattice
diagram, the premise being a mingen of the starting concept of
the path, the conclusion being the end point of the path. Confidence
of such a rule can be given as a product of confidences of the rules
corresponding to the shortest such paths, i.e. edges diagram. This
consideration gives a smaller subset of association rules represent-
ing a whole set. Bastide et al. (2000) provided algorithms for deriv-
ing generic bases of both exact and approximate association rules.
In Ben Yahia and Nguifo (2004) inference axioms are provided for
deriving association rules from generic bases. Other bases include
the representative rules (Kryszkiewicz, 1998), Duquennes–Guiges
basis (Guigues & Duquenne, 1986), Luxenburger basis (Luxenburg-
er, 1991), proper basis (Ganter & Wille, 1999), structural basis (Pas-
quier, Bastide, Taouil, & Lakhal, 1999). For a comparative study of
these bases the reader is referred to (Kryszkiewicz, 2002).

5.1.2. Algorithms for computing minimal generators
During recent years FCA researchers have targeted minimal

generators as an instrument to improve the performance of ARM
algorithms. Table 2 summarizes the most recent evolutions in
FCA-based methods for mining minimal generators.

Valtchev, Missaoui, and Godin (2004); Valtchev et al. (2008)
start with an overview of the existing FCA-based association rule
mining techniques. They also propose two incremental methods
for computing the minimal generators of a closure system, namely
during factor lattice assembly and upon insertion of new objects in
the context. Another important result of this work is the Galicia
platform. Rouane-Hacene, Nehme, Valtchev, and Godin (2004)
adapt this object insertion maintenance method for iceberg lat-
tices. Nehmé, Valtchev, Rouane, and Godin (2005) propose a novel
method for efficiently updating the minimal generator set after
expanding the context attribute set. They also adapted this incre-
mental method for iceberg lattice maintenance. Tekaya, Yahia,
and Slimani (2005) propose an algorithm called GenAll to build
an FCA lattice in which each concept is decorated by its minimal
generators with the aim of deriving a generic basis of association
rules. The GenAll algorithm is based on the algorithm presented
by Nourine and Raynaud (1999). Hamrouni, Yahia, and Slimani
(2005a); Hamrouni, Yahia, and Slimani (2005b) propose an algo-
rithm called PRINCE which builds a minimal generator lattice from
which the derivation of generic association rules becomes straight-
forward. Innovative is that the partial order is maintained between
minimal generators instead of closed itemsets. Dong, Jiang, Pei, Li,
and Wong (2005) introduce the Succinct System of Minimal Gener-
ators (SSMG) as a minimal representation of the minimal genera-
tors of all concepts and provide an efficient algorithm for mining
SSMGs. The SSMGs are used for reducing the size of the represen-
tation of all minimal generators. Unfortunately their work was
slightly flawed, but the SSMG system was improved by Hamrouni,
Ben Yahia, and Mephu Nguifo (2008). Hamrouni, Yahia, and Nguifo
(2007) present a new sparseness measure for formal contexts
using the framework of SSMGs. Their measure is an aggregation
of two complementary measures, namely the succinctness and
compactness measures of each equivalence class, induced by the
closure operator. This is important for the performance of frequent
closed itemset mining algorithms which is closely dependent on
the type of handled extraction context, i.e. sparse or dense. Her-
mann and Sertkaya (2008) investigate the computational complex-
ity of some of the problems related to generators of closed
itemsets. The authors also present an incremental polynomial time
algorithm that can be used for computing all minimal generators of
an implication-closed set. The ZART algorithm (Szathmary, Napoli,
& Kuznetsov, 2007) built further on the Pascal algorithm (Bastide,
Taouil, Pasquier, Stumme, & Lakhal, 2002) and relies on pattern
counting inference. Frequent itemsets can be grouped in equiva-
lence classes and each class contains a minimal generator (which
is discovered first by ZART), a frequent closed itemset and all other



Table 2
Research on FCA-related minimal generator computation.

Paper Main contributions to FCA’s minimal generator research subfield

Pasquier et al. (1999) � A-Close and Close algorithm mine FCIs like Apriori but replace candidates by generators
Stumme et al. (2002a) � Titanic builds further on A-Close and uses advanced properties of generators to efficiently compute iceberg concept lattices
Valtchev et al. (2004, 2008) � Algorithm Inc-gen for incrementally updating the minimal generators after new objects are inserted in the context

� Algorithm for computing minimal generators during factor lattice assembly
� Implementation and benchmarking of algorithm Inc-gen with Close and A-Close
� Galicia software system

Rouane-Hacene et al. (2004) � Mingen-related part of lattice maintenance method in Valtchev et al. (2004) is modified for iceberg lattice maintenance
Frambourg et al. (2005) � Incremental updating of minimal generators during lattice merging

� Implementation and performance evaluation of their minimal generator computation algorithm
Tekaya et al. (2005) � GenAll algorithm builds FCA lattice which is based on the algorithm in Nourine and Raynaud (1999)

� Each concept is decorated by its minimal generators
� Generic basis are derived from these concepts and generators

Nehmé et al. (2005) � Algorithm IncA-Gen for incrementally updating the set of minimal generators upon increases in the attribute set of the context
� Adaptation of IncA-Gen for iceberg lattice maintenance resulting in Magalice-A
� Magalice-A has better performance on sparse datasets than Titanic

Hamrouni et al. (2005a, 2005b) � PRINCE algorithm for building a minimal generator lattice
� The partial order is built and maintained between mingens instead of CIs
� Generic basis is derived from this lattice and the minimal generators
� Experimental results on 2 datasets show that the partial order computation does not result in worse performance than Titanic,

Close or A-Close
Dong et al. (2005) � The authors noted the redundancy in the minimal generators associated to a closed itemset

� Introduction of two main categories of minimal generators: succinct and redundant
� Succinct system of Minimal Generators as a concise representation of minimal generator set and SSMG-Miner algorithm

Hamrouni et al. (2007) � New sparseness measure for contexts using the frame work of SSMGs
Hamrouni et al. (2008) � Corrects flaws in the work of Dong et al. (2005)

� The Succinct System of Minimal Generators now forms an exact representation of the minimal generator set (i.e. no loss of
information)
� The SSMGs associated to a context share the same size
� The SSMG makes it possible to remove redundant minimal generators without loss of information
� The improved SSMG framework is used to derive a more compact generic basis of association rules

Hermann and Sertkaya (2008) � Overview of minimal generator-related algorithm complexities
� Adaptation of algorithm from relational databases to determine all minimal generators of an implication–closed set
� Introduction of ‘‘minimal cardinality generators’’ and algorithms for their generation

Szathmary et al. (2007) � ZART algorithm for levelwise mining of frequent itemsets
� Pattern counting inference improves performance compared Apriori for frequent itemsets generation
� Identification of frequent closed itemsets.
� Association of minimal generators with frequent closed itemsets

Szathmary et al. (2008, 2009,
2011)

� ‘‘TOUCH’’ method which combines CHARM-based FCI extraction and Talky-G-based frequent generator extraction and then
matches the FGs toFCIs
� SNOW method which extracts precedence links from FCIs and frequent generators
� SNOW-TOUCH method which can be used for iceberg lattice construction
� SNOW-TOUCH has high efficiency on dense datasets
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elements. ZART generates these itemsets like Apriori in levelwise
manner but support only needs to be counted for the generators,
since all itemsets in the equivalence class have the same support
value which significantly improves efficiency. Then closed itemsets
are identified among frequent itemsets and the generators are
associated to their closures. From this information minimal non-
redundant association rules can easily be derived. Szathmary, Valt-
chev, Napoli, and Godin (2008) proposes a new method Touch
which extracts FCIs using CHARM and frequent generators using
Talky-G. These frequent generators are then matched to FCIs. The
Snow method (Szathmary, Valtchev, Napoli, & Godin, 2009) ex-
tracts precedence links from frequent generators and FCIs and is
combined with Touch (Szathmary et al., 2011) to form a novel ice-
berg lattice construction algorithm. Their method Snow-Touch
performs particularly well on dense datasets. Missaoui, Nourine,
and Renaud (2010); Missaoui, Nourine, and Renaud (2012) present
an approach for exhaustive generation of implications without
negation and implications with negation. In their approach, mini-
mal generators of the apposition of a formal context and its com-
plementary context whose attributes are negative are generated
first. Then implications are inferred from implications whose pre-
mises are these minimal generators.

5.1.3. Other FCA-related ARM research
Richards and Malik (2003a, 2003b) start from the methods of

generating Ripple-Down Rules (RDR) (Compton et al., 1991) which
is used to acquire classification rules, i.e. association rules with a
set of conditions in the premise and a class label in the consequent
from cases. These low-level rules are then taken as objects (identi-
fied by the rule number and conclusion) and the rule conditions as
attributes. From this formal context a concept lattice is created
which the authors use to uncover redundancies in the knowledge
base and derive higher-level rules. Like in the work of Pasquier
(2000) they focus on producing non-redundant classification
rather than association rules. Experiments with their method were
performed on 13 datasets from chemical pathology. Their method
allows for queries at and across different levels of abstraction. Gup-
ta, Kumar, and Bhatnagar (2005) proposed a method for extracting
classification rules based on FCA. The incremental CBALattice algo-
rithm constructs for each label a concept lattice from which these
rules are derived. Maddouri (2005) proposes a new approach to
mine interesting itemsets as the optimal concepts covering a bin-
ary table. To speed up the costly calculation of frequent itemsets,
the author proposes a heuristic polynomial time algorithm to cal-
culate these itemsets and the concept coverage. Experimental eval-
uation on five datasets representing biological sequences coding
macromolecules shows that this heuristic method outperforms
Apriori in terms of calculation time. Maddouri and Kaabi (2006)
summarize and compare 15 statistical measures which were intro-
duced for selecting pertinent association rules. Their bibliographic
summary is complemented by an experimental study in which
rules are extracted from several datasets with various densities.
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The pertinence measures are applied to these rule bases and the re-
sults of this exercise may help users select the appropriate mea-
sure for their data. Maddouri (2004) outlines a new incremental
learning approach IPR based on FCA that supports incremental
concept formation and applies it to the problem of cancer diagno-
sis. The incremental approach has the advantage of handling the
problem of data addition, data deletion, data update, etc. Meddouri
and Maddouri (2009) combine FCA with AdaBoost.M2 to extract
classification rules. The authors first extract a subset of the objects
and then select the attribute with minimal entropy. Then they ap-
ply the closure operators of FCA to obtain a pertinent formal con-
cept. This concept is transformed into a classification rule which
has its intent as condition and the majority class of the extent as
conclusion. The discovered rule is then used to classify all objects
and the whole procedure is repeated several times. Using AdaBoost
these different weak classifiers are combined resulting in better er-
ror rate and less extracted concepts than IPR. In Quan, Ngo, and Hui
(2009), a new cluster-based method is proposed for mining associ-
ation rules. To improve the computational effort required for ARM
the authors first cluster objects based on the similarity of their
attributes. For each cluster they create a concept lattice from which
the association rules are extracted. In Zarate and Dias (2009), FCA
is used to extract and represent knowledge in the form of a non-
redundant canonical rule base with minimal implications from a
trained Artificial Neural Network (ANN).

5.2. FCA-based learning models

A relatively small subset of the surveyed papers about KDD
investigate the relationships between FCA and other machine
learning techniques. Machine learning models start from input
data consisting of positive and negative examples of a target attri-
bute w and try to construct a generalization of the positive exam-
ples that would not cover any negative example. Important
machine learning tasks where concept lattices were used include
the generation of implication bases, bases of association rules
and closed itemsets. Multiple authors tried to formulate several
machine learning methods in FCA terms. Ganter and Kuznetsov
(2003) express version space learning in terms of FCA. In Kuznet-
sov (2004a) the author described version space and decision tree
learning in the language of FCA. The first approach for formulating
learning models from positive and negative examples in concept
lattices makes use of standard FCA (Ganter & Kuznetsov, 2000;
Kuznetsov, 2004a, 2004b). In this case the input data consists of
positive (+)-examples, which are objects that are known to have
the target attribute and negative (-)-examples which are known
not to have the target attribute. The results for learning are rules
for classification of undetermined (u)-examples. Given a positive
context Kþ ¼ ðGþ; M; IþÞ, a negative context K� ¼ ðG�;M; I�Þ and
an undetermined context Ku = (Gu, M, Iu), where G+ is a set of posi-
tive examples, G� a set of negative examples and Gu a set of unde-
termined examples, M is a set of attributes and Ie # Ge �
M,e 2 {+,�,u}. A learning context is defined as

K� ¼ ðGþ [ G�; M [ fwg; Iþ [ I� [ Gþ � fwgÞ:

A classification context is defined as

Kc ¼ ðGþ [ G� [ Gu; M [ fwg; Iþ [ I� [ Iu [ Gþ � fwgÞ:

The derivation operators in these contexts are denoted by (.)+, (.)�,
(.)u, (.)±, respectively. If a pair (A+,B+) is a concept of the context Kþ,
then it is called a positive (+)-concept and the sets A+ and B+ are
called positive (+)-intent and extent. If (B+ å {g�}�) for any g� 2 G�,
then it is called a positive (+)-hypothesis with respect to the target
attribute w. A (+)-intent B+ is called falsified if B+ # {g�}� for some
negative example g�. Negative (-)-intents and hypotheses are de-
fined similarly. These hypotheses can be used for classifying unde-
termined examples from Gu. If gu 2 Gu contains a positive hypothesis
H+, i.e. {gu}u 	 H+, we say that H+ is a positive classification of g. If
there is a hypothesis for the positive classification of gu and no
hypothesis for the negative classification of gu, then gu is classified
positively. If {gu}u does not contain any negative or positive hypoth-
esis, then no classification is made. If {gu}u contains both positive
and negative hypothesis then the classification is said to be contra-
dictory. A positive hypothesis H+ is a minimal positive hypothesis if
no H # H+ is a positive hypothesis.

