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Abstract. A geometric construction of the àla Planck action integral (quantization rule)
determining adiabatic terms for fast-slow systems is considered. We demonstrate that in
the first (after zero) adiabatic approximation order, this geometric rule is represented by a
deformed fast symplectic 2-form. The deformation is controlled by the noncommutativity
of the slow adiabatic parameters. In the case of one fast degree of freedom, the deformed
symplectic form incorporates the contraction of the slow Poisson tensor with the adiabatic
curvature.

The same deformed fast symplectic structure is used to represent the improved adiabatic
invariant in a geometric form.
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1. INTRODUCTION

Contemporary quantum mechanics effectively exploits the operator theory and algebra, but
each time when it is possible, it is very interesting to establish its links with approaches based
on geometry. As for the semiclassical approximation theory, the dual way of thinking both from
geometric and algebraic standpoints is natural and necessary to construct intuitional bridges as
well as simple computational algorithms.

In this note, we deal with a model quantum system that can be described by a Hamiltonian of
the following type:

Ĥ = H(r̂, k̂; x̂) (1.1)

with canonical commutation relations between basic generators:

[r̂, k̂] = i� (1.2)

and between the “parameters”:
[x̂j , x̂k] = −iε�Jjk. (1.3)

Here J ik are the components of the Darboux block tensor J =

(
0 −I
I 0

)
which has an even

dimension. All other mutual commutators are assumed to be zero. In (1.1) and below, we use the
Weyl symmetrization rule for defining functions in noncommuting elements.

Let us suppose that both � and ε in (1.2) and (1.3) are small: � → 0, ε → 0, and thus, we
have a combined semiclassical plus adiabatic regime. The mutual relation between these two small
parameters is assumed to be as follows:

� = O(ε).

The generators r̂, k̂ are referred to as fast ones, and x̂, as slow ones. We shall assume that for
frozen slow parameters x, the energy levels of the Hamiltonian H(r, k;x) in the fast r, k-space are
compact (closed connected curves).

There is ordinary way to compute the Born–Oppenheimer adiabatic “terms” for the Hamiltonian
(1.1) just by applying the semiclassical quantization rule in the fast phase space:
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1

2π

∫
H=E

k dr = �(n + μ/4), n ∈ Z.

Here n is an integer “quantum number” and μ is the Maslov index. This rule can be also rewritten
as

1

2π

∫
ΣE

dk ∧ dr = sn, sn
def
= �(n+ μ/4), (1.4)

where ΣE = ΣE(x) is a membrane with boundary ∂ΣE ⊂ {H = E} in the fast fiber {x = const}.
From equation (1.4), we obtain the Hamiltonians E = En(x), the so-called adiabatic terms.

Then it is possible to approximately replace the original Hamiltonian Ĥ (1.1) by the effective slow
Hamiltonians

Ên + εM̂n +O(�2 + ε2). (1.5)

The remainder O(�2) here appears, because the geometric rule (1.4), in general, does not generate
the exact quantum spectrum.

The correcting summand εMn and the higher remainders O(ε2) in (1.5) appear due to slow

x-dependence of the nth eigensubspace of the Hamiltonian H(r̂, k̂;x) in fast directions. Since the
slow semiclassical parameter in (1.5) is ε�, the correction εMn generates oscillations of the type
exp{ i

�
phase} in wave functions. And such a type of oscillations has to be related to some additional

symplectic geometry of the phase space. What is this geometry?
Analytical formulas for the correcting ε-term in the effective slow Hamiltonian were derived

first, of course, in classical mechanics (see, for instance, in [1, 2]) but without any analysis of its
correlation with symplectic geometry. In the quantum framework, the ε-term in (1.5) is related to
geometry as follows. The function Mn is represented as a sum of two summands Mn = M ′

n +M ′′
n

the first of which can be written as
M ′

n = DEn · Jαn, (1.6)

where the 1-form αn is Berry’s geometric vector-potential [3, 4] in the bundle of the nth eigensub-
spaces in the fast directions, and D = ∂/∂x (see, for instance, in [5]).

This is the strength 2-form βn corresponding to the vector-potential αn that determines an
additional contribution to the slow phase space symplectic structure ω = 1

2J
−1 dx ∧ dx. The total

slow symplectic structure becomes

ω + εβn +O(ε2) (1.7)

(see, for instance, in [5, 6]).

