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In this essay we give an overview on the problem of rogue or freak wave formation in the ocean. The matter of the
phenomenon is a sporadic occurrence of unexpectedly high waves on the sea surface. These waves cause serious
danger for sailing and sea use. A number of huge wave accidents, resulting in damages, ship losses and people
injuries and deaths, are known. Now marine researchers do believe that these waves belong to a specific kind of sea
wave, not taken into account by conventional models for sea wind waves. This paper addresses the nature of the
rogue wave problem from a general viewpoint based on wave process ideas. We start by introducing some primitive
elements of sea wave physics with the purpose of paving the way for further discussion. We discuss linear physical
mechanisms which are responsible for high wave formation, at first. Then, we proceed with a description of different
sea conditions, starting from the open deep sea, and approaching the sea coast. Nonlinear effects which are able to
cause rogue waves are emphasised. In conclusion we briefly discuss the generality of the physical mechanisms
suggested for the rogue wave explanation; they are valid for rogue wave phenomena in other media such as solid
matters, superconductors, plasmas and nonlinear optics.

Keywords: rogue waves; freak waves; water waves; nonlinear evolution equations

1. Introduction: physical mechanisms

The popularity of the sea freak or rogue wave problem
has amplified suddenly within the last few decades,
and it is now a top-rank topic for scientific discussions,
conferences and publications. An adequate estimate of
the rogue wave frequency, kinematics, dynamics, and
rogue wave danger forecasting are of great economical
importance. This vogue was boosted both by theore-
ticians who managed to reveal new extraordinary
features of nonlinear wave dynamics, and marine
engineers thanks to trustworthy testimonies of the
ultimate effects caused by the extreme waves. The
rogue wave phenomenon and related problems
are described in a very popular way in [1-3]. Scientific
reviews on the rogue wave problem in physical
oceanography may be found in [4-6], and collections
of research papers are gathered in proceedings of
topical conferences [7-9]. A more general view on
rogue waves in physics and mathematics is given in
special issue of the European Physical Journal [10].

It seems so that the term freak wave was more
popular at the beginning of the story, when the
phenomenon of sudden and unexpectedly high waves
occurring in the sea had become recognised by the

scientific community. It was accepted that these waves
were something beyond extreme waves or steep wave
events.

The marine folklore could enrich the physical
vocabulary with many colourful names for the
dangerous oceanic waves, such as abnormal, excep-
tional, extreme, giant, huge, sudden, episodic, monster,
vicious, killer, mad- or rabid-dog waves; cape rollers,
holes in the sea, walls of water, three sisters, etc. Now
people seem to prefer calling these waves rogue waves
instead of freak waves, which probably reflects some
level of understanding of this phenomenon, and the
sign that the problem is now becoming more devel-
oped, although still dangerous and challenging. In this
paper an introduction to the present understanding of
the rogue wave phenomenon is given.

Usual waves on the sea surface are generated by
winds. Their dynamics are strongly affected by weather
conditions and oceanographic conditions (bathymetry,
currents), which may be both varying. The variability
of the conditions and coexistence of many wave
systems generated by different winds at different water
areas result in very complicated stochastic dynamics
of sea waves. Revealing relations between weather
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conditions and dangerous navigational sea states is
an indispensable need for providing safe sea use. The
on-going research will eventually be directed towards a
solution for this vital problem.

Sea waves are a continual object for study. A
significant number of surface elevation time series
records containing rogue events may be found in the
literature. In situ measurements are exploited with
the purpose of revealing the physical origin of the
rogue wave effect, to determine the most dangerous sea
states, and to find a reliable indicator of the high
probability of rogue wave occurrence. Rogue wave
records are also used for reconstruction of the
dangerous events, initialising numerical simulations
and verifying their abilities. These issues have been
addressed by many researches, and are discussed in a
book by Kharif et al. [6]; the present paper is dedicated
to a more general overview on physical mechanisms of
rogue wave formation.

Although one is usually expected to face large
waves in severe sea states, rogue waves are observed
during calm sea conditions as well. This confirms the
significance of the own sea wave dynamics, to which we
restrict our attention in this paper. The interaction
between intense waves and winds represents a more
difficult problem, which is not sufficiently investigated
at the present moment. Some information on these
recent studies may be found in [6]. Since the wind—
wave interaction is much slower than the wave-wave
interaction, in many cases rogue waves may be
assumed to be free from wind action. The wind effect
contribution to the process of rogue wave formation
will not be considered in this paper.

The following main physical mechanisms of rogue
waves may be conventionally singled out:

o Geometrical focusing (spatial focusing). This
effect is well known in physics, and particularly
in optics. The focusing of waves coming from
different directions may be caused by the
interference of different sea wave systems,
generated at different storm areas (mixed sea
states), or/and by wave refraction and diffraction
by bathymetric peculiarities (underwater hills,
ridges, etc.), and by oceanic non-uniform cur-
rents as well. The spatial focusing can result in
significant wave amplification at regions of
caustics (wave focuses). The unexpectedness of
huge wave formation, commonly attributed to
the rogue wave nature, is due to the variability
of wind—-wave patterns in storm areas, when a
weak variation of wave paths can lead to the
disappearance of existing caustics and their
formation elsewhere, likely far from the previous
place.

e Focusing due to dispersion of the wave group

velocity (temporal focusing). Water waves are
dispersive waves as far as different spectral
components propagate with their own velocities.
During wave propagation, components of var-
ious scales may merge at a single place resulting
in a strong energy concentration (dispersive
focus). The process of wave dispersive focusing
persistently occurs for ocean waves; the forma-
tion of intense waves has a random character due
to the variability of wind wave patterns in storm
areas.

Focusing due to the modulational (Benjamin—Feir)
instability. This effect is due to the modulational
instability of nonlinear waves, which is also
widely known for waves of different physical
origins; see historical essay [11]. In water wave
physics it is called the Benjamin—Feir instability
after T.B. Benjamin and J.E. Feir who discov-
ered this effect in a laboratory tank in 1967.
The essence of this phenomenon is in an unstable
growth of weak wave modulations, which evolve
into short groups of steep waves. Through this
dynamics, the wave energy becomes focused for a
short time, providing a rogue character of the
modulational instability effect.

Nonlinear water waves suffer from different
kinds of nonlinear instabilities depending on the
wave intensity and the water depth, which may
modify the action of the Benjamin—Feir instabil-
ity or result in similar effects. A proximity to
homoclinic orbits of the nonlinear evolution
equations, governing the wave dynamics, is
suggested as the explanation of the freaky
dynamics of rogue waves (see [12] and book [13]).
Essentially nonlinear wave interaction. Nonlinear
effects, when waves interact at certain conditions,
are able to produce much more significant wave
amplification than is expected from the linear
superposition assumption. This effect strongly
depends on the angle between the waves, wave
shapes (soliton or shock waves), nonlinear
characteristics, and so on, providing the rogue
character of such an interaction.

Wave-current interaction. This source of rogue
waves is historically singled out, because one of
the first notorious areas where the rogue wave
effect was recognized were waters with strong
currents (for example, the Agulhas current off
the southeast coast of Africa). Effects of wave
trapping and wave blocking are explained by the
strong influence of the opposite current upon a
wave dispersion law. From this point of view
the wave propagation over currents and wave
blocking are in some sense similar to the wave
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refraction and wave reflection at shallow coastal
waters; these effects have become classic, and will
not be analysed in detail in the present paper.

