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Abstract—We consider a sequence of Markov chains that weakly converge to a diffusion process.
We assume that the trend contains a linearly growing component. The usual parametrix method
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in order to get local limit theorems in this case.
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1. INTRODUCTION

In this introduction, we show where the problem we consider has arisen from. Note that the
introduction is not intended to provide a comprehensive survey.

The importance of studying discretizations of stochastic differential equations (SDE) follows
already from the fact that all known approximate modeling techniques for SDEs are based on
some kind of discretization. It is well known that SDE solutions can be obtained in a closed form
only for a small number of subclasses of stochastic equations, so various discretization methods
(the Euler–Maruyama scheme, Milstein’s scheme, schemes based on higher order stochastic Tay-
lor decompositions) attracts a lot of attention from researchers. A natural question arises: do
discretization schemes reproduce asymptotic properties of the original process (such as the mixing
rate, principle of large deviations and so on). Another important question is how “close” the result-
ing approximation is, in some sense, to a solution of the original SDE. Our study deals with that
second question. Historically, the first considered scheme was a sequence of Markov chains defined
on a grid with grid step tending to zero, and weak convergence of measures (transition probabil-
ities) to the transition probability of some limit diffusion process was usually studied. The first
general results on weak convergence in this scheme were obtained by A.V. Skorokhod in 1961 [1].
Skorokhod’s results held for a quite general class of Markov chains and processes that might have
jumps. For continuous diffusion, the most general results on weak convergence were obtained in
the book of D. Stroock and S. Varadhan [2]. They developed an approach based on solving the
so-called “martingale problem.” We emphasize once again that these first results dealt with weak
convergence of measures. Modern theory of weak convergence for probability measures is a the-
ory with decades of history; it is primarily related to the names of A.N. Kolmogorov, J. Doub,
M. Donsker, Yu.V. Prokhorov, Skorokhod, L. Le Cam and Varadhan.

We now assume that transition probabilities of both Markov chains and the limit diffusion
process are absolutely continuous with respect to the Lebesgue measure. Then it is natural to
ask when these transition densities also converge, i.e., when the corresponding local limit theorem
holds. To answer that question, V. Konakov and S. Molchanov [3] proposed a discrete version of
the parametrix method that was further refined and generalized in a cycle of works by Konakov
and E. Mammen [4–7]. The parametrix method has been known for a long time in the theory of
differential equations; it was proposed by E. Levy back in 1907 [8, 9] and was then developed in
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the works of A. Friedman [10], A. Il’in, A. Kalashnikov, and O. Oleinik [11] and others. However,
for our purposes this version of the parametrix method does not apply. In 1967, H. McKean and
I. Singer [12] proposed a modification of the parametrix method that turned out to admit a discrete
version and let them develop a new method for proving local limit theorems for transition densities
in a sequence of Markov chains that weakly converge to a limit diffusion process. One significant
requirement in the proof of these results was the condition that shift and diffusion coefficients
are bounded. Boundedness was needed for the series constructed in the parametrix method to
converge. This requirement narrowed down the applicability of these results and did not let the
authors consider a number of important specific models. The purpose of this work is to define
a procedure that lets us exclude a linearly growing trend component and reduce the problem to
the already studied problem with bounded shift and diffusion coefficients. This procedure was
applied both to diffusion and to Markov chains. For SDEs, a similar trend exclusion procedure was
previously applied in the work of F. Delarue and S. Menozzi [13] to get two-sided bounds on the
transition density for some degenerate SDEs of Kolmogorov type. To the best of our knowledge,
for Markov chains this procedure is novel. The essence of our proposed procedure is simple: we
compensate a growing trend by returning along the trajectories of the system of ordinary differential
equations that results by discarding the “Brownian” component of the SDE. For this compensated
process, with Ito’s formula we can write its stochastic differential and SDE that it satisfies. This
SDE now has a bounded shift coefficient. For Markov chains we perform a similar procedure,
only instead of a differential equation we use a difference equation, and return back not along the
trajectories of differential equations but along its Euler polylines. Then, applying known results for
the bounded case, we can with a simple transformation return to the original problem and obtain
local limit theorems in the original model. In further work, we also plan to consider a more general
case of a growing trend with a bounded gradient and the case of an unbounded diffusion coefficient.

2. THE ESSENCE OF THE PARAMETRIX METHOD AND NECESSARY PRELIMINARIES
FROM THE THEORY OF DIFFERENTIAL AND DIFFERENCE EQUATIONS

Consider the class of stochastic problems that can be solved with the parametrix method. Sup-

pose that on the interval [0, 1] there is a sequence of partitions Γn =
{
0, 1n ,

2
n , . . . , 1

}
, n = 1, 2, . . . ,

and a sequence of Markov chains X
(n)
t with discrete time and continuous state space. Chains X

(n)
t

are defined on the lattice Γn, have initial distribution δx0(·), and the one-step transition probability
has density

p(n)
(
1

n
, x,A

)
= P

(
X

(n)
i+1
n

∈ A|X(n)
i
n

= x

)
=

∫

A

p
(n)
i
n
,x

(
1

n
, x, z

)
dz.

