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The fractal globule state is a popular model for describing chromatin packing in eukaryotic nuclei. Here
we provide a scaling theory and dissipative particle dynamics computer simulation for the thermal motion
of monomers in the fractal globule state. Simulations starting from different entanglement-free initial states
show good convergence which provides evidence supporting the existence of a unique metastable fractal
globule state. We show monomer motion in this state to be subdiffusive described by hX2ðtÞi ∼ tαF with αF
close to 0.4. This result is in good agreement with existing experimental data on the chromatin dynamics,
which makes an additional argument in support of the fractal globule model of chromatin packing.
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The question of how genetic material is packed inside a
eukaryotic nucleus is one of the most challenging in
contemporary molecular biology. This packing, apart from
being very compact, has some striking biological properties
including the existence of distinct chromosome territories,
easy unentanglement of chromosomes and chromosome
parts (needed in preparation to mitosis, and during tran-
scription), and the ability of different parts of the genome to
find each other in space strikingly fast in, e.g., so-called
promoter-enhancer interactions. All these properties are
very untypical for the compact states of generic synthetic
polymers (known as the equilibrium globular state in
classical polymer physics; see, e.g., [1,2]). Indeed, e.g.,
human chromatin fiber (that is to say, a composite polymer
fiber consisting of dsDNA and associated histone proteins
[3]) is so long that an equilibrium polymer globule made of
it would be too entangled to perform any biological
functions on any reasonable time scale [4].
The theories proposed to explain the chromatin packing

tend to either be based on some ad hoc biological
mechanism of stabilization [5–10] or argue that topological
interactions prevent the chromatin chain from entangling
itself on biological time scales [4,11–13]. The latter point
of view relies on the analogy between the chromatin state
and other topologically governed polymer states, such as
fractal (crumpled) globules [11,14–16], and melts of non-
concatenated polymer rings [17–21]. In recent years, the
data obtained via novel experimental techniques to study
genome structure, in particular FISH [22] and Hi-C
[12,23,24] methods, seem to provide data supporting the
topological fractal globule approach.
For the detailed overview of the state of the field we direct

the reader to a recent review [25]; here we provide a brief
summary of those presumed static properties of chromatin
packing which we use in what follows. First, the fractal
globule model assumes that chromatin fiber forms a compact

fractal state with dimensionality 3; i.e., on all length scales
the typical spatial distance R between monomers depends on
genomic distance n between them as R ∼ n1=df ¼ n1=3.
Second, there are no entanglements in the fractal globule
contrary to the equilibrium one. Because of that, parts of
chromatin can easily fold out from the fractal globule
conformation and form extended loops, and then retract
back to refold into the dense state. Third, the fractal globule
has a distinct territorial organization: parts of the genome
close to each other along the chromosome are close to each
other in space as well. These properties are dictated by the
absence of knots on the chromatin chains and topological
entanglements between them and are, therefore, shared
between linear polymers in the unentangled state and non-
concatenated unknotted rings; the difference is that while for
rings the described fractal state is equilibrium, for linear
chains it is but metastable, although it is supposed to be
relatively long-lived. The question of how to prepare a fractal
state with long-living stable properties is still a matter of
debate, many different algorithms to prepare a fractal globule
in computer simulations have been suggested [12,26–30],
most of them appear to be evolving in time rather rapidly
when the simulation starts. Here we use two different
algorithms to prepare initial fractal states, then anneal them
for some time before starting measurements. The observed
convergence of the results obtained from two different initial
states suggests that there indeed exists a unique metastable
fractal globule state corresponding to a partial equilibrium of
the polymer chain given the absence of topological
entanglements.
Dynamics of a fractal globule state, which is a focus of