The formula for the second component M ′′
n derived in [5] (see also below in Section 3) had no

such a clear symplectic interpretation. This problem was discussed for instance in [7, 8], and in [6],
it was observed that M ′′

n can be represented in a geometric way by using a certain connection in a
bundle over the slow space involving fast eigensubspaces with all quantum numbers n′ �= n.

In the present note, we prove that, for a Hamiltonian of type (1.1), the contribution of M ′′
n

is equivalent to a deformation of the fast symplectic structure in the quantization rule (1.4).
The deformed quantization rule looks as follows:

1

2π

∫
ΣE(x)

(a+ εb) = sn, (1.8)

where a = dk ∧ dr and

b = −1

2
Tr(βJ) dk ∧ dr. (1.9)

Here β is the curvature of the Hamiltonian connection θ corresponding to the U(1)-action by
angular rotations in fast fibers [9] (the restriction of β onto the nth fast eigensubspace coincides
with the strength 2-form βn which appears in (1.7)).

If one determines the deformed “terms” E = En(x) as solutions of (1.8), then the effective slow
Hamiltonian (1.5) can be represented as

En(X̂n) +O(ε2 + �
2). (1.10)
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Here X = x + εJθ + O(ε2) and X̂n = X̂
∣∣
nth eigensubspace

are new slow generators with deformed

commutation relations corresponding to the slow symplectic structure (1.7):

[X̂n
⊗, X̂n] = −iε�Ψn(X̂n) +O(ε3�), (1.11)

where, on the right-hand side, one uses the inverse tensor of the 2-form (1.7):

Ψn = (ω + εβn +O(ε2))−1 = J − εJβnJ +O(ε2).

Thus the slow effective Hamiltonians (1.10) turn out to be completely symplectic: they are de-
termined by two deformed symplectic structures (1.7) and (1.8).

Note that the presence of the contraction of the slow Poisson tensor J with the curvature β in
(1.9) implies that the deforming form b in (1.8) can appear only due to the noncommutativity of
slow parameters for which the curvature does not vanish.

In the “geometric phase” and “Hanny angle” effects accompanying the long-time excursion of
slow parameters [3, 4, 9–13], the noncommutativity of the slow space plays no rule (only the first
component M ′

n (1.6) contributes to these effects but not M ′′
n ; the slow noncommutativity does not

affect the ε-shift of the fast frequency up to O(ε2)).

As we see from (1.8) and (1.9), the slow noncommutativity, i.e., the slow Poisson tensor J ,
controls the deformation of the fast geometry as a whole by forcing the introduction of new deformed
action-angle coordinates in the phase space.

The deformed action function

Sε
def
=

1

2π

∫
ΣH(x)

(a+ εb) (1.12)

which we use in the quantization condition (1.8) has a very simple physical meaning in classical
mechanics. Let us recall the notion of improved adiabatic invariant [2, 14]: it is an integral of motion
for the given adiabatic system with accuracy O(ε∞) which has 2π-periodic flow and whose ε-power
expansion starts from the classical adiabatic invariant. The statement is:

Improved adiabatic invariant = Sε + ε{varying with zero average}| 1
ε -long time + O(ε2). (1.13)

Thus the function Sε (1.12) is a semi-invariant, i.e., it is not a constant of motion up to O(ε2)
but an oscillating quantity with constant long-time average.

Since Sε does not depend on the fast angle (does not feel U(1)-gyrations in the fast space),
it can be regarded as a U(1)-invariant. But from the dynamical point of view, this geometric
U(1)-invariant is a semi-invariant only. Therefore, the geometric formulation of the adiabatic quan-
tization rule in (1.8) is only “semi”-consistent with the usual Ehrenfest concept of adiabatic invari-
ants in quantum theory [15, 16].

In other words, although fast geometric U(1)-invariants are not dynamic invariants in higher
order of ε, nevertheless, they could be useful for developing the adiabatic version of the geometric
and deformation quantization theories. Such a quantum “fast geometry” is preserved in average
under a long-time evolution.