In the second case the data is more complex and instead of hav-
ing attributes, the objects satisfy certain logical formulas or are de-
scribed by labeled graphs. In this case pattern structures (see
Section 5.3.1) have been proposed to describe these learning mod-
els (Kuznetsov, 2004a).

Fu, Fu, Njiwoua, and Nguifo (2004a) performed a benchmarking
study of FCA-based classification algorithms including GRAND
(Oosthuizen, 1994), LEGAL (Liquiere & Nguifo, 1990), GALOIS
(Carpineto et al., 1993), RULEARNER (Sahami, 1995), CIBLe (Nji-
woua & Mephu Nguifo, 1999), and CLNN & CLNB (Xie, Hsu, Liu, &
Lee, 2002). Nguifo and Njiwoua (2001) proposed IGLUE, an algo-
rithm combining lattice-based and instance-based learning tech-
niques. Ricordeau (2003) and Ricordeau and Liquiere (2007) used
FCA to generalize policies in reinforcement learning by grouping
similar states using their descriptions. A policy represents the prob-
ability for an agent to select action a being in state s. Aoun-Allah and
Mineau (2006) propose a method for distributed data mining which
first mines the datasets in a distributed manner and then uses FCA
to gather the results as a set of rules to form a meta-classifier. Ru-
dolph (2007) proposes to use FCA to design a neural network archi-
tecture in case some partial information about the networks
desired behavior is already known and can be stated in the form
of implications on the feature set. The author first represents a clo-
sure operator as a formal context and then translate this context
into a 3-layered feedforward network which calculates the closure
A00, where A # M. Tsopze, Mephu Nguifo, and Tindo (2007) propose
the CLANN algorithm which uses concept lattices to build the archi-
tecture of a neural network. First they build a join semi-lattice of
formal concepts by applying constraints to select relevant concepts.
Second they translate the join semi-lattice into a topology for the
neural network, and set the initial connection weights. Third, they
train a network on a supervised dataset using this topology. Nguifo,
Tsopze, and Tindo (2008) later on extended their approach to mul-
ticlass datasets resulting in the M-CLANN algorithm.

Belohlavek, De Baets, Outrata, and Vychodil (2009) uses FCA to
induce decision trees from data tables. In a first step, the categor-
ical attributes are scaled to logical attributes. Then a modified ver-
sion of the NextNeighbor algorithm (Lindig, 2000) is used to build a
reduced concept lattice. From this lattice, trees of concepts can be
selected. A tree of concepts can then be transformed into a decision
tree. Outrata (2010) used FCA as a data preprocessing technique.
The authors used boolean factor analysis to transform the attribute
space to improve the results of machine learning and in particular
decision tree induction. Boolean factor analysis is a method which
decomposes an n �m binary matrix I into a Boolean product A 
B
of an n � k binary matrix A and a k �m binary matrix B with k as
small as possible. To compute the decomposition, the algorithms
in Belohlavek and Vychodil (2009) and Belohlavek and Vychodil
(2010) were used with modified optimality criterion of the com-
puted factors. In a first variant, the set F consisting of k factors is
added to the collection of m attributes used as input for the ma-
chine learning method. In the second variant, the original m attri-
butes are replaced by k factors. The authors validated the second
data preprocessing variant by means of decision trees and an in-
stance based learning method on UCI machine learning repository
datasets. The models obtained on average better performance on
test datasets.
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Visani, Bertet, and Ogier (2011) proposed Navigala, a naviga-
tion-based approach for supervised classification, and applied it
to noisy symbol recognition. The majority of papers on using Galois
lattices for classification first select the concepts which encode rel-
evant information. Another approach is based on navigation, clas-
sification is performed by navigating through the complete lattice
(similar to the navigation in a classification tree), without applying
any selection operation. Their article also includes a comparison
between possible selection and navigation strategies. (See Fig. 3).

5.3. Complex descriptions for KDD

In practice, data is generally more complex than those de-
scribed by attributes within formal contexts. A first approach to
handle complex data in FCA is conceptual scaling (Ganter & Wille,
Fig. 3. Lattice diagram containing 1072 papers
1989), which is a process that takes complex data as an input, and
outputs a standard formal context, called the scaled context.
Nested line diagrams is a technique that was initially introduced
by Wille (1984). The line diagrams for practical applications typi-
cally get very large, then the set of attributes may be split into
two parts, a line diagram is drawn for each part and then these line
diagrams are nested into each other. The result is a simplified dia-
gram which can be ‘‘zoomed’’ to see the ‘‘fine’’ structure. Nested
line diagrams are, supported in TOSCANA for instance (Vogt &
Wille, 1994).

In the last years, multiple theoretical extensions and applica-
tions have been introduced into the literature that further improve
the applicability of traditional FCA theory to knowledge discovery
problems. In this section we describe a selection of some notorious
extensions of traditional FCA theory which can be found in Fig. 4.
on FCA and association rule mining topics.



Fig. 4. Lattice diagram with FCA extensions.
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Since the 1980s many authors attempted to generalize its defi-
nitions to more complex data representations, such as graphs,
intervals, logical formulas, etc. Pattern structures (Ganter & Kuz-
netsov, 2001) were introduced to analyze data which cannot be di-
rectly described by object-attribute matrices. Three extensions
offer the possibility to analyze arbitrary relations between objects:
Power Context Families (Wille, 1997a), Relational Concept Analysis
(Huchard et al., 2002) and Logical Concept Analysis (Ferré & Ri-
doux, 2000). Triadic Concept Analysis was introduced by Lehmann
and Wille (1995) and Wille (1995) to analyze three dimensional
data. Wolff (2000) described Temporal Concept Analysis for inves-
tigating temporal relations in data with FCA. Finally, fuzzy FCA and
rough FCA were developed to work with uncertain data. The exten-
sions are summarized in Tables 3 and 4.

5.3.1. Pattern structures
Pattern structures generalize previous models extending FCA

definitions to graphs and numeric intervals. Let G be a set of ob-
jects, let (D,u) be a meet-semilattice (of potential object descrip-
tions) and let d:G ? D be a mapping. Then (G,D,d) with D = (D,u)
is called a pattern structure, and the set d(G):¼{d(g)jg 2 G} gener-
ates a complete subsemilattice (Dd, u), of (D,u). Thus each X # d(G)
has an infimum (uX) in (D,u) and (Dd,u) is the set of these infima.
Each (Dd, u) has both lower and upper bounds, respectively 0 and
1. Elements of D are called patterns and are ordered by subsump-
tion relation v: given c, dD one has c v d, c v d = c. A pattern
structure G,D,d gives rise to the following derivation operators (.):

A� ¼ ug2AdðgÞ for A # G; g 2 A

d� ¼ fg 2 Gjd v dðgÞg for d # D

These operators form a Galois connection between the powerset of
G and (D,v). Pattern concepts of G,D,d are pairs of the form (A,d),
A # G,d 2 D such that Ah = d and A = dh. For a pattern concept
(A,d) the component d is called a pattern intent, it is a description
of the set of all objects in A, called pattern extent. If (A, d) is a pat-
tern concept, adding any element to A changes d through (.)h and
equivalently taking e � d changes A. Like in case of formal contexts,
for a pattern structure G,D,d a pattern d 2 D is called closed if dhh = -
d and a set of objects A # G is called closed if Ahh = A. Obviously,
pattern extents and intents are closed. A seeming limitation of pat-
tern structures to descriptions in semi-lattice is easily waived: one
can start from descriptions in an arbitrary order (P,6) taking as
(D,u), the lattice of all order ideals of (P,6).

Since 1980s pattern structures on sets of graphs (Kuznetsov,
1999) and vectors of intervals (Kuznetsov, 1991; Kaytoue, Kuznet-
sov, Macko, & Meira, 2011a) were used in the study of the Struc-
tural-Activity Relation problem (for more details, see Section 5 in
part 2 of this survey). Pattern structures were used to express some
traditional machine learning methods such as version spaces in
FCA terms (Ganter & Kuznetsov, 2001; Kuznetsov, 2004a). Ganter,
Grigoriev, Kuznetsov, and Samokhin (2004) and Kuznetsov and
Samokhin (2005) summarize applications of pattern structures in
chemistry and show the relation to methods based on closed
graphs. Kuznetsov (2009) discusses the analysis of complex data
with pattern structures, stressing that pattern structures are com-
putationally more efficient and provide better visualization of re-
sults than FCA methods based on scaling. Kaytoue, Duplessis,
Kuznetsov, and Napoli (2009); Kaytoue et al. (2011a) applied pat-
tern structures to mine gene expression data (for more details, see
Section 5 in part 2 of this survey). This gene expression data was
available as a many-valued context and therefore had to be scaled
to a binary context. The authors compared traditional FCA with
interordinal scaling and pattern structures which were extended
to deal with interval data. The authors found the interval pattern
structures offering a more concise representation, better scalability
and better readability of the pattern concept lattice. Assaghir, Kay-
toue, Meira, and Villerd (2011) did an exploratory study on the
possibilities of decision tree induction from numerical data by
using interval pattern structures. Interval pattern structures are
used to extract sets of minimal positive and negative hypotheses.
They then propose an algorithm to extract decision trees from
these minimal hypotheses, where minimal hypotheses correspond
to optimal splits in decision trees.
5.3.2. Logical concept analysis
Logical Concept Analysis (LCA) started as an extension of FCA to

description based on first order formulas (Ferré & Ridoux, 2004).
Later on the notion of logic in this model was generalized, which
made it similar to pattern structures. Ferré and Ridoux (2000) give
an introduction to Logical Information Systems (LIS) which are
based on the theory of LCA. The main characteristics and aims of
an LIS are:



Table 3
Extensions of Formal Concept Analysis and their applications.

