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ABSTRACT. We study the optimal transportation mapping V® : R4 — R?
pushing forward a probability measure i = e~V dz onto another probability
measure v = e~ "W dz. Following a classical approach of E. Calabi we introduce
the Riemannian metric g = D?® on R and study spectral properties of the
metric-measure space M = (]Rd7 g, ). We prove, in particular, that M admits
a non-negative Bakrnymery tensor provided both V and W are convex. If
the target measure v is the Lebesgue measure on a convex set 2 and p is
log-concave we prove that M is a CD(K,N) space. Applications of these
results include some global dimension-free a priori estimates of | D?®||. With
the help of comparison techniques on Riemannian manifolds and probabilistic
concentration arguments we proof some diameter estimates for M.

1. Introduction. This paper is motivated by the following problem. Given two
probability measures 1 = e~V dx and v = e~ dz on R? let us consider the optimal
transportation mapping 7' = V® of p onto v and the associated Monge—Ampere
equation

eV =WV det D20, (1.1)
We are interested in efficient estimates of the Lipschitz constant supga [|D?*®|| or

1

the integral Lipschitz constant ([, [[D?®||? du)? (here || - || is the operator norm)
for some p > 1.

This problem has different aspects. From the regularity theory viewpoint the
“best” estimate provides the highest regularity level for ® for any given regularity
assumptions on V and W. Classical regularity results provide ® € C?° under
assumption of the Holder continuity of V' and W. The results of this type are
usually available only in finite dimensions and involve constants which are very hard
to control. For an account in the regularity theory of the optimal transportation
and the Monge-Ampere equation (flat case) see [15], [28] (see also [1], [26], [13], [7],
211, 6, [5).

Our motivation partially comes from the optimal transportation theory on the
infinite-dimensional spaces, in particular, on the Wiener space ([], [5], [12], [19]).
Note that the finite-dimensional regularity techniques can not be applied here and
the general regularity problem for optimal transportation on the Wiener space is
open. Some partial results see in [5].
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Another type of problems is studied in convex geometry. Given the target mea-
sure v (a typical example: v is the normalized Lebesgue measure on a convex set)
find a “nice” source measure p with known spectral properties (say, known Poincaré
constant) and small LP(u)-norm of |[D2®||. A classical example is given by a Caf-
farelli’s contraction theorem. According to this result every optimal transportation
mapping V® pushing forward the standard Gaussian measure onto a log-concave
measure v with the uniformly convex potential W (i.e. D?*W > K -1d with K > 0)
is a \/% - contraction (i.e. ||[D?®|| 1, < \/%)

This result implies immediately very nice analytical consequences (for instance,
the isoperimetric comparison Bakry—Ledoux theorem, a probabilistic version of the

Lévy-Gromov comparison theorem). More about it see in [20]. Note that for many
1

applications a dimension-free bound of the integral norm (o, [[D*®||? dp)”,p > 1
would be sufficient. This follows from a recent result of Emanuel Milman (see [24])
on equivalence of norms in the log-concave case.

Let us recall a related open problem. A convex set € is called isotropic if

IE(.%‘l) = 0, IE(SL‘Z‘LBJ‘) = 67;j

(here IE means the expectation with respect to the normalized Lebesgue volume on
?). The Poincaré constant is the minimal constant ¢, such that

Ef?— (Ef)® < ¢, E|VfJ?

for any smooth f. According to the famous Kannan, Lovasz, and Simonovits conjec-
ture (KLS conjecture) the Poincaré constant of any isotropic convex set is bounded
by some universal number. This is one of the most difficult open problems naturally
arising in convex geometry (KLS conjecture, slicing problem, thin-shell conjecture).
By a classical result of Payne and Weinberger (see [25])
diam?(Q)
Cp S 72
T
for any convex 2. Thus in view of the Caffarelli’s theorem it is natural to expect
that the Lipschitz constant of the optimal transportation mapping pushing forward,
say, the standard Gaussian measure y onto a convex set € is controlled at least by
the diameter of 2. However, even this turns out to be difficult to prove. According
to [17] this Lipschitz constant is controlled by v/d diam(Q). It is still not known
whether [ ||D?®| dy < C diam(2) for some universal C.
We prove in this paper that

/A dp — (/\/K du)2 < ¢ diam(Q), (1.2)

where A(z) = ||[D?®(x)|, u = ~ is the standard Gaussian measure, ¢ is universal,
and v is the normalized Lebesgue measure on 2.