The consistency of the quantization rule (1.8) with the Ehrenfest adiabatic principle is restored
if one notes that the varying second summand in (1.13) can be eliminated simply by replacing the
old slow coordinates x by the new ones X in (1.12):

Improved adiabatic invariant =
1

2π

∫
ΣH (X )

(a+ εb) + O(ε2). (1.14)

That is why it does not matter to relate the fast quantum number n to the geometric
U(1)-invariant Sε, as in (1.8) or to the improved adiabatic invariant.

Below in Section 2, we prove the statements (1.13), (1.14), and in Section 3, prove formulas
(1.8), (1.10). At the end of the paper, in the Appendix, we describe (in the classical framework)
a modified version of our scheme [17, 18] for computing all higher ε-corrections in the improved
adiabatic invariant and adiabatic “terms.”
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2. ADIABATIC SEMI-INVARIANT AND IMPROVED INVARIANT

In this section, we prove the statements (1.13), (1.14).

Dealing with classical mechanics, one must replace the commutation relations (1.2), (1.3) by the
Poisson brackets between fast coordinates r, k as follows:

{r, k} = −1, (2.1)

as well as between the slow coordinates x as follows:
{x⊗, x} = εJ, (2.2)

and then introduce the direct sum of brackets on the total fast-slow phase space:

{· , ·}ε
def
= {· , ·}0 + ε{· , ·}. (2.3)

For the given Hamiltonian H = H(r, k;x), one defines the classical action function

S0
def
=

1

2π

∫
ΣH

a, a = dk ∧ dr, (2.4)

and expresses the Hamiltonian via the action
H(r, k;x) = f0

(
S0(r, k;x), x

)
(2.5)

by using some function f0 = f0(s, x).
The dependence of the action S0 on the slow parameters x generates the notion of Hamiltonian

connection [9]. The connection 1-form θ =
∑

θj dx
j is determined by

DS0 = {S0, θ}0. (2.6)

Here we denote by D the derivative with respect to x, i.e., Dj ≡ ∂/∂xj . The solution of (2.6) is
given by

θ = (DS0)
# or θ(y;x) =

1

2π

∫ 2π

0

DS0

(
Y τ (y;x);x

)
(τ − π) dτ, (2.7)

where Y τ (·;x) is the flow of the action S0(·;x) on the fast fiber.
The connection θ has the curvature 2-form

β =
1

2

∑
βjk dx

j ∧ dxk with βjk
def
= Djθk −Dkθj + {θj , θk}0. (2.8)

It follows from (2.6) that this curvature is in involution with the action S0, and thus, it can be
represented as a function in the action:

βjk = βjk(S0;x). (2.9)

The Bianchi identities for the curvature implies that the 2-form 1
2

∑
βjk(s;x) dx

j ∧ dxk is closed

for any fixed s, and thus, there exists a primitive 1-form α =
∑

αj(s, x) dx
j such that

Djαk −Dkαj = βjk. (2.10)

The 1-form α is referred to as the Berry’s vector-potential. In contrast to θ, the potential α
does not depend on the fast angle and is preferable for computations; see the discussion concerning
this point in [5]. For instance, it is possible calculate the holonomy of the θ-connection simply by
integrating α along a closed loop in the slow space, keeping the action level constant (or keeping
one and the same nth eigenvalue as in (1.6)). The integral of α along a path is referred to as the
geometric phase.

Now let us see how these objects generate the improved (or complete) adiabatic invariant Sε,
which is the ε-power expansion

Sε = S0 + εS′ + ε2S′′ + · · · (2.11)
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such that
{H,Sε}ε = 0 mod O(ε∞). (2.12)

There are known algorithms for computing the corrections S′, S′′, . . . (see in [2, 19, 20]). Here
we use the formula for S0 in a special form (required below) derived by a general method [17]. This
method is briefly described in Appendix.

The formula for the first correction S′ in (2.11) follows from formula (A.9) in Appendix:

S′ = {S0,B0}0 −
1

2
A0jJ

jk{S0,A0k}0, (2.13)

where B0 is taken from (A.10):

B0 =
1

ω0
A#

0jJ
jkDkf0 +

1

2ω0

(
A0jJ

jk{H,A0k}0
)#

. (2.14)

Here and below, the summation by repeated indices is assumed and the operation # is defined as
in (2.7) or (A.7) at ε = 0.