Most of the listed effects have general physical matter
and potential applications to many other fields of
physics.

To start, in the next section we introduce the main
definitions and features of sea waves, which will be
relevant for the further understanding. Proceeding
from the simple theory to a more advanced one, we
first consider linear effects, which may cause an
extreme wave generation, and then proceed to non-
linear effects. The recent achievements in understand-
ing the rogue wave phenomenon are mostly related
to sea wave nonlinear effects, and the present paper
emphasises their contribution. Regarding the features
of wave dynamics conditions, the subsequent sections
describe rogue waves over deep and shallow waters.
In conclusion some closely related problems in physics
are briefly discussed.

2. General issues

In this section some general properties of surface wind
gravity sea waves are described to prepare one for
further reading.

2.1. Wind waves

Waves with length within the range of about 10 cm to
500 m, which are usually observed on the sea surface,
are wind-generated waves. They are a part of the class
of water waves, surface gravity waves, propagating
due to the action of gravity.

Far from the storm area degenerating wind waves
become longer and less steep, and are called swells;
they can influence and interact with the local wind
waves and can result in the rogue event.

On the wind wave crests short capillary waves are
usually generated (of a few centimetres length and
shorter); their dynamics is governed by the surface
tension at the boundary between the water and the air.
These waves are important for processes of the ocean—
atmosphere interaction, but they do not contribute to
the rogue wave phenomenon.

2.2. Deep and shallow water waves
Surface gravity waves obey the dispersion law
o = (gk tanh(kh))"/?, (1)

where w =2n/T is the cyclic wave frequency (7 is the
wave period), k=2n/A is the wavenumber (1 is the

wavelength), g is the gravity acceleration, and / is the
water depth.

Sinusoidal waves propagate with the phase velo-
city, Cpn=w/k, though wave groups travel with the
group velocity, C, =dw/dk. The wave energy is
transferred with the group velocity as well.

Water waves propagating on the sea surface induce
the motion of fluid particles within the water column,
which depends on the ratio between the wavelength
and the water depth. Hereafter, the deep and shallow
water conditions will be divided in relation to the
surface wave physics. If kh>> 1, surface waves induce
fluid motions which decay with depth exponentially
and the propagating wave is not influenced by the
bottom; hence, the sea is assumed deep (deep water
waves or short gravity waves). The deep-water disper-
sion relation has the form

o = (gk)'?,
T L

Therefore, individual waves in a group move twice as
fast than the wave group as a whole. Due to the
difference between the phase and group velocities,
individual waves are enclosed within the wave group:
they appear at the rear part of the group, run to the
group frontal part and seem to disappear.

In contrast to the deep-sea conditions, shallow
water waves (kh<<1) represent the wave motion
involving the entire water column, and the water flow
is almost uniform within the depth. The dispersion
relation for shallow water waves gives

S
~ Ck(1 -5
w ( 6 >,

272
Cph%C(l—%>,

k2 2
Cy =~ C(l - Th)’
C = (gh)'. (3)

Shallow water waves possess a weak difference between
phase and group velocities, and are weakly dispersive
waves. As a result, individual waves can propagate
over a long distance without significant transforma-
tion; this is used by windsurfers near the coast.
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A tsunami wave crossing the ocean is another good
example of shallow-water waves. A general review on
the effects of tsunami wave generation and propaga-
tion can be found in [14]. Tsunamis can result in the
occurrence of huge waves (30—40 m at the coast and up
to several metres in the open sea), and the two latest
global events (2004 Indian Ocean tsunami, and 2011
Japanese tsunami) are well described in the mass-
media. Meanwhile, tsunami waves are not rogue
(unpredictable) waves, and, therefore, are not the
focus of the present paper.

The sea wave nonlinearity is evidently manifested
through the sharp wave shape. Indeed, only small-
amplitude or long waves are close to sinusoidal.
Steeper waves are asymmetric; too much steep waves
cannot propagate and break. In fact, the nonlinearity
has two main consequences: the appearance of phase-
locked harmonics and the energy exchange between
wave harmonics. Both effects violate the Gaussian sea
assumption which will be discussed shortly below.

The presence of phase-locked spectral components
results in the deviation of the wave shape from
sinusoidal. The mutual dependence of wave harmonics
leads to the formation of coherent states; the energy
exchange between Fourier modes may be unstable and
cause transfer energy to other scales, and as a result,
may cause the occurrence of short intense wave packets
and steep waves. Besides, nonlinearity means cancella-
tion of the linear superposition assumption, what
complicates the wave description.

Figure 1 displays recorded wave profiles when
waves approach the coast: the deep-water region
corresponds to Figure 1(a); Figure 1(b) reports on
the shallow-water condition [15]. The difference
between the wave appearances is obvious. Waves
over shallow water are much more asymmetric and

0 100 200 300 400 500
(@)

0 100 200 300 400 500
(b)

Figure 1. Time series of the surface elevation (metres versus
seconds) obtained at one coast at different water depths: (a)
18 m and (b) 1.6 m. The data are provided by Zh. Cherneva,
see [15].

have high steep crests. This difference is caused by the
nonlinearity, which acts differently for deep and
shallow waters.

2.3. What a rogue wave is

Although the problem of rogue waves has been studied
for a few decades, a single generally accepted definition
of a rogue wave still does not exist. It is commonly
assumed that these waves should be defiantly high and
ruinous, and also unexpected.

By now there is a number of well-documented
cases of occurrence of unexpectedly large sea waves.
When talking about the frequency of high waves,
the key factor is the balance between the wave size
and its probability. It is that very condition which is
incorporated into the ship and marine structure
design rules, and risk assessments. While the risk to
be hit by an extraordinary high wave may be
negligible, the chance to face moderately high waves
can be quite probable and must be taken into account
instead.

The wave height, H, is the most evident quantita-
tive estimate of the wave size. It is defined as the
vertical distance between the wave crest and the
deepest trough preceding or following the crest.
Frequently, a simple definition of a rogue wave is
employed, that this wave exceeds at least twice the
significant wave height:

Hinax
AL = Hmax (4)
H,

Here H..x is the height of the rogue wave, and H; is
the significant wave height' which is the average of one
third of highest waves in a time series (usually the time
series has duration 10-30 min, which corresponds to
about 50-300 individual waves).

The wave height is not the only significant injurious
factor that makes waves rogue. The wave impact
upon marine stationary or moving structures may be
governed by other parameters, such as steepness
(which is proportional to H,,/4, where A is the wave
length), crest height, horizontal and vertical wave
asymmetry; specific wave sequences are also expected
to be quite dangerous due to the hull memory and
resonance effects. Different types of ships may also
suffer from different wave parameters and sea condi-
tions. Therefore, different kinds of extreme waves
may be treated as rogue waves or not, depending on
the particular case and applications.

The rogue wave impact is an important practical
question. However, in this paper we define a rogue
wave following the only amplitude criterion on the
‘abnormality index’, A/, given above.
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2.4. What the maximum attainable sea wave height is

When in 1826 Captain Dumont d’Urville, a French
scientist and naval officer in command of an expedition,
reported encountering waves up to 30 m height, he was
openly ridiculed. Three of his colleagues supported his
estimate but could not help him to be believed [16].
According to modern reliable instrumental measure-
ments, wind waves can have a height of 30 m, they have
been repeatedly registered during storms.