this Letter, has been less studied so far. Clearly, self-
diffusion in the fractal globule should be faster than in the
equilibrium one due to the absence of entanglements [31].
Sometimes [26,32] the Rouse dynamics of the fractal state
is assumed in order to estimate the relaxation times of the
chain as a whole, while explicit measurements (e.g.,
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computer simulations of nonconcatenated rings [33],
experiments on the dynamics of unknotted ring bacterium
genomes [34] and on the telomeres in the nuclei [35–37])
suggest a slower than Rouse dynamics. Indeed, the dis-
crepancy from Rouse theory is to be expected since it relies
heavily on the absence of interactions between monomers
that are not immediate neighbors along the chain [1], and
cannot be directly applied to the fractal globule which is
actually stabilized by this interaction. Recently, a theoreti-
cal approach to generalize the Rouse model to produce
different scaling exponents was suggested [38], but without
any discussion of what particular exponent one should
choose in a physically relevant situation [39]. In what
follows, we present a scaling theory and computer simu-
lations of the self-diffusion in a fractal globule state
resulting in a subdiffusive motion with an exponent similar
to one observed experimentally in [34–37]).
We start with the Rouse model, which is the simplest

model of the dynamics of an unentangled polymer. In the
continuous limit the conformation of the Rouse chain
Xðs; tÞ (here X is the spatial coordinate, s is a coordinate
along the chain, and t is time) satisfies the equation [1,2]

∂Xðs; tÞ
∂t ¼ λ

∂2Xðs; tÞ
∂s2 þ ξðs; tÞ; ð1Þ

where λ is some coefficient, ξ is the white thermal noise
delta-correlated in space and time. This equation has a
stationary solution, which is a Gaussian measure over all
trajectories Xðs; tÞ. In what follows we restrict ourselves to
discussing very long chains (or, equivalently, relatively
short times), which makes the boundary conditions coupled
to Eq. (1) irrelevant for internal monomers.
Equation (1) neglects any interactions between mono-

mers not immediately adjacent along the chain, and,
therefore, it cannot be directly applied to non-Gaussian
equilibrium or metastable states of a polymer chain, which
are stabilized by volume interactions. Many different
generalizations of Eq. (1) are possible, e.g., by introducing
fractional derivatives [38,43] or by introducing correlations
into the noise term [44]. It is not clear which particular
generalization is most valid microscopically for the fractal
globule, so instead of modifying Eq. (1) we rely below on a
more general scaling argument. Proceeding this way we
lose the detailed information about the statistics of the
monomer self-diffusion, but are able at least to recover the
scaling exponent of the self-diffusion.
For theRousemodel the scaling argument goes as follows.

Let xðs; tÞ be a stationary solution of Eq. (1). Then for any
given time t and two positions along the chain s1; s2,

h½xðs1; tÞ − xðs2; tÞ�2i ∼ js1 − s2j; ð2Þ

where triangular brackets correspond to averaging over
stationary solutions of Eq. (1). Assume now that as time
goes on the monomer displacement grows as

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα; ð3Þ

with some unknown α. Since the chain is connected and
Eq. (2) holds at any given time, parts of the chain of length
δsðτÞ ¼ js1 − s2j ∼ ðτÞα are obliged tomove collectively at a
time scale τ. Moreover, if all monomers in this chain
fragment experience independent random forces from the
solvent, the collective effective diffusion constant of such a
fragment is

DðδsÞ ∼D0=δs ¼ D0τ
−α; ð4Þ

where D0 is a microscopic diffusion constant [45].
Combining Eqs. (3) and (4) one recovers the well-known
result

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα ∼DðδsÞτ ∼ τ1−α;

αR ¼ 1=2; ð5Þ

wherewe introduced notation αR for the scaling exponent of
the Rouse model.
This scaling reasoning is much easier to generalize for

the fractal globule case than Eq. (1) itself. Indeed, the
principal change is the statistic of the state we consider
(recall that we are only considering time scales much
shorter than chain entanglement time, so we assume that the
fractal globule state can be treated as stationary). This
corresponds to replacing Eq. (2) with

h½xðs1; tÞ − xðs2; tÞ�2i ∼ js1 − s2j2=df ; ð6Þ

where df is a fractal dimensionality of the state under
consideration, df ¼ 3 for a fractal globule. The chain
connectivity argument still holds, and the size of a
collectively moving domain scales now as δsðτÞ∼
ðτÞαdf=2. If the random forces acting on monomers are still
independent, the resulting scaling exponent of a fractal
globule αF is

h½xðs; tþ τÞ − xðs; tÞ�2i ∼ ðτÞα ∼D0

δs
τ ∼ τ1−αdf=2;

