Variational Inference for Sequential Distance Dependent Chinese Restaurant
Process

Sergey Bartunov

SBOS @SBOS.IN

Dorodnicyn Computing Centre of the Russian Academy of Sciences, Moscow RUSSIA

Dmitry P. Vetrov

Moscow State University, Moscow RUSSIA
Higher School of Economics, Moscow RUSSIA

Abstract

Recently proposed distance dependent Chinese
Restaurant Process (ddCRP) generalizes exten-
sively used Chinese Restaurant Process (CRP)
by accounting for dependencies between data
points. Its posterior is intractable and so far
only MCMC methods were used for inference.
Because of very different nature of ddCRP no
prior developments in variational methods for
Bayesian nonparametrics are appliable. In this
paper we propose novel variational inference
for important sequential case of ddCRP (seqd-
dCRP) by revealing its connection with Lapla-
cian of random graph constructed by the pro-
cess. We develop efficient algorithm for opti-
mizing variational lower bound and demonstrate
its efficiency comparing to Gibbs sampler. We
also apply our variational approximation to CRP-
equivalent seqddCRP-mixture model, where it
could be considered as alternative to one based
on truncated stick-breaking representation. This
allowed us to achieve significantly better varia-
tional lower bound than variational approxima-
tion based on truncated stick breaking for Dirich-
let process.

1. INTRODUCTION

One of the most important problems in machine learning
and statistics is model selection. Well-known examples
of it are choosing the number of hidden layers of neural
network or the number of clusters in the mixture model.
Model selection almost always leads to a tradeoff between
model complexity and fit accuracy. While one may fit sev-
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eral models by varying the number of structural compo-
nents and choosing the best one by some criteria, Bayesian
nonparametric methods provide an elegant alternative solu-
tion to this problem. Instead of comparing several models,
nonparametric approach is to define a distribution on model
structure which can adapt it’s complexity to data. Further-
more, it may refine and even complicate its structure when
new data is being observed.

For many nonparametric models such as widely used
Dirichlet process (Ferguson, 1973) or Indian Buffet Pro-
cess (Griffiths & Ghahramani, 2006), it is common to as-
sume exchangeability of data, the property that every per-
mutation of data points has the same probability under the
model. While this assumption often holds, in many settings
when data has temporal, spatial or any other internal de-
pendencies, a proper non-exchangeable prior which takes
such information into account could model data more ade-
quately and thus fit it more accurately.

A number of such distributions were developed to date in-
cluding dependent Dirichlet process (MacEachern, 1999)
and other similar processes (Duan et al., 2005; Griffin &
Steel, 2006; Xue et al., 2007), in which various construc-
tions on top of Dirichlet process are considered. Besides
that, a distance-dependent Chinese Restaurant Process (dd-
CRP) was proposed recently by (Blei & Frazier, 2011),
which takes an alternative approach to modeling depen-
dencies by considering a distribution over partitions. Given
pairwise distances of any nature (generally not symmetric),
each data point connects itself to other ones (including it-
self) with probability depending on the corresponding dis-
tance; after that data points that are reachable from each
other form a partition.

Besides very general yet simple formulation which allows
for many interesting applications including image segmen-
tation (Ghosh et al., 2011) and natural language processing
tasks (Haghighi & Klein, 2010), ddCRP has another advan-
tage of not generally exhibiting marginal invariance, the
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property that a missing observation does not affect the joint
distribution of data and parameters. This fact also distin-
guishes ddCRP from other mentioned processes.

As for many interesting distributions, posterior of ddCRP
is intractable, and so far only Markov Chain Monte Carlo
(MCMC) inference techniques were developed for it. Al-
though it is theoretically guaranteed that a properly con-
structed Markov chain will once converge to the true pos-
terior, in practice it’s often hard to determine convergence,
and no general methods are provided to estimate the re-
quired number of samples to obtain a good approximation.
Due to the fact that nature of ddCRP differs a lot from many
other nonparametric distributions, prior developments of
variational inference for DP, such as the one based on stick-
breaking construction, are not applicable.

In this paper, we propose variational inference algorithm
for the important sequential case of ddCRP called sequen-
tial distance-dependent Chinese Restaurant Process (seqd-
dCRP), in which (a) data points arrive in sequential order,
and (b) a data point can not be connected to those which
arrived later (though the opposite is allowed). This as-
sumption often holds in temporal data and is natural for
many natural language processing tasks. Moreover, Chi-
nese Restaurant Process (Aldous, 1985) could be formu-
lated as a special case of seqddCRP.