As an example, waves with heights of a little bit
more than 29 m were measured under severe but not
exceptional wind conditions in 2000 by a British
oceanographic research vessel near Rockall, west of
Scotland. A three-week registration of surface waves
from the European satellite ERS-2 revealed regions
in the World Ocean with high waves and detected a
wave of 29.8 m in height. Even higher waves have been
reported, but those testimonies seem to be doubtful,
see details of rogue wave observations in [6] and
references therein.

Bearing in mind that ships are often designed for
10-15 m wave heights, it becomes obvious that the
observed waves are real threats that may cause
significant damage and even the loss of a ship.

2.5. Rogue wave statistics

The concept of a Gaussian random process is very
popular in physics, and the Gaussian sea assumption is
the most conventional one where wind waves on the
sea surface are concerned. In this case surface waves
are considered to be a linear superposition of many
independent harmonics,” which propagate in different
directions with different speeds and make the sea
surface movement stochastic.

If so, then the Central Limit Theorem insures that
the sea surface displacement obeys the normal
(Gaussian) distribution. Under the assumption of a
narrow banded wave spectrum (a rough approxima-
tion of the real wind wave spectrum) it results in the
Rayleigh distribution function for the wave height
probability, so that the exceedance probability func-
tion is

P(H) = exp (211—2), (5)

see, for example [17]. It may be straightforwardly
obtained that this estimate foresees the formation of a
rogue wave with 47 > 2 at a single measuring point
every 8-9 h for a typical wave period of 10 s. A wave
satisfying the condition 4/ > 3 would be measured
once in about 20 years, and such waves have already
been reported.

Theoretically, the Rayleigh distribution function
means that a wave of any height may occur. In
practice, high waves are influenced by nonlinearity,
and, thus, the tail of this distribution is different. The
true shape of the tail of the wave height exceedance
probability function is the cornerstone, which deter-
mines the importance of the rogue wave problem.
According to some in situ observations, at the values of
the attainable wave amplification A/ ~ 2.4 the wave
height probability many times exceeds the Rayleigh
distribution.

People have started instrumental recording of sea
waves since the middle of the twentieth century. High
waves are of prior interest, and, thus, most of the wave
measurements are acquired during stormy weather.
Technical limitations make the registration of extreme
waves even more difficult, which is complicated by
the assemblage of rich statistical data on rogue wave
events. To the best of our knowledge, the number of
recorded rogue waves throughout the world accounts
for a few thousands, but the percentage of trustworthy
ones is much smaller.

The recorded waves belong to different sea states
and do not compose a statistically uniform ensemble.
This prevents one obtaining reliable rogue wave
statistics on the basis of natural records, and, hence,
the rogue wave probability problem is addressed by
theoretical analysis and wave simulations.

3. Linear rogue waves

It is obvious that in the linear theory rogue waves can
be formed due to focusing mechanisms only. These
mechanisms are manifested differently for deep and
shallow waters.

In the shallow water due to the strong influence of
the variable bottom relief, the spatial focusing of waves
is the major mechanism of rogue wave generation.
Inhomogeneous depth conditions lead to varying wave
speeds, and effects of refraction result in concentration
of wave energy at caustics. Figure 2 demonstrates
ray patterns for shallow water waves generated by an
isotropic source in the Japan Sea.

Any weak variation of the wave source (such as a
storm area) parameters dramatically modifies the
location and intensity of focal spots, which may
explain the rapid appearance and disappearance of
intense wave areas and related extreme waves. Other
factors which alter and contribute to the wave focusing
are: a wave—current interaction, a superposition with
waves reflected from the coast, resonance effects in
closed and semi-closed basins, and diffraction effects.
The matter of rogue waves in all these cases is
common, and the unexpected nature of rogue waves
is supported by the random location of focal points
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Figure 2. Ray patterns of long waves travelling from an isotropic source in the Japan Sea. The result of numerical simulations.

and its sensitivity with respect to weak variations of the
source. The effect of temporal focusing due to the weak
dispersion can also be important for waves in long
channels of almost constant depth.

In the deep water the effect of geometrical focusing
is significant in relation to wave—current and wave—
swell interactions (crossing seas), to the non-unifor-
mity of the storm area with several centres of wave
generation; but the effect of temporal focusing is
important in all cases.

In Figure 3 the local wave group velocity computed
for a 20 min time series is shown. A significant
variation of the wave velocity is evident. It is the
reason for continual dispersive wave focusing and
defocusing that leads to the occasional formation of
larger waves.

Supposing the waves to be linearly superposing,
tailored wave sequences can be prepared to provide the
wave focusing at a single point at one time instant. The
corresponding wave condition may be easily found
with the use of the dispersion relation formula. This
approach turns out to be convenient for generation of
large-amplitude waves in laboratory conditions, see
Figure 4 for example. The wave profiles at different
distances from the wavemaker are shown on the right.
It may be seen that the initial wave packet contains

0 200 400 600 800 1000 1200
time
Figure 3.  An example of the local wave group velocity (in

metres per second) within a 20 min wave record retrieved in
the North Sea. The typical wave period is about 10 s.

waves with different lengths and, respectively, periods
(a frequency modulated wave train). The difference
in wave length provides the condition for efficient
wave focusing downstream the wave tank due to the
dispersion. The focused wave train contains a single
wave oscillation, which breaks shortly after it is
formed.

Waves generated in a laboratory tank are naturally
influenced by perturbations due to the imperfectness of
the equipment, and also by nonlinear effects. In spite of
this, transient waves are successfully used to produce
dispersion-generated extreme waves in flumes. This
fact demonstrates the ability of the dispersive focusing
effect to act in the real conditions, and confirms its
robustness.
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Figure 4. The dispersion focusing of a frequency-modulated wave train in a laboratory tank [18]. Reproduced with permission from

G. Clauss, Appl. Ocean Res. 24 (2002). Copyright (2002) by Elsevier.

The effect of sea wave nonlinearity is now believed
to be the prevalent mechanism of rogue wave prob-
ability increase beyond the conventional linear (or

quasi-linear) theories. Extreme wave impact on ships
and marine structures is also associated with strongly
nonlinear effects. Nonlinear corrections to the wave
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shape and kinematics, and essentially nonlinear
phenomena in the wave dynamics, all have an effect
on the rogue wave and extreme load probabilities.
This vital problem has motivated much study on the
nonlinear rogue wave dynamics and statistics.

4. Nonlinear deep-water rogue waves

An example of the surface elevation time series
retrieved on the Draupner stationary platform, situated
in the North Sea, is given in Figure 5. The upper
panel shows the 20 min record of the famous New Year
Wave recorded on 1 January 1995. The lower panel
represents it on a larger scale. Circles over the curve
in the lower panel denote the measured values. This
extraordinary wave had hit the platform and, hence,
excited interest to the rogue wave problem greatly.

In general, different kinds of rogue wave appear-
ance may be specified: single waves and wave groups
(sometimes called ‘three sisters’), pyramidal waves
and walls of water, etc. So-called ‘holes in the sea’,
which are very deep wave troughs, are also observed,
and they are frequently supposed to be even more
dangerous than huge wave crests, because the deep
trough cannot be seen when hidden behind surround-
ing waves.

In this section the peculiarities of the nonlinear
mechanisms leading to the formation of rogue waves in
deep waters are discussed.

