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Abstract 

Work solutions are proposed for problems of leader definition and role distribution in homogeneous groups of robots. It is shown 
that transition from a swarm to a collective of robots with hierarchical organization is possible using exclusively local interaction. 
The local revoting algorithm is central to the procedure for choice of leader while redistribution of roles can be achieved by a 
wave method. The basis for this approach is the static swarm model, which is characterized by the absence of a set control center 
and represents the network fixed at some time interval as a set of locally interacting agents. 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Active research into the creation of systems of interacting robots has been ongoing for nearly a quarter of a 
century. Approaches such as collective, swarm and flocking robotics have been prominent in modern robotics and 
the theory of multi-agent systems, but the overwhelming tendency of research in this area remains at a theoretical, 
model level. According to numerous reviews [15, 17], it is apparent that this absence of valid, significant results is 
not least connected with the relative neglect of a number of important tasks. Research in the field of group robotics 
(to coin a generalized name for collective, swarm, flock etc. robotics) has a very fragmentary character. 

One warning sign is the obvious transfer of the center of gravity of research to swarm robotics, which can be 
viewed as a simpler, more basic level of group robotics model. Among a set of problems in swarm robotics that 
remain insufficiently studied, two will be elaborated here. The first of these is the problem of leader definition in a 
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homogeneous group of robots, and the second is role distribution among members of the group under conditions of 
exclusively local interaction. 

Leadership. One of the basic features of swarm robotics is the local character of interaction of robots, with each 
other and with their environment [17]. This kind of interaction is called implicit communication [15], which means 
that each robot in the group interacts directly only with neighbours within some limited visibility range. 

In such systems, it usually follows that robots make decisions independently on further actions, guided by some 
simple rules of local interaction. However, the overwhelming majority of examples of task solution in the field of 
swarm robotics concern the coordinated movement of a swarm. For instance, in the obvious and rather simple task 
characterised as the “Leader-Follower” method in [13], it is considered that there is an a priori leader in the group 
who sets this movement. 

There are many variants of local interaction rules, from the formalistic [12] to the very exotic. For instance, [3] 
describes the virtual spring-damper model of flocking mobile robots’ behavior. The “spring” component of the 
model defines the force of attraction to the leader (not follower to follower), and the “damper” component defines 
the repelling force.  

Another especially technical approach has been proposed in [4], in which one of the robots must become the 
'leader' of the group by maximizing the value of its communicative output. The main issue of this method is that it 
leads to appearance of a set of leaders, and a number of them depends on the topology of the swarm. A similar 
technical approach was offered in [6], in which the agent with the greatest weight was appointed as leader. The 
difference between the leader and other members of the group (or a flock) was that the leader did not use the rule 
“move to the nearest neighbour”. This approach provided a solution to the problem of coordinated movement, 
turning a swarm into a flock. In a very interesting project described in [11], autonomous robots used rather simple 
“Fish Behavior” interaction rules for collision-free driving, in which all robots were equipped with a set of complex 
sensors. 

This paper deals mainly with the a priori set leader, or with techniques that avoid defining the leader under the 
conditions of some specific objective. However, in a number of works, a swarm leader is elected. In [8], group 
leader selection is based on optimizing power consumption, making it necessary to know the distances between 
robots and the power consumed by transfer of the message from one robot to another. In [16], swarm traffic control 
using the center of masses or the geometrical centre of a swarm is described. This method requires that coordinates 
of agents, their speed and their direction of movement must be known. Another paper [10] describes a localized 
mechanism for determining the information potential on each node, based on local process information and the 
potential of neighbouring nodes. In that instance, the node with the minimum potential was considered to be the 
leader, but we are interested here in the problem of leader identification in a more general case, in terms of 
mechanisms of local information interaction. 