Under this condition, transition probability over n steps is also absolutely continuous with
respect to the Lebesgue measure and has density p(n)(1, x0, z). The problem is to find conditions
under which the local limit theorem holds, i.e., conditions under which the density p(n)(1, x0, z) can
be approximated with a density of some diffusion process p(1, x0, z). For these purposes, we use the
analytical method based on a special version of the parametrix method (McKean and Singer [12])
whose classical version was proposed by Levy in 1907 [8, 9]. Next we give a brief description of the
parametrix method in the form of McKean and Singer.

The Parametrix Method in the Form of McKean and Singer

Consider a diffuse process Yt which is a solution for the SDE

dY = b(t, Y )dt+ σ(t, Y )dB(t), Y (0) = x ∈ Rd, t ∈ [0, 1],
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where B(t) is the standard Wiener process, σ(z) is a symmetric matrix such that matrix a(z) =
σ(z)σT(z) satisfies the uniform ellipticity condition, functions b(z) and a(z) are bounded and satisfy

Hölder’s condition, and, moreover, there exist bounded and continuous derivatives
∂aij
∂zj

,
∂2aij
∂zi∂zj

, and
∂bi
∂zi

that satisfy Hölder’s condition.

Consider the direct and reverse Kolmogorov equations:

−∂p(t−s, x, y)
∂s

=Lxp=
1

2

∑
i

aij(x)
∂2p(t−s, x, y)

∂xi∂xj
+
∑
i

bi(x)
∂p(t−s, x, y)

∂xi
(1)

and

∂p(t− s, x, y)

∂t
= LT

x p =
1

2

∑
i

∂2 [aij(y)p(t− s, x, y)]

∂yi∂yj
−
∑
i

∂ [bi(y)p(t− s, x, y)]

∂yi
. (2)

Consider another diffuse process Ỹ = Ỹs,x,y defined on the interval s � t � 1, which represents
a solution of the following SDE:

dỸ (t) = b(y)dt+ σ(y)dB(t), Ỹ (s) = x ∈ Rd, t ∈ [s, 1].

Processes of the form Ỹ = Ỹs,x,y are called diffusions frozen at point y. The transition density
of such a diffusion is Gaussian

p̃(y)(t− s, x, y) = (2π)−
d
2 (t− s)−

d
2 (det a(y))−

1
2

× exp

(
− 1

2(t− s)
{y − x− b(y)(t− s)}T a−1(y) {y − x− b(y)(t− s)}

)
.

We introduce the necessary notation and operations. We define the singular kernel H(t− s, x, y)
and binary operation ⊗ of convolution type as follows:

H(t− s, x, y) =
1

2

∑
i,j

(aij(x)− aij(y))
∂2p̃(t− s, x, y)

∂xi∂xj
+
∑
i

(bi(x)− bi(y))
∂p̃(t− s, x, y)

∂xi
,

(f ⊗ g)(s, t, x, y) =

t∫

s

dτ

∫

Rd

f(s, τ, x, z)g(τ, t, z, y)dz.

The fundamental solution of Eqs. (1) and (2) can be represented as

p(t− s, x, y) =
∞∑
r=0

(
p̃⊗H(r)

)
(t− s, x, y) , (3)

where H(r) = H(r−1) ⊗H.

It is important to represent the transition density in the form of McKean and Singer be-
cause this representation can be applied in the discrete case. Consider a sequence of partitions

Γn =
{
0, 1n ,

2
n , . . . , 1

}
, n = 1, 2, . . . , and a sequence of Markov chains X

(n)
t with discrete time and

continuous state space. Chains X
(n)
t are defined on the lattice Γn, have initial distribution δx0(·),

and the chain’s dynamics is defined by recurrent relation

X
(n)
i+1
n

= X
(n)
i
n

+
1

n
b

(
X

(n)
i
n

)
+

1√
n
ε
(n)
i+1
n

, 0 � i � n− 1, X
(n)
0 = x. (4)
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For each 0 < s = j
n < 1 and x, y ∈ Rd we define a Markov chain X̃

(n)
t = X̃

(n)
s,x,y. This chain is defined

on the lattice
{

j
n ,

j+1
n , . . . , 1

}
with recurrent relation

X̃
(n)
i+1
n

= X̃
(n)
i
n

+
1

n
b (y) +

1√
n
ε̃
(n)
i+1
n

, j � i � n− 1, X̃
(n)
j
n

= x. (5)