4.1. Stokes waves

First of all, nonlinearity influences the wave shape and
the speed of wave propagation. The basic example of

I 1 1 L L L 1

- —_
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Figure 5. Measured rogue wave time series: the ‘New Year
Wave’ (the North Sea, Draupner platform, 85 m depth,
AI=2.24, H;, =26 m). The data are provided by S. Haver.

deep-water nonlinear waves is the travelling waves with
a permanent shape, which are called Stokes waves.
Their crests are sharp, and their troughs are smooth,
see Figure 6. The degree of wave nonlinearity
regardless of the water depth may be measured in
terms of a dimensionless parameter, the wave steep-
ness, s =kH/2. Uniform waves over deep water (the
Stokes waves) break when the wave steepness is about
s =~ 0.4. Typical intense sea wave trains are character-
ized by a steepness of about s ~ 0.07-0.1.

It is well known that the nonlinearity of Stokes
waves results in an increase of the wave frequency. The
deep-water nonlinear frequency correction is propor-
tional to the squared wave amplitude, |4|,

1
W = Mlipear (1 + 5 |1€A|2>7 (6)

where wjjnear 1S the frequency of linear waves, see
Equation (2). The nonlinear frequency correction leads
to important effects in the nonlinear wave—wave energy
exchange. Waves with uniform lengths may propagate
with different velocities due to the amplitude modula-
tion, which gives the possibility for a nonlinear wave
focusing. This effect becomes apparent at a long
‘nonlinear’ time of the order ~w ™~ '(k4) 2. The effect
has a small value due to the smallness of the wave
steepness kA, and, thus, it takes time to manifest the
effect of nonlinearity.

4.2. Nonlinear wave self-modulation

Wave harmonics are dependent due to nonlinear
wave-wave interactions. This interaction can lead to
considerable effects accompanied by a strong energy
redistribution and by phase coherence in the spectral
space.

Waves over sufficiently deep water suffer from
nonlinear side-band instability (alternatively, modula-
tional or Benjamin—Feir instability), which is well
known in many fields of nonlinear physics. If a
uniform wave with frequency wg has a weak amplitude
modulation, the perturbation at the first stage

Figure 6. Surface displacement corresponding to a
sinusoidal wave and to the Stokes wave of the same height,
kH|2=0.3.
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exponentially grows due to the energy exchange
between the carrier wave and the sidebands.

Figure 7 displays the spectral picture of this
process. The carrier wave is represented by the intense
spectral peak at wg, and the sidebands due to the wave
modulation have smaller amplitudes. Only sufficiently
long perturbations may be unstable. The blue thin
curves show the instability growth rate, which is
different for different lengths of the perturbation. The
sidebands accrue energy from the carrier wave, which
results in the occurrence of large waves.

This effect can be described within the weakly
nonlinear weakly dispersive framework. Decomposing
the deep-water dispersion relation around some
dominant wavenumber, k(, and combining this rela-
tion with the formula for the nonlinear frequency
correction, the following relation takes place,

wo (k —ko)?  wok?
w—wongr(k—ko)—%%+ 020|A|2. (7)
0

The corresponding evolution equation may be ob-
tained in a formal way after the changes o — wy— 19/
ot, and k — ky— —10/0x:

Al =0, (8)

ot

ox

.[0A 04 (ON) 82/4 a)gk(z)
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which is the nonlinear Schrodinger equation (NLS).
Here A(x, 1) is the complex wave amplitude.

The instability starts if the wave amplitude is high
enough, and the perturbation is sufficiently long (the
spectral satellites are close to the mean frequency,
see Figure 7, thus the spectrum is narrow). Since the
feasible amplitude of real sea waves is limited, a
minimum length of physically unstable perturbations

S(w)

214 yymo4s3 dpprquysur

@

Figure 7. [Illustration of the side-band instability. The
frequency spectrum S(w) is represented by three harmonics
(red thick sticks): the carrier wave at wo and the satellites
(smaller sticks). The instability growth rate depending on the
off-set frequency of the satellites is shown by the thin blue
solid line. The energy transfer due to the modulational
instability is shown by arrows.

exists. Typical sea wave trains over deep water can be
unstable if they contain more than about 5-10 waves.

The modulational instability in physics is usually
studied with respect to deterministic wave packets. But
the specificity of wind waves is that they are random.
The theory of modulational instability for narrow-
banded random waves was developed in [19] in 1970s,
where it was demonstrated that the wave randomness
greatly suppresses the instability. This happens when
the correlation length becomes shorter than the length
of the modulation, then the nonlinear self-modulation
supported by the wave coherence cannot occur. If
waves represent a random process with the Gaussian
spectrum with variance of, then the correlation and the
modulation length ratio is

correlation length ~ koA
modulation length = ¢, /ko

©)

The significance of the nonlinear self-modulation effect
on the stochastic wave dynamics may be estimated
by the Benjamin—Feir Index, BFI, which is the ratio of
magnitudes of the nonlinear and dispersive effects. In
this case the dispersion has the physical meaning of the
difference between wave velocities within wave groups.
The BFI may be defined as

A
P — steepnes§ _ ko . (10)
spectrum width  Aw/wy

Roughly speaking, waves are unstable for BFI > 1 and
are stable with respect to the Benjamin—Feir instability
otherwise. Thus, the instability condition BFI > 1 is
consistent with the request of the sufficient correlation
length discussed just above.

For typical sea conditions the BFI is less or about
unity. The importance of the Benjamin—Feir instability
effect for sea wind waves is now being revised in view of
the rogue wave phenomenon. In particular, the sea
conditions characterised by a large value of the BFI are
supposed to be more dangerous, since the modulational
instability may be triggered. The unstable modulational
growth due to the Benjamin—Feir instability is a regular
mechanism of a high wave generation over deep water,
which increases the probability of high waves beyond
the prediction of linear theory.

4.3. Breather solutions

The NLS equation (8) admits exact solutions, which
describe the development of the Benjamin—Feir in-
stability. Such an example is given in Figure 8. The
wave envelope |A| is shown in scaled variables in this
figure; the solution is symmetric with respect to the
coordinate origin. For a large time the solution
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Figure 8. An exact solution of the NLS equation, which
demonstrates the occurrence of a huge wave ‘out of nowhere’
(the Peregrine solution).

represents a weakly modulated wave train. The wave
has maximum amplitude at a time equal to zero; then
it is thrice higher than the wave at infinite time.

This solution corresponds to the infinitively long
perturbation of the wave train. For a given wave
amplitude there is a certain domain of perturbation
wavelengths, when deep-water uniform wave trains are
unstable with respect to the modulational instability,
see Figure 7. Finite but sufficiently long wave
perturbations lead to smaller wave amplification than
is provided for by the solution in Figure 8, see [13].
According to the NLS theory, the most unstable
perturbation (with the maximum growth rate) results
in about 2.4 amplification of the wave amplitude.

When many unstable modes of the wave field are
excited, different growth rates and starting conditions
result in a tangled competition between unstable
modes. The evolution of modulationally unstable
wave trains looks quite intricate, and in real applica-
tions this dynamics is chaotic [20].

The exact solutions of the NLS equation, similar to
the one shown in Figure 8, describe the huge wave
occurrence ‘out of nowhere’, and are often called
breathing waves or breathers. They may be described
and qualitatively understood by virtue of the Inverse
Scattering Technique. A rich family of solutions
(multi-breathers) of this kind has been discovered
recently by mathematicians in application to the rogue
wave problem. The breathing solutions are now
considered as prototypes of rogue waves in many
branches of physics (see, for example [10]).