In (2.13), (2.14), we use the zero curvature connection A0 defined as follows:

A0 = θ − α, (2.15)

where θ = (DS0)
# and α are determined by (2.7), (2.10).

From (2.14) we derive

{S0,B0}0 =
1

ω0
(A0j − 〈A0j〉)JjkDkf0 +

1

2ω0
(A0jJ

jk{H,A0k}0 − 〈A0jJ
jk{H,A0j}〉)

=
1

ω0
θjJ

jkDkf0 +
1

2

(
(θj − αj)J

jk{S0, θk}0 − 〈θjJjk{S0, θk}0〉
)
.

Here we used the properties of the operations # and 〈. . . 〉 similar to (A.8) and the fact that 〈θ〉 = 0.

Then formula (2.13) becomes the following:

S′ =
1

ω0
θjJ

jkDkf0 −
1

2
〈θjJjk{S0, θk}0〉. (2.16)

Here and in the above formulas we write ω0 = ∂f0/∂s, Dkf0 = ∂f0/∂x
k; these derivatives of the

function f0 are taken at the value s = S0. It is easy to prove that (2.16) is equivalent to the formula
for S′ obtained in [20] (see Lemma 5.1 therein).

If we introduce the action-angle coordinates s, τ such that a = dk ∧ dr = ds ∧ dτ , then the
averaging operation 〈. . . 〉 in (2.16) can be represented by the integration over the angle:

〈. . . 〉 = 1

2π

∫ 2π

0

. . . dτ.

At the same time, the bracket operation with the action function S0 can be written explicitly as
{S0, . . . }0 = ∂

∂τ
(. . . ). Thus the average at the second summand in (2.16) reads

〈θjJjk{S0, θk}〉 =
1

2π

∫ 2π

0

(
θjJ

jk ∂θk
∂τ

)
dτ =

1

2π

∫
∂ΣH

θjJ
jk∂θk =

1

2π

∫
ΣH

∂θj ∧ Jjk∂θk.

Here ∂ denotes the differential with respect to the fast coordinates.
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Hence, we obtain the following geometric representation of the first correction S′ in the improved
adiabatic invariant (2.11)

S′ =
1

ω0
θJDf0 +

1

2π

∫
ΣH

B, B
def
= −1

2
∂θj ∧ Jjk∂θk. (2.17)

Now recall that the fast space has dimension 2, then we can compute the form B as follows:

B = −1

2
Jjk{θj , θk}0 · a, a = dk ∧ dr. (2.18)

The brackets of components of θ are related to the curvature tensor:

{θj , θk}0 = βkj − (∇̃kθj − ∇̃jθk). (2.19)

Here ∇̃ = D − {θ, . . . }0 is the covariant derivative preserving S0 (see Theorem A.1, note that ∇̃
differs from ∇0 by the bracket operation {α, . . . }0 which annihilates S0).

Thus, any average 〈∇̃G〉 = 0 vanishes, and therefore, all summands β̃kj = ∇̃kθj −∇̃jθk in (2.19)

have zero average 〈β̃kj〉 = 0. Hence, (2.18) reads

B = −1

2
Tr (Jβ) · a+ B̃, (2.20)

where

B̃ = −1

2
Tr (Jβ̃) · a and

∫
ΣH

B̃ = 0. (2.21)

So we obtain the following formula for S′ instead of (2.17):

S′ = θJv +
1

2π

∫
ΣH

b, v
def
=

Df0
∂f0

∣∣∣∣
s=S0

, (2.22)

where the 2-form b is defined in (1.9).

Theorem 2.1. (i) The first ε-correction S′ in the improved adiabatic invariant (2.11) is given
by the formula (2.22), where the function f0 = f0(s;x) is taken from (2.5), Df0 = ∂f0/∂x,
∂f0 = ∂f0/∂s, and ΣH are the same membranes as in the definition (2.4) of the classical adi-
abatic invariant S0 = 1

2π

∫
ΣH

a.

(ii) Formula (1.13) for the improved adiabatic invariant reads

Sε = Sε + εθJv +O(ε2). (2.23)

The average of the summand θJv under a 1/ε-long time evolution is zero up to O(ε).