We introduce discrete counterparts Hn(t− s, x, y) and ⊗n of the singular kernel H(t − s, x, y)
and binary operation ⊗:

Hn

(
j′

n
− j

n
, x, y

)
=
(
Ln − L̃n,y

)
p̃yn

(
j′

n
− j + 1

n
, x, y

)
,

(f ⊗n g)

(
j′

n
− j

n
, x, y

)
=

j′−1∑
i=j

1

n

∫

Rd

f

(
i

n
− j

n
, x, z

)
g

(
j′

n
− i

n
, z, y

)
dz,

where Ln and L̃n,y are infinitesimal operators of chains (4) and (5), and p̃yn

(
i
n , x, y

)
is the transition

density of chain (5).

The transition density of the Markov chain (4) can be represented as

pn

(
j′

n
− j

n
, x, y

)
=

j′−j∑
r=0

(
p̃n ⊗n H

(r)
n

)(j′
n
− j

n
, x, y

)
. (6)

The proximity of left-hand sides of representations (3) and (6) can be established with a detailed
analysis of the series. One can show that

p̃ ≈ p̃n, H(r) ≈ H(r)
n , ⊗ ≈ ⊗n.

Some Known Facts from the Theory of Differential and Difference Equations

Consider a linear uniform differential equation (LUDE):

x′ = A(t)x, x ∈ Rd, A(t) : Rd �→ Rd, t ∈ [0, 1], (7)

where A(t) is a continuous matrix function.

Consider a set X of all solutions for Eqs. (7) defined on the interval [0, 1]. The set X is a vector
space consisting of functions φ : [0, 1] �→ Rd.

Together with the vector differential Eq. (7) we will consider the matrix differential equation

X ′ = A(t)X. (8)

We will say that the matrix function Φ(t) is a solution of Eq. (8) on the interval [0, 1] if Φ(t) is
continuously differentiable for t ∈ [0, 1] and Φ′(t) = A(t)Φ(t), t ∈ [0, 1].

The next theorem establishes a relation between solutions for Eqs. (7) and (8).

Theorem 1 [14, p. 33]. Let A(t) be a continuous n × n matrix-valued function on the interval
[0, T ], and let Φ(t) be an n× n matrix-valued function with columns φ1(t), φ2(t), . . . , φn(t):

Φ(t) = [φ1(t), φ2(t), . . . , φn(t)], t ∈ [0, T ].

Then Φ is a solution of the matrix differential Eq. (8) on [0, T ] if and only if each column φi is
a solution of the vector differential Eq. (7) on [0, T ], i = 1, 2, . . . , n. Moreover, if Φ is a solution of
matrix Eq. (8) then

x(t) = Φ(t)c

is a solution of the vector differential Eq. (7) for any n× 1 vector of constants c.
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We introduce the following definitions.

Definition 1. A fundamental system of solutions for Eq. (7) is the basis of the vector space X.

Definition 2. A matrix whose columns form a fundamental system of solutions is called a fun-
damental matrix of differential Eq. (7).

Consider a linear uniform difference equation of order k:

x(s+ k) + a1(s)x(s+ k − 1) + . . . + ak(s)x(s) = 0. (9)

The set of solutions for difference Eq. (9) is a vector space as well. Similar to the definition for
differential equations, the fundamental matrix of a difference equation is a matrix whose columns
form the fundamental system of solutions for Eq. (9), i.e., the basis of the vector space of all
solutions for this difference equation.

Note that as a fundamental matrix for a differential or difference equation at the initial time
moment t = 0 it is convenient to take the unit matrix of the corresponding dimension. In this case
x(t) =Φ(t)c is a solution vector for Eq. (7) that satisfies initial conditions x(0) = Φ(0)c = c.

3. EXCLUDING THE LINEAR TREND COMPONENT
FOR A DIFFUSION AND A MARKOV CHAIN

Consider the following diffusion model:

dY = {b(t)Y +m(t, Y )}dt + σ(t, Y )dB(t), Y (0) = x ∈ Rd, t ∈ [0, 1], (10)

where B(t) is the standard Wiener process. Interval [0, 1] is taken purely for convenience and can
be replaced with any interval.

Consider also a sequence of Markov chains with the same initial conditions as in the diffusion
model (10):

Xn

(
k + 1

n

)
= Xn

(
k

n

)
+

1

n

{
bn

(
k

n

)
Xn

(
k

n

)
+mn

(
k

n
,Xn

(
k

n

))}
+

1√
n
εn

(
k + 1

n

)
,

Xn(0) = x ∈ Rd, k = 0, 1, 2, . . . , n.