The contributions of this paper are:

1. We introduce variational mean-field approximation
for seqddCRP mixture model by revealing connec-
tion between partition assignments of data points and
expected Laplacian of random graph modeled by the
process.

2. We show that our approximation of posterior provides
better lower bound to marginal likelihood for Dirichlet
process mixture than the one based on truncated stick-
breaking process and also converges in much fewer
iterations.

3. We develop efficient coordinate-ascent inference algo-
rithm and compare it with Gibbs sampler in terms of
computational performance and inference quality.

The rest of the paper is organized as follows. We first
review Dirichlet process and Chinese Restaurant process
(section 2), then we briefly describe distance-dependent
Chinese Restaurant Process (section 3). In section 4 we
present our variational inference framework for seqddCRP
mixture. We conclude with experiments on synthetic and
real data (section 5).

2. DIRICHLET PROCESS AND RELATED
PROCESSES

One of the most frequently used nonparametric models
is Dirichlet process (DP) introduced by (Ferguson, 1973).
It could be seen as infinite-dimensional generalization of
Dirichlet distribution parametrized by base measure G and
concentration parameter . A draw from DP is a ran-
dom distribution over draws from Gy with the property
that some draws may contain repetitive elements. The fre-
quency of repetitions is governed by .

The infinite set of probabilities representing frequencies of
unique draws from Gy is distributed according to stick-
breaking process (SBP) (Sethuraman, 1994) which divides
total probability mass into diminishing probabilities 7y
such that > 7, = 1. Each 7y, is constructed by breaking
the rest of the unit-length stick 1 — 3° _, m, in a ratio of
v, ~ Beta(1, ). This allows for constructive definition of
DP and is often used for variational inference.

Thus one may define nonparametric mixture model using
DP by placing SBP prior over mixture component assign-
ments z; for data points 1,2, ... and drawing mixture pa-
rameters 6y, from appropriate base measure.

Another representation of DP is Chinese Restaurant Pro-
cess (Aldous, 1985) which could be derived by integrat-
ing out base measure from DP. This makes mixture assign-
ments dependent on each other, but leaves them exchange-
able and transforms DP into distribution over the all possi-
ble partitions of natural numbers. It is defined as follows:
consider a restaurant with infinite number of tables and no
customers at the beginning. Customers enter the restau-
rant one by one, each drawing her table assignment z;. By

definition for the first customer z; = 1. All successive
customers 7 = 2, 3,... draw z; according to the following
distribution:

ng, kSK

1
a, k=K+1 0

p(zi = klz\;) o {

where K is the number of ocuppied tables before i-th cus-
tomers enters, and ny is a total number of customers al-
ready chosen the table. After all the table assignments have
been selected, they form clusters; after that cluster param-
eters 0, are being drawn. Generative process is finished by
drawing each data point x; from the corresponing mixture
component 6.

3. DISTANCE-DEPENDENT CHINESE
RESTAURANT PROCESS

The generative process of table assignments in CRP de-
scribed above may be reformulated using customer assign-
ments. Let each customer in CRP choose not the table z;,
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Figure 1. Time dependent mixture. Same-colored points were drawn from the same normal distribution

but rather exactly one customer c; to share a table with:

ple; = jla) {1’

«a,

7=t @)
t=7

Thus the first customer always sits with herself, and suc-
cessive customers sequentially choose whether they want
to join existing table (occupied by some of the previous
customers), or to initiate a new one. It is easy to show that
if we define z;(c) as the minimal index of customers that
are reachable from ¢ through directed graph of customer
assignments (i.e. those which are sitting at the same table),
then the induced partitioning z(c) based on such reachabil-
ity is equivalent to the one constructed in CRP.

(Blei & Frazier, 2011) generalized (2) to make customer
assignments distance dependent:

f(dij), J<i
C¥7 Z_j

p(ci_ﬂvava)O({ 3)

where f(d) is non-negative decay function such that
f(o0) =0, D is distance matrix and positive o governs for
table initiation. This distribution on customer assignments
is called sequential distance-dependent Chinese Restaurant
Process (seqddCRP). Traditional CRP appears as a special
case of seqddCRP and the latter is generally a very differ-
ent distribution. At first, it accounts for prior dependencies
in data which may be of any nature and hence does not
assume customers to be exchangeable. In addition, seqdd-
CRP is not generally a distribution over partitions induced
by random measures (see (Blei & Frazier, 2011) for de-
tails).