(iii) The summand θJv can be removed from the right-hand side of (2.23) by changing the argu-
ment of the semi-invariant Sε (1.12) from x to X = x+ εJθ +O(ε2) which generates the integral
representation (1.14) for the improved adiabatic invariant, namely :

Sε =
1

2π

∫
ΣH (X )

(a+ εb) + O(ε2). (2.24)

Remark 2.1. The correcting 2-form b in integral formulas (1.8), (1.12), (1.14), (2.24) looks so
simple as in (1.9) only in the case of two-dimensional fast phase space. In a more general case,
formulas (2.18)–(2.21) do not work; one needs to use everywhere the general 2-form B as in (2.17).
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3. QUANTIZATION RULE FOR ADIABATIC TERMS

Let us compute the first correction f ′ in the expansion fε = f0+εf ′+ε2f ′′+ · · · of the adiabatic
term in the representation (A.3); see in Appendix.

This correction is given just by the second equation (A.9) at ε = 0. Namely,

f ′ = 〈A0〉JDf0 +
1

2
〈A0J{H,A0}0〉 = −αJDf0 +

ω0

2
〈θJ{S0, θ}0〉. (3.1)

Here we use the decomposition (2.15) and the properties of α and θ discussed in Section 2.

In the second equation in (3.1), the last summand is similar to the one appearing in (2.16).
Applying the results of the previous calculations, we obtain the following statement.

Theorem 3.1. The first ε-correction in the expansion of the adiabatic term (4.11) is given by

f ′ = Df0 · Jα− ω0

2π

∫
ΣH

b, (3.2)

where the 2-form b is defined by (1.9).

Now let us consider the quantum framework. Let us stress that all formulas bellow are written
without taking into account the O(ε∞) corrections. The quantum version of (A.3) is

Ĥ = fε(Ŝε; X̂ε) +O(�2). (3.3)

The remainder O(�2) appears as the correction from the quantum composite function theorem.

In view of (A.2), all operators X̂ε in (3.3) commute with the operator Ŝε up to O(�3). Thus, in

the semiclassical approximation, we can introduce the eigenprojectors Πn of the operator Ŝε and
obtain from (3.3):

ĤΠn = Πnfε(sn; X̂ε) +O(�2), (3.4)

where the number sn is given by (1.4).

The generators X̂j
ε in (3.4) satisfy the canonical commutation relations

[X̂ε
⊗, X̂ε] = −iε�Jjk +O(�3). (3.5)

By using (A.4), we can transform these generators into the following other generators

X def
= Xε + εJα or X = x+ εJθ +O(ε2). (3.6)

The operators X̂ j obey commutation relations of the type (1.11)

[X̂⊗, X̂ ] = −iε�Ψ(X̂ ) +O(ε3�), (3.7)

where Ψ = J − εJβJ +O(ε2). Then, from (3.1) and (2.6), we see that (3.4) takes the form

ĤΠn = Πn(En(X̂ )− εσ̂n) +O(ε2 + �
2), (3.8)

where En(x) = f0(sn;x) and the functions σn = σn(x) are given by

σn =
ω0

2
〈θ · ad(S0)〉

∣∣∣
s=sn

=

(
ω0

2π

∫
ΣH

b

)∣∣∣∣
s=sn

. (3.9)
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In the first formula (3.9), we denote by ad(. . . ) the Hamiltonian field in the slow phase space
corresponding to the given function. This first expression for σn is exactly the one derived in [5]
(see formulas (24), (24a) there).

The second expression for σn in (3.9) uses a new geometric object: the 2-form b (1.9) which
comes from Theorem 3.1.

Note that, in the introduction, we used the notation M ′′
n for the summand −σn in the Hamil-

tonian on the right-hand side of (3.8). Now we explain how this summand can be included into
a geometric quantization condition.

Let us consider the equation
1

2π

∫
ΣH(x)

(a+ εb) = s (3.10)

with respect to the value H. We denote the solution of (3.10) by H = Hε(s;x). In particular,
at ε = 0, we have H0 ≡ f0, i.e., the function used above in (2.5).

Also denote σ = ω0

2π

∫
ΣH

b. Then

Hε(s;x) = H0(s− εσ/ω0;x) = f0(s;x)− εσ(s;x) +O(ε2).