A nonlinear superposition of breather waves may
result in further wave intensification (multi-breather
waves). An example is given in Figure 9, where a third-
order rational solution describes the seven-times wave
amplification, and this is not the limit. The analytical
solutions are generally rather difficult for analysis.

The modulational instability of deep-water surface
waves was first observed in a laboratory tank by
Benjamin and Feir. The effect of generation of very
high waves from initially weakly perturbed wave trains
has been reproduced many times within the recent
years by means of numerical simulations of the

[wl 2

(b)

Figure 9. Exact breather solutions of the NLS equation: (a) a
solution exhibiting seven-times amplification of a weakly
perturbed uniform wave [21]. Reproduced with permission
from Akhmediev et al. Phys. Rev. E 80 (2009), 026601.
Copyright (2009) by the American Physical Society. (b)
Breather wave collision resulting in further wave enhancement
[22]. Reproduced with permission from Akhmediev et al. Phys.
Lett. A 373 (2009). Copyright (2009) by Elsevier.

primitive hydrodynamic equations. Such an example
is given in Figure 10, where a weakly perturbed wave
train is simulated in time by means of a 3D strongly
nonlinear solver of the primitive equations of hydro-
dynamics. The wave shown in Figure 10 is now
considered by many researchers as a typical rogue
wave, responsible for the abnormally frequent obser-
vation of extremely high waves.

4.4. Coherent wave groups

The effect of the modulational or Benjamin—Feir
instability results in splitting of regular waves into
wave groups. In fact, the nonlinear wave patterns over
deep water can be long-living; one can see wave groups
in Figure 1(a) in contrast to Figure 1(b).
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Nonlinear wave groups differ from ordinary, linear,
wave groups in the phase coherence between wave
harmonics caused by the nonlinear wave—wave inter-
action. A linear wave group would quickly disintegrate
due to the dispersion effect, while the nonlinear wave
group can remain coupled for a while. Having a look
at the NLS equation (8) or, even better, at the formula
for wave frequency with dispersion and nonlinear
corrections (7), one may qualitatively understand the
reason why nonlinear wave groups can exist: it
happens when the nonlinear and the dispersive terms
compensate each other.

The nonlinear Schrédinger equation is capable of
describing such nonlinear wave packets, called envel-
ope solitons. Envelope solitons represent the long-time
asymptotic solution of the initial-value problem for
the NLS equation, and, thus, have a fundamental
importance. One may say that the process of the
modulational instability of perturbed wave trains in
the long run results in creating envelope solitary waves;
the breathing waves discussed in the previous section
describe the superposition of coherent wave groups
with background quasi-linear waves.

Envelope solitons of the NLS equation interact
elastically with other waves, and therefore, completely
preserve their energy.

The breathing waves and nonlinear solitary wave
groups may be detected within the stochastic sea waves
with the help of the Inverse Scattering Technique
(details of the IST may be discovered in the textbook
[23], and for the application to rogue wave detection
see monographs [6,13,24]), which could be used for
early warning of the rogue wave hazard. This is a very
interesting application of a mathematical approach to
practical important needs.

Rogue events often represent rogue wave groups
(‘three sisters’), and sometimes the events may be
reasonably well explained by wave group nonlinear
dynamics. Recently, very short wave groups with very
steep waves have been demonstrated by means of fully
nonlinear simulations to be long-living and stable with
respect to some kinds of collisions with other waves.

40 30 20 -0 0 10 20 O ky

Figure 10. A rogue wave generated due to the Benjamin—
Feir instability of a weakly perturbed wave train. The initial
condition has steepness of about 0.15. The resulting
maximum wave overturns. The displayed moment is close
to the wave breaking.

Thus, the presence of an intense solitary wave packet
may give a hint of a nearing rogue wave danger.

Solitary envelopes exist under the assumption of
unidirectional waves. The situation becomes more
complicated when crested sea states are considered
(the 3D case, when surface waves propagate under
different angles). Then the envelope solitons are
transversally unstable. This is due to the fact that
weak perturbations in the transverse wave direction
result in an increase in the discrepancy, there is no
physical effect which would relax the deviation. As a
result, the problem cannot be integrated by means of
the Inverse Scattering Technique, eternal solitons do
not exist, and wave dynamics becomes much more
complicated.

However, if the angle wave spectrum is relatively
narrow, coherent wave patterns may still be observed
and determine the wave dynamics, although for a
shorter time scale. In Figure 11 the result of a strongly
nonlinear numerical simulation of the primitive equa-
tions of hydrodynamics is shown, when a weakly
perturbed 3D wave train with a very small steepness
0.07 develops a huge breaking wave. This effect is a
manifestation of the Benjamin—Feir instability, which
in the 3D case results in a more sophisticated dynamics
of the wave envelope.

Although Figures 10 and 11 may look similar, the
transverse dynamics in Figure 10 has no importance; it
just slightly distorts the wave shapes. Conversely, the

Figure 11. A rogue wave pattern generated in the course of
essentially 3D dynamics of modulationally unstable waves.
The initial condition has the form of a weakly perturbed
wave train with steepness of about 0.07. The resulting
maximum wave overturns. The displayed moment is close to
the wave breaking. Only a small part of the simulated surface
is shown.
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dynamics in Figure 11 is essentially three-dimensional,
which enables providing a much more significant wave
enhancement.

It has been shown recently that the nonlinear self-
modulational effect of waves over deep waters does not
change noticeably the frequency of the rogue wave
occurrence, if the waves are significantly short-crested.
The effect is apparently due to the interplay between
the 3D nonlinear modulational instabilities of water
waves; though this problem has not been completely
explored yet. On the other hand, there is a principal
distinction between unidirectional and directional
waves due to different conditions of allowed nonlinear
wave resonances.

In situ measurements of rogue wave surfaces are
almost absent; studies on the relation between rogue
wave statistics and the angle spectrum width are limited;
laboratory experiments in shaped wave tanks are
complicated and costly. Thus, now numerical simula-
tions build up the main basis for studies of the 3D
rogue wave dynamics, and are intensively carried out.

5. Nonlinear shallow-water rogue waves

Shallow-water waves exhibit rather different properties
in comparison to the deep-water ones. Their shape in
very shallow water is much more asymmetrical with
respect to the mean sea level, than the shape of deep-
water waves, see Figure 1. Shallow-water waves
possess a weak dispersion, what leads to relatively
long ‘life-time’ of individual waves.

Examples of rogue waves, which were recorded in
shallow water conditions of the Baltic Sea at the 2.7 m
depth, are displayed in Figure 12. There is a variety of
shapes of shallow-water rogue waves. The wave
grouping is not so appreciable, and the rogue waves
are often single waves.

It has been pointed out already that when wind
waves propagate over the shallow water, they are
strongly influenced by peculiarities of the sea floor
bathymetry, which varies significantly. The effects due
to the topography variation and when waves approach
the shoreline will be discussed in more detail later on,
in the section devoted to coastal effects. At first, we
consider water waves in a basin of constant depth.

The wave velocity is determined by the dimension-
less parameter k4, which is small in the case of shallow
water; it is altered due to the dispersion. The steepness,
which characterises the nonlinearity of deep-water
waves, 1S now not an appropriate characteristics (at
least, outside the surf zone); instead, the shallow-water
wave nonlinearity is controlled by the ratio
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Figure 12. Rogue wave records from the Baltic Sea
measured at the 2.7 m depth: (a) the unexpected high wave
crest and (b) the ‘hole in the sea’.