Extension name Landmark paper Notorious further research

Pattern structures Ganter and Kuznetsov (2001) � Ganter and Kuznetsov (2003): Complex version spaces for which classifiers form a complete semilattice, are
described using pattern structures
� Kuznetsov (2004a): Machine learning models from positive and negative examples can in certain cases be

described using pattern structures
� Ganter et al. (2004) and Kuznetsov and Samokhin (2005): Approximate labeled graphs from chemistry

through pattern structures
� Kaytoue et al. (2009, 2011a) Mining gene expression data with interval pattern structures compared to FCA

with interordinal scaling
� Kuznetsov (2009): Pattern structures allow for directly processing complex data and are a computationally

more efficient method than scaling
� Assaghir et al. (2010): Pattern structures are used to organize the result of merging numerical information

from several sources
� Assaghir et al. (2011): Pattern structures are used to extract positive and negative hypotheses from numerical

data from which decision trees can be built
Logical Concept

Analysis
Ferré and Ridoux (2000) � Ferré and King (2004):Introduction to Logical Information Systems based on LCA

� Ferré and Ridoux (2004):The novel data browsing system for bioinformatics databases, ‘‘BLID’’, is based on
LCA
� Pecheanu et al. (2004, 2006):Conceptual modeling of training domain knowledge presented to the learner in

computer-assisted instructional environment
� Ferré et al. (2005):Detailed description on how to model relations between objects in LCA
� Morin and Debar (2005) and Morin et al. (2009):Support alarm fusion and correlation to confirm or invalidate

alerts raised by intrusion detection systems
� Ferré (2006):Represent incomplete knowledge, negation and opposition in LCA
� Cellier et al. (2007, 2008a):FCA with a taxonomy is defined in LCA terms and an algorithm for exploring con-

cepts in such a context is provided
� Falleri et al. (2007) and Ferré (2009):CAMELIS tool for management of digital photo collections
� Bedel et al. (2007a, 2007b):Exploration of individual geographical objects without taking into account their

mutual organization
� Bedel et al. (2008):Spatial relations are included in the geographical data exploration
� Ducassé and Ferré (2008):Decision process in committee meetings is made more rational with LCA
� Foret and Ferré (2010):Connection of categorical grammars to LIS
� Allard et al. (2010): LCA is used to browse a lattice of cubes extracted from association rules
� Ducassé et al. (2011): Case study describing how a publication strategy is determined by six researchers with

LIS
Relational

Concept
Analysis

Huchard et al. (2002) � Dao et al. (2004): Static UML class model engineering
� Huchard et al. (2007): Formal description and state of the art of the RCA method
� Rouane-Hacene et al. (2007): Concepts and relations extracted with RCA are represented in description logics
� Falleri et al. (2007): Generic encoder for transforming software structures in RCF and decoder for the obtained

lattices
� Rouane-Hacene et al. (2008): Semi-automated construction of ontologies
� Bendaoud et al. (2008): Interactive ontology design method
� Moha et al. (2008): Correcting design defects in software engineering
� Falleri et al. (2008): Generic method for improving class models by discarding redundancy and adding rele-

vant abstractions
� Chen et al. (2009): Identification of service candidates in legacy systems
� Hamdouni et al. (2010): Identifying architectural components from object-oriented system code
� Dolques et al. (2010b): Generating transformation rules from examples of transformed models
� Dolques et al. (2010a, 2012): Refactoring use case diagrams.
� Rouane-Hacene et al. (2010): Designing concept lattices that can be reengineered as ontology design patterns
� Azmeh et al. (2011): Web service selection based on QoS properties and composebility of services
� Azmeh et al. (2011): Relational queries for navigating a concept lattice family

Power Context
Families

Wille (1997) � Wille (1998): Triadic concept graphs and triadic power context families
� Prediger (1998): Logical approach to represent concept graphs with a semantic in power context families
� Prediger and Stumme (1999): Relational scaling to transform a many-valued context into a power context

family
� Wille (2001): Boolean judgment logic to define negation of formal judgments represented as concept graphs

of power context families
� Groh and Eklund (1999) and Groh (2002): Algorithms and implementations for creating power context fam-

ilies from conceptual graphs
� Hereth (2002): Power context family resulting from canonical translations of a relational database is used to

create a formal context of functional dependencies
� Wille (2004): Implications can be seen as specific concept graphs of power context families
� Rudolph (2004): Binary power context families are used to assign to a concept with DL descriptions in the

intent, all entities in the universe which fulfill this description
� Varga and Janosi-Rancz (2008): Software tool which constructs formal context of functional dependencies

using power context families.
Triadic FCA Wille et al. (1995), Lehmann

and Wille (1995)
� Biedermann (1998): Powerset trilattice theory
� Voutsadakis (2002): Generalization of triadic concept analysis to n-dimensional contexts
� Biedermann (1997), Ganter et al. (2004a): Implications in triadic formal context.
� Jaschke et al. (2006): TRIAS algorithm for mining iceberg tri-lattices
� Jäschke et al. (2008): Mining folksonomies with TRIAS algorithm.
� Belohlavek and Osicka (2010): Triadic concept analysis with fuzzy attributes
� Glodeanu (2010) and Belohlavek and Vychodil (2010): Factorization of triadic data.
� Konecny and Osicka (2010): General concept-forming operators

(continued on next page)
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Table 3 (continued)

Extension name Landmark paper Notorious further research

� Ignatov et al. (2011): Triclustering extension of biclustering
� Glodeanu (2011): Fuzzy valued triadic implications
� Kaytoue et al. (2011b): Derive biclusters from gene expression data using triadic FCA
� Missaoui and Kwuida (2011): Mining triadic association rules

Temporal FCA Wolff et al. (2000) � Wolff (2002a): Introduction of transitions in Conceptual Time Systems
� Wolff (2002b): Conceptual Time System with Actual Objects and a Time relation
� Wolff (2004), Wolff (2006) and Wolff (2007): Temporal Conceptual Semantic systems to represent distrib-

uted objects.
� Wolff (2005) and Wolff (2011): Overview of state of Temporal Concept Analysis theory, applications and SIE-

NA tool
� Wolff (2009a, 2009b): Relational Semantic Systems
� Wolff (2010): Temporal Relational Semantic Systems
� Poelmans et al. (2011b): Profiling human trafficking suspects extracted from unstructured texts
� Wollbold et al. (2011): Application of Temporal Conceptual Semantic Systems to study disease processes of

arthritic patients
� Elzinga et al. (2012): Analyzing the evolution of pedophile chat conversations with Temporal Concept

Analysis

Table 4
Combining Formal Concept Analysis with fuzzy and rough set theory.

Extension
name

Landmark paper Notorious further research

Fuzzy FCA Burusco and Fuentes-
Gonzalez (1994)

� Belohlavek (1998) and Pollandt (1997): Developed the basic notions of FCA with fuzzy attributes independently
� Georgescu and Popescu (2002): Defined the notion of a fuzzy concept lattice associated with fuzzy logic with a non-

commutative conjunction
� BenYahia and Jaoua (2001) and Krajci (2003): Introduced the one sided fuzzy concept lattices
� Krajci (2005a): Defined generalized concept lattices, which use three sets of truth degrees, i.e. for the objects, for the

attributes and for the degrees to which objects have attributes
� Belohlavek and Vychodil (2005a): Survey of the different fuzzy concept lattice approaches
� Belohlavek and Vychodil (2006a): Attribute implications in a fuzzy setting
� Belohlavek et al. (2007a, 2011): Identify dependencies between demographic data and degree of physical activity
� Belohlavek and Konecny (2007): Scaling and granulation for FCA with fuzzy attributes
� Medina et al. (2007, 2009): Multi-adjoint concept lattices were introduced which have adjoint triples, a.k.a. biresidua-

ted structures, at their core
� Pankratieva and Kuznetsov (2010, 2012): Mapping between crisply-generated concepts, proto-fuzzy concepts and pat-

tern structures
Rough FCA Kent (1996) � Yao and Lin (1997): Generalized formulation of RST using binary relation on two universes instead of equivalence

relation
� Saquer and Deogun (1999): Approximation of a set of objects, a set of properties and a pair of a set of objects and a set of

properties is performed using concepts of a concept lattice
� Hu et al. (2001): Definition of partial order on the set of objects instead of equivalence relation as in Kent (1996)
� Gediga and Duntsch (2002): Introduction of lattice constructed on approximate operators
� Duntsch and Gediga (2003): Introduction of modal-style operators based on a binary relation and the property-oriented

concept lattice
� Yao (2004): Used modal-style operators to introduce object-oriented concept lattice
� Yao and Chen (2006, 2005): Combination of FCA and RST based on definability
� Deogun and Jiang (2005): Evaluation of three different approaches for context approximation
� Ganter (2008): Lattices obtained from generalized approximation operators forming a kernel-closure pair are described

in the language of FCA
� Meschke (2009): Robust elements in rough concept lattices
� Meschke (2010): Approximations in concept lattices
� Ganter and Meschke (2009, 2011): Analysis of large rough datatables
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1. combine querying and navigation
2. be reasonably efficient on large collections of objects
3. make use of an expressive language for object descriptions and

queries.
4. be generic with respect to the set of objects and language

A logical context K is a triple ðO;L; dÞwhere O is a set of objects,
L is a logic (e.g. proposition calculus) and d is a mapping from O to
L that describes each object by a formula. A logic is a 6-tuple
L ¼ ðL;v;u;t;>;?Þ where.

� L is the language of formulas
� v is the subsumption relation
� u and t are respectively conjunction and disjunction
� > and \ are respectively tautology and contradiction
The extent of a logical formula f is the set of objects in O whose
description is subsumed by f: 8f 2 L ext ðf Þ ¼ ðo 2 OjdðoÞ v f Þ.

The intent of a set of objects O is the most precise formula
that subsumes all descriptions of objects in O: 8O #O int
(O) = t o2Od(o).

A logical concept is a pair c=(O,f) where O #O and f 2 L such
that int (O) = f and ext (f) = O. O is called the extent of the concept
c, i.e. ext (c) andf is the intent, i.e. int (c). The set of all logical con-
cepts is ordered and forms a lattice: let c and c0 be two concepts,
c 6 c0 iff ext (c) # ext (c0). Note also that c 6 c0 iff int (c)v int (c0).
c is called a subconcept of c0.

Here is an overview of some notorious applications. Ferré et al.
(2004b) developed a database system for bio-informatics research
based on LIS. The objects are segments of DNA in chromosomes of
some organism, attributes are diverse in nature. The authors inte-
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grated data from different sources and build a query language spe-
cifically suited for browsing through bioinformatics data. In Ferré
(2007); Ferré (2009) the author introduces CAMELIS, an implemen-
tation of LIS with multiple applications of which they chose the
management of a photo collection as being the most convincing
one. Photos are being organized in a lattice using the metadata at-
tached to them. By entering a query, the user can retrieve the ex-
tent of a concept in the lattice (which consists of photos) and
navigate up or down in the lattice by expanding or refining the en-
tered query respectively. Ducassé and Ferré (2008) apply Camelis
in combination with Concept Explorer in the setting of committee
meetings to support more rational and comprehensible decision-
making (such as choosing among job applicants). Morin and Debar
(2005, 2009) developed an LCA based system for alarm fusion and
correlation in intrusion detection systems to reduce the number of
alerts. LCA is used to reason over the alerts and their relation to
other alerts which may help confirm or invalidate them. Pecheanu,
Dumitriu, Stefanescu, and Segal (2004); Pecheanu, Dumitriu, Ste-
fanescu, and Segal (2006) used LCA to model training domain
knowledge in a computer-assisted instructional environment. Each
learner has its own cognitive style and conceptually organizing the
available knowledge may help improve the interaction with the
user. Bedel, Ferré, Ridoux, and Quesseveur (2007a, 2007b) used
LIS to query and browse a collection of individual geographical ob-
jects using spatial properties such as position, shape and date.
These attributes were used to group these objects. Bedel, Ferré,
and Ridoux (2008) increase the complexity of their system by
including spatial relations between objects such as distance rela-
tions. They show how LCA can be used to navigate through these
data and how these spatial relations can be exploited. Cellier, Ferré,
Ridoux, and Ducassé (2007); Cellier, Ferré, Ridoux, and Ducassé
(2008a) relate FCA with a taxonomy to LCA and describe how the
attributes of a context are ordered and can be considered as a logic
where the taxonomy represents the order relation. The goal of their
research was to learn interesting association rules from such con-
texts. Ferré (2009) presented an approach for decomposing con-
texts into simpler and specialized components named logical
context functors. Allard, Ferré, and Ridoux (2010) proposed a
method based on Online Analytical processing for presenting rules
(e.g. association rules) as a set of cubes. The authors build a lattice
which has cubes as concepts and the links between concepts rep-
resent possible navigation paths. LIS is used to browse this cube
lattice. In Ducassé, Ferré, and Cellier (2011) six researchers used
LIS to jointly select appropriate conferences for submitting their
papers.

The main stream of research about combining logic and FCA fo-
cused on LCA, however some other authors did similar research.
Chaudron and Maille (1998); Chaudron, Maille, and Boyer (2003)
used ‘‘cubes’’ which are existentially quantified conjunctions of
first-order literals as intents of formal concepts, resulting in a lat-
tice of cubes and a definition of first-order FCA. Another related ap-
proach was developed by Bain (2003, 2004) who combined FCA
with first-order logic to learn ontological rules.

5.3.3. Relational concept analysis
Relational concept analysis (RCA) was introduced to take into ac-

count relational attributes. Huchard et al. (2002) introduced the
relational context family, which is a collection of contexts and in-
ter-context relations, the latter being binary relations between
pairs of object sets lying in two different contexts. The objective
was to build a set of lattices whose concepts are related by rela-
tional attributes.