It is also possible to define general ddCRP without assum-
ing sequential order of customers by allowing assignments
c; > t. This makes possible to start a new table not neces-

sarily by drawing ¢; = ¢ for some . In that case, table as-
signments are constructed treating customer assignments as
an undirected graph. Below we focus on sequential restau-
rants only.

Now using (3) as a prior over mixture component assign-
ments, we may define the seqddCRP mixture model:

[I

i,2;(c)=j

N
p(x,¢,0[n) = p(cln) [] | p(0;1n) p(4]0;)
j=1

N
Hp (cilf, D, @)
i=1

where n = {f, D, a, Gy} are process parameters, G is a
base measure generating mixture parameters ©, and IV is
total number of data points.

Here we account for all N possible tables (since all cus-
tomers have non-zero probability to start a new table) and
identify each table with a customer that initiated it by
choosing to sit with herself. Notice that while parameters
of empty tables affect joint distribution, marginal distribu-
tion p(x, ¢) does not depend on empty tables, and so does
the variational lower bound.

4. VARIATIONAL INFERENCE FOR
SEQDD-CRP MIXTURE

Before we continue with the mean-field approximation of
the posterior, let us first reformulate seqddCRP model. We
denote as r;;(c) indicator function which is equal to 1 if
and only if there exists a directed path from ¢-th customer
to j-th customer in the graph induced by customer assign-
ments c. We also expand customer assignment ¢; = j to
one-hot vector of size N such that ¢;; = 1 and ¢;, = 0
for k # j. This allows us to rewrite joint distribution of
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seqddCRP mixture in the following way:

p(x,¢,01n) = pleln) [ ] p(0;1Go) (T [ plwilos)™s*)™

i=1

@
As we are interested in connected components z(c) one
may observe that z;(c) = j if and only if ¢;; = 1
and r;;(c) = 1 which is still correct table assignment
notation. Thus we enumerate tables not by abstract or-
dering 1,2,...,|z(c)|, but rather by customer numbers
1,2,...,N. Below we denote z;;(c) = ¢;j;r4;(c).

To derive variational inference we need to define the fac-
torized approximation of the posterior of seqddCRP pa-
rameters. Similarly to the variational algorithms for DP
we choose the factorization that holds true when there are
no data (i.e. for the priors). In DP such a property was
true for the parameters responsible for the breaking ratio
of the stick vy (see section 2). In the case of ddCRP such
parameters are c;. Indeed, in the absence of any data the
distribution p(c, ®|n) is fully factorized. We consider such
prior-induced factorization to be the most natural choice.

So we approximate posterior p(c, ®|x, n) as a fully factor-
ized distribution ¢(c, ®) = [], ¢(c;)q(6;) by minimizing
Kullback-Leibler divergence between the true posterior and
its approximation, which is equivalent to maximization of
marginal likelihood lower bound (Jordan et al., 1999):

N
logp(x) > £ =, [Z logp(eilf, D, a) — loga(e)+

i=1
)+ Z zij(c

The main difficulty, both conceptual and computational in
deriving variational inference for ddCRP, is in expectation
of table assignments w.r.t variational distribution ¢(c), that
is E;z(c). Table assignments z(c) are computed by de-
terministic function which maps independent customer as-
signments into table assignments. It is global in the sense
that even if we are interested only whether customer i sits
at the table started by customer j (that is z;;(c)), in gen-
eral case information about all customer assignments c is
required to answer this question. The opposite is also true:
changing just one customer assignment ¢; may cause global
change of table assignments. We now describe how to com-
pute this expectation for seqddCRP and provide efficient
variational inference algorithm.

N
Zlogp(9j|Go) log g(6; ) log p(x;16,)

Jj=1

4.1. Expected table assignments via inverse of the
Laplacian

Consider directed graph modeled by seqddCRP. It consists
of N vertices, one for each customer, all of them having
exactly one link ¢; pointing to another customer j < ¢ with
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Figure 2. Per-point test data likelihood as function of time on
time-dependent mixture modeling. For variational inference only
best run is drawn.

probability ¢(c; = j). We define then the probabilistic ad-
jacency matrix A such that A;; = ¢(¢; = j) fori # j and
A;; = 0 for all 7.