The ratio of the nonlinear parameter over the
dispersion estimator composes the Ursell number, Ur,
which characterises the significance of the nonlinear
dynamics of shallow water waves:

(wave amplitude) (wave length)?

Ur = 3
(water depth)

(12)

It plays the same role as the BFI number in the deep-
water case.

5.1. Steepening of shallow-water waves

When the Ursell parameter is very large (U, >> 1) then
the nonlinearity prevails, while dispersion effects may
be ignored at the first approximation. Thus, waves
undergo steepening, becoming more asymmetric in
terms of the face-back slope asymmetry. The brightest
example of this fact is the surf wave steepening and
plunging near the coast.

The shallow water equations, when disregarding
the dispersion, are nonlinear hyperbolic equations
which are completely similar to the ones used in
nonlinear acoustics, and gas and magneto-
hydrodynamics.

Then, the solutions describing nonlinearly deform-
ing waves are called Riemann waves. Riemann waves
propagating over the shallow water are shown in
Figure 13 in a simplified manner. It can be seen that
the wave shape changes towards more asymmetrical
during the propagation, while the amplitude of the
wave remains the same, until the wave overturns.
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During this process the wave energy is transferred to
shorter scales. The process of wave steepening can be
explained by the difference in wave speeds under the
wave crest and under the trough (the water column is
larger under the wave crest, rather than under the
trough). Hence, the wave crest propagates with a
greater velocity and overtakes the trough forming a
steep front.

Under the assumptions implied, this effect may be
described analytically, and the wave breaking phenom-
enon corresponds to the infinite value of the wave
slope steepness (in mathematical terms it is called a
gradient catastrophe in hyperbolic equations). The
intense wave energy transfer to shorter scales results in
a typical, for shallow water, wideband spectrum; the
strong wave asymmetry is supported by the strong
phase correlation of the wave components.

Similarities with the nonlinear acoustics and
magneto-hydrodynamics do not extend further. The
water wave breaking effect has its own peculiarities. At
the breaking wave crest hydrodynamic instability
phenomena become crucial, they lead to fluid turbu-
lisation and the growing importance of the turbulent
viscosity effects. These processes are most efficient for
large waves (H > 1.5h) and result in the appearance of
so-called hydraulic jumps (equivalent to shock waves
in a compressible gas).

In the case of a relatively small-amplitude wave
(H < 1.5h) the dispersive effects become important due
to the steep wave front, and are able to scatter different
spectral components corresponding to different wave
scales. This leads to the formation of a wavy structure
on the shock wave front, the so-caller undular bore.
Mathematically, it is described by Boussinesq-type
systems, presenting a dispersive generalisation of the
shallow-water equations. The most spectacular tidal
bores can be observed in the rivers Severn (UK), Seine
(France), Qiantang (China) and in the Turnagain arm
of Cook Inlet (Alaska, USA), see [25].

5.2. Cnoidal and solitary waves

When the weakly nonlinear and weakly dispersive
effects are both taken into account, which corresponds
to the values of the Ursell parameter of the order of
unity, shallow water waves in many cases can be

[———4

Figure 13. Steepening of a Riemann wave during its
propagation.

sufficiently well described by the Korteweg—de Vries
equation

8x+78x3 -
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Here 7n(x,f) is the water surface elevation.

The steady-state solution of the Korteweg—de Vries
equation describes travelling waves of a permanent
form — cnoidal waves, named after the Jacobian elliptic
function ¢n. Such waves play the same role in the
shallow-water dynamics as the Stokes waves, pre-
viously described in Section 4, in the deep-water case.
A steep cnoidal wave is shown in Figure 14 in
comparison with a sinusoidal wave of the same height.
While almost sinusoidal in the small-amplitude limit,
the intense cnoidal waves resemble a train of isolated
wave humps — solitons.

Being originally discovered in water, nowadays
solitons play a fundamental role in modern nonlinear
physics. A surface water soliton was first described in
1844 by John Scott Russell. He observed it in 1834, when
a sudden stop of a boat, that was moving with small
acceleration in a channel of uniform depth, preceded
the occurrence of an ‘exotic water dome’ or ‘wave of
translation’, called later a soliton due to its unique
similarity to a particle. Later on, the existence of solitons
was confirmed mathematically through the obtaining
of steady solutions of the Boussinesq and Korteweg—
de Vries equations. Indeed, solitons may propagate
for a long distance without energy loss, interacting
elastically between each other and with other waves.

Solitons have been discovered in many other
important physical equations (including the envelope
solitons of the nonlinear Schrédinger equation, dis-
cussed above), but the first soliton was observed on a
shallow water surface. Groups of solitary humps are
often easily seen on photos of undular bores,
mentioned above [25].

5.3.  Focusing mechanisms in shallow water of constant
depth

Although efficient for deep-water waves, modulational
instability is not effective over shallow water, and

Depthim, H/2=02m
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Figure 14. A steep cnoidal wave of 40 cm height in a basin
of 1 m depth, and a sinusoidal wave of the same height.
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uniform waves are stable. However, nonlinear wave—
wave interactions can be very important for shallow
water wave dynamics. Focusing mechanisms taking
into account the wave nonlinearity are considered
below. These mechanisms are manifested differently in
the 2D (unidirectional wave propagation) and 3D
geometries.

5.3.1. Unidirectional fields

It is convenient to consider nonlinear wave-wave
interactions over shallow water with the help of exact
solutions of the Korteweg—de Vries equation, which
describe collisions of soliton waves. First of all, intense
solitons may not be called unexpected rogue waves due
to the fact that they are stable and long-living. When
Korteweg—de Vries solitons interact, the maximum
wave amplitude does not exceed the amplitude of the
largest soliton, in contrast to the linear superposition
of two waves. Therefore, co-moving solitons on their
own do not spawn rogue events.

At a first glance this fact may look surprising, that
the result of interaction of weakly nonlinecar waves
(they may be almost linear waves) is far from the
prediction of the linear superposition. However,
solitons are maintained by the balance between the
dispersion and nonlinear effects, which are supposed to
be of the same order. Therefore, when the nonlinearity
of solitary waves is neglected, then the dispersion
should be disregarded as well, and thus two solitons
will travel with equal velocities, and, consequently, will
not collide. Concluding, the soliton interaction is
essentially related to the wave nonlinearity and does
not have an analogue in linear theory.

The temporal focusing of shallow water waves due
to the dispersion is still possible, since linear short-scale
waves have different velocities. The dispersion focusing
is efficient if a large number of wave components is
involved; all together they are able to compose a huge
wave. The presence of solitary waves, their interaction
between each other and with other wave trains do not
cancel the dispersion focusing effect. Solitons partici-
pate in the wave focusing process, providing a variety
of rogue wave shapes.

The probability of rogue wave occurrence within
the Korteweg—de Vries approach has been studied by
numerical simulations of irregular wave fields pro-
duced with the spectra similar to ones measured in the
coastal zone of the North Sea; these conditions
correspond to shallow-water wave spectra. It has
been demonstrated that the increase in the Ursell
parameter leads to the growth of the third statistical
moment for the water surface elevation, meaning that
intense crests prevail in the wave field when compared
with troughs. A non-monotonical behaviour of the

fourth statistical moment (kurtosis) is also shown; the
rogue wave probability decreases for weakly nonlinear
waves and increases for strongly nonlinear ones, see [6]
for details.