A relational context family R is a pair (K,R), where K is a set of
contexts Ki ¼ ðOi;Ai; IiÞ, R is a set of relations rk # Oi � Oj, where Oi

and Oj are the object sets of the formal contexts Ki and Kj. A rela-
tion rk # Oi � Oj has a domain and a range, where.
� O ¼ fOijKi ¼ ðOi;Ai; IiÞ; Ki 2 Kg
� rk:Oi ? 2Oj

� dom: R ? O and dom (rk) = Oi

� ran: R ? O and ran (rk) = Oj

� rel: K ? 2R and rel ðKiÞ ¼ frkjdomðrkÞ ¼ Oi}

The instances of relation rk, rk(oi,oj), where oi 2 O and oj 2 Oj, are
called links. The links can be ‘‘ scaled’’ to be included as binary
attributes of the form r:c through relational scaling. Given a rela-
tion r 2 relðKiÞ and a lattice Lj on Kj with Oj = ran(r), the narrow
scaling operator scðr;LjÞ

x : K ? K is defined as follows:

scðr;LjÞ
x ðKiÞ ¼ Oðr;LjÞ

i ;Aðr;LjÞ
i ; Iðr;LjÞ

i

� �
;

where

Oðr;LjÞ
i ¼ Oi;A

ðr;LjÞ
i ¼ Ai [ fr : cjc 2 Lj; rðoÞ – ;; rðoÞ# extent ðcÞg

Applications of RCA theory are mainly in the fields of software
(re) engineering and ontology design. The RCA approach is imple-
mented and freely available in the Galicia platform (Huchard, Rou-
ane-Hacene, Cyril Roume, & Valtchev, 2007). The first motivation
for developing the RCA theory was the engineering of a static
UML class model as described in Dao, Huchard, Rouane-Hacene,
Roume, and Valtchev (2004). When applying RCA to software anal-
ysis, a returning and tedious task is encoding the model or program
as a relational context family and after analysis, decoding the ob-
tained concept lattice family into the initial language. Falleri, Aré-
valo, Huchard, M, and Nebut (2007) developed a generic encoder/
decoder to ease this task in the future. Further research of the
author focused on the development of a generic method for
improving class models, by removing redundancy and suggesting
relevant abstractions. Moha, Rouane-Hacene, Valtchev, and Guéhé-
neuc (2008) used RCA to automatically propose the user software
hierarchy refactorings to correct some specific design defects. In
particular, the authors focused on how to split up a Blob class, a
very large and computationally heavy collection of methods
(Brown, Malveau, McCormick, & Mowbray, 1998) into multiple
cohesive sets of class members that can be used to improve the
hierarchy. Another approach that uses RCA is proposed by Dolques,
Huchard, Nebut, and Reitz (2010b). The authors use RCA to semi-
automatically generate transformation rules between different
meta-models (i.e. syntaxes) which can be of interest to software
developers using Model Driven Engineering. Instead of writing a
transformation program, which is common practice their method
learns transformation rules from transformation examples. Ham-
douni, Seriai, and Huchard (2010) use RCA to recover software
components from legacy code. These components can be used to
build a high-level architecture which can be used to improve the
quality of the system. Chen, Zhang, Li, Kang, and Yang (2009) reen-
gineer existing legacy code to service-oriented software by identi-
fying service candidates using RCA. Azmeh et al. (2011) use RCA to
organize web services (FCA objects) based on amongst others qual-
ity of service properties (FCA attributes) and composebility of ser-
vices chosen for neighboring tasks in a workflow (inter-object
links). Azmeh et al. (2011) introduce relational queries for navigat-
ing such a concept lattice family. Dolques, Nebut, Huchard, and Re-
itz (2010a, 2012) use RCA to refactor use case diagrams specified in
UML.

The second popular application domain of RCA is ontology engi-
neering. Rouane-Hacene, Napoli, Valtchev, Toussaint, and Bend-
aoud (2008) propose an approach for semi-automated
construction of ontologies using RCA. Text analysis is used to trans-
form a document collection into a set of data tables, or contexts
and inter-context relations. RCA then turns these into a set of con-
cept lattices with inter-related concepts. Core ontology is derived
from the lattice in a semi-automated manner by translating rele-
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vant elements into ontological concepts and relations. Rouane-Ha-
cene, Fennouh, Nkambou, and Valtchev (2010) build further on this
work by using FCA and RCA for Ontology Design Pattern (ODP)
development. ODPs can be reused to improve the quality of ontol-
ogies and are in essence similar to design patterns from software
engineering.

5.3.4. Power context families
Wille (1997) proposed a method to transform conceptual

graphs into a family of formal contexts, called a Power Context Fam-
ily (PCF). A PCF K ¼ ðKnÞn2N0 is a family of formal contexts
Kk ¼ ðGk;Mk; IkÞ such that Gk # (Go)k for k = 1,2, . . . The formal
contexts Kk with k P 1 are called relational contexts. The power
context family K is said to be limited of type n 2 N0 if
K ¼ ðK0; K1; K2;...; KnÞ, otherwise, it is called unlimited. In Wille
(1998), triadic concept graphs and triadic PCFs were proposed.
Prediger (1998) presented a logic for defining sample concept
graphs as syntactical constructs with a semantics in PCFs. In Pred-
iger (2000a) this research was extended for defining nested con-
cept graphs as situation-based judgments in triadic PCFs.
Prediger and Stumme (1999) introduced relational scaling to trans-
form a many-valued context into a PCF. The concept graphs of a
PCF were shown to form a lattice which can be described as a sub-
direct product of specific intervals of the concept lattices of the
PCF. Groh and Eklund (1999) discussed various algorithms for cre-
ating relational power context families from conceptual graphs.
Groh (2002) implemented an algorithm which can transform a
simple CG into a PCF and can deal with positive nested CGs. Wille
(2001) proposed ‘‘Boolean Judgment Logic’’ and the ‘‘negating
inversion’’ to define the negation of formal judgments (defined as
valid propositions) represented by concept graphs of PCFs. Wille
(2004) proves that the implicational theory of implicational con-
cept graphs of PCFs is equivalent to the theory of attribute implica-
tions of formal contexts. In other words implications can be seen as
special judgments, namely as specific concept graphs of PCFs. Ru-
dolph (2004) uses binary power context families to define an
extensional semantic for concept descriptions expressed in FLE.
The authors show how a special kind of contexts can be con-
structed using a binary power context family from a set of DL-
formulae.

5.3.5. Triadic FCA
Recently the focus shifted from developing 2-dimensional to 3-

dimensional data analysis techniques. This evolution is driven by
the increase in popularity of social resource sharing systems called
folksonomies where users can assign tags to resources. Triadic Con-
cept Analysis (Triadic CA), started by Lehmann and Wille (1995) and
Wille (1995), can provide a solid FCA background for dealing with
three-way data. A triadic context is defined as a quadruple (G, M, B,
Y) where G (objects), M (attributes) and B (conditions) are sets and
Y is a ternary relation between G, M and B:Y # G �M � B. A triple
(g,m,b) 2 Y means object g has attribute m under condition b. A tri-
adic concept is a triple (A1,A2,A3) with A1 # G(extent), A2 -
# M(intent) and A3 # B(modus) such that for X1 # G,X2 # M
and X3 # B with X1 � X2 � X3 # Y; the containments A1 # X1,A2 -
# X2 and A3 # X3 always imply (A1,A2,A3) = (X1,X2,X3). Triadic
concepts consist of three sets, namely objects, attributes and con-
ditions under which objects may possess certain attributes. Stum-
me (2005) discusses how traditional line diagrams of standard
dyadic concept lattices can be used for exploring triadic data. The
author showcases how it can be used for navigating through the
Federal Office for Information Security IT baseline Protection Man-
ual. In Jaschke et al. (2006) the author introduced the TRIAS algo-
rithm for mining all frequent closed itemsets from 3-dimensional
data and applied it to the popular bibsonomy (users-tags-papers)
dataset in Jäschke, Hotho, Schmitz, Ganter, and Stumme (2008).
TRIAS basically relies on extraction of closed 2-sets from two bin-
ary relations. Belohlavek and Osicka (2010) extended Triadic CA to
deal with fuzzy attributes instead of traditional boolean data ta-
bles. Alternatives to TRIAS include the algorithms RSM and Cube-
Miner which were introduced by Ji, Tan, and Tung (2006) for
mining closed 3-sets from ternary relation. In contrast to RSM
and TRIAS, Cube-Miner works directly on the ternary relation.
The authors use cubes, which have the particularity that none of
their tuples are in relation and hereby generalize the closedness
checking of Besson, Robardet, Boulicaut, and Rome (2005) to the
triadic case. Both TRIAS and CubeMiner have some issues: TRIAS’s
performance suffers if the first set of objects in the ternary relation
is too large. CubeMiner needs for each candidate several checks to
ensure its closedness and each candidate can be generated several
times. Another approach was proposed in Zhao and Zaki (2005) for
mining temporal gene expression data. The authors extracted max-
imal triclusters satisfying certain homogenity criteria from these
gene expression tables. Mining triadic implications from Boolean
triadic contexts was discussed in Biedermann (1997) and Ganter
et al. (2004). Glodeanu (2011) generalized these triadic implica-
tions to a fuzzy setting. Missaoui and Kwuida (2011) discuss the
different types of methods for mining triadic association rules from
ternary data. Ignatov, Kuznetsov, Magizov, and Zhukov (2011)
proposed concept-based triclustering as an extension of concept-
based biclustering. The authors use a notion of box-operator
instead of triadic concept forming operators and obtain as a result
a relaxation of the conventional formal concept (tricluster). Kay-
toue, Kuznetsov, Napoli, and Duplessis (2011b) apply the methods
of Triadic CA for analysing gene expression data. They scale this
data into a triadic context and derive maximal biclusters. Several
authors generalized bi-and triclustering even further to the n-
dimensional case. Voutsadakis (2002) extended triadic concept
analysis to n-dimensional contexts.

5.3.6. Temporal FCA
Temporal Concept Analysis (Temporal CA) addresses the problem

of conceptually representing discrete temporal phenomena (Wolff,
2001). Wolff (2005) and Wolff (2011) give an overview of the
developments in Temporal CA. The program SIENA can be used
for graphical representation of temporal systems. In Wolff
(2000), the author introduced the notions of a Conceptual Time
System (CTS), a situation and a state of a CTS. A conceptual time
system (Wolff & Yameogo, 2003) contains the observations of ob-
jects at several points of time. Abstraction is made of the duration
of an observation and a point of time, which is called time granule.
The starting many-valued context consists of an event part which
is scaled to

C ¼ ððG; E;V ; IÞ; ðSeje 2 EÞÞ

and a time part which is scaled to

T ¼ ððG;M;W; ITÞ; ðSmjm 2 MÞÞ;

both on the same object set G. The attributes observed at each
time granule are described in the event part of the data table.
The pair (T, C) is called a CTS on the set G of time granules.
The derived context of T is denoted by KT , the derived context
of C is denoted by KC and the apposition of KT and KC is de-
noted by KTC ¼ KT jKC . The object concepts of this context are
called situations, the object concepts of C are called states and
the object concepts of T are called time states. The sets of situ-
ations, states and time states are called the situation space, the
state space and the time state space of (T, C), respectively. Wolff
(2002) introduced a CTS with a time relation (T, C, R), where
R # G � G are transitions in a CTS denoted as pairs of time ob-
jects (g,h) 2 R. Let X be a set and f:G ? X, then f induces the
mapping
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fR : R! fðf ðgÞ; f ðhÞÞjðg;hÞ 2 Rg

where fR((g,h)) = (f(g), f(h)). The element (g(h), (f(g), f(h))) 2 fR is
called the f-induced R-transition on X leading from the startpoint
(g, f(g)) to the endpoint (h, f(h)). A transition can intuitively be con-
sidered as a ‘‘step from one point to another’’ for an object. Transi-
tions between situations, states, time states, and phases can then be
induced easily. This leads to temporal representations of processes.
Each arrow in a Temporal CA lattice represents a ‘‘transition of the
object’’ and corresponds to an element of R. The transitions form a
life track of the object f in X, i.e. the set f = {(g,f(g))jg 2 G}. In the
visualization of the data, the ‘‘natural temporal ordering’’ of the
observations is expressed using this time relation R introduced on
the set G of time granules of a conceptual time system.

Wolff (2002b) relates the notions of states and transitions in
automata theory to the conceptual description of states, situations
and transitions in Temporal CA. A CTS with Actual Objects and a
Time Relation was introduced in Wolff (2004) to have a mathemat-
ical notation for temporal systems in which many objects are mov-
ing, e.g., physical particles and waves. Waves and wave packets are
‘‘distributed objects’’ in the sense that they may appear simulta-
neously at several places. Wolff (2006) investigate how to repre-
sent the state of such a distributed object in Temporal CA theory.
Wolff and Yameogo (2005) investigate the connection between
the theory of computation and Temporal CA. Wolff (2009a); Wolff,
(2009b) introduces the relational extension of Temporal CA theory
called Temporal Relational Semantic Systems. The applications of
Temporal CA theory are discussed in part 2 of this survey
(Poelmans et al., 2013a).