(11)

As for the innovations εn, we make a standard Markov assumption, namely assume that the random

value εn
(
k+1
n

)
for fixed “past” Xn

(
i
n

)
= x(i), i = 0, 1, 2, . . . , k, depends only on the value of the

process x(k) at the last time moment k
n and has conditional distribution density qn, k

n
,x(k)(·) which

is an element of the family of densities qn,t,x(·) parameterized with three parameters (n, t, x) ∈
N × [0, 1] × Rd. We make the following assumptions regarding the family of densities qn,t,x(·) and
coefficients of Eq. (10).

1. Symmetrix matrix a(t, x) = σ(t, x)σT(t, x) is bounded and positive definite: there exists
C > 1 such that C−1 � θTa(t, x)θ � C for all θ such that | θ |= 1, x ∈ Rd, t ∈ [0, 1].

2. Matrix functions bn(t) and b(t) are continuous on [0, 1]. Functions a(t, x) and m(t, x) together
with their first derivatives are uniformly continuous and bounded with respect to (t, x), x ∈ Rd,
t ∈ [0, 1] and Lipschitz with respect to variable x with Lipschitz constant independent of t. More-

over, second derivatives ∂2a(t,x)
∂xi∂xj

, 1 � i, j � d, exist and satisfy Hölder’s condition with respect to

variable x with a constant independent of t.

3.
∫
qn,t,x(z)zdz = 0,

∫
qn,t,x(z)zz

Tdz
�
= an(t, x), x ∈ Rd, t ∈ [0, 1].

4. There exists a positive integer S′ and function ψ(x) : Rd �→ R, supx∈Rd | ψ(x) | <∞ such
that

∫ | x |S ψ(x)dx <∞, where S = 2dS′ + 4, and for all sufficiently large n and z ∈ Rd it holds
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that

| Dv
zqn,t,x(x) |� ψ(z), | v |= 0, 1, 2, 3, 4,

| Dv
xqn,t,x(x) |� ψ(z), | v |= 0, 1, 2,

where x ∈ Rd, t ∈ [0, 1].

The existence of a transition density for model (11) immediately follows from the model’s as-
sumptions. The existence of a transition density for the diffusion model (10) may be obtained
from Hermander’s theory [15], but under stronger assumptions on the coefficients. However, the
existence of a transition density in this model can also be proven with the parametrix method
under weaker conditions on the coefficients that Hermander’s theory requires. We first consider
the diffuse model (10). If the model’s coefficients are bounded, the existence of a transition density
follows from the work of Il’in, Kalashnikov, and Oleinik [11] or from the work of Konakov and
Mammen [4], which constructs the parametrix for such an equation. But in model (10), the trend
is unbounded and increases linearly. To apply the parametrix method for this model, we first get rid
of the trend and consider a new model with bounded coefficients. Then we apply the parametrix
method for this new model with bounded coefficients and return to the original model with an
unbounded linearly increasing trend.

Consider a linear system of ordinary differential equations (ODE):

y′(t) = b(t)y(t), y(0) = x ∈ Rd, t ∈ [0, 1]. (12)

Let Φ(t) be a fundamental matrix corresponding to this system. We remind that for system (12)
this means that all solutions can be continued to the entire segment [0, 1], and the fundamental
matrix is a matrix whose columns are independent solutions of this system that satisfy initial
conditions. As the initial fundamental matrix we take the unit matrix Φ(0) = I. The fundamen-
tal matrix is a solution of equation Φ′(t) = b(t)Φ(t) and a nondegenerate matrix on the inter-
val [0, 1]. The inverse matrix Φ−1(t) satisfies equation [Φ−1(t)]′ = −Φ−1(t)b(t) and initial condition
Φ−1(0) = I. To remove the trend’s linear component, we consider the process Ỹ (t) = f (t, Y (t)),
where f(t, y) = Φ−1(t)y. Function f(t, y) is continuous on [0, 1] × Rd and has continuous partial
derivatives ∂f

∂t and ∂f
∂yi

, so to compute the stochastic differential of process Ỹ (t) we can use Ito’s
formula. We get that

dỸ (t) = d
[
Φ−1(t)Y (t)

]
= Φ−1(t)dY (t) + dΦ−1(t)Y (t)

= Φ−1(t) ({b(t)Y (t) +m (t, Y (t))}dt+ σ (t, Y (t)) dB(t)) + [Φ−1(t)]′dt Y (t)

= Φ−1(t)b(t)Y (t)dt+Φ−1(t)m (t, Y (t)) dt+Φ−1(t)σ (t, Y (t)) dB(t)

−Φ−1(t)b(t)Y (t) = Φ−1(t)m (t, Y (t)) dt+Φ−1(t)σ (t, Y (t)) dB(t)

= m̃
(
t, Ỹ (t)

)
dt+ σ̃

(
t, Ỹ (t)

)
dB(t),

where m̃
(
t, Ỹ (t)

)
= Φ−1(t)m

(
t,Φ(t)Ỹ (t)

)
, σ̃
(
t, Ỹ (t)

)
= Φ−1(t)σ

(
t,Φ(t)Ỹ (t)

)
.