Role distribution. For solution of the basic problem of the coordinated movement of robots, it is sufficient that 
there is a leader. However, more complex challenges solved by a group of robots require differentiation of their 
functions and, generally speaking, distribution of tasks between robots; this is perhaps one of the most problematic 
concepts of swarm robotics. In reviews mentioned above [15, 17], task distribution in robot groups was considered 
rather declaratively—at best, some physical models, methods of distributed planning, optimization and other general 
mechanisms are mentioned [5]. In practice, one usually deals with either the centralized control systems or with 
homogeneous groups without functional differentiation. For example, [9] describes an assembly system model with 
self-organizing behaviour (Bionic Assembly System—BAS). The behaviour of each mobile robot in this system 
depends on its internal state and on the state of the system. A central computer plans the global production of BAS, 
synchronizing the supply of parts and so on, because differentiation of functions and distribution of tasks is not 
considered an actual problem by swarm robotics. Instead, it is usually taken that the swarm has to solve only simple, 
mass problems like coordinated movement. This certainly reduces the importance of the swarm approach and goes 
straight to the main declared thesis of swarm robotics as an approach to the solution of complex behavioural tasks 
using a set of simple technical devices—robots. 

In the present case, it is considered that the problems of leader formation and role distribution are extremely 
important for the development of swarm robotics. This paper considers some ways in which these tasks might be 
solved, using such model the organization of a group of robots, as a static swarm. 
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2. Task definition 

The task is formulated as follows. Consider a set of simple devices (robots or agents) capable of directing local 
interaction between neighbours. The question is whether it is possible to formulate conditions under which it will be 
possible for such a system to solve more complex problems, both at the behavioural level and at the levels of 
information processing, decision-making, and so on. In other words, it is necessary to define the conditions of 
emergence of synergetic effects or emergent properties. 

There are two main classes of swarm models: micro- and macro-level models. The first of these is based on the 
models of the behaviour of individuals; the second class is based on description of the swarm as a whole. For 
example, at the micro-level, models of finite-state machines are widely used, and at the macro-level, hydrodynamics 
models are common. Hybrid models combining both approaches are less often applied. For example, Berman et al. 
describe a model of the dynamics of environment state in [1] that defines the behaviour of members of a swarm 
(agents). The reasoning in the present study generally belongs to the micro-level class because our interest is in the 
mechanism of local interaction of robots in a swarm (as in [14]). 

To begin, consider the structure of an agent, where the main objective is a set of some simple devices. Simplicity 
here means some principal limitation of cognitive abilities (sensors, calculations and memory). 

Further, some serious restrictions will be placed on the robots’ communication opportunities, in which each robot 
can communicate with no more than some limited number of its neighbors. It will further be assumed that the robots 
have a fixed number of communications ports (i.e. contact points that form information channels)—for example, 
robots must be connected physically to each other’s communication ports for communication as organized in Fig. 1. 
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Fig. 1. Robots with four communications ports and their communications. 

3. Static Swarm 

One of the models describing the organization of a great number of locally interacting agents or robots is the so-
called static swarm. This arrangement is characterized by the absence of a control centre and represents the given 
network fixed at some time interval as a set of agents [7]. 

The main feature of a static swarm is that at some moment, instead of a set of separated agents, the computing 
structure is completely defined, enabling the solution of difficult calculating and data processing tasks. It follows 
that a static swarm can be considered as an object with qualitative properties other than a simple set of agents. 

The main properties of a static swarm are an activity, locality of interactions and functional heterogeneity. 
Activity. Certainly, unlike the computer network, the network of agents has to be capable of perceiving signals 

from the environment, and of producing some effector functions (such as motion, for example) in order to have an 
impact on the outside environment. 

Locality of interaction. An important feature of a static swarm is essentially the local nature of interaction: 
agents communicate only with their neighbours. 
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Functional heterogeneity. The solution of complex tasks (i.e. manifestation of emergent properties of a system) 
assumes heterogeneity exists in the group in terms of differentiation of functions carried out by agents: strategic and 
tactical management, gathering and information processing, realization of effector functions, and so on. The 
organization of the mechanism of this functional heterogeneity is therefore an important question. 

The following task will be considered. Let there be a set of agents (robots) capable of local information exchange 
between nearest neighbours. Further, at some timepoint, the static swarm must realize a certain procedure for role 
distribution; some individual must act as a control centre, another must serve the data processing function, another 
has to collect information from the external environment, and so on. 