For the value s = sn, this relation reads

En(x) ≡ Hε(sn;x) = f0(sn;x)− εσ(sn;x) +O(ε2) = En(x)− εσn(x) +O(ε2).

Therefore, (3.8) becomes

ĤΠn = ΠnEn(X̂ ) +O(ε2 + �
2). (3.11)

In addition, the operators X̂ commute with Ŝε up to O(ε2�) and one can restrict them onto the

nth eigensubspace to obtain operators X̂n with relations (1.11).

Theorem 3.2. (i) The quantization condition (1.8) for the energy E values or equation (3.10)
with s = sn for the Hamiltonian H values determine the functions E = En(x) = Hε(sn, x) obeying
(3.11).

The effective slow Hamiltonians En(X ) in (3.11) can also be obtained by solving the relation
(2.24) for the improved adiabatic invariant with respect to H at the level Sε = sn.

(ii) The original Hamiltonian is expressed via the improved adiabatic invariant and new slow
coordinates X = x+ εJθ +O(ε2) by formula inverse to (2.24),

H = Hε(Sε,X ) +O(ε2), Ĥ = Hε(Ŝε, X̂ ) +O(ε2 + �
2). (3.12)

The operators X̂ obey commutation relations (3.7) and commute with the operator Ŝε up to to
O(�ε2).

Remark. One can derive another type of integral geometric formulas for the improved adiabatic
invariant and adiabatic quantization rule. Indeed, about the Hamiltonian Sε we know that it has
2π-periodic flow and know that its complete set of integrals of motion (up to O(ε∞)) consists of
functions H and Xε = X +O(ε2). Therefore its periodic trajectories are given just by intersections
of surfaces {H = const} and {Xε = const} in the total slow-fast phase space. If denote by ΣH∧Xε

membranes whose boundaries coincide with these intersections then the corresponding action func-
tion is given by the integral 1

2π

∫
ΣH∧Xε

(a + 1
εω). And this action coincides with the function Sε

itself.
Now by using the representation

Xε = x+ εJθε (3.13)

similar to (3.6), one obtains the following integral formula for the improved adiabatic invariant:

Sε =
1

2π

∫
ΣH∧Xε

(a− εBε)
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with the correcting 2-form Bε
def
= − 1

2∂θε ∧ J∂θε similar to (2.17).

At the level Sε = sn formula (3.14) becomes the equation
1

2π

∫
ΣH∧Xε

(a− εBε) = sn. (3.15)

whose solutions with respect to H determine the adiabatic terms as functions in Xε up to O(ε∞).

The main working object here is the set (3.13) of “guiding center” coordinates Xε related to
a higher order analog θε of the Hamiltonian connection 1-form. This analog is obtained from the
solution of (A.5),(A.9),(A.10) by splitting Aε = θε − αε similarly to (2.15) (see details in [17],
formula (B.9)).

The critical distinction of this construction from above results (2.24), (1.8) is that the membranes
ΣH∧Xε

do not belong to “vertical” fast fibers and thus there is no complete separation of fast and
slow variables in formulas (3.14), (3.15). Nevertheless they are useful, for instance, in studying the
extension of (2.24), (1.8) to higher adiabatic orders.

4. CONCLUSION

We proved that, in the adiabatic system (1.1)–(1.3), the fast component can be separated,
i.e., the degrees of freedom can be reduced, at least up to O(ε2) in a purely geometric way by
deforming the fast and slow symplectic structures without transforming the Hamiltonian. These
geometric deformations are generated by the Poisson tensor of the slow space (noncommutatity of
adiabatic parameters) in combination with the adiabatic Berry-type connection.

We also found out that, by using the same geometric deformations, the improved adiabatic
invariant can be represented, at least up to O(ε2), in a form similar to the usual action integral on
fast fibers.

Our hypothesis is that these statements are true up to O(ε∞). This would mean that, for generic
classical and semiclassical adiabatic systems with one fast degree of freedom, their reduction in all
higher ε-orders can be described via deformation of symplectic structures only.