5.3.7. Other emerging extensions of FCA
Multiple authors emphasized the need for taking into account

background knowledge in FCA. Belohlavek and Vychodil (2009c)
present an approach for modeling background knowledge that rep-
resents user’s priorities regarding attributes and their relative
importance. Only those concepts that are compatible with user’s
priorities are considered relevant and are extracted from the data.
In Pogel and Ozonoff (2008), FCA is used in combination with a tag
context to formally incorporate important kinds of background
knowledge. The results are Generalized Contingency Structures
and Tagged Contingency Structures which can be used for data
summarization in epidemiology. In Cellier et al. (2008a) an algo-
rithm is proposed to learn concept-based rules in the presence of
a taxonomy. In its classical form FCA considers attributes as a
non-ordered set. When attributes of the context are partially or-
dered to form a taxonomy, conceptual scaling allows the taxonomy
to be taken into account by producing a context completed with all
attributes deduced from the taxonomy.

In Besson, Robardet, and Boulicaut (2006), FCA is extended to
cope with faults and to improve formal concepts towards fault tol-
erance. Pfaltz (2007) extends FCA to deal with numerical values, by
deriving logical implications containing ordinal inequalities as
atoms, such as y 6 11. This extension employs the fact that order-
ings are antimatroid closure spaces. Valverde-Albacete and Pelaez-
Moreno (2006) introduced a generalization of FCA for data mining
applications called K-Formal Concept Analysis where incidence
values are elements of a semiring instead of 0 or 1. This idea was
further developed in Valverde-Albacete and Pelaez-Moreno
(2007) where the lattice structure for such generalized contexts
was introduced. This research topic was further investigated in
Valverde-Albacete and Pelaez-Moreno (2008, 2011). González Cal-
abozo, Peláez-Moreno, and Valverde-Albacete (2011) applied K-
FCA to the analysis of gene expression data. In Deogun, Jiang, Xie,
and Raghavan (2003), FCA is complemented with Bacchus proba-
bility logic, which makes use of statistical and propositional prob-
ability inference. The authors introduce a new type of concept
called ‘‘previously unknown and potentially useful’’ and formalize
KDD as a process to find such concepts.

5.4. Mining uncertain data with FCA

In this section we give a concise overview of the developments
in fuzzy and rough FCA theory. We chose to mention in Table 4
only a selected number of publications which gives an overview
of the main research streams in these areas. The reader is kindly re-
ferred to Poelmans, Ignatov, Kuznetsov, and Dedene (2013b) for a
full overview of the development of this theory.

5.4.1. Fuzzy FCA
Fuzzy concept lattices were first introduced by Burusco and

Fuentes-Gonzalez (1994), however their theory had its limitations
since they did not use residuated lattices and merely introduced
some basic notions. Belohlavek and Pollandt further developed
the basic notions of FCA with fuzzy attributes independently, so,
there are two seminal works Belohlavek (1998) and Pollandt
(1997) on this topic. The paper Belohlavek (1998) focuses on
studying similarity in fuzzy concept lattices rather than introduc-
ing basic notions. The structure of truth degrees L endowed by log-
ical connectives is represented by a complete resituated lattice
L = hL, ^, _, �, ? , 0, 1i such that:

� hL, ^, _, 0, 1i is a complete lattice with 0 and 1 being the least
and greatest element of L respectively
� (L,�,1) is a commutative monoid, i.e. � is commutative, asso-

ciative and a� 1 = 1 � a = a for each a 2 L
� � and L satisfy the adjointness property a � b 6 c, a 6 b ? c;

for each a,b,c 2 L
� � and ? are (truth functions of) ‘‘fuzzy conjunction’’ and ‘‘fuzzy

implication’’
� By LU (or LU) we denote the collection of all fuzzy sets in a uni-

verse U, i.e. mappings A of U to L. For A 2 LU and a 2 L, a set
aA = {u 2 UjA(u) P a} is called an a-cut of A.

In Belohlavek (2001b) the author studies fuzzy closure opera-
tors, which are, along with fuzzy Galois connections, the basic
structures behind fuzzy concept lattices. These results have been
later used many times in different papers on the topic. In
Belohlavek (2001a) the author also shows a relationship between
fuzzy Galois connections and ordinary Galois connections. He
uses this result to show how a fuzzy concept lattice may be
regarded as an ordinary concept lattice. Belohlavek and Vychodil
(2005a) present a survey and comparison of the different ap-
proaches to fuzzy concept lattices which were elaborated till that
time. Belohlavek and Vychodil (2006a) give an overview of recent
developments concerning attribute implications in a fuzzy set-
ting. The recent computational issues concerning algorithms for
finding fuzzy concepts are discussed in the paper Belohlavek
et al. (2010).

The following definition of a formal fuzzy concept lattice was
introduced in Belohlavek (1999, 2004a) and Belohlavek and
Vychodil (2005a). A fuzzy formal context (L-context) is a triple
(X,Y, I), where X is the set of objects, Y is the set of attributes and
I: X � Y ? L is a fuzzy relation (L-relation) between X and Y. A truth
degree I(x,y) 2 L is assigned to each pair (x,y), where x 2 X,y 2 Y and
L is the set of values of a complete residuated lattice L. The element
I(x,y) is interpreted as the degree to which attribute y applies to
object x. Fuzzy sets A 2 Lx and B 2 Ly are mapped to fuzzy sets
A" 2 Ly,B; 2 Lx according to Belohlavek (1999).

A"ðyÞ ¼ Kx2XðAðxÞ ! Iðx; yÞÞ
B#ðxÞ ¼ Ky2YðBðyÞ ! Iðx; yÞÞ
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for y 2 Y and x 2 X. A formal fuzzy concept h A, Bi consists of a fuzzy
set A of objects (extent of the concept) and a fuzzy set B of attributes
(intent of the concept) such that A" = B and B; = A. The set of all for-
mal fuzzy concepts is BðX;Y ; IÞ ¼ fhA;BijA" ¼ B;B# ¼ AgWe also de-
fine 6which models the subconcept-superconcept hierarchy in B

(X, Y, I): hA1, B1i 6 hA2, B2i , A1 # A2 , B2 # B1 for hA1, B1i, hA2, -
B2i 2 B(X,Y, I). hB (X,Y, I), 6i, i.e. B (X,Y, I) equipped with relation
6 is a complete lattice w.r.t. 6. For a more complete overview of
these developments, the reader is referred to Poelmans et al.
(2013b), where other related formalisms, such as one-sided fuzzy
concept lattices (BenYahia & Jaoua, 2001;Krajci, 2003) proto-fuzzy
concepts (Kridlo & Krajci, 2008), multi-adjoint concept lattices
(Medina, Ojeda-Aciego, & Ruiz-Calvino, 2009) and their relations
to fuzzy setting are discussed.

5.4.2. Rough FCA
Rough Set Theory (RST) was introduced by Pawlak (1982, 1985,

1992) and is a mathematical technique to deal with uncertainty
and imperfect knowledge. In rough set theory, the data for analysis
consists of universe U. Objects characterized by the same attribute
values are called indiscernible (similar) in view of the available
information about them. By modeling indiscernibility as an equiv-
alence relation, E # U � U one can partition a finite universe of ob-
jects into pair wise disjoint subsets denoted by U/ E. The partition
provides a granulated view of the universe. An equivalence class is
considered as a whole, instead of many individuals. For an object
x 2 U, the equivalence class containing x is given by [x]E = {y 2
UjxEy}. The empty set, equivalence classes and unions of equiva-
lence classes form a system of definable subsets under discernibil-
ity. It is a r-algebra r(U/E) # 2U with basis U/E where 2U is the
power set of U. All subsets not in the system are consequently
approximated through definable sets. Various definitions of rough
set approximations have been proposed including the subsystem-
based, granule-based and element-based formulation (Yao & Chen,
2005). In this section we introduce the subsystem-based formula-
tion. In an approximation space apr=(U,E), a pair of approximation
operators ð�
Þ; ð
Þ : 2U ! 2U , is defined. The lower approximation

A 2 rðU=EÞ ¼ [fXjX 2 rðU=EÞ;X # Ag

is the greatest definable set contained in A, and the upper
approximation

A 2 rðU=EÞ ¼ \fXjX 2 rðU=EÞ;A # Xg

is the largest definable set containing A. Any set of all indiscernible
(similar) objects is called an elementary set (neighborhood) and
forms a basic granule (atom) of knowledge about the universe.
Any union of elementary sets is a crisp (precise) set, otherwise
the set is rough (imprecise, vague). Each rough set has boundary-
line cases, i.e. objects which cannot be classified with certainty as
either members of the set or its complement. Crisp sets have no
boundary-line elements at all. Boundary-line cases cannot be prop-
erly classified by employing the available knowledge.

Vague concepts (in contrast to precise concepts) cannot be
characterized in terms of information about their elements. In
other words, given an arbitrary subset A # U of the universe of ob-
jects, it may not be the extent of a formal concept. This subset can
be seen as an undefinable set of objects and can be approximated
by definable sets of objects, namely extents of formal concepts.
Any vague concept is replaced by a pair of precise concepts, called
the lower and upper approximation of the vague concept. The low-
er approximation consists of all objects which surely belong to the
concept and the upper approximation contains all objects which
possibly belong to the concept. The difference between the lower
and upper approximation constitutes the boundary region of the
vague concept.
Many efforts have been made to combine FCA and rough set
theory (Yao, 2004a). This combination is typically referred to as
Rough Formal Concept Analysis (RFCA). In RFCA r(U/E) is replaced
by lattice L and definable sets of objects by extents of formal con-
cepts. The extents of the resulting two concepts are the approxima-
tions of A. For a set of objects A # U its lower approximation is
defined as

lðAÞ ¼ ð[fXjðX;YÞ 2 L;X # AgÞ00

and its upper approximation is defined by

�lðAÞ ¼ \fXjðX;YÞ 2 L;A # Xg

The lower approximation of a set of objects A is the extent of (l(A),
(l(A))0) and the upper approximation is the extent of the formal con-
cept ð�lðAÞ; ð�lðAÞÞ0Þ. The concept (l(A), (l(A))0), is the supremum of con-
cepts where extents are subsets of A and is the infimum of those
concepts where extents are superset of A. For the other RST formu-
lations a similar description can be given for the combination of FCA
and RST. Ganter (2008) use a generalization of the indiscernibility
relation which is considered as a quasi-order of equivalence given
by g 6 h, g0 # h0 for g, h 2 G. This generalization allows for defin-
ing version spaces and hypotheses in terms of RST. Ganter (2008)
generalized the classical rough set approach by replacing lower
and upper approximations with arbitrary kernel and closure opera-
tors respectively. Lattices of rough set abstractions were described
as P-products. Meschke (2009) further investigated the role of ro-
bust elements, the possible existence of suitable negation operators
and the structure of corresponding lattices. Meschke (2010) builds
further on this work by restricting the view for large contexts to a
subcontext without losing implicational knowledge about the se-
lected objects and attributes. Ganter and Meschke (2009, 2011)
use a slightly different approach based on FCA to mine the Info-
bright dataset containing so-called rough tables where objects are
combined together in data packs (Infobright, 2012). Their approach
makes FCA useful for analyzing extremely large data. For a detailed
overview of the development of the theory, the reader is referred to
Poelmans et al. (2013b).

5.5. Scalability

At the international Conference on Formal Concept Analysis in
Dresden (ICFCA, 2006) an open problem of ‘‘handling large con-
texts’’ was pointed out. Since then, several studies have focused
on the scalability of FCA for efficiently handling large and com-
plex datasets. Scalability is a real issue for FCA, since the number
of formal concepts can be exponential in the input context and
counting them is #P-complete (Kuznetsov, 2001), however, all
concepts can be constructed with polynomial delay, see an over-
view of many FCA-based algorithms in (Kuznetsov, 2002). The
sizes of implication bases, even the size of the minimal (stem
or Duquenne-Guigues) implication base can also be exponential,
counting the size of the stem base being #P-hard (Kuznetsov,
2004c), see more results on algorithmic complexity in (Distel,
2010a; Babin & Kuznetsov, 2010). That is why efficiently handling
large and complex datasets became a challenge for FCA-based re-
search. Besides designing more efficient practical algorithms (see,
e.g., Andrews, 2009; Berry, Bordat, & Sigayret, 2007; Fu & Nguifo,
2004b; Kengue, Valtchev, & Djamégni, 2005; Krajca & Vychodil,
2009; van der Merwe, Obiedkov, & Kourie, 2004), the following
approaches to reducing complexity are popular: nested line dia-
grams for zooming in and out of the data, conceptual scaling
for transforming many-valued contexts into single-valued con-
texts, interestingness measures including concept stability, size
of concept extent, and other pruning strategies to reduce the size
of the concept lattice, etc.
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Popular research topics for improving scalability of FCA are
shown in Fig. 5. Nine of these papers use iceberg lattices. Thirteen
of these papers apply a pruning strategy based on concept stability
to reduce the size of concept lattices. Techniques for handling com-
plex data include logical context functors (see Section 5.3.2) and
nested line diagrams. Finally we have the topics parallelization
and the combination with binary decision diagrams and spatial
indexing for improving the scalability of FCA-based algorithms.
In the remainder of this section we focus on the methods devel-
oped for selecting interesting concepts.