We apply here a geometric approach developed by E. Calabi in [9] in his study
of the regularity problem for the Monge-Ampere equation. The sharpest regu-
larity results for the Monge—Ampére equation have been obtained later by other
methods, including the Krylov-Safonov-Evans regularity theory. Let us cite Nikolai
Krylov (see [2I]). “To prove the existence of solutions of equations like by
the methods known before 1981 was no easy task. It involved finding a priori esti-
mates for solutions and their derivatives up to third order. Big part of the work
is based on differentiation three times and on certain extremely cleverly orga-
nized manipulations invented by Calabi. After 1981 the approach to fully nonlinear
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equations changed dramatically.” Unfortunately, the deep techniques developed by
Krylov, Safonov, Evans, Caffarelli and others don’t work in applications where some
dimension-free bounds needed. These applications include convex geometry and
analysis on Wiener space. This is the main reason why we come back to the old
Calabi’s trick.

Let us explain the main idea of this approach. Differentiating along a vector
e one obtains the following quasilinear diffusion equation

8.V = —Lg (8e<1>),

where Lo f = div, (Vf(V\I/)) o (V®) and ¥ = ®* is the Legendre transform of ®.

This diffusion operator is a generator of the following symmetric Dirichlet form:

Eo(f,h) = /((D2<I>)‘1Vf, Vh) dp.

It is natural (and it was the Calabi’s observation) to introduce the following Rie-
mannian metric on R%: g;; = ®4,2; (in the fixed initial coordinate system). The
corresponding manifold will be denoted by M. The manifolds of this type are called
“Hessian manifolds” and they are real analogs of the complex Kéahler manifolds.
More on Hessian manifolds see in [10], [27].

The Dirichlet form £¢ can be rewritten as follows:

Eolfh) = [(Varf, Tarh), di

where V), is the gradient on M. Note that p is not the Riemannian volume vol,,
measure of M. In fact

5‘1’(.]07 h) = /<va7th>M 67P dVOl]u,

where P = %(V + W(V@)). We introduce the metric-measure space (R?, g, u)
denoted by the same letter M.
The diffusion generator can be rewritten in geometric terms

Ly = Ay — VP -V

We note that the inverse optimal mapping V¥ = (V®)~! defines a dual metric-
measure space M’ = (RY, D?¥, v) and the mapping z — V®(x) is a measure
preserving isometry between M and M’.

In this paper we compute the second “carré du champ” operator I'y which is
responsible for spectral properties of the Dirichlet form £g. Equivalently, we com-
pute the Bakrnymery tensor Ric + D3, P of the metric-measure space (R, g, ).
In particular, we get

Theorem 1.1. Assume that V and W are convex. Then the Bakrnymery tensor
of M = (R%, g, 1) is non-negative.

Further we investigate the concentration properties of M. To this end we estab-
lish the following elementary but useful inequality

d3f(z,y) < d(z,y) - d(VO(z), VO(y)), (1.3)

where d is the standard Euclidean distance.
We are especially interested in a particular case when the source measure p is
log-concave and the target measure v is the Lebesgue measure on a convex set A.
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It turns out that in this case one can establish a stronger result than Theorem [T1]
We prove namely that M belongs to the family of the so-called CD(K, N) spaces.

Theorem 1.2. Assume that p = e~ Vdx is a log-concave measure and v is the
Lebesgue measure on a convexr set A. Then M is a CD(0,2d)-space.
If, in addition,
D*V >C-1d
with C > 0, then (R%, g, 1) is a CD(&,2d)-space, where m = sup,cga | D?®||.