The general principles of role distribution can be based on the following obvious reasoning: a node (agent) with a 
maximum number of links (neighbours) becomes a candidate for the control centre role. Its nearest neighbours are 
analyzers of information; they prepare information for decision-making. Nodes located on the periphery of a 
network are responsible for gathering information. An example of such a network of agents is shown in Fig. 2. 
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Fig. 2. An example of the organization of a network. 

Here, node A becomes a main control center; its nearest neighbours (B) are assigned the role of analyzer; and 
peripheral nodes (S) will act as external sensors. Labels C, E and D designate other roles. The main question, then, is 
how these node-agents will choose the central, main node. There are several possible ways to organize such a vote. 

4. Voting task 

Consider the following formulation of the voting task. Let there be a set of agents with limited communication 
opportunities, so that agents are capable only of directing local interactions between neighbours. The task 
requirement is that agents must choose a leader by voting. 

All further assumptions are based on the fact that the topology of a network is unknown and that all reasoning 
must have an especially “local” character (i.e. considered from the point of view of the agent taking part in voting). 

At some timepoint, agents receive a global signal that the vote is beginning. At this moment, each agent 
establishes communication channels with its neighbours, and a generally directed graph is formed. The graph’s node 
is an agent; incoming edges are interpreted as the ability to receive data from source nodes. In this way, 
communication channels are formed. 

Let a static swarm be fixed (i.e. assume that its topology will not change further). 
Each agent is described as 

),,,( WCLA  
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where α = agent’s identifier or name; L  = a list of agent-neighbors from whom the agent α can receive 
information (incoming edges); C = a candidate’s identifier, for whom the agent α votes; W = weight of candidate C, 
i.e. the number of votes which, in the agent’s opinion, should be given to the candidate. 

The essence of a voting procedure is that each agent defines for whom its neighbours vote. Depending, then, on 
the weight of the candidate for whom the neighbour votes, the agent can change its opinion and vote for the same 
candidate. 

Figure 3 presents one step of this voting scheme. The node labels indicate the following: the agent’s identifier α 
is the “numerator”, and values Ca and Wa represent the candidate’s identifier and weight. 
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Fig. 3. One voting step: a) = start condition, b) = votes final distribution. 

Assume that agent α votes for candidate Ca and agent c votes for candidate Cc. If weight Wa is less Wc then agent 
α can change its opinion and revote, adding one more voice to the weight of the new candidate. 

The probability that agent i will change their opinion under the influence of the opinion of agent j (an opponent) 
can be defined as follows: 

ji

i
ij WW

Wp  

That is, the tendency to change opinion naturally depends on the degree of conviction or weight of the candidate. 

The distribution of voices of candidates and their weight at an initial timepoint is also implemented quite 
naturally; each agent votes for itself (declares itself the candidate), and the weight of this decision is equal to the 
number of this agent’s neighbours. 

Algorithms for the agent’s voting behaviour are given below. 
 
Algorithm G1(α). Agent’s decision-making—1 
α—agent 
Ca—the candidate for whom agent α votes 
Wa—candidate’s weight 
La—list of agent’s candidates 
 
Procedure G1(α) 
    To choose among neighbours of the opponent with maximum weight Aop: 

Li
iop

opop

WW
CCLA

max

,
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    To calculate value of probability of change of opinion: 

op

op

WW
W

p
 

    To change opinion with probability pa: 

1opa

opa

WW
CC

 

end procedure G1(α) 
 
It is possible to “roughen” the decision-making algorithm, forcing the agent to change its opinion on the 

candidate if there is stronger opponent in its environment. If parity is observed between scales of opinion of the 
agent and the strongest opponent, the choice of decision can be carried out probabilistically. 