It is clear that process Ỹ (t) that we have introduced is a diffusion process satisfying the SDE

with bounded trend m̃
(
t, Ỹ (t)

)
and positive definite diffusion matrix σ̃

(
t, Ỹ (t)

)
:

dỸ (t) = m̃
(
t, Ỹ (t)

)
dt+ σ̃

(
t, Ỹ (t)

)
dB(t).

Indeed,

ã(t, y) = σ̃
(
t, Ỹ (t)

) [
σ̃
(
t, Ỹ (t)

)]T
= Φ−1(t)σ (t,Φ(t)y) [Φ−1(t)σ (t,Φ(t)y)]T

= Φ−1(t)σ (t,Φ(t)y) [σ (t,Φ(t)y)]T[Φ−1(t)]T = Φ−1(t)a (t,Φ(t)y) [Φ−1(t)]T
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and, consequently,

θTσ̃(t, y)[σ̃(t, y)]Tθ = 0 ⇔ ϑTσ(t, y)[σ(t, y)]Tϑ = 0, ϑ = [Φ−1(t)]Tϑ.

It remains use the fact that matrix a(t,Φ(t)y) = σ(t,Φ(t)y)[σ(t,Φ(t)y)]T is positive definite.

The existence of a transition density ρỸ (t) for process Ỹ (t) has been proven with the parametrix
method in [4]. With known transformation formulas, the transition density of the process Y (t) =
Φ(t)Ỹ (t) is

ρY (s, t, x, y) = det[Φ−1(t)]ρỸ (s, t,Φ
−1(s)x,Φ−1(t)y). (13)

For model (11), we consider the trend removal procedure which is a discrete counterpart of the
above procedure for the diffusion equation. Consider a difference equation without trend:

xn ((k + 1)h)− xn(kh)

h
= bn(kh)Xn(kh), xn(0) = x

on the grid Γ = {0, h, 2h, . . . , nh = 1}, h = 1
n .

In matrix notation,

xn ((k + 1)h) = (I + h bn(kh)) xn(kh), xn(0) = x.

Iterating the latter equality, we get

xn(h) = (I + h bn(0)) x,
xn(2h) = (I + h bn(h)) xn(h) = (I + h bn(h)) (I + h bn(0)) x,
. . .
xn(kh) = Φn(kh)x,

where Φn(kh) = (I + h bn ((k − 1)h))Φn ((k − 1)h) Φn(kh) is the fundamental matrix from the the-
ory of difference equations [16], the discrete counterpart of the fundamental matrix Φ(t) defined on
the grid {0, h, 2h, . . . , nh = 1} with initial condition Φn(0) = I. We define a new Markov chain:

X̃n(kh) = Φ−1
n (kh)Xn(kh), X̃n(0) = x.

By known transformation formulas, the transition density of the Markov chain Xn(kh) =
Φn(kh) X̃n(kh) is

ρXn(ih, jh, x, y) = det
[
Φ−1(jh)

]
ρX̃n

(
ih, jh,Φ−1(ih)x,Φ−1(jh)y

)
. (14)

Thus, according to model (11) we have that

X̃n ((k + 1)h) = Φ−1
n ((k + 1)h) Xn ((k + 1)h)

= Φ−1
n (kh) (I + h bn(kh))

−1 {(I + h bn(kh))Xn(kh)

+h mn (kh, Xn(kh)) +
√
hεn ((k + 1)h)}

= Φ−1
n (kh)Xn(kh) + h Φ−1

n (kh) (I + h bn(kh))
−1 mn (kh,Xn(kh))

+
√
h Φ−1

n (kh) (I + h bn(kh))
−1 εn ((k + 1)h)

= X̃n(kh) + h m̃n

(
kh, X̃n(kh)

)
+

√
h ε̃n ((k + 1)h) ,
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where

m̃n

(
kh, X̃n(kh)

)
= Φ−1

n (kh) (I + h bn(kh))
−1 mn

(
kh, Φn(kh) X̃n(kh)

)
,

ε̃n ((k + 1)h) = Φ−1
n (kh) (I + h bn(kh))

−1 εn ((k + 1)h) .