The main consequence from our study is that is reveals a “symplectic force” which synchro-
nizes the fast gyrations in the system and arises due to inconsistency between the slow symplectic
structure and the adiabatic curvature. A consequence of this synchronization is that the effective
slow Hamiltonians (the adiabatic terms) in the first and probably, in higher ε-orders, are given by
the direct geometric formula a’la Planck quantization rule over the fast space. The reduced slow
dynamics in the new slow coordinates is then governed by this geometric Hamiltonian only, without
needing additional ε-corrections.

The results obtained here can also be interpreted in the fashion of generalized “magneto-torsion
field,” “Peierls substitution,” and “guiding center” [21–25] in the slow phase space.

APPENDIX: “DYNAMICS” BY ADIABATIC PARAMETER
FOR INTEGRALS OF MOTION AND CONNECTION

In the paper [17], we derived a system of equations for adiabatic integrals of motion and for
the connection (which control the hodograph parallel translations) by using the small parameter
ε in the role of the time variable, starting from the trivial integrable situation at ε = 0. In the
classical case, the details were described in [18]. In this appendix, we demonstrate how to modify
this system to make it more explicit.

Note that there is an operator scheme for considering higher adiabatic terms based on “diag-
onalization” and on the use of derivations with respect to ε [21, 22], as well computations of a
similar type in the classical framework [19, 20]. But these approaches do not exploit the phase
space structure and zero curvature equations, which are our central objects in [17, 18], and does
not allow us to transfer computations easily from quantum to classical level and back.

Recall that, in [18], we have fixed a point x in the slow space, wrote S0(r, k)
def
= S0(r, k;x), and

considered a phase space transformation g0 preserving the brackets {· , ·}0 and such that S0 = g∗0S0

and g∗0(x
j) = xj . In Section 3 of [18], we have explained how such a transformation acting along

the fast fibers can be constructed.
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At the second step, we introduced the canonical transformation gε of the total fast-slow phase

space equipped with Poisson brackets {·, ·}ε (2.3) in such a way that the function Sε
def
= g∗εS0 is

the asymptotic integral of motion for the Hamiltonian H (1.1), that is, as in (2.12),
{H,Sε}ε = 0 up to O(ε∞). (A.1)

In the terminology of [2, 14], Sε is called the improved adiabatic invariant (in [18] we also referred
to it as the complete adiabatic invariant).

The main point of the work [18] was that the transformation gε is constructed not by the
usual step-by-step increase of the accuracy of approximations from εN to εN+1, but by deriving a
differential equation with respect to ε.

If the transformed slow coordinates are denoted by Xj
ε = g∗εx

j , then in addition to (A.1) up to
O(ε∞), we have the relations

{Sε,X
j
ε}ε = 0, {Xε

⊗, Xε}ε = εJ. (A.2)

The original Hamiltonian H is a function in Sε and in the new slow coordinate Xε, i.e.,
H = fε(Sε;Xε). (A.3)

An explicit computation of the adiabatic “term” fε was also done in [17, 18] by deriving some
differential equation with respect to ε.

In [17, 18], we used auxiliary functions Aεj and Bε which take part in the construction of the
“dynamical” system for gε and fε, Sε with respect to the adiabatic parameter ε. Now we obtain a
simpler system of equations by exploiting the functions Aεj = g∗εAεj and Bε = g∗εBε.

The covector Aε is related to the new slow variable Xε as follows:
Xε = x+ εJAε. (A.4)

The function Bε together with Aε obey a kind of zero curvature condition

DBε + {Aε,Bε}ε =
∂Aε

∂ε
+

1

2
AεjJ

jkDkAε (A.5)

(here summation by repeated indices is assumed). We refer to [17, 18] for detailed explanations
about this zero curvature framework. The functions Bε,Aεj play the role of connection coefficients
in parallel transport equations for gε, fε, Sε in the extended fast-slow phase space with additional
ε-direction as a “time” component of the space.