When we want to apply FCA to formal contexts which contain
hundreds of thousands of formal objects, iceberg lattices with up
to a few thousand formal concepts are one way to deal with this
situation. Generating subsets of concepts using thresholds on sizes
of extent and intent is a very natural idea coming from pattern rec-
ognition and machine learning: it was proposed to control the set
of generated concepts by Kuznetsov (1989) and Kuznetsov and
Finn (1996). This idea became popular in works on iceberg lattices
(Stumme et al., 2002a) which impose an order filter on a concept
lattice consisting of concepts with ‘‘large’’ extents (and ‘‘small’’
intents). In terms of data mining, iceberg lattices consist of
frequent closed itemsets. They have been used from time to time
in knowledge discovery applications. For example in Jay, Kohler,
and Napoli (2008a), an experiment is performed in which iceberg
lattices are used to discover and represent flows of patients within
a healthcare network. In Stumme (2004) it was investigated how
iceberg query lattices can be used as condensed representations
of frequent datalog queries. Ventos and Soldano (2005) show that
iceberg lattices make a special class of the alpha-Galois lattices
which they introduced. The algorithmic innovations for mining
frequent closed itemsets are discussed in Section 5.1. The exten-
sion of iceberg lattices to three dimensional data is discussed in
Section 5.3.5.

Kuznetsov (2007b) introduced concept stability (Kuznetsov,
1990) as an interest measure for concepts. For a context
K ¼ ðG; M; IÞ and a concept C = (A,B) several stability indices can
be defined:

hcij ¼ fY � Ajjyj ¼ j;Y 0 ¼ Bg; hciR ¼ Un�1
j¼2 hcij;

cjðcÞ ¼ jhcijj; cRðcÞ ¼ jhciRj;n ¼ ðAÞ;
the stability index Jj(c) of the j-th lvel (2 6 j 6 n-1):

JjðcÞ ¼
cjðcÞ

n

j

� � ;

the integral stability index

JRðcÞ ¼
cRðcÞ

2n :

Stability has been used for pruning concept lattices, e.g. in the field
of social networks (Kuznetsov, Obiedkov, & Roth, 2007a; Roth,
Obiedkov, & Kourie, 2008a) and linguistics (Falk & Gardent, 2011).
In Jay, Kohler, and Napoli (2008b), concept stability and support
measures were used to reduce the size of large concept lattices.
These lattices were used to discover and represent special groups
of individuals called social communities. Roth, Obiedkov, and Kou-
rie (2008b) suggest a combined approach of using a pruning strat-
egy based on stability indices of concepts and apply it on its own
and in combination with nested line diagrams for representing
knowledge communities (a community of embryologists was taken
as a case study). Concept independence (Klimushkin, Obiedkov, &
Roth, 2010) is a similar index showing the sparseness of objects
and attributes outside the concept extent and intent that have same
attributes and objects, respectively. Concept probability (Klimushkin
et al., 2010) is the sample probability of a concept in a randomly
generated context with the same number of units. Babin and Kuz-
netsov (2012) proposed an algorithm for approximating the concept
stability index calculation, which has a better time complexity.

Hashemi, De Agostino, Westgeest, and Talburt (2004) propose a
method for efficiently creating a new lattice from an already exist-
ing one when the data granularity is changed. Torim and Lindroos
(2008) present a method based on the theory of monotone systems
for presenting information in the lattice in a more compressed
form. The result of the method is a sequence of concepts sorted
by ‘‘goodness’’ thus enabling the user to select a subset and build
a corresponding sub-lattice of desired size. This is achieved by
defining a weight function that is monotone. Krajca, Outrata, and
Vychodil (2010); Krajca, Outrata, and Vychodil (2012) present an
algorithm which applies dynamic context reduction and sorting
of attributes while computing the formal concepts of a context.
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The number of formal concepts computed multiple times by their
algorithm is substantially lower than after applying other related
algorithms from the Close by One (CbO) family.

Another FCA scalability research topic is attribute reduction.
Dias and Vieira (2010) presented the JBOS approach for replacing
groups of similar objects by prototypical ones. Ganter and Kuznet-
sov (2008) describe how scaled many-valued contexts of FCA may
make feature selection easier. Snásel, Polovincak, Abdulla, and Hor-
ak (2008) study the reduction of concept lattices and implication
bases based on matrix reduction. Other authors who investigated
attribute reduction in the context of FCA are Wu, Leung, and Mi
(2009) and Kumar and Srinivas (2010).
6. Conclusions

Since its introduction in 1982 as a mathematical technique, FCA
became a well-known instrument in computer science. Over 1000
papers have been published over the past 9 years on FCA and many
of them contained case studies showing the method’s usefulness in
real-life practice. This paper showcased the possibilities of FCA as a
meta technique for categorizing the literature on concept analysis.
The intuitive visual interface of the concept lattices allowed us to
do an in-depth exploration of the main topics in FCA research. In
particular, its combination with text mining methods resulted in
a powerful synergy of automated text analysis and human control
over the discovery process.

One of the most notorious research topics covering 20% of the
FCA papers is KDD. In this paper we surveyed the papers on FCA
based methods for data mining. A large amount of research was
dedicated to association rule mining. Minimal generators were
found to play a crucial role in many of the FCA-related incremental
and efficient itemset mining algorithms. Complex descriptions for
FCA was a second major research field we surveyed. These complex
descriptions include Logical, Relational, Temporal and Triadic Con-
cept Analysis, fuzzy and rough FCA, power context families and
pattern structures. Finally, expressing machine learning models
such as version space learning in FCA terms and scalability issues
were investigated too.

In 18% of the papers, traditional concept lattices were extended
to deal with uncertain, three-dimensional and temporal data. In
particular, combining FCA with fuzzy and rough set theory re-
ceived considerable attention in the literature. Temporal and Tri-
adic Concept Analysis received only minor attention. In the
future, we will host the references and links to the articles on a
public interface and hope that this compendium may serve to
guide both practitioners and researchers to new and improved ave-
nues for FCA.
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Palacký University in Olomouc, VŠB–Technical University of Ostrava (pp. 10–21).

Maddouri, M., & Kaabi, F. (2006). On statistical measures for selecting pertinent
formal concepts to discover production rules from data. In Proceedings of the
Sixth IEEE international conference on data mining-workshops (ICDMW ’06)
(pp. 80–784). Washington, DC, USA: IEEE Computer Society.

Maier, D. (1983). The theory of relational databases. Computer Science Press.
Meddouri, N., & Maddouri, M. (2009). Boosting formal concepts to discover

classification rules. In B. C. Chien et al. (Eds.), lEA/AIE. LNAI (Vol. 5579,
pp. 501–510). Springer.

Medina, J., Ojeda-Aciego, M., & Ruiz-Calvino, J. (2007). On multi-adjoint concept
lattices: Definition and representation theorem. In S. O. Kuznetsov et al. (Eds.),
ICFCA. LNAI (Vol. 4390, pp. 197–209). Springer.

Medina, J., Ojeda-Aciego, M., & Ruiz-Calvino, J. (2009). Formal concept analysis via
multi-adjoint concept lattices. Fuzzy Sets and Systems, 160, 130–144.

Meschke, C. (2010). Approximations in concept lattices. In Léonard Kwuida & Barıs�
Sertkaya (Eds.), Proceedings of the eighth international conference on formal
concept analysis (ICFCA’10) (pp. 104–123). Berlin, Heidelberg: Springer.

Meschke, C. (2009). Robust elements in rough set abstractions. In S. Ferré et al.
(Eds.), ICFCA. LNAI (Vol. 5548, pp. 114–129). Springer.

Missaoui, R., & Kwuida, L. (2011). Mining triadic association rules from ternary
relations. In P. Valtchev & R. Jaschke (Eds.), ICFCA. LNCS (Vol. 6628,
pp. 204–218). Springer.

Missaoui, R., Nourine, L., & Renaud, Y. (2012). Computing implications with
negation from a formal context. Fundamenta Informaticae, 115(4), 357–375.

Missaoui, R., Nourine, L., & Renaud, Y. (2010). An inference system for exhaustive
generation of mixed and purely negative implications from purely positive
ones. CLA, 2010, 271–282.

Moha, N., Rouane-Hacene, A., Valtchev, P., & Guéhéneuc, Y.-G. (2008). Refactorings
of design defects using relational concept analysis. ICFCA, 2008, 289–304.

Morin, B., & Debar, H. (2005). Conceptual analysis of intrusion alarms. ICIAP, 2005,
91–98.

Morin, B., Mé, L., Debar, H., & Ducassé, M. (2009). A logic-based model to support
alert correlation in intrusion detection. Information Fusion, 10(4), 285–299.

Nehmé, K., Valtchev, P., Rouane, M. H., & Godin, R. (2005). On computing the
minimal generator family for concept lattices and icebergs. In B. Ganter et al.
(Eds.), ICFCA. LNAI (Vol. 3403, pp. 192–207). Springer.

Nguifo, E. M., Tsopze, N., & Tindo, G. (2008). M-CLANN: Multi-class concept lattice-
based artificial neural network for supervised classification. In Proceedings of the
18th international conference on artificial neural networks, part II (pp. 812–821).
Berlin, Heidelberg: Springer.
Nguifo, M. E., & Njiwoua, P. (2001). IGLUE: A lattice-based constructive induction
system. Intelligent Data Analysis (IDA), 5(1), 73–91.

Njiwoua, P., & Mephu Nguifo, E. (1999). Ameliorer l’apprentissage a partir
d’instances grace ‘a l’induction de concepts: Le syst‘eme cible. Revue
d’Intelligence Artificielle (RIA), 13(1999), 413–440.

Nourine, L., & Raynaud, O. (1999). A fast algorithm for building lattices. Information
Processing Letters, 199–214.

Oosthuizen, G. (1994). The application of concept lattices to machine learning.
Technical Report CSTR 94/01, Department of Computer Science, University of
Pretoria, Pretoria, South Africa.

Outrata, J. (2010). Boolean factor analysis for data preprocessing in machine
learning. In Proceedings of the 2010 ninth international conference on machine
learning and applications (ICMLA ’10) (pp. 899–902). Washington, DC, USA: IEEE
Computer Society.

Pankratieva, V., & Kuznetsov, S. O. (2010). Relations between proto-fuzzy concepts,
crisply generated fuzzy concepts and interval pattern structures. In
Kryszkiewicz, S. Obiedkov (Eds.), Proceedings of the CLA. University of Sevilla.

Pankratieva, V. V., & Kuznetsov, S. O. (2012). Relations between proto-fuzzy
concepts, crisply generated fuzzy concepts, and interval pattern structures.
Fundamenta Informaticae, 115(4), 265–277.

Pasquier, N. (2000). Mining association rules using formal concept analysis. In G.
Stumme (Ed.), Working with conceptual structures. Contributions to ICCS 2000
(pp. 259–264). Aachen: Verlag Shaker.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999). Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1), 25–46.

Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., & Lakhal, L. (2005). Generating a
condensed representation for association rules. Journal of Intelligent Information
Systems, 24(1), 29–60.

Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information
Sciences, 11, 341–356.

Pawlak, Z. (1985). Rough concept analysis. Bulletin of the polish academy of
sciences. Technical Sciences, 33, 495–498.

Pawlak, Z. (1992). Rough sets: Theoretical aspects of reasoning about data. Norwell,
MA, USA: Kluwer Academic Publishers.

Pecheanu, E., Dumitriu, L., Stefanescu, D., & Segal, C. (2004). Domain knowledge
modelling for intelligent instructional systems. In International conference on
computational science (pp. 497–504).

Pecheanu, E., Dumitriu, L., Stefanescu, D., & Segal, C. (2006). A framework for
conceptually modelling the domain knowledge of an instructional system. In
International conference on computational science (Vol. 1, pp. 199–206).