Now the definition of ε̃n implies that the random value ε̃n((k+1)h) for fixed “past” X̃n(ih)= x̃(i),
i = 0, 1, 2, . . . , k, depends only on the value of the process x̃(k) at the last time moment kh and has
conditional density

q̃n,kh,x̃(k)(z) = det Φn ((k + 1)h) qn,kh,Φn(kh)x̃(k) (Φn ((k + 1)h) z) (15)

from the family of densities

det Φn (([tn] + 1)h) q̃n,t,Φn(([tn]+1)h)x(k) (Φn (([tn] + 1)h) z)

that depends on three parameters (n, t, x) ∈ N × [0, 1] × Rd. Densities q̃n,kh,x̃(k)(z) in (15) satisfy
conditions 3 and 4 formulated in Section 3, with the difference that φ(x) from condition 4 is replaced

with C φ(x), where C is a constant. Making a change of variables v = Φ
(
[tn]+1

n

)
z, for t = kh we

have

∫
q̃n,t,x̃(z)dz = detΦn

(
[tn] + 1

n

)∫
q
n,t,Φn

(
[tn]
n

)
x̃

(
Φn

(
[tn] + 1

n

)
z

)
zdz

= detΦn

(
[tn]+1

n

)
detΦ−1

n

(
[tn]+1

n

)∫
q
n,t,Φn

(
[tn]
n

)
x̃
(v)Φ−1

n

(
[tn]+1

n

)
vdv

= Φ−1
n

(
[tn] + 1

n

)∫
q
n,t,Φn

(
[tn]
n

)
x̃
(v)vdv = 0,

(16)∫
q̃n,t,x̃(z)zizjdz =detΦn

(
[tn]+1

n

)∫
q
n,t,Φn

(
[tn]
n

)
x̃

(
Φn

(
[tn]+1

n

)
z

)
zizjdz

=

∫
q
n,t,Φn

(
[tn]
n

)
x̃
(v)

[
Φ−1
n

(
[tn] + 1

n

)
v

]

i

[
Φ−1
n

(
[tn] + 1

n

)
v

]

j
dv

=

{
Φ−1
n

(
[tn] + 1

n

)∫
q
n,t,Φn

(
[tn]
n

)
x̃
(v)vvTdv

[
Φ−1
n

(
[tn] + 1

n

)]T}

ij

=

{
Φ−1
n

(
[tn] + 1

n

)
an

(
t,Φn

(
[tn]

n

)
x̃

)[
Φ−1
n

(
[tn] + 1

n

)]T}

ij

�
= ã+ n(t, x̃).

The vector function Φn(t)x at points t = kh, k = 0, 1, 2, . . . , n, coincides with the Euler polyline
for equations y′(t) = bn(t)y(t), y(0) = x ∈ Rd. Thus, in the case of a diffusion process the growing
trend is compensated by returning along the trajectories of differential equations y′(t) = bn(t)y(t),
y(0)= x ∈ Rd, and in case of a Markov chain, by returning along the Euler polylines of this equation.
According to well-known properties of Euler polylines [17], Φn

([ t
h

])
x→ Φ(t) uniformly on the

interval [0, 1], and, taking the above properties into account, we see that (12) and (16) imply that

ãn(t, x̃) =

∫
q̃n,t,x(z)zz

T → ã(t, x) = σ̃(t, x)[σ̃(t, x)]T, n→ ∞.

Let us now show how statements obtained for models with a bounded trend can be transformed
into the corresponding statements for models containing a linear component in the trend. For
simplicity we consider the case of a family of densities qn,t,x(·) independent of the n parameter, i.e.,

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 10 2015



LINEAR TREND EXCLUSION 1779

qn,t,x(·) = qt,x(·). Suppose that the family qt,x(·) and coefficients of Eqs. (10) satisfy conditions 1–4
of Section 3. Then for m̃(t, x) and σ̃(t, x) satisfy the conditions of Theorem 1.1 from [4], and,
consequently, it holds that

sup
x,y∈Rd

(
1 + ‖y − x‖2(S′−1)

)
|pX̃n

(0, 1, x, y) − pỸ (0, 1, x, y)| = O

(
1√
n

)
. (17)

Using relations (13) and (14), we formulate the following result which is a corollary of (17).

Theorem 2. Suppose that conditions 1–4 of Section 3 are satisfied. Then

sup
x,y∈Rd

(
1 + ‖Φ−1(1)y − x‖2(S′−1)

)
|detΦn(1) pXn(0, 1, x,Φn(1)Φ

−1(1)y)

− detΦ(1) pY (0, 1, x, y)| = O

(
1√
n

)
.

If b(t) ≡ b then

sup
x,y∈Rd

(
1 + ‖Φ−1(1)y − x‖2(S′−1)

)
|pXn(0, 1, x, y) − pY (0, 1, x, y)| = O

(
1√
n

)
.

Proof of Theorem 2 is given in the Appendix.