Further we denote R;; = Erij(c) which is the prob-
ability of existence of the directed path from customer
to customer j. One may observe that vertex ¢ may be con-
nected with j directly with probability A;; or through other
vertices. By noting that R;; = 1 for all i' for j > i we get:

> AuRy;
t

We may vectorize this formula and obtain j-th column of
R:

Rij = Ay + ZAithj =

t<i

R;=A-R;+e;=(I—A)"

where e; is j-th column of identity matrix. Finally, we
obtain the whole matrix:

R=(I-A)" )

Matrix L = I — A is non-singular since it’s triangular and
has ones on main diagonal. It could be viewed as expected
Laplacian® of random graph induced by the seqddCRP.

"It may be confusing that r;;(c) = 1 regardless of the value
q(c; = i). We emphase that former statement is correct as long as
we are interested in reachability and not table assignments, while
g(c; = 1) 1) governs table initiation and 2) restrains probabilities
of outcoming links since 3, q(c; = j) = 1 — q(ci = 1).

’By definition i-th diagonal element of Laplacian is either in-
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Laplacian matrices are widely used in spectral graph the-
ory for finding important graph properties, see e.g. (Chung,
1996).

To get expected table assignments, recall that zij(c) =
cj;rij(c) and use (5):

Ez(c) = (I — A)~'diag(Ec) (6)

Thus expected table assignments could be computed as
column-weighted inverse of expected Laplacian induced by
factorized distribution of customer assignments. This con-
nection allows for deterministic inference algorithms and
also provides lower bound for their computational com-
plexity as matrix inverse operation is being involved.

Note that equation (5) holds true not only for approximated
posterior ¢(c) but also for prior p(c|D, a, f,a) since it is
also factorized. This allows us to analytically obtain var-
ious properties of prior table assignments, e.g. expected
size of j-th table Ziz ; Ez;; which wasn’t possible before.
Based on those properties one may select the values of
hyper-parameters for the model such as decay function f
or a.

4.2. Coordinate ascent algorithm

We iteratively perform fixed-point updates of each varia-
tional distribution ¢(c;) by setting derivative of KL diver-
gence with respect to corresponding distribution to zero.
Updates for ¢(6,) depend on a particular form of distribu-
tions and are quite straightforward, so we focus on updates

for ¢(c).

While we may naively use the result from the previous sec-
tion to obtain the update equations, this would require a
number of matrix inverse operations which is computation-
ally expensive. Thus, we derived an efficient Algorithm 1
requiring only one implicit matrix inverse per iteration and
relying on Woodbury (1950) matrix identity. We provide
the details on derivation of efficient variational updates in
the appendix.

The algorithm has complexity O(N?3) per iteration which
is equal to cost of a matrix inverse required to compute ta-
ble assignments and variational lower bound and thus may
be considered as quite efficient. It is possible to further
improve it’s computational performance by adding and re-
moving clusters ad-hoc, i.e. clusters with probability of ex-
istence g(cy = k) below some threshold may not be taken
into account.

Note that it is possible to update variational distributions

ner or outer degree of vertex ¢ depending on the application (outer
in our case). Thus strictly speaking our matrix L may not be valid
Laplacian if ¢(¢; = j) = 0 for some ¢ and all j # 4, but this
is insignificant for further reasoning as we do not rely on any of
Laplacian properties.

Algorithm 1 Variational inference for seqddCRP

Input: data x, initial ¢(c) and ¢(®), hyperparameters 7
Compute reachability matrix R according to eq. (5)
repeat
for: =1to N do
Initialize zero vector a; € RY
for k =1toido
ik lel Ry E,logp(zs|0k)
end for
Initialize v;; = log p(c; = j|n) for all j
forj =1totdo
Yij < Yij + g GinRjra(cr = k)
end for
Exponentiate and normalize 7;, update g(c;) < ;
Perform rank-1 update to R by Woodbury formula
end for
for k =1to N do
Update q(0x) o< p(0x) TT;5 p(ail0r) Fraler=F)
end for
until convergence

q(c;) in any order and we have empirically observed that
random order updates perform much better than sequential
ones.

S. EXPERIMENTS

In this section we empirically compare our variational al-
gorithms with a set of baselines. We start from comparison
with Gibbs sampler as it is currently the only available in-
ference algorithm for ddCRP. Next we compare our vari-
ational inference for CRP-equivalent mixture model and
variational inference for Dirichlet Process. Then we eval-
uate distance-dependent mixture model against CRP mix-
ture. We release our software implementation used for the
experiments?.

