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Abstract
A new approach is proposed to solve the quantum evolution problem for a system with an
arbitrary number of coupled optical parametric processes. Our method is based on the
canonical transformations which define the evolution of the system in the Heisenberg picture.
This theory overcomes the difficulties arising in the Wei–Norman method. The application of
the approach developed is illustrated with the example of generation of a three-mode
entangled light field.

PACS numbers: 42.65.−k, 42.50.Ct, 42.50.Md, 03.65.−w

1. Introduction

Coupled (or concurrent) optical parametric interactions are of
interest as a method of obtaining multipartite entanglement.
Coupled nonlinear optical interactions can be implemented,
for example, in periodically or aperiodically nonlinear
optical crystals located inside or outside the cavity. In such
processes, entanglement of modes with different frequencies
is produced. It gives the possibility to execute teleportation,
storing and information processing in various frequency
ranges in the quantum communication network. Coupled
interactions in nonlinear optical crystals are conventionally
described using the undepleted pump wave approximation
that allows us to obtain quite a simple solution for the Bose
operators of interacting waves. In order to obtain the state
vector of such multimode fields, the Wei–Norman method [1]
is a standard tool which is based on transformation of the
unitary propagator of a system to a product of exponential
operators that results in the need for the solution of a set of
nonlinear differential equations. Evolution of the state vector
of three-mode entangled states produced by coupled nonlinear
interactions is derived in [2–5]. However, for a larger
number of modes finding the analytical solution of nonlinear
differential equations posess insuperable difficulties.

In this paper, we suggest a comprehensive quantum
theory for coupled multimode light fields, generated via
coupled parametric interactions. The approach elaborated

allows one to overcome the difficulties arising in the nonlinear
Wei–Norman method and to find the state vector with an
arbitrary number of parametrically interacting modes. In
sections 2 and 3, we derive equations for the canonical
transformations and show the relationship between them
and evolution in the Schrödinger picture. In section 4, we
investigate the evolution of the state vector produced by three
coupled parametric processes. The summary and conclusions
are given in section 5.

2. The interaction Hamiltonian and canonical
transformations of Bose operators

Consider the Hamiltonian operator describing the nonlinear
optical interactions:

H = (ı h̄/2)
n∑

i, j=1

(a†
i Ai j a

†
j − 2ıa†

i Bi j a j − ai A∗

i j a j ), (1)

where Ai j are the symmetric n × n matrix elements. Here ∗

denotes complex conjugation, Bi j are the Hermitian n × n
matrix elements, a†

i (ai ) is the creation (annihilation) operators
with the standard commutation relationships [ai , a†

j ] = δi j ,

[ai , a j ] = [a†
i , a†

j ] = 0 and δi j is Kronecker’s symbol. The Ai j

elements are responsible for the parametric down-conversion
and the Bi j elements for the parametric up-conversion. The
case Bi j = 0 is studied in [6].
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The unitary evolution operator of the system (1) is
given by

U (t)= e−
ı
h̄ Ht . (2)

We derive first the canonical transformation for this system:

a(t)= U †(t)aU (t)= 8(t)a + 9(t)a†,

a†(t)= U †(t)a†U (t)= 8∗(t)a† + 9∗(t)a,
(3)

where a†
= (a†

1, . . . , a†
n)

T, a = (a1, . . . , an)
T are columns

of size n, and 8(t),9(t) are the n × n matrices.
Using the property of the commutation relation

conservation, we obtain (see [6])

88†
− 99†

= 8∗8
T
− 9∗9

T
= I, (4)

89T
− 98T

= 8∗9†
− 9∗8†

= 0. (5)

Let us derive equations for the matrices of canonical
transformations. The equations of motion for the creation and
annihilation operators take the forms

d

dt
ai (t)=

ı

h̄
U †(t)[H, ai ]U (t)= −ıBi j a j (t)+ Ai j a

†
j (t)

= (Ai j9
∗

jm − ıBi j8 jm)am + (Ai j8
∗

jm − ıBi j9 jm)a
†
m,

d

dt
a†

i (t)=
ı

h̄
U †(t)[H, a†

i ]U (t)= ıBT
i j a

†
j (t)+ A†

i j a j (t)

= (A†
i j8 jm + ıBT

i j9
∗

jm)am + (A†
i j9 jm + ıBT

i j8
∗

jm)a
†
m,

whereas by differentiating the expression (3) we obtain

d

dt
ai (t)≡ ȧi (t)= (8̇)i j a j + (9̇)i j a

†
j ,

d

dt
a†

i (t)≡ ȧ†
i (t)= (9̇∗)i j a j + (8̇∗)i j a

†
j .