Pfaltz, J. L. (2002). Incremental transformation of lattices: A key to effective
knowledge discovery. ICGT, 2002, 351–362.

Pfaltz, J. L. (2007). Representing numeric values in concept lattices. In J. Diatta, P.
Eklund, M. Liquière (Eds.), Proceedings of the CLA 2007. LIRMM & University of
Montpellier II.

Poelmans, J., Elzinga, P., Neznanov, A., Dedene, G., Viaene, S., & Kuznetsov, S.
(2012a). Human-centered text mining: A new software system. In P. Perner
(Ed.), Twelfth industrial conference on data mining. Lecture notes in artificial
intelligence (Vol. 7377, pp. 258–272). Springer.

Poelmans, J., Elzinga, P., Viaene, S., & Dedene, G. (2010a). Concept discovery
innovations in law enforcement: A perspective. In Proceedings of the IEEE
computational intelligence in networks and systems workshop (INCos 2010), 24–26
November 2010 (pp. 473-478). Thesalloniki, Greece, ISBN 978-0-7695-4278-2.

Poelmans, J., Elzinga, P., Viaene, S., & Dedene, G. (2010b). Formal concept analysis in
knowledge discovery: A survey. In Eighteenth international conference on
conceptual structures (ICCS). Lecture notes in computer science (Vol. 6208,
pp. 39–153). Kuching, Sarawak, Malaysia: Springer.

Poelmans, J., Elzinga, P., Viaene, S., Dedene, G., & Kuznetsov, S. (2011b). A concept
discovery approach for fighting human trafficking and forced prostitution. In
Nineteenth international conference on conceptual structures. LNCS (Vol. 6828,
pp. 201–214). Derby, England: Springer.

Poelmans, J., Ignatov, I., Kuznetsov, S., & Dedene, G. (2013a). Formal concept
analysis in knowledge processing: A survey on applications. Expert Systems
with Applications (Submitted for publication).

Poelmans, J., Ignatov, I., Kuznetsov, S., & Dedene, G. (2013b). Fuzzy and rough formal
concept analysis: A survey. International Journal of General Systems (Submitted
for publication).

Poelmans, J., Ignatov, I., Viaene, S., Dedene, G., & Kuznetsov, S. (2012b). Text mining
scientific papers: A survey on FCA-based information retrieval research. In P.
Perner (Ed.), Lecture notes in artificial intelligence. Twelfth industrial conference on
data mining (Vol. 7377, pp. 273–287). Berlin, Germany: Springer.

Pogel, A., & Ozonoff, D. (2008). Contingency structures and concept analysis. In R.
Medina et al. (Eds.), ICFCA. LNAI (Vol. 4933, pp. 305–320). Springer.

Pollandt, S. (1997). Fuzzy begriffe. Springer.
Prediger, S. (2000a). Nested concept graphs and triadic power context families. ICCS

2000. Springer (pp. 249–262).
Prediger, S. (1998). Simple concept graphs: A logic approach. ICCS 1998. Springer (pp.

225–239).
Prediger, S. (2000b). Terminologische Merkmalslogik in der Formalen

Begri?sanalyse. In G. Stumme & R. Wille (Eds.), Begri?iche
Wissensverarbeitung–Methoden und Anwendungen (pp. 99–124). Heidelberg,
Germany: Springer.

Prediger, S., & Stumme, G. (1999). Theory-driven logical scaling: Conceptual
information systems meet description logics. In E. Franconi, M. Kifer (Eds.),
Proceedings of the sixth international workshop on knowledge representation meets
databases (KRDB’99).

http://refhub.elsevier.com/S0957-4174(13)00293-5/h0575
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0575
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0575
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0580
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0580
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0585
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0585
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0590
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0590
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0590
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0595
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0595
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0600
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0600
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0605
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0605
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0605
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0605
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0610
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0610
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0610
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0615
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0615
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0615
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0620
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0620
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0620
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0625
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0625
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0630
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0630
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0630
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0635
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0635
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0640
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0640
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0640
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0645
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0645
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0650
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0650
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0655
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0655
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0655
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0655
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0660
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0665
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0665
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0665
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0670
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0670
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0670
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0675
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0675
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0680
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0680
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0680
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0685
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0685
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0690
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0690
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0690
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0695
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0695
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0700
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0700
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0700
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0705
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0705
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0710
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0710
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0715
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0715
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0720
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0720
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0720
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0725
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0725
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0725
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0725
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0730
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0730
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0735
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0735
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0735
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0740
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0740
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0745
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0745
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0745
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0745
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0750
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0750
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0750
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0755
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0755
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0755
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0760
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0760
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0765
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0765
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0765
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0770
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0770
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0775
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0775
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0780
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0780
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0785
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0785
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0790
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0790
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0790
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0790
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0795
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0795
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0795
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0795
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0800
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0800
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0800
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0800
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0805
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0805
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0805
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0805
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0810
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0810
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0815
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0820
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0820
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0825
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0825
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0830
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0830
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0830
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0830


6622 J. Poelmans et al. / Expert Systems with Applications 40 (2013) 6601–6623
Priss, U. (2006). Formal concept analysis in information science. In C. Blaise (Ed.),
Annual review of information science and technology, ASIST (Vol. 40).

Priss, U. (2008). FCA software interoperability. In Belohlavek, Kuznetsov (Eds.),
Proceedings of CLA’08.

Quan, T. T., Ngo, L. N., & Hui, S. C. (2009). An effective clustering-based approach for
conceptual association rules mining. In Proceedings of the IEEE international
conference on computing and communication technologies (pp. 1–7).

Richards, D., & Malik, U. (2003a). Multi level knowledge discovery from rule bases.
Applied Artificial Intelligence, 17, 181–205.

Richards, D., & Malik, U. (2003b). Mining propositional knowledge bases to discover
multi-level rules. In O. R. Zaïane et al. (Eds.), Mining multimedia and complex
data. LNAI (Vol. 2797, pp. 199–216). springer.

Ricordeau, M. (2003). Q-concept-learning: Generalization with concept lattice
representation in reinforcement learning. ICTAI, 2003, 316–323.

Ricordeau, M., & Liquiere, M. (2007). Policies generalization in reinforcement
learning using galois partitions lattices. In CLA 2007.

Roth, C., Obiedkov, S., & Kourie, D. (2008a). Towards concise representation for
taxonomies of epistemic communities. In S. B. Yahia et al. (Eds.), CLA 2006. LNAI
(Vol. 4923, pp. 240–255). Springer.

Roth, C., Obiedkov, S., & Kourie, D. G. (2008b). On succint representation of
knowledge community taxonomies with formal concept analysis. International
Journal of Foundations of Computer Science, 19(2), 383–404.

Rouane-Hacene, M., Huchard, M., Napoli, A., & Valtchev, P. (2007). A proposal for
combining formal concept analysis and description logics for mining relational
data. ICFCA, 20, 51–65.

Rouane-Hacene, M., Napoli, A., Valtchev, P., Toussaint, Y., & Bendaoud, R. (2008).
Ontology learning from text using relational concept analysis. In Proceedings of
the IEEE international MCETECH conference on e-technologies (pp. 154–163).

Rouane-Hacene, M., Nehme, K., Valtchev, P., & Godin, R. (2004). On-line
maintenance of iceberg concept lattices. In Proceedings to the 12th
international conference on conceptual structures (ICCS’04). Huntsville (AL)
(pp. 14). Shaker Verlag.

Rouane-Hacene, M., Fennouh, S., Nkambou, R., & Valtchev, P. (2010). Refactoring of
ontologies: Improving the design of ontological models with concept analysis.
ICTAI (2), 167–172.

Rudolph, S. (2004). Exploring relational structures via FLE. In K. E. Wolff et al. (Eds.),
ICCS. LNAI (Vol. 3127, pp. 196–212). Springer.

Rudolph, S. (2007). Using FCA for encoding closure operators into neural
networks. In Uta Priss, Simon Polovina, & Richard Hill (Eds.), Proceedings of
the 15th international conference on conceptual structures: Knowledge
architectures for smart applications (ICCS ’07) (pp. 321–332). Berlin,
Heidelberg: Springer-Verlag.

Rudolph., S. (2006). Relational exploration: Combining description logics and formal
concept analysis for knowledge specification. Ph.D. dissertation, Fakultät
Mathematik und Naturwissenschaften, TU Dresden, Germany.

Sahami, M. (1995). Learning classification rules using lattices. In N. Lavrac, S.
Wrobel (Eds.), Proceedings of the ECML’95 (pp. 343–346). Heraclion, Crete,
Greece.

Saquer, J., & Deogun, J. S. (1999). Formal rough concept analysis. In New directions in
rough sets, data mining, and granular-soft computing seventh international
workshop, RSFDGrC. LNCS (Vol. 1711, pp. 91–99). Springer.

Sertkaya, B. (2010). A survey on how description logic ontologies benefit from FCA.
In Proceedings of the seventh international conference on concept lattices and their
applications (pp. 2–21). Sevilla, Spain, October 19-21.

Snasel, V., Polovincak, M., Abdulla, H. M. D. & Horak, Z. (2008). On concept lattices
and implication bases from reduced contexts. In ICCS supplement 2008 (pp. 83–
90).

Sowa, J. F. (1976). Conceptual graphs for a database interface. IBM Journal of
Research and Development, 20(4), 336–357.

Sowa, J. F. (1984). Conceptual structures: Information processing in mind and machine.
Reading, MA: Addison-Wesley.

Stumme, G. (2002). Efficient data mining based on formal concept analysis. In A.
Hameurlain et al. (Eds.), DEXA. LNCS (Vol. 2453). Springer.

Stumme, G. (2003). Off to new shores: Conceptual knowledge discovery and
processing. International Journal of Human–Computer Studies, 59, 287–325.

Stumme, G. (2004). Iceberg query lattices for datalog. In K. E. Wolff et al. (Eds.), ICCS.
LNAI (Vol. 3127, pp. 109–125). Springer.

Stumme, G. (2005). A finite state model for on-line analytical processing in triadic
contexts. In B. Ganter et al. (Eds.), ICFCA. LNCS (Vol. 3403, pp. 315–328).
Springer.

Stumme, G., Bestride, Y., Taouil, R., & Lakhal, L. (2002a). Computing iceberg
concept lattices with TITANIC. Data and Knowledge Engineering, 42(2),
189–222.

Stumme, G., Wille, R., & Wille, U. (1998). Conceptual knowledge discovery in
databases using formal concept analysis methods. PKDD, 450–458.

Stumme, G. (1996). The concept classification of a terminology extended by
conjunction and disjunction. In N. Y. Foo & R. Goebel (Eds.), Proceedings of the
fourth Pacific rim international conference on artificial intelligence (PRICAI’96).
LNCS (Vol. 1114, pp. 121–131). Springer.

Szathmary, L., Valtchev, P., Napoli, A., & Godin, R. (2008). Constructing iceberg
lattices from frequent closures using generators. Discovery Science, 2008,
136–147.

Szathmary, L., Valtchev, P., Napoli, A., Godin, R., Boc, A., & Makarenkov, V. (2011).
Fast mining of iceberg lattices: A modular approach using generators. In A.
Napoli, V. Vychodil (Eds.), CLA 2011 (pp. 191–206). INRIA Nancy Grand Est and
LORIA.
Szathmary, L., Napoli, A., & Kuznetsov, S. O. (2007). ZART: A multifunctional itemset
mining algorithm. In Proceedings of the fivth international conference on concept
lattices and their applications 24-26 October 2007. Montpellier.

Szathmary, L., Valtchev, P., Napoli, A., & Godin, R. (2009). Efficient vertical mining of
frequent closures and generators. IDA, 2009, 393–404.

Tekaya, S. B., Yahia, S. B., & Slimani, Y. (2005). GenAll algorithm: Decorating Galois
lattice with minimal generators. In R. Belohlavek et al. (Eds.), CLA (pp. 166–178).

Thomas, J. J., & Cook, K. A. (2006). A visual analytics agenda. IEEE Transactions on
Computer Graphics and Applications, 26(1), 12–19.

Tilley, T. (2004). Tool support for FCA. In P. Eklund (Ed.), ICFCA. LNAI (Vol. 2961,
pp. 104–111). Springer.

Tilley, T., & Eklund, P. (2007). Citation analysis using formal concept analysis: A case
study in software engineering. In Eighteenth international conference on database
and expert systems applications (DEXA).

Torim, A., & Lindroos, K. (2008). Sorting concepts by priority using the theory of
monotone systems. In P. Eklund et al. (Eds.), ICCS. LNAI (Vol. 5113, pp. 175–188).
Springer.