 
Algorithm G2(α). Agent’s decision-making—2 
 
Procedure G2(α) 
   To choose among neighbours of the opponent with the maximum weight Aop: 

Li
iop

opop

WW
CCLA

max

,
 

   if  Wop>Wa  then -- The opponent is "stronger". We change the opinion: 

1opa

opa

WW
CC

 

   else 
      if  Wop=Wa   then -- Forces are equal. We change the opinion -- with probability 0.5 
         p  rand() -- Random value from 0 to 1 
         if  p > 0.5 then 

1opa

opa

WW
CC

 

      end if 
    end if 
end procedure 
 
A common voting scheme might look like this: 
 
Algorithm V( A ). Voting 
A—a set of agents 
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α—agent 
Ca—the candidate for whom the agent α votes 
Wa—candidate’s weight 
La—list of agent’s candidates 
eoj—flag of end of a voting procedure 
procedure V(A) 
   eof  false 
   for all α A do  -- Agents initialization 

)dim( aa

a

LW
C

 

   end for 
   while not eoj do  -- Main cycle of vote 
     for all  α A  do  -- Cycle on all agents 
        G1(α) 
     end for 
     “Definition of conditions of completion of voting procedure eoj” 
   end while 
end procedure V(A) 
 
In this algorithm, the biggest problem is the item “Definition of conditions of completion of voting procedure 

eoj”. In the absence of global information on a network’s state, the agent has to make the decision for itself that 
voting is finished. Information received from the immediate environment is obviously not sufficient for this purpose, 
and two variants of agent behaviour are therefore possible: 

1. To consider that voting must be completed in at most some certain number of steps, involving top assessment 
of the number of voting algorithm steps. 

2. To realize some procedure for an exchange of messages defining that voting is completed, and no agent further 
changes their decision. 

The first variant must prove convergence of iterative voting procedures. Some reasoning can be based by analogy 
with a schema for reaching a consensus [2]. DeGroot’s paper defines consensus as mutual agreement on a subject 
among a group of people (agents in our terminology). The main issue is that with DeGroot’s schema convergence 
can be proved only for some partial situations. 

The second variant also implies the existence of some assessed number of voting steps prompting the agent to 
send a request defining voting procedure completion. The realization of procedures of this sort also presents a 
number of highly technical difficulties—in particular, an increase in network traffic, as each agent must realize this 
procedure irrespective of the others. 

As a further example of a voting procedure, Figure 4 shows 3 steps in the voting procedure for a solid group of 
robots. 

In the first step, each agent votes for itself, so that the number of cells designating "borders" of distribution of 
voices for the corresponding candidates is equal to the number of robots. The second step (revoting) shows an 
integration of areas voting for chosen candidates. Finally, in the sixth step, all votes are assigned to a single 
candidate, and the voting procedure comes to the end. An example of the process of voting in extremely adverse 
conditions is shown in Figure 5, involving two clearly expressed zones connected by two isthmuses. 
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...

1 2 6  

Fig. 4. A voting procedure in solid group. Steps 1, 2 and 6. 

 

1 3

20 37  

Fig. 5. Cycling voting procedure. Steps 1, 3, 20 and 37. 

In this situation, a cyclic process of distribution of voices can be observed. At the 20th step of the vote, two stable 
areas are formed, each of which votes for their own candidate, and a further process of cyclic revoting begins. It is 
clearly visible how preference areas actually trade places in the 37th step. The process continues only as far as step 
51, when all oscillations stop and a single candidate remains. 

Justification of these algorithms requires answers to two main questions: (1) convergence of the algorithms to 
one solution and (2) estimation of the number of voting steps. Unfortunately, these questions currently remain open, 
as we can speak only about the results of modelling, according to which the process of voting converges. Clearly, 
the number of voting steps did not exceed the number of robots in the group. 