Consequently, the evolution equations for the matrices 8,9

are

8̇ = −ıB8 + A9∗, 9̇∗
= ıB

T
9∗ + A†8,

(6)
8(0)= I, 9∗(0)= 0,

with the initial conditions at t = 0.
The solution of equation (6) allows one to describe the

evolution of a multimode system which obeys equation (3) in
the Heisenberg picture. However, the analysis of a number of
characteristics of the quantum system is more convenient in
the Schrödinger picture associated with the evolution of the
system state vector.

3. The ordered formula for a unitary operator

To study the quantum system in the Schrödinger picture, it is
convenient to represent the unitary evolution operator of the
quantum system in the normally ordered form

U (t)= exp(− 1
2 a†

i Qi j (t)a
†
j ) exp(a†

i Pi j (t)a j )

× exp( 1
2 ai Ri j (t)a j + s(t)), (7)

where Qi j , Ri j and Pi j are the elements of n × n matrices,
Q,R are the symmetric matrices and s(t) is a scalar function

of t and plays the role of a normalizing constant. The
summation is assumed over indices which occur twice.

Using the Baker–Hausdorff formula, we obtain the
following relationships:

ak(t)= U †(t)akU (t)= (eP)klal − Qkm(e
−PT

)mla
†
l

+ Qkm(e
−PT

)mj R jlal , (8)

a†
k (t)= U †(t)a†

k U (t)= (e−PT
)kla

†
l − (e−PT

)k j R jlal .

Comparing (8) with (3), we bring out the relationship between
the matrices 8,9 and the matrices Q,P,R:

8∗
= e−PT

, 9∗
= −e−PT

R,

8 = eP + Qe−PT
R, 9 = −Qe−PT

.

From here we obtain

Q(t)= −9(t)(8∗(t))−1,

P(t)= − ln(8†(t)), (9)

R(t)= − (8∗(t))−19∗(t).

Therefore, the expansion of the evolution operator (7)
is unambiguously defined by the matrices of canonical
transformation.

The equations for the matrices Q,P,R can be directly
related to the matrices A,B. For this purpose, we consider
the derivative of the operator eG(t) for the case [G(t), Ġ(t)] 6=

0. In this case Feynman [7] has applied the formula which
connects Ġ(t) and the left derivative of the operator exponent
ĠL(t):

ĠL(t)
def
=

(
d

dt
eG(t)

)
e−G(t)

= lim
1t→0

1

1t

∫ 1

0
ds

d

ds
es(G(t)+1t Ġ(t))e−sG(t)

=

∫ 1

0
ds esG(t)Ġ(t)e−sG(t).

We use this formula for the left derivative of ea†
i Pi j (t)a j

because in the general case [P(t), Ṗ(t)] 6= 0. Therefore, we
have

a†
i ṖL

i j (τ )a j = a†
i

( ∫ 1

0
dσ exp(σP(τ ))Ṗ exp(−σP(τ ))

)
i j

a j .