αF ¼ 2

2þ df
¼ 2=5: ð7Þ

Similar predictions for the self-diffusion in swollen poly-
mer coils have been coined previously; see, e.g., [46]. In
[47] we argue that allowing for hydrodynamic interactions
should make the forces acting on different monomers
correlated, which will speed-up the diffusion. We show,
however, that this effect is expected to be small, only
shifting αF to around 0.42.
The natural state of comparison for a fractal globule is a

usual entangled equilibrium globule, where self-diffusion
of monomers is described by the Rouse exponent αR ¼ 1=2
only on short time scales, when displacement is smaller
than the typical size of the entanglement blob. For larger
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time and length scales the entanglements play a crucial role
and the scaling theory [2] predicts αent ¼ 1=4.
To check the predictions of the scaling theory we held out

extensive computer simulations using the dissipative particle
dynamics (DPD) technique, which is known [64,65] to
correctly reflect dynamics of dense polymer systems. The
polymer model we use consists of renormalized monomers
with the size of order of the chromatin persistence length,
corresponding DPD time step is of order 1 nsec or more (see
Ref. [47] for more details). Volume interactions between the
monomers are chosen to guarantee the absence of chain self-
intersections, the entanglement length isNe ≈ 50� 5mono-
mer units [66]. The modeled chains have N ¼ 218 ¼
262 144 units confined in a cubic volume with periodic
boundary conditions. In a chain that is long (N=Ne ≃ 5000)
the equilibration time by far exceeds the times accessible in
computer simulation, so the choice of starting configurations
plays a significant role. Here we provide a short outline of
how we construct and prepare the initial states, addressing
the reader to [47] for further details.
The first initial state we use is a randomized Moore curve

similar to that described in Ref. [26], it has a very distinct
domain structure with flat domain walls. The second initial
state is generated by a mechanism which we call
“conformation-dependent polymerization in poor solvent.”
This algorithm, which, for the best of our knowledge, has
never been suggested before, is constructing the chain
conformation by consecutively adding monomer units in a
way that they tend strongly to stick to the already existing
part of the chain. In Ref. [47] we show that the resulting
conformations show exactly the statistical characteristics
expected from fractal globules, while a full account of this
new algorithm will be given in Ref. [30]. In what follows,
for brevity we call the globule prepared by the randomized
Moore algorithm “Moore,” and one prepared by the
conformation-dependent polymerization “random fractal.”
As a control sample we use a standard equilibrium globule
which we call “Gaussian.”
Prior to the diffusion measurements all three initial states

are annealed for τ ¼ 3.2 × 107 modeling steps. The stat-
istical properties of the random fractal and Gaussian
globule do not change visibly during the annealing time,
while the Moore globule is evolving with domain walls
roughening and its statistical characteristics (e.g., depend-
ence of the spatial distance between monomers on the
genomic distance hR2ðnÞi; see [47]) approaching those for
the random fractal globule state.
Snapshots of conformations annealed from different

initial states are shown in Fig. 1. In fractal states, contrary
to the Gaussian one, fragments close along the chain tend to
form domains of the same color. The states are further
characterized in Fig. 2. The fractal globule curve appears
very similar (but for the saturation at large n due to the
finite size effects) to the universal spatial size-length curve
for unentangled rings discussed in Refs. [20,68]. R2ðnÞ for
the Moore state seems to approach the fractal globule curve
with growing modeling time suggesting the existence of a

unique metastable fractal globule state. Fractal globules
prepared by two different techniques are significantly
different at first, but converge with growing simulation
time, making the results obtained after annealing unsensi-
tive to the details of the initial state.
Monomer spatial displacement was measured for t ¼