Centralized voting. Problems with the schemes above result in particular from the local nature of the agents’ 
decision-making. If each agent knew the graph structure, definition of the leader would be quite a routine task. In 
fact, it is possible to provide a rather simple scheme of an exchange of messages between agents, which with 
guarantee would allow receipt of the full graph structure. The number of steps does not exceed the number of robots 
N in a group. To achieve this, it is enough for the robots to report to each other everything they know about the 
structure of the graph at the present time, as follows: 

At an initial timepoint, information about the structure of the graph for each agent is limited to knowledge of its 
neighbours. This incomplete graph is represented, for example, by the list of edges Li

0 sent by agent i to its 
neighbours. Having received such a list, each agent combines it with their existing list for a fuller picture in the form 
of a new list: 

Zk

k
t

i
t LL 1  

This is a combination of the lists received from all neighbours from some area Z at the previous timepoint. 
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Through no more than N steps, then, each robot will have all the information about the graph’s structure. Further, 
all of them elect the only leader, proceeding, for example, from reasons of maximum connectivity, equidistance and 
so on. An obvious and ineradicable deficiency of such a scheme is a very big flow of information, which should be 
reported to robot neighbours. The practicality of this scheme in real systems is rather doubtful. 

5. Task distribution 

In the absence of morphological distinctions between agents, role distribution in a static swarm is defined 
exclusively by the current topology of the system. The distribution process is presented as a well-known procedure 
of control wave distribution. The initiator of distribution is the leader, whose role is designated as R0. Direct 
neighbours of the leader receive an initial message, according to which a role R1 is assigned to them, and so on. 
Thus, the role of robot i is defined by the roles in its environment: 

1max kZki RR  

The roles wave distribution is realized exclusively by local interaction, but there is one essential problem. For 
successful functioning of system let M roles be required, with the process of distribution of a wave consisting of L 
steps (Figure 6). 
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Fig. 6. Actual (L) and required role number (M). 

If M = L, there is no problem. If M < L, there are too many performers with role RM. This is not a good situation, 
but it is not fatal because in a static swarm we are not interested in role distribution optimization (like [5]). If M > L, 
however, the situation is worse, as there is a deficiency of performers, which is extremely undesirable. Agents 
playing several roles at once (combination of specializations) can cover the performance deficit, so that definition of 
the procedure whereby an agent should assume additional functions seems simple. For example, if an agent with a 
role number L has no neighbours with roles bigger than L, it means that this agent is at the periphery. Further, if we 
know that M roles are needed, this agent has to assume roles from L to M. The prevention of any deficiency can also 
be defined in advance. If there is a group of N agents with maximum connectivity to each agent s (the maximum 
number of neighbours), it is possible to estimate the minimum number of roles M. Estimation of the M value is  

M ~ logS N 

6. Conclusions 

Simple and effective methods have been proposed for the solution of important problems of swarm robotics such 
as leader definition and role distribution in a group of agents. Efficiency is understood as the acceptability of robots 
with limited cognitive abilities (insufficiency of sensory abilities, computing capacities, communications channels 
etc.—in short, all that is peculiar to a swarm robotic). Despite their simplicity, realization of these mechanisms 
confirms the basic possibility of formation of very complex structures in the organization of homogeneous groups, 
and again confirms that distinctions between a swarm, a flock and a collective of robots are somewhat artificial. 
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The static swarm model is a convenient way of looking at swarm robot organization. While it is limited to 
exclusively local interaction between agents, it offers all the advantages of a system understood as a network of 
connected agents, allowing solution of such problems as storage and data processing, coordinated movement and so 
on [7]. 

In future work, we hope to investigate the mechanism of logical consequence in static swarms, hypothesizing that 
logical consequence procedures can be implemented by exclusively local interaction methods. 

Acknowledgements 

We gratefully acknowledge the support of RFBR grant No.14-01-00817. 

References 

[1] Berman S., Halasz A., Kumar V., Pratt S.: Bio-Inspired Group Behaviors for the Deployment of a Swarm of Robots to Multiple Destinations. 
In 2007 International Conference on Robotics and Automation.  pp.2318-2323, IEEE, 2007. 