To find equations for the matrices Q,P,R and the
function s(t), we apply the Baker–Hausdorff formula:

exp(− 1
2 a†

i Qi j a
†
j )a

†
k ṖL

klal exp( 1
2 a†

i Qi j a
†
j )

= a†
k ṖL

klal + 1
2 (a

†
k (Ṗ

L)km Qmla
†
l + a†

l Qlm(ṖL)Tmka†
k ),

exp(a†
i Pi j a j )ak Ṙklal exp(−a†

i Pi j a j )=ai (e
−PT

Ṙ e−P)i j a j ,

exp(− 1
2 a†

k Qkla
†
l )ai (e−PT

Ṙ e−P)i j a j exp( 1
2 a†

k Qkl(t)a
†
l )

= ai (e
−PT

Ṙ e−P)i j a j + a†
m(Qe−PT

Ṙ e−P Q)mna†
n

+ 2a†
m(Qe−PT

Ṙ e−P)mnan + Tr(e−PT
Ṙ e−P Q). (10)
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Then, differentiating the evolution equation in the
forms (2) and (7) and taking into account (10), we collect
the coefficients at a†

i a†
j , ai a j , a†

i a j . As a result the following
equations are obtained:

A + Q̇ − Ṗ
L
Q − Q(ṖL)T − Q(e−PT

Ṙe−P)Q = 0,

e−PT
Ṙe−P + A†

= 0,

ıB + ṖL + Qe−PT
Ṙe−P

= 0,

ṡ + 1
2 Tr(e−PT

Ṙe−PQ)= 0,

which can be reduced to the equivalent form

A + Q̇ + ıBQ + ıQBT
− QA†Q = 0,

e−PT
Ṙe−P + A†

= 0,

ıB + ṖL
− QA†

= 0, (11)

ṡ + 1
2 Tr(−A†Q)= 0.

Taking into account the relationship
Tr(

∫ 1
0 ds esPṖe−sP)= Tr(Ṗ), we rewrite the last equation

of the system (11) as a simple ordinary differential equation:

ṡ −
1
2 Tr(ıB)− 1

2 Tr(Ṗ)= 0. (12)

The initial conditions for the system (11) are the
following:

Q(0)= 0, P(0)= 0, R(0)= 0, s(0)= 0,

and equation (12) implies that

s =
1
2 tTr(ıB)+ 1

2 Tr(P). (13)

Let us show that expressions for Q,P,R (9) satisfy
equation (11):

Q̇ = −
d
dt
(9(8∗)−1)=−9̇(8∗)−1+9(8∗)−18̇

∗
(8∗)−1

= − A − iBQ − ıQBT + QA†Q,

ṖL =

(
d
dt
(8†)−1

)
8†

= −(8†)−18̇
†
= −ıBT + QA†,

e−PT
Ṙe−P

= 8∗Ṙ8†
= 8∗

d
dt
((8∗)−19∗)8†

= 8∗(8∗)−18̇
∗
(8∗)−19∗8†

− 8∗(8∗)−19̇
∗
8†

= − A†(88†
− 9(8∗)−19∗8†)= −A†.

The last equality readily follows from (4). Therefore, the
unitary operator U (t) can be represented in the form (7).
Formulae (9) and (13) allow us to find the unitary operator of
the system (1) in the normally ordered form via the canonical
transformation matrices.

In the next section, we show that this approach is
rather convenient for the analysis of multimode parametric
processes.

4. Three coupled parametric processes, three-mode
entangled states

Let us demonstrate the application of our approach to the case
of generation of three-mode entangled states. Consider the
following coupled nonlinear optical processes of the kind [4]:

ωp = ω1 +ω2,

ω2p = 2ωp = ω2 +ω3, (14)

ω1 +ωp = ω3,

where ωp, ω2p are the pump frequencies and ω1, ω2, ω3, are
the generated frequencies.

In (14), the first and third processes are nondegenerate
parametric down-conversions and the second one is the
parametric up-conversion.

The interaction Hamiltonian of the system under study
has the following form:

Hint = ı h̄[β1(a
†
1a†

2 − a1a2)+β2(a
†
2a†

3 − a2a3)

+ γ (a1a†
3 − a†

1a3)], (15)

where a†
j , a j ( j = 1, 2, 3) are the creation and annihilation

operators of the photons with frequency ω j . β j is the
nonlinear coupling coefficient responsible for parametric
down-conversion, and γ j is responsible for parametric
up-conversion.

Note that this Hamiltonian (15) is of the same type as
equation (1). Nonzero elements of the matrices A and B are
A12 = A21 = β1, A23 = A32 = β2, B13 = −B31 = −ıγ .