5.3.2. Directional fields: nonlinear geometrical effects

In contrast to the deep-water envelope solitary groups,
trains of cnoidal waves and shallow-water solitons are
stable with respect to transversal perturbations. Trains
of planar (i.e. elongated in the lateral direction) peaked
waves are frequently observed in the coastal zone (see
Figure 19).

It is evident from the physical point of view that if
waves propagate under a large angle between each
other (including the case of opposite-directed waves),
their interaction is weak and the waves superpose
almost linearly. This process is actually linear geo-
metric focusing, and can produce a rogue event in the
focus. When nonlinear effects are taken into account,
they slightly modify the features of the focusing
process and the focused wave.

A new effect occurs when the waves propagate
under a small angle between their directions. In this
case the nonlinear three-wave resonance condition can
be satisfied, when the third wave, which propagates
in an almost perpendicular direction, should be
accounted for. This effect may take place in media
with no dispersion (like the compressible gas dy-
namics), and with a weak dispersion (the shallow water
case), and is known as the formation of the Mach stem.
This kind of essentially nonlinear wave interaction can
lead to the generation of large pulses. The rogue
character of the intense waves generated through this
effect may be addressed by the weak variation of the
angle between the interacting waves.

Figure 15. A rogue wave formation in the coastal zone of
Peipsi Lake (Estonia).
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The Mach stem can be explained by considering
the interaction of two oblique propagating solitary
waves within the framework of the Kadomtsev—
Petviashvili equation, which is a generalisation of the
Korteweg—de Vries equation for the case of a weak
transverse wave variation. As said just above, the
appearance of the wave collision area strongly depends
on the angle between the directions of the soliton
propagation. The Kadomtsev—Petviashvili framework
reports that this effect may result in four-times wave
amplification, and eight-times wave slope increase, see
Figure 16.

5.4. Generation of rogue waves nearshore

When wind waves approach the sea shore, they are
influenced by the sea bathymetry. Expressions (3) tell
us that waves propagate slower when the sea becomes
shallower; then the role of nonlinear effects increases,
according to formulas (11) and (12).

Strong bathymetry variations result in wave
transformation, refraction, diffraction and reflection,
which was pointed out in the introduction; to a certain
extent the effects can be described within the linear
approximation. As a result, waves may converge and
form areas of wave intensification, where large waves
are more frequent. In such areas rogue waves can
occur, as discussed in Section 3 in relation to the
‘linear’ rogue waves. The nonlinearity, of course,
influences this process, changing the characteristics of
rogue waves (the height, shape), for instance, due to
the breaking of high-amplitude waves.

5.4.1. Edge wave dynamics

A new effect related to the nonlinearity and the bottom
relief variability is the generation of rogue edge waves
in the coastal zone. Edge waves are a kind of wave
trapped by the bottom topography, which can form
wave guides. In the simplest case of a uniform beach
along a straight coastal line, edge waves propagate
alongshore. In the offshore direction the waves are
described by the eigenfunction of the corresponding
Sturm—Liouville problem with the boundary condition
decaying exponentially towards the open sea.

Edge waves are often considered as the major
factor of the long-term evolution of the coastal line,
forming the rhythmic crescentic bars, similar to the
ones shown in Figure 17. In the linear theory, there is
a set of independent modes of the edge waves with
the dispersion relation w, = (nogk)'’?, where o is the
bottom slope, k is the alongshore wavenumber, and n
is the eigenmode number.

As can be seen from the dispersion relation, these
waves are strongly dispersive, similar to the deep-water
waves case described in Section 4. Moreover, nonlinear
theory reports that edge waves are modulationally
unstable, and therefore the nonlinear dynamics of edge
waves may be quite similar to the nonlinear dynamics
of deep-water wind waves. Therefore, the potential
existence of edge rogue waves is evident; their proper-
ties are described in [10].

It is important to mention that edge waves are
usually generated through the nonlinear interaction
between wind waves moving in an almost onshore
direction. The typical frequency of edge waves is about

Figure 16. Amplified waves due to the collision of planar solitary waves propagating under different angles within the
Kadomtsev—Petviashvili equation framework. Reproduced with permission from [26].
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half of the typical frequency of the wind waves; thus,
the typical period of edge waves is about 10-20 s. The
characteristic wavelength of edge waves (in the
alongshore direction) is 4no times the wind wave
length, which gives typically 50-300 m. In the offshore
direction edge waves have approximately the same
length, and therefore, edge rogue waves can form
isolated bells of surface elevation (or groups of
waves of different polarities) with a diameter of about
50-300 m.

5.4.2. Wave interaction with steep coasts

Another kind of extreme event in the coastal zone is
related to the strong wave interaction with the coast.
In the first approximation the simplest geometry of
the coastal zone may be analysed, when a basin of
constant depth is bounded by a straight vertical wall,
which models steep cliffs or seawalls. Where the frontal
approach of a small-amplitude wave is concerned, and
the wave is neither very asymmetric nor breaking, the
effect of the nonlinear interaction between the incident

Figure 17. The evidence of a well-defined cusp morphology
and swash circulation. © Rob Brander 1996.

and reflected waves is weak due to the short time of
their collision. Therefore, this kind of wave—coast
interaction represents an almost linear superposition
of the incident and reflected waves. The nonlinearity
changes the probability of freak wave occurrence,
increasing the probability of high wave crests, but this
effect is not so strong.

A more dramatic effect is caused by glancing waves
approaching the coast under a large angle (close to 90°)
to the onshore direction. Since the boundary condition
on the wall retains the mirror symmetry, this case is
quite similar to the case of weakly crested waves, which
has been described above in the framework of
the Kadomtsev—Petviashvili equation. Therefore, the
Mach stem can be observed near walls as well. The
height of the Mach stem can be four-times larger than
the height of the incident wave, and the wave steepness
may be enhanced eight times.

If the incident wave has an asymmetric shape due
to nonlinear effects or due to the overturning process,
ultimate wave amplification can be achieved. In this
case the pressure at the steep wave front ceases to obey
the hydrostatic assumption. As a result, the kinetic
energy of the incident wave transfers into the kinetic
energy of the vertical water motion (which is usually
small in the hydrostatic approximation) forming a jet
and a splash at a large height.

When the approaching wave is almost broken, it
can capture a big volume of air, and then the air
bubble comes to the surface and gives an additional
upward impulse to the water. Nowadays such effects
are being modelled within the framework of fully
nonlinear hydrodynamic Euler or Navier—Stokes
equations. High splashes are often observed at cliffs
or steep sea coasts (see the photo in Figure 18). The

Figure 18. A wave splash on a cliff of Petite Terre Island,
Guadeloupe, France (2008).
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rogue character of this phenomenon is related to the
high sensitivity of the splash height with respect to the
incident wave amplitude and steepness.

The effect of vertical cumulative jets may have
great relevance to another aspect of the rogue wave
problem. These jets are able to cause damage to
offshore stationary oil and gas platforms. When sea
waves interact with the platform base or its legs,
they can splash upward. Since this effect is strongly
nonlinear, even slightly higher waves can produce a
significantly stronger effect on the platform deck.
Evidence of similar accidents exist, but the information
about them is generally poorly documented.