5.1. Language modeling

Following (Blei & Frazier, 2011) we model natural text as
fully observed seqddCRP where individual tokens w are
organized in tables and each table then draws a word from
discrete distribution over words V' (which is just word fre-
quencies). This is very simple “unigram” model, yet it
is especially suitable for comparison with Gibbs sampler,
because there are no hidden variables and thus nothing to
collapse out. Note that derivation of collapsed variational
inference is usually non-trivial task and comparison of col-
lapsed and non-collapsed model would be flawed, hence it
was decided to use this task for demonstration of computa-
tional efficiency of inference algorithms.

*http://github.com/sbos/seqddcrp. jl
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Table 1. Best results for predictive likelihood

algorithm / R seqddCRP seqCRP
1 -863.55  -965.76
2 -900.70  -905.75
3 -864.93  -888.10
4 -825.26  -836.58
5 -689.38  -691.96

Our dataset consisted from 2246 news articles from the As-
sociated Press, we performed word stemming, but did not
remove stop-words. Distances between tokens was defined
just as number of tokens between two given. Sigmoid de-
cay function was used with hyper-parameters set as for best
model in (Blei & Frazier, 2011).

We compared absolute convergence speed of our varia-
tional algorithm comparing to Gibbs sampler by visually
assessing convergence of posterior estimates, in particular,
expected number of tables was chosen as statistics of inter-
est since it is important quantity in nonparametric analysis.
We provide such a plot for a randomly selected document
on figure 6. It was observed that our variational algorithm
converged in just one iteration on all documents and esti-
mates made with two considered algorithms are very close.

5.2. Mixture of Gaussians

We continue our experimental study with continuous mix-
ture modeling. We generated 5 datasets each drawn from
mixture of 5 two-dimensional Gaussian distributions with
equal weights, spherical covariance and mean located in
(0,0) and (—R,—R), (—R,R), (R,—R), (R, R) respec-
tively, varying R from 1 to 5. R = 1 means that clusters
are almost undistinguishable and R = 5 makes them easely
separable. Each dataset was split into 200 train data points

and 200 test data points.

It is common to compare different models by predictive
likelihood which is p(Xes|x) assuming that well-fitted
model assigns high probability to test data which is ob-
tained from the same context as train data, e.g. held-out
part of the document. Unfortunately this quantity is in-
tractable for ddCRP and thus we use the following estimate
as test likelihood:

p(xlest|xa é) = Z p(C|X, é)p(ctesl)p(xlest|ctesta Ca é) (7)

Crest,C

where © are cluster parameters estimated as posterior
mean.

Since the purpose of test likelihood is to measure how well
estimated cluster parameters explain unseen data, new clus-
ters emerged in test data could flaw the results. It is impos-
sible in traditional parametric models and in DP mixture
models based on truncated stick-breaking, however ddCRP
allows to assign Ci,; = ¢ for some 7. Thus we restrict
test data to start new tables by setting corresponding prior
probabilities to zero and re-normalizing prior.

5.2.1. SEQCRP AND DP VB

We denote CRP-equivalent mixture model formulated as
special case of seqddCRP as seqCRP below in the paper.
We compare our variational inference algorithm for this
model and one for DP based on truncated stick-breaking
(Blei & Jordan, 2005), further we denote it as VB DP. We
set parameter o = 0.1 for both models to encourage small
number of clusters and provided weak informative priors
for covariance matrix to slightly suggest it’s spherical form.
Truncation level for DP VB was set to 50.

Since both algorithms are dependent of random initializa-
tion we performed 300 runs in each setting and selected
best results. We observed that seqCRP achieved higher
variational lower bound and since both models actually rep-
resent the same mixture model, it could be admitted that
our variational approximation is tighter. Figure 4 contains
histograms of variational lower bounds on datasets with
R = 5and R = 3. In the first case where the mixture
is easily separable, best lower bound obtained by our ap-
proximation was —1881.59 comparing to —1886.29 from
VB DP, and in the second case where it is harder to re-
cover true number of clusters best results were —1891.73
and correspondingly —1892.66.

We also compared convergence rate for both algorithms
(see fig. 3). Our variational algorithm is considerably
slower because it involves matrix inverses extensively.
However, it converges much faster than VB DP in number
of iterations.

This empirically demonstrates potential of our variational
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algorithm which could be preferred over DP VB in situa-
tions when tight approximation is more important than run-
ning time.