[2] DeGroot M. H., Reaching a Consensus. J. Amer. Stat. Assoc., 1974, Vol 69, Issue 345, pp.118-121. 
[3] Dewi T., Risma P., Oktarina Y. Wedge Formation Control of Swarm Robots.  The 14th Industrial Electronics Seminar, Electronic 

Engineering Polytechnic Institute of Surabaya (EEPIS), Indonesia, 2012, pp.294-298. 
[4] Gigliotta, O., Mirolli, M., Nolfi, S. Communication based dynamic role allocation in a group of homogeneous robots. Natural Computing, 

Volume 13, Issue 3, September 2014, pp. 391-402. 
[5] Kalyaev I., Kapustjan S., Ivanov D. Decentralized control strategy within a large group of objects based on swarm intelligence. Proc. of the 

2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics, RAM 2011, pp.299-303. 
[6] Karpov, V.E. Partial mechanisms of leadership and self-consciousness in swarm robotics. Proc. of the 13th National Conf. on Artificial 

Intelligence KII-2012, Belgord, 2012, (Belgorod State Technical University, Belgorod, 2012), Vol. 3, pp.275-283 [in Russian]. 
[7] Karpov, V.E. Control in static swarms. Problem definition. Proc. of the VII International science-practical conference on Integrated models 

and soft computing in artificial intelligence, Kolomna. (Fizmatlit, Moscow, 2013). Vol. 2, pp.730-739 [in Russian]. 
[8] Kim, S.-C., Shin, K.H., Woo, C.-W., Eom, Y.S., Lee, J.M. Performance analysis of entropy-based multi-robot cooperative systems in a 

MANET. International Journal of Control, Automation and Systems, Volume 6, Issue 5, October 2008, pp.722-730. 
[9] Kukushkin, I.K.; Katalinic, B.; Cesarec, P.; Zdyb, D. & Kettler, R.: Modeling of mobile robot behavior for line-less Bionic Assembly System, 

Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, ISBN 978-3-901509-91-9, ISSN 2304-1382, 
pp. 0865-0870, Editor B[ranko] Katalinic, Published by DAAAM International, Vienna, Austria, 2012. 

[10] Loukas Andreas, Woehrle Matthias, Glatz Philipp, Langendoen Koen. On Distributed Computation of Information Potentials. Proceedings 
of the 8th ACM SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Computing, FOMC'12. 2012, Madeira; Portugal; 
19 July 2012, Article number 5. 

[11] Nissan EPORO Robot Car "Goes to School" on Collision-free Driving by Mimicking Fish Behavior - Advanced Robotic Concept Debuts at 
CEATEC JAPAN 2009. – http://www.nissan-global.com/EN/NEWS/2009/_STORY/091001-01-e.html. 

[12] Pavlovsky V.E., Kirikova E.P., Pavlovsky V.V. Modeling of behavior of big groups of robots in the environment with obstacles. Proc. of the 
scientific seminar "Control in distributed network-centric and multi-agents systems". St.Petersburg: "Koncern CNII «Jelektropribor» ", 2010, 
pp.10-13 [in Russian]. 

[13] Song, Y. , Zhao, W. Multi-agent system rendezvous via refined social system and individual roles. WSEAS Transactions on Systems and 
Control. Volume 9, Issue 1, 2014, pp. 526-532. 

[14] Stefanuk V.L. Local Organization of Intellectual Systems. Fizmatlit, Moscow, 2004. 328 p. [in Russian]. 
[15] Yogeswaran M. and Ponnambalam S. G. (2010). Swarm Robotics: An Extensive Research Review, Advanced Knowledge Application in 

Practice, InTech. pp. 259-278. 
[16] Yu, H., Jian, J., Wang, Y. Flocking motion of mobile agents with a leader based on distance-dependent adjacency matrix. Lecture Notes in 

Computer Science. 1st International Conference on Intelligent Robotics and Applications, ICIRA 2008; Wuhan; China; 15 October 2008 
through 17 October 2008; Code 74343. Volume 5314  LNAI, Issue PART 1, 2008, pp. 1165-1174. 

[17] Zhiguo Shi, Jun Tu, Qiao Zhang, Lei Liu, Junming Wei. A Survey of Swarm Robotics System. Proc. of the Third Intern. Conf. on Advances 
in Swarm Intelligence, Shenzhen, China, 2012. V.1, pp. 564-572. 