Tsopze, N., Mephu Nguifo, E., & Tindo, G. (2007). CLANN: Concept-lattices-based
artificial neural networks. In J. Diatta, P. Eklund, M. Liquiére (Eds.), Proceedings
of the of fifth international conference on concept lattices and applications (CLA
2007), Montpellier, France, October 24–26, 2007 (pp. 157–168).

Valtchev, P., Missaoui, R., & Godin, R. (2004). Formal concept analysis for knowledge
discovery and data mining: The new challenges. In P. Eklund (Ed.), ICFCA. LNAI
(Vol. 2961, pp. 352–371). Springer.

Valtchev, P., Missaoui, R., & Godin, R. (2008). A framework for incremental
generation of closed itemsets. Discrete Applied Mathematics, 156, 924–949.

Valverde-Albacete, F. J., & Pelaez-Moreno, C. (2006). Towards a generalization of
formal concept analysis for data mining purposes. In Fourth international
conference ICFCA. LNCS (Vol. 3874, pp. 161–176). Dresden, Germany: Springer.

Valverde-Albacete, F. J., & Pelaez-Moreno, C. (2007). Galois connections between
semimodules and applications in data mining. In S. O. Kuznetsov et al. (Eds.),
ICFCA. LNAI (Vol. 4390, pp. 181–196). springer.

Valverde-Albacete, F. J., & Pelaez-Moreno, C. (2008). Spectral lattices of R(max,+)-
formal contexts. In R. Medina et al. (Eds.), ICFCA. LNAI (Vol. 4933, pp. 124–139).
Springer.

Valverde-Albacete, F. J., & Peláez-Moreno, C. (2011). Extending conceptualisation
modes for generalised formal concept analysis. Information Sciences, 181(10),
1888–1909.

van der Merwe, D., Obiedkov, S. A., & Kourie, D. G. (2004). AddIntent: A new
incremental algorithm for constructing concept lattices. In P. Eklund (Ed.), ICFCA
2004. LNCS (LNAI) (Vol. 2961, pp. 372–385). Heidelberg: Springer.

Varga, V., & Janosi-Rancz, K. T. (2008). A software tool to transform relational
databases in order to mine functional dependencies in it using formal concept
analysis CLA 2008 (posters), Palacky University Olomouc (pp. 1–8).

Ventos, V., & Soldano, H. (2005). Alpha galois lattices: An overview. In B. Ganter
et al. (Eds.), ICFCA. LNAI (Vol. 3403, pp. 299–314). Springer.

Visani, M., Bertet, K., & Ogier, J.-M. (2011). NAVIGALA: An original symbol classifier
based on navigation through a galois lattice. International Journal of Pattern
Recognition and Artificial Intelligence, 25(4), 449–473.

Vogt, F., & Wille, R. (1994). TOSCANA – a graphical tool for analyzing and exploring
data. Graph Drawing, 1994, 226–233.

Voutsadakis, G. (2002). Polyadic concept analysis. Order, 19(3), 295–304.
Wille, R. (1997a). Conceptual graphs and formal concept analysis. ICCS 1997. Springer

(pp. 290–303).
Wille, R. (2001). Boolean judgment logic. ICCS 2001. Springer (pp. 115–128).
Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies

of concepts. In I. Rival (Ed.), Ordered sets (pp. 445–470). Dordrecht-Boston:
Reidel.

Wille, R. (1984). Liniendiagramme hierarchischer Begriffssysteme. In H. H. Bock
(ed.), Anwendungen der Klassifikation: Datenanalyse und numerische Klassifikation
(pp. 32–51).

Wille, R. (1995). The basic theorem of triadic concept analysis. Order, 12, 149–158.
Wille, R. (1997). Introduction to formal concept analysis. In G. Xesrlni (Ed.), Modelli

e model Uzzazione. Models and modeling. Consiglio Xazionale delle Ricerche,
Instituto di Studi sulli Ricerca e Documentazione Scientifica, Roma (pp. 39–51).

Wille, R. (1998). Triadic concept graphs. ICCS 1998. Springer (pp.194–208).
Wille, R. (2004). Implicational concept graphs. ICCS 2004. Springer (pp. 52–61).
Wille, R. (2006). Methods of conceptual knowledge processing. In R. Missouri et al.

(Eds.), ICFCA. LNAI (Vol. 3874, pp. 1–29). Springer.
Wolff, K. E. (1994). A first course in formal concept analysis – how to understand

line diagrams. In F. Faulbaum (Ed.), SoftStat93, advances in statistical software
(Vol. 4, pp. 429–438).

Wolff, K. E. (2000). Concepts, States and Systems. In D. M. Dubois (Ed.), Proceedings
of the Computing Anticipatory Systems. CASYS ’99 – third international conference
Liège, Belgium (Vol. 517, pp. 83–97). American Institute for Physics.

Wolff, K. E. (2001). Temporal concept analysis. In E. M. Nguifo et al. (Eds.), ICCS –
international workshop on concept lattices based theory methods and tools for
knowledge discovery in databases (pp. 91–107). Palo Alto, California, USA:
Stanford University.

Wolff, K. E. (2002a). Transitions in conceptual time systems. In D. M. Dubois (Ed.),
International journal of computing anticipatory systems (Vol. 11, pp. 398–412).
CHAOS.

Wolff, K. E. (2002b). Interpretation of automata in temporal concept analysis. In U.
Priss et al. (Eds.), ICCS. LNAI (Vol. 2393, pp. 341–353). Springer.

Wolff, K. E. (2004). Particles and waves as understood by temporal concept analysis.
In K. E. Wolff et al. (Eds.), ICCS. LNAI (Vol. 3127, pp. 126–141). Springer.

http://refhub.elsevier.com/S0957-4174(13)00293-5/h0835
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0835
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0840
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0840
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0840
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0845
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0845
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0850
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0850
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0850
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0855
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0855
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0855
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0860
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0860
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0860
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0865
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0865
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0865
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0865
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0870
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0870
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0870
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0875
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0875
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0880
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0880
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0880
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0880
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0880
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0885
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0885
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0885
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0890
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0890
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0895
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0895
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0900
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0900
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0905
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0905
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0910
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0910
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0915
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0915
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0915
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0920
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0920
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0920
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0925
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0925
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0930
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0930
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0930
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0930
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0935
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0935
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0935
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0940
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0940
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0945
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0945
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0950
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0950
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0955
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0955
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0955
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0960
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0960
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0960
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0965
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0965
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0970
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0970
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0970
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0975
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0975
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0975
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0980
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0980
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0980
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0985
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0985
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0985
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0990
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0990
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0990
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0995
http://refhub.elsevier.com/S0957-4174(13)00293-5/h0995
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1000
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1000
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1000
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1005
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1005
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1010
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1015
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1015
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1020
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1025
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1025
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1025
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1030
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1035
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1040
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1045
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1045
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1050
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1050
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1050
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1050
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1055
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1055
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1060
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1060


J. Poelmans et al. / Expert Systems with Applications 40 (2013) 6601–6623 6623
Wolff, K. E. (2005). States, transitions and life tracks in temporal concept analysis. In
B. Ganter et al. (Eds.), Formal concept analysis. LNAI (Vol. 3626, pp. 127–148).
Springer.

Wolff, K. E. (2006). States of distributed objects in conceptual semantic systems. In
F. Dau et al. (Eds.), ICCS. LNAI (Vol. 3596, pp. 250–266). Springer.

Wolff, K. E. (2009a). Relational scaling in relational semantic systems. In S. Rudolph,
F. Dau, & S. O. Kuznetsov (Eds.), Conceptual structures: Leveraging semantic
technologies. ICCS 2009. LNAI (Vol. 5662, pp. 307–320). Heidelberg: Springer.

Wolff, K. E. (2009b). Relational semantic systems, power context families, and
concept graphs. In K. E. Wolff, S. Rudolph, & S. Ferre (Eds.), Contributions to ICFCA
2009 (pp. 63–78). Darmstadt: Verlag Allgemeine Wissenschaft.

Wolff, K. E. (2010). Temporal relational semantic systems. In M. Croitoru, S. Ferre, &
D. Lukose (Eds.), Conceptual structures: From information to intelligence. ICCS
2010. LNAI (Vol. 6208, pp. 165–180). Heidelberg: Springer.

Wolff, K. E. (2011). Applications of temporal conceptual semantic systems. In K. E.
Wolff et al. (Eds.), Knowledge processing and data analysis. LNAI (Vol. 6581,
pp. 60–76). Heidelberg: Springer.

Wolff, K. E., & Yameogo, W. (2003). Time dimension, objects and life tracks – a
conceptual analysis. In De Moor et al. (Eds.), Conceptual structures for knowledge
creation and communication. LNAI (Vol. 2746, pp. 188–200). Springer.

Wolff, K. E., & Yameogo, W. (2005). Turing machine representation in temporal
concept analysis. In Formal Concept Analysis (pp. 360-374). Berlin
Heidelberg:Springer.

Wollbold, J., Huber, R., Kinne, R., & Wolff, K. E. (2011). Conceptual representation of
gene expression processes. In K. E. Wolff et al. (Eds.), Knowledge processing and
data analysis. LNAI (Vol. 6581, pp. 77–99). Heidelberg: Springer.
Wu, W. Z., Leung, Y., & Mi, J. S. (2009). Granular computing and knowledge
reduction in formal contexts. IEEE Transactions on Knowledge and Data
Engineering, 21(10), 1461–1474.

Xie, Z., Hsu, W., Liu, Z., & Lee, M. (2002). Concept lattice based composite classifiers
for high predictability. Journal of Experimental and Theoretical Artificial
Intelligence, 14, 143–156.

Yao, Y. Y. (2004). A comparative study of formal concept analysis and rough set
theory in data analysis. In S. Tsumoto et al. (Eds.), RSCTC. LNAI (Vol. 3066,
pp. 59–68). Springer.

Yao, Y. Y., & Chen, Y. (2006). Rough set approximations in formal concept analysis.
In J. F. Peters et al. (Eds.), Transactions on rough sets V. LNCS (Vol. 4100,
pp. 285–305). Springer.

Yao, Y. Y., & Chen, Y. H. (2005). Subsystem based generalizations of rough set
approximations. In M. S. Hacid et al. (Eds.), ISMIS. LNCS (LNAI) (Vol. 3488,
pp. 210–218). Springer.

Yao, Y. Y., & Lin, T. Y. (1997). Generalization of rough sets using modal
logic. International Journal of Artificial Intelligence and Soft Computing, 2,
103–120.

Yevtushenko, S. A. (2000). System of data analysis ‘‘Concept explorer. (In Russian).
In Proceedings of the seventh national conference on artificial intelligence KII-2000
(pp. 127–134). Russia.

Zarate, L. E., & Dias, S. M. (2009). Qualitative behavior rules for the cold rolling
process extracted from trained ANN via the FCANN method. Engineering
Applications of Artificial Intelligence, 22, 718–731.

Zhao, L., & Zaki, M. J. (2005). TriCluster: An effective algorithm for mining coherent
clusters in 3D microarray data. ACM SIGMOD’05, 694–705.

http://refhub.elsevier.com/S0957-4174(13)00293-5/h1065
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1065
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1065
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1070
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1070
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1075
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1075
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1075
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1080
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1080
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1080
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1085
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1085
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1085
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1090
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1090
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1090
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1095
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1095
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1095
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1100
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1100
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1100
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1105
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1105
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1105
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1110
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1110
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1110
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1115
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1115
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1115
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1120
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1120
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1120
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1125
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1125
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1125
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1130
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1130
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1130
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1135
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1135
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1135
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1140
http://refhub.elsevier.com/S0957-4174(13)00293-5/h1140

	Formal Concept Analysis in knowledge processing: A survey on models and techniques
	1 Introduction
	2 Formal Concept Analysis and related disciplines
	2.1 Basic notions of FCA
	2.2 Description logics
	2.3 Conceptual graphs

	3 Dataset
	4 Literature overview
	5 Models and tools in FCA-based KDD research
	5.1 Association rule mining
	5.1.1 Minimal generators and generic basis
	5.1.2 Algorithms for computing minimal generators
	5.1.3 Other FCA-related ARM research

	5.2 FCA-based learning models
	5.3 Complex descriptions for KDD
	5.3.1 Pattern structures
	5.3.2 Logical concept analysis
	5.3.3 Relational concept analysis
	5.3.4 Power context families
	5.3.5 Triadic FCA
	5.3.6 Temporal FCA
	5.3.7 Other emerging extensions of FCA

	5.4 Mining uncertain data with FCA
	5.4.1 Fuzzy FCA
	5.4.2 Rough FCA

	5.5 Scalability

	6 Conclusions
	Acknowledgments
	References