Note that the function Sε keeps the basic property of the classical action S0 to have a 2π-periodic
Hamiltonian flow. Let us denote by Y t

ε the flow generated by Sε and define the corresponding
averaging operation on phase-space functions

〈G〉 def
=

1

2π

∫ 2π

0

Y t∗
ε Gdt (A.6)

as well as the integrating operation

G# def
=

1

2π

∫ 2π

0

(t− π)Y t∗
ε Gdt. (A.7)

The standard properties of these operations are

〈〈G〉〉 = 〈G〉, 〈G#〉 = 0, {Sε, G
#}ε = G− 〈G〉, {Sε, 〈G〉}ε = 0. (A.8)

The covector field Aε determines the Hamiltonian connection ∇ε
def
= D+adε(Aε), where by adε(·)

we denote the Hamiltonian field corresponding to the given function on the total fast-slow phase
space with respect to the brackets (2.3). This Hamiltonian connection preserves Sε and commutes
with operations (A.6) and (A.7). The problem is that we do not know Sε for ε > 0 and, therefore,
cannot determine Aε starting from Sε as we did in Section 2 at ε = 0. One needs some system of
equations for simultaneous (joint) computation of all these objects.
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The basic derivation of the desired system was done in [18] in terms of Aε, Bε. Now we use
another basic functions Aε, Bε. From the results of [18], it follows that the system becomes

∂

∂ε
Sε = {Sε,Bε}ε −

1

2
AεjJ

jk{Sε,Aεk}ε,
( ∂

∂ε
− 〈Aε〉JD

)
fε =

1

2
〈AεjJ

jk{H,Aεk}ε〉. (A.9)

These are differential equations with respect to the adiabatic parameter ε and they can be solved
starting from the “initial data” at ε = 0, i.e., from the functions S0 and f0 that we know.

Of course, we need also equations for Aε and Bε taking part in (A.9). The first set of such
equations is (A.5). The number of equations in (A.5) is equal to the dimension of the slow space,
or to the dimension of the covector Aε. Thus there must be one more equation determining the
ε-“dynamics” of Bε.

This last equation does not contain the derivative with respect to ε but just gives the explicit
formula

Bε =
ε

ωε

(
∂Aεj

∂ε
+

1

2
AεlJ

lmDmAεj

)#

JjkDkfε(Sε,Xε)

+
1

ωε
A#

εjJ
jkDkfε(Sε,Xε) +

1

2ωε

(
AεjJ

jk{H,Aεk}ε
)#

.

(A.10)

Here Xε is determined by Aε from (A.4) and ωε = ∂fε(Sε,Xε).

Now by using (A.10), the function Bε can be expressed via Aε, Sε in (A.5), (A.9), and then this
system can easily be solved in the class of formal series in ε:

Sε = S0 + εS′ + . . . , fε = f0 + εf ′ + . . . , Aε = A0 + εA′ + . . . . (A.11)

Note that the solution Sε, Aε will automatically satisfy the homological equation

DSε = {Sε,Aε}ε, (A.12)

as well as the zero curvature equation

DjAεk −DkAεj + {Aεj ,Aεk}ε = 0 (A.13)

if and only if both of these conditions hold at ε = 0 for the covector field A0 and the classical action
S0. The latter is guaranteed just by the definition of A0 = θ − α described in Section 2.

Equations (A.12), (A.13) are equivalent to relations (A.2) with Xε given by (A.4).

Theorem A.1. The “dynamical” system of equations (A.9), (A.5) with the adiabatic parameters
ε as a “time” variable (plus formula (A.10)), together with the “Cauchy data” S0, f0, A0 at ε = 0,
uniquely determine the formal power series Sε, fε, Aε (A.11) such that the Hamiltonian H up
to O(ε∞) can be represented in the form (A.3) with new Darboux coordinates Xε (A.4) obeying
relations (A.2). The integral of motion Sε has the 2π-periodic Hamiltonian flow and satisfies the
relation (A.12).

The representation of the Hamiltonian (A.3) allows us to explicitly perform the restriction onto
the levels {Sε = s} of the integral of motion and compute up to O(ε∞) the effective slow Hamil-
tonians fε(s;Xε) in new Darboux coordinates obeying relations (A.2). In the quantum case, one

can explicitly restrict the Hamiltonian Ĥ, as well the operators X̂ε, onto nth eigensubspace of Ŝε,
corresponding to the eigenvalue sn +O(�2). This can be done with accuracy O(ε∞).

Note that, in Sections 2 and 3, by working with accuracy O(ε2), we use the new slow coordinates
X which are related to the above Darboux coordinates as follows: Xε = X − εJα + O(ε2) where
the Berry’s vector-potential α is determined in (2.10).
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