5.2.2. SEQCRP AND SEQDDCRP

Finally we evaluate seqddCRP with informative prior in
the sense that data points generated from the same mixture
component have lower distances than every pair of points
which are not. In particular, we have used exponential de-
cay function with parameter a = 4 meaning moderate de-
cay and sparseness inducing o« = 0.1, as in language mod-
eling task distances were plain and measured in number of
data points between two given. Train data was generated
sequentially from each Gaussian, while test data was ran-
domly permuted and for them uninformative CRP distances

were used.

Clearly, such information improved test likelihood compar-
ing to plain seqCRP, see table 1. Also for both models test
likelihood converged very fast, detailed graph is on fig. 5.
Note that we didn’t tune parameters of the process and thus
even more performance increase could be achieved. This
suggests seqddCRP as an alternative to various sequential
mixture models such as Hidden Markov Model.

5.3. Time-dependent mixture

Motivated by previous experiment we evaluate non-
collapsed Gibbs sampler and our variational algorithm on
modeling of time-dependent normal mixtures. Data was
generated from a number of states, each associated with its
own normal distribution, by a random process visualized
on figure 1. In each moment of time exactly one state is
active and the the process draws a point from the corre-
sponding distribution. It also may switch between states.
Each normal distribution has mean 5 - k where £ is its num-
ber and random precision drawn from Gamma distribution
with shape 0.8 and scale 1.1. This Gamma distribution was
used as a prior for both algorithms. After generative pro-
cess finished, we randomly permuted several points near
state switches in order to simulate perturbations in transi-
tive periods often observed in real data.

The setting was the same as in 5.2.2, except we used conve-
nient average per-point test likelihood as evaluation metric
(see e.g. (Blei & Jordan, 2005)). Besides it is tractable for
both sample and analytic computation obtained from varia-
tional distribution, we empirically found that it is highly
correlated with test likelihood estimate we used before
(equation 7).
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Results of the comparison are shown on figure 2. Clearly,
variational inference outperforms Gibbs sampler in conver-
gence speed although the latter may achieve better test like-
lihood in time depending on the initialization.

6. CONCLUSION

In the paper we proposed mean-field approximation for
sequential distance-dependent Chinese Restaurant process
and developed efficient coordinate ascent algorithm. Our
inference procedure is closely connected with Laplacian of
random graph modeled by seqddCRP. We used special fac-
torization w.r.t. customer assignments which is not only
natural for seqddCRP but is also applicable for conven-
tional CRP. For the latter case it can be regarded as an alter-
native to well-known stick-breaking variational approxima-
tion. We showed that it might yield better lower bounds of
marginal probabilities for Dirichlet process mixture mod-
els. For the general case the only available inference frame-
work is based Gibbs sampler. The proposed framework
could serve as its faster deterministic analogue.
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Appendix: Efficient variational update

The general form of the variational update for each ¢(c;) is
(with hyper-parameters and explicit dependency on ¢ omit-

ted for clarity):

logg(ei) = Eq(cy;) llog p(x, ¢, ®)]

N N
=logp(c;) + Z Z log P(Iswk)Eq(c\i)zsk + const
s=1k=1

where we denote c\; as a set of all customer assignments
except for i-th customer.

Now consider how Eg(c, )25k = qer, = k)Eq(c\i)rsk de-
pends on ¢;. First note that if s < ¢ or k£ > ¢ then 74 does

not depend on assignment of ¢-th customer due to sequen-

tial property of the process. Denote r:;g = 1 if there exists a

directed path from s to k that avoids ¢. Note that if rg, = 1
then it immediately implies 75; = 0. Then we may write

rsk =1 <= (rix =landrs, =1)or (r;,i =landrs; =0)
Equivalently in algebraic form
L—rge =1 —riprsi)(1 — 'f',:;i(l —Tsi) =

1—riprsp — le(l —7Tsi) + TikTsirlk(l —Tsi) =

(I—rsi) =1—riprsp — T;;(l — Tsi)

In last equation only the second item depends on c;. Let
¢; = t. Then observing that r;; = 7., we express the
dependence on c; by explicit formula:

logq(c; =t) =logp(c; =t)+

2

N
+30
s=1k

Eq logp(xs \9k)Eq(c\i)Ttk(C)Tsi(C)Ckk + const.
1

First note that r.,, 7s;, and cg are independent of each
other. Also note that Eqc, ,)rs; does not depend on g(c;)

for j < i. The value of Ey(c, )¢ also does not depend on

q(c;) for j > t, so we may compute it when updating g(c;)
as follows:

Eg(e\ree = Zq(ct = J)Eq(e\)Tik-

J<t
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