6.5 × 107 DPD time steps after the annealing (correspond-
ing to ∼0.1 sec on the real time scale), with results shown
in Fig. 3. Impressively, mean-square displacement for the

FIG. 1 (color online). The snapshots of globule conformations:
random fractal (top), Moore (middle), and Gaussian (bottom)
globules. (a) General view of the modeling cell after initial
annealing. Chains are gradiently colored from blue to red. (b)–(d)
The evolution of a 1000-monomer subchain conformation:
(b) initial conformation at the start of measurement, (c) after 218 ≈
2.5 × 105 DPD steps, (d) after 226 ≈ 6.5 × 107 DPD steps. The
cube on the figure corresponds to the whole simulation box and
has the size 46 × 46 × 46 DPD length units.

FIG. 2 (color online). Mean-square distance hR2i between
monomers as a function of genomic distance n. Gaussian (green)
and random fractal (red) states are stable on the modeling time
scale (see Fig. 2 in Ref. [47]). Initial Moore state (black) relaxes
after annealing to the blue curve, approaching the random fractal
state. Inset shows the same plots in (hR2in−0.8, n=Ne) coordinates
used in [20].
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random fractal and Moore initial states is indistinguishable
within the measurement error. As expected, it is slower than
in the Gaussian state: the observed scaling exponent for
Gaussian globule αG is fairly close to αent ¼ 1=4 predicted
by the reptation model, while for the fractal globule one
gets αexpF ≈ 0.38, which clearly is above αent ¼ 1=4 and
below the Rouse exponent αR ¼ 1=2, fairly close to our
theoretical prediction αthF ¼ 0.4 − 0.42. Both our simula-
tions and results known from the literature for computer
simulation [33,69] and experiment [34–37] of similar
unknotted polymer systems give scaling exponents similar
but slightly below our theoretical estimate. We expect this
discrepancy between theory and simulation to be due
primarily to the fluctuation effects. We also examined
the distributions of monomer displacements at various
times for all three initial states [47]. For both fractal states
the monomer displacement distributions stay Gaussian at
all times despite the mean-square displacement growing
subdiffusively, a behavior typical for fractional Brownian
motion [43]. In turn, distribution of monomer displace-
ments in the equilibrium globule shows visible deviations
from the normal distribution.
The scaling theory introduced above can be used to

estimate the first passage time for two parts of a chromatin
chain (e.g., the loci of enhancer and promoter) to find each
other. In Ref. [47] we show this time scale as n1.6−1.67 with
the genomic distance between the loci, i.e., significantly
faster than the Rouse time, enhancing the speed of gene
regulation processes. We consider this to be an additional
argument in favor of the fractal globule model of genome
packing.
Summing up, self-diffusion in a fractal globule state,

while much faster than that in the entangled equilibrium
globule, is not described by the Rouse model, it is a
subdiffusion with a different exponent αF ≈ 0.38 − 0.42.
This result, which we support by scaling theory and

computer simulations, is in accordance with earlier numeri-
cal [31] and experimental [34–37] data. By analogy with
the Rouse model, we expect the dynamics in the fractal
globule to be a fractional Brownian motion, but full
analysis of this matter goes beyond the scope of this
Letter. Moreover, the compactness of the domains in the
fractal globule coupled with comparatively fast subdiffu-
sion leads to the estimate T ∼ n1.6−1.67 for the first passage
time, which is faster than Rouse time T ∼ n2, not to
mention the first passage time in the entangled melt.
The ability of different parts of chromatin to find each
other fast may be crucial for fast regulation of gene
expression. As a by-product of our simulation we provide
evidence that the long-living metastable fractal globule
state is unique and has characteristics similar to the
equilibrium state of nonconcatenated polymer rings.
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