5.4.3. Gentle beach flooding

Observations of rogue wave events at coasts are of a
special interest and may be emphasised. Because at all
times coastal areas have naturally been inhabited by
people, there are numerous eye-witness observations,
descriptions and video recordings which imprint rogue
wave occurrence near and on the shoreline. These
rogue wave events usually represent short-time sudden
floodings of dry beach or giant splashes onto and over
protecting embankments.

It is significant to mention that heavy floodings are
commonly associated with tsunami wave runups and
storm surges. However, a large amount of data is
known where a beach flooding failed to be related to
any generation sources. A description of this kind of
event is reproduced from [27]:

One of the more unusual events took place on the
island of Majuro in the Marshall Islands in 1979. On a
clear calm day, a single 6 m high wave appeared from
the northeast at low tide, crossed the reefs protecting
the shoreline, and crashed through the residential and
business districts in the town of Rita, washing away
144 homes. The next day at high tide the same thing
happened again. After this second wave hit, the island
was declared a natural disaster areca by the U.S.
government, which was administrating the islands.
Six days later, another series of waves up to 8 m high
again swept the east coast of the island, destroying the
hospital, communications center and more houses. The
waves cost $20 million and affected the livelihood of
two-thirds of the island’s 12,000 people.

A testimony of an incident, when a sudden flooding
of the coast occurred in Mavericks Beach (California,
USA) on 13 February 2010 is displayed in Figure 19.
Today, the effect of a sudden flooding due to unknown
reasons is referred to as the rogue wave problem in the
context of near shore wave dynamics, and is under
investigation.

The theory of rogue wave phenomena on gentle
beaches is not as much developed as for the case of
waves in water basins. However, some mechanisms of
the anomalous wave amplification can be pointed out.

First of all, a gentle slope of the nearshore bottom
causes a substantial wave change while it is approach-
ing the shore. When the water depth decreases, waves
propagate with a lower velocity as has already been
discussed. Due to the smallness of the bottom slope,
the wave reflection may be ignored and, therefore, the

Figure 19. Sudden flooding of Mavericks Beach (California, USA) on 13 February 2010. The water is coming from the right,
overtopping the coastal wall located to the right. © Scott Anderson.
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wave energy flux is conserved. Keeping in mind that
the wave energy is proportional to the squared wave
amplitude, 4> (the coefficient of proportionality
includes the gravity acceleration and the water
density), and the speed of wave propagation is defined
by the shallow-water relation, C = (gh)", the Green’s
law A ~ h~'* follows from the energy flux conserva-
tion law, confirming that the wave amplitude grows
when approaching the coast. This process of the wave
amplification near the coast is called shoaling.

The simple explanation given above makes clear
why waves in the coastal zone become higher and
steeper. The process of wave transformation when
climbing up the coast strongly depends on the shoaling
depth profile. Some of the profiles provide conditions
for an efficient transport of wave energy towards the
coast. Generally, gentle coasts are more favourable for
efficient wave energy transfer. Abrupt depth changes
result in wave refraction and thus may reflect wave
energy preventing its passage onshore.

The energy transmission ability depends also on the
wave frequency: short waves propagate according to
Green’s law, but longer waves (in comparison with
the beach characteristic scale) do not undergo a slow
change due to the water shoaling; instead, they are
reflected from the coast as from the wall. As a result,
the nearshore zone represents a kind of frequency filter
with the transmission coefficient growing with the
frequency. This explains why the spectrum of waves at
the coast is shifted to higher frequencies.

Another consequence of the described above effect
is that the Ursell parameter increases near the coast
and nonlinear effects prevail; they lead to the strong
deformation of the wave shape. The steep wave crests
are even more strongly amplified than smoother wave
troughs. Wave troughs touch the ground and reflect
from the coast before the wave crests do; the latter pass
along the dry beach causing its flooding. Observations
confirm the qualitative conclusions that the average sea
level is raised (the set-up); the statistical distribution of
the water level deviates from the Gaussian one.

The surf zone, where waves transform into the
turbulent flow is generally difficult for a theoretical
analysis. The runup characteristics can be evaluated
within the framework of the nonlinear shallow-water
theory under the assumption of non-breaking waves.
The vertical oscillations of a moving shoreline in the
linear (dashed line) and the appropriate nonlinear
(solid line) theories are shown in Figure 20. It can be
seen that nonlinearity does not change the positions of
the extremes, but increases the duration of the wave
flooding and decreases the duration of the backwash.
Consequently, the nonlinearity does not affect the
distribution of the runup amplitudes, but influences
the overall statistics of the moving shoreline and, in

Runup

Figure 20. Wave runup on a beach; the dashed line
corresponds to the linear case (the nonlinearity is
artificially disabled) and the solid line reflects the influence
of the nonlinearity. Results of a computer simulation,
dimensionless variables.

particular, leads to the mean sea level rise (the wave
set-up), which becomes more significant for a stronger
nonlinear case.

The described above examples demonstrate how
the competition of nonlinear and dispersive effects, the
bottom and coastal line variability make the rogue
event appearance at the coastal line manifold and
difficult for the interpretation and analysis. In many
cases the nonlinearity plays an important role amplify-
ing the extreme character of the wave dynamics and
providing specific rogue wave statistics.

6. Conclusion

In this paper the present state of the rogue or freak
wave problem is overviewed from a very popular and
physically general point of view. This problem has
been recently recognised, and the most significant
actual trend of its extension is directed towards the
consideration of nonlinear and strongly nonlinear
effects in the water wave dynamics. In this paper the
main suggested effects enabling rogue wave generation
are listed and briefly explained. The deep-water,
shallow-water and coastal areas have been considered,
emphasising the difference between the water wave
physics at these conditions. For more details see
reviews [4,5] and monograph [6].

Many mechanisms underlying the rogue wave
phenomenon have a quite general physical nature
and may be addressed to many other applications in
solid matters, superconductors, plasmas and nonlinear
optics, and even financial theories. The boom in
research on oceanic rogue waves has already spawned
studies in other fields. In particular, optical rogue
waves may be very well described by the nonlinear
Schrédinger equation, and thus, are modelled by the
discussed analytical solutions with minimal modifica-
tions [28]. Superfluid helium turns out to be a
convenient model for studying nonlinear wave turbu-
lence in laboratory conditions [29,30].

Another exciting feature of the rogue wave study
is that the modulational instability effect has been
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reconsidered. The modulational instability was dis-
covered before the elaboration of the Inverse Scatter-
ing Technique (IST), and many classic results in optics
and other media related to the modulational and self-
modulational instabilities were obtained by virtue of
approximate methods. Now these results are at a new
level of understanding. Furthermore, the very mathe-
matical IST approach is now being applied to practical
requirements of detecting the ‘unstable’ modes con-
tained within growing oceanic billows.

Since the dynamics of real sea waves is defined by
many various phenomena, related to different spatial
and temporal scales, often stochastic and uncertain,
the solution of the rogue wave problem cannot be
limited to theoretical studies, but should involve
laboratory and natural observations. Due to the recent
development of computing machinery, laboratory
facilities and measuring equipment, the most realistic
study of the rogue wave phenomenon becomes possible
and is on-going.
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Notes

1. This is a specific sea term; it is equal to the fourfold
covariance, H,~40, if the waves represent a random
Gaussian process.

2. The Fourier spectrum of wind waves is often supposed to
be concentrated around the central frequency, whose
value is determined by the wind action, and the spectrum
width is less or comparable to the central frequency
value.
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