Remark. Since
C1‖y − Φ(1)x‖ � ‖Φ−1(1)y − x‖ � C2‖y − Φ(1)x‖,

statements of Theorem 2 can also be written with a factor
(
1 + ‖y − Φ(1)x‖2(S′−1)

)
instead of(

1 + ‖Φ−1(1)y − x‖2(S′−1)
)
, i.e., a non-uniform estimate of the convergence rate in this theorem

results either by shifting the terminal point y back (pull back) or by shifting the initial point x
forward (push forward).

4. SAMPLE EXCLUSION OF THE LINEAR TREND COMPONENT
FOR A DIFFUSION MODEL

Consider a model presented in [18]:

dXt = {β(t)(a(t) −Xt)}dt+ σ(t,Xt)dBt, X0 = x ∈ Rd, (18)

where Bt, t � 0, is the standard Wiener process. We assume that function σ(t,Xt) is bounded.

Consider a system of LUDE: x′(t) = −β(t)x(t), y(0) = x ∈ Rd and its fundamental matrix Φ(t) :
Φ′(t) = −β(t)Φ(t), Φ(0) = I, where I is the unit matrix. We introduce the process X̃t = Φ−1(t)Xt,
and by Ito’s lemma [19] we get the following stochastic differential for this process:

dX̃t = d
[
Φ−1(t)Xt

]
= Φ−1(t)dXt + dΦ−1(t)Xt

= Φ−1(t)β(t)a(t)dt +Φ−1(t)σ(t,Xt)dBt = m̃(t, X̃t)dt+ σ̃(t, X̃t)dBt,

where m̃(t, X̃t) = Φ−1(t)β(t)a(t), σ̃(t, X̃t) = Φ−1(t)σ(t,Φ(t)Xt).

Thus, process X̃t can be represented as

X̃t = X̃0 +

T∫

0

m̃(s, X̃s)ds +

T∫

0

σ̃(s, X̃s)dBs

= x+

T∫

0

Φ−1(s)β(s)a(s)ds +

T∫

0

Φ−1(s)σ(s,Φ(s)X̃s)dBs.
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Consider the one-dimensional case with constant coefficients: a(t) ≡ a, β(t) ≡ β, σ(t) ≡ σ. Then
model (18) corresponds to Vasicek’s model of interest rate evolution [20]:

dXt = {αβ − βXt}dt+ σdBt, X0 = x ∈ R. (19)

For model (19), SDE solutions can be found explicitly, so the trend exclusion procedure for the
diffusion equations is not especially interesting, but it allows us to check the correctness of this
method.

A solution of SDE (19) can be represented as [20]

Xt = x exp(−βt) + a(1− exp(−βt)) + σ exp(−βt)
T∫

0

exp(βs)dBs. (20)

Let us now show how to solve SDE (19) with the linear trend component exclusion procedure.

The fundamental matrix for SDE (19) has the form Φ(t) = exp(−βt). Then process X̃t =
Φ−1(t)Xt = exp(βt)Xt can be represented as

X̃t = x+ a(exp(βt)− 1) + σ

T∫

0

exp(βs)dBs.

Solution found by linear trend component exclusion now takes the form

Xt = Φ(t)

⎛
⎝x+ a(exp(βt)− 1) + σ

T∫

0

exp(βs)dBs

⎞
⎠

= x exp(−βt) + a(1− exp(−βt)) + σ exp(−βt)
T∫

0

exp(βs)dBs,

which coincides with (20).

The linear trend component exclusion method is not applicable to more complex methods such
as the Cox–Ingersoll–Ross modified interest rate evolution model [21] or its extension, the Hull–
White model [22], since a modification of the parametrix method for unbounded diffusion has not
yet been studied. The Cox–Ingersoll–Ross model differs from Vasicek’s model above in the form
of its volatility functions σ(t,Xt) ≡ σ

√
Xt, and the trend removal procedure for this model is a

separate problem. The Hull–White model also contains unbounded diffusion σ(t,Xt) ≡ σ(t)
√
Xt,

so the linear trend exclusion procedure for this model requires further study.

However, apart from Vasicek’s interest rate model, the trend exclusion method can be applied
to Heston’s stochastic volatility model [23] in case when the function of volatility occurring in the
return on investment equation is bounded. Consider a two-dimensional case with the example of
Heston’s stochastic volatility model [23]:

{
dSt = μStdt+ f(vt, St)dB

1
t

dvt = k(θ − vt)dt+ ξg(vt)dB
2
t ,

(21)

where Bt = (B1
t , B

2
t ) is the standard Wiener process, f(vt, St) and g(vt) are bounded functions.