In this case the solution of the system (6) for the canonical
matrices is given by the matrices

8(t)=

M11 0 M13

0 M22 0
M31 0 M33

, 9(t)=

 0 M12 0
M21 0 M23

0 M32 0

,
(16)

where the elements Mi j are functions of t

M11(t)=
(β2

1 − γ 2)C +β2
2

02
, M12(t)=

β2γ (1 − C)

02
−
β1S

0
,

M13(t)=
β1β2(C − 1)

02
+
γ S

0
, M21(t)=

β2γ (C − 1)

02
−
β1S

0
,

M22(t)=
(β2

1 +β2
2 )C − γ 2

02
, M23(t)=

β1γ (1 − C)

02
−
β2S

0
,

M31(t)=
β1β2(C −1)

02
−
γ S

0
, M32(t)=

β1γ (C −1)

02
−
β2S

0
,

M33(t)=
(β2

2 − γ 2)C +β2
1

02
, (17)

where 0 =

√
β2

1 +β2
2 − γ 2, C = cosh(0t), S = sinh(0t).

Equations (17) imply the following properties of Mi j :

M11 M33 − M13 M31 = M22, M21 M33 − M23 M31 = M12,

M11 M23 − M13 M21 = M32. (18)

3
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Three useful identities, which we use further, follow
from (17):

cosh2 δ1(t)=
M2

22

1 + M2
32

,

sinh2 δ1(t)=
M2

12

1 + M2
32

, (19)

sinh2 δ2(t)= M2
32.

According to (3), the evolution of the Bose operators of
the system under consideration is described by the equations

a1(t)= M11a1 + M12a†
2 + M13a3,

a2(t)= M21a†
1 + M22a2 + M23a†

3, (20)

a3(t)= M31a1 + M32a†
2 + M33a3.

Now, let us find the evolution of the state |ψ(t)〉. Suppose
that the initial state is vacuum |ψ(0)〉 = |0〉1|0〉2|0〉3. Then,
using (7) we can obtain

|ψ(t)〉 = U (t)|ψ(0)〉 = ea†
i (9(t)(8

∗(t))−1)i j a
†
j +s(t)

|0〉1|0〉2|0〉3,

since the last two factors in (7) act as es(t) in a vacuum
state, where es(t)

= M22 is derived from (13) by using the first
equation of (18).

From the properties of Mi j (18), we have

a†
i (9(t)(8

∗(t))−1)i j a
†
j =

M12

M22
a†

1a†
2 +

M32

M22
a†

2a†
3 .

Due to this relationship, the state vector can be
transformed to the form

|ψ(t)〉 = M22

∑
m,n

(
M12

M22

)m (
M32

M22

)n √
Cm

m+n|m〉1|m + n〉2|n〉3,

where Ck
l =

l!
k!(l−k)! .

Using formula (19), we obtain the explicit form of the
system state:

|ψ(t)〉 =
1√

cosh2 δ1 cosh2 δ2

∑
m,n

(tanh δ1)
m

×

(
−

tanh δ2

cosh δ1

)n √
Cm

m+n|m〉1|m + n〉2|n〉3. (21)

This result agrees with that of [4] obtained by the
Wei–Norman method, but in our approach only the system
of linear differential equations (6) is solved, while in the
Wei–Norman method we must solve coupled nonlinear
differential equations.

5. Conclusion

The method presented in this paper allows us to obtain an
explicit expression for the evolution of the system state vector
and therefore to find the density operator for an arbitrary
number of coupled parametric processes. Let us note once
again that this approach does not require one to solve a set
of coupled nonlinear differential equations as occurs in the
Wei–Norman method (see [2, 4], where the problems for two
coupled parametric processes were solved). However, this set
of nonlinear differential equations is not solved analytically
when generation of the multimode entangled states, states
with the number of modes more than three, is analyzed.
Among four-mode processes, of particular interest is finding
a state vector for the process of parametric amplification
at low-frequency pumping [8] in which entanglement on
frequencies both below and above the pumping frequency is
formed. The approach presented in our paper does not face
such a difficulty even for a large number of coupled parametric
processes.
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