We represent the system of SDEs [21] in matrix form:
(
dSt
dvt

)
=

[(
μ 0
0 −k

)(
St
vt

)
+

(
0
kθ

)]
dt+

(
f(vt, St) 0

0 ξg(vt)

)(
dB1

t

dB2
t

)
.
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Consider a system of LUDEs:

x′(t) =

(
μ 0
0 −k

)
x(t).

The fundamental matrix for this system has the form

Φ(t) =

(
exp(μt) 0

0 exp(−kt)

)
.

Then process (
S̃t
ṽt

)
=

(
exp(−μt) 0

0 exp(kt)

)(
St
vt

)

can be represented as

(
S̃t
ṽt

)
=

(
S0
v0

)
+

(
0

θ(exp(kt)− 1)

)
+

T∫

0

(
exp(−μs) 0

0 exp(ks)

)(
f(vs, Ss) 0

0 ξg(vs)

)
dBs.

By excluding the linear trend component, we get the following representation for the solutions
of this system of SDEs:

(
St
vt

)
=

(
exp(μt) 0

0 exp(−kt)

)(
S0
v0

)
+

(
0

θ(1− exp(−kt))

)

+

(
exp(μt) 0

0 exp(−kt)

) T∫

0

(
exp(−μs) 0

0 exp(ks)

)(
f(vs, Ss) 0

0 ξg(vs)

)
dBs.

5. CONCLUSION

It is known [11, 24] that the parametrix method and its discrete counterpart [4, 5] assume that
the shift and diffusion coefficients are bounded. At the same time, many important models have
unbounded shift coefficients, including models corresponding to stochastic recurrent estimation
procedures that have a linearly growing shift coefficient.

Namely, Markov chains and limit diffusion processes with a linear trend component arise in
recurrent estimation procedures based on the Robbins–Monroe method. The work [25] proves a
number of results on the weak convergence of recurrent estimation procedures to finite-dimensional
distributions of some limit diffusion process (Theorem 6.3, Chap. 6; Theorems 3.1 and 5.2, Chap. 8).
These theorems assume the existence of densities, so a natural question arises: do, in addition to
weak convergence, the densities also converge, i.e., does the corresponding local limit theorem
hold? The parametrix method combined with the trend exclusion method let us answer this
question positively. This application of our approach will be the subject of a separate publication;
the purpose of this work was to propose a procedure that lets one exclude linearly growing trend
components and reduce the problem to a previously studied problem with bounded trend. Our
method is also applicable to more general models with trends that have bounded gradients, but the
formulas are less explicit and Euler polylines are constructed locally, so in this case we can speak
of the local limit theorem over small time. This will also be a subject of further study.
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APPENDIX

Proof of Theorem 2. Applying (17) to points x and Φ−1(1)y, we get

sup
x,y∈Rd

(
1+‖Φ−1(1)y−x‖2(S′−1)

)
|pX̃n

(0, 1, x,Φ−1(1)y) − pỸ (0, 1, x,Φ
−1(1)y)|=O

(
1√
n

)
. (A.1)

From (13) and (14) we have that

pỸ (s, t, x, z) = detΦ(t)pY (s, t,Φ(s)x,Φ(t)z), (A.2)

pX̃n
(ih, jh, x, v) = detΦn(jh)pXn(ih, jh,Φn(ih)x,Φn(jh)v). (A.3)

Substituting into (A.2) and (A.3) s = 0, t = 1, i = 0, j = n, x, and z = Φ−1(1)y, v = Φ−1(y),
we get from (A.1) that

sup
x,y∈Rd

(
1 + ‖Φ−1(1)y − x‖2(S′−1)

)
|detΦn(1) pXn(0, 1, x,Φn(1)Φ

−1(1)y)

− detΦ(1) pY (0, 1, x, y)| = O

(
1√
n

)
. (A.4)

Let b(t) ≡ b. Then Φ(1) = eb is the matrix exponent, Φn(1) =
(
I + b

n

)n
for sufficiently large n

and

‖Φ(1)− Φn(1)‖ � ea −
(
1 +

a

n

)n

� a2ea

n
, (A.5)

where a = ‖b‖. The first inequality in (A.5) has been proven in [17, p. 98]. To show the second
inequality, it suffices to study the sign of the derivative near the point x = 0 for the function
f(x)

�
= a2eax− ea + (1 + ax)1/x. Besides, Lemmas 3.1 and 3.2 from [4] imply the estimate

pỸ (s, t, x, y) � Ce−C‖y−x‖2 ,

so for the transition density pY (0, 1, x, y) we have

pY (0, 1, x, y) = detΦ−1pỸ (0, 1, x,Φ
−1(1)y) � Ce−C‖Φ−1(1)y−x‖2 . (A.6)

The second statement of Theorem 2 now follows from (A.4)–(A.6).
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