The metric-measure spaces satisfying C D(K, N)-condition are widely studied in
analysis. The most significant applications of this concept are deeply related to the
optimal transportation theory (see [29]). Roughly speaking, these spaces have ana-
lytical and geometrical properties comparable to those of the corresponding model
spaces (spheres and hyperbolic spaces). The list of properties which can be ex-
tracted from the C'D(K, N) property is rather impressive. These are Sobolev and
isoperimetric inequalities, diameter bounds, volume growth of balls, Laplacian com-
parison estimates etc. In particular, the general theory implies several interesting
results in our special situation. Applying inequality to the case when v is
the normalized Lebesque measure on a convex set ) and g = ~ is the standard
Gaussian measure, we get that M has a superquadratic (fourth order) concentra-
tion function. It is known that the Gaussian-type concentration together with an
appropriate CD(K, N)-condition implies that M has a bounded diameter. More
precisely, we get

Theorem 1.3. Let pn = 7y be the standard Gaussian measure and v be the Lebesgue
measure on a convexr set with diameter D. Assume, in addition, that M is geodesi-
cally convex. There exists a universal constant C' > 0 such that

diam(M) < CVdVD.

We recall that a smooth (non-complete) Riemannian manifold M is called geodesi-
cally convex if with every two points z,y € M it contains a smooth geodesic path
v :[0,T] — M joining x and y: v(0) = z,v(T) = y in such a way that v is the
shortest way from z to y. By the Hopf-Rinow theorem every complete manifold is
geodesically convex. It seems that the assumption of geodesical convexity of M in
Theorem [1.3| can be omitted, but we were not able to prove this.

According to a recent result of E. Milman [23] the concentration and isoperimet-
ric inequalities are equivalent in the case of the positive Bakrny/]mery tensor. In
particular, applying our concentration estimates, we get that the Poincaré constant
of M depends on the diameter of € only. Then applying techniques developed in
[18] we prove that if y is standard Gaussian and v normalized Lebesgue on a convex

set, then
[ e
A
Then follows from the Poincaré inequality for (R, g, ). We also establish
certain reverse Holder inequalities for A.

Applications of the Hessian structures in convex geometry can be found in a
recent paper of Bo’az Klartag and Rohen Eldan [I1I]. In particular, it was shown
in [II] that the positive solution to the thin shell conjecture implies the positive
solution to the slicing problem. Applications of the Kahler metrics to the Poincaré-
type inequalities and thin-shell estimates can be found in [I6]. It was pointed out
to the author by Klartag that some of the results from [I6] can be generalized by

dp <1.
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the methods obtained in this paper. More on Kéhler manifolds and convex sets see
in [14].

The author is grateful to Emanuel Milman, Bo’az Klartag, and Ronen Eldan for
stimulating discussions during his visit to the Technion university of Haifa and the
Tel-Aviv University.

This research was carried out within “The National Research University Higher
School of Economics” Academic Fund Program in 2012-2013, research grant No.
11-01-0175 and supported by the RFBR projects 10-01-00518, 11-01-90421-Ukr-f-a,
and the program SFB 701 at the University of Bielefeld.

2. Diffusion viewpoint. We consider the optimal transportation mapping V&
pushing forward a probability measure ju = e~" dx onto another probability mea-
sure v = e~ dz. In order to avoid unessential technicalities we assume in this
section that V., W, &, and

Y(y) =0 (y) = St;p(@, y) — @(x))

are smooth functions on the whole R?.
In particular, V®, V¥ are reciprocal mappings: V¥ o V®(z) = = and the Hes-
sians of ®, ¥ satisfy the following identity

D?®(z) - D*U(Vd(z)) = 1d

for every . This means, in particular, that D?®, D?¥ are always non-degenerate
(positive) matrices.
By the change of variables formula

V = W(V®) — logdet D?®.

Let us differentiate this formula along the vector e € R?. Everywhere below the
partial derivative of f along e

O (1) _ iy Fa 1) = 1 (@)

Oe t—0 t

will be denoted either by % or (for brevity) by f.. Thus, we use breve notations

Vfe, D*fe

v(50): 2*(50)

After these agreements we can write the result of differentiating of the change of
variables formula in the following form:

for

V. = (VO VIV(V®)) — Tr [D2<I>e : (D2<I>)‘1] (2.4)
Let us consider the following diffusion operator:

Lof =Tr[D*f- (D*®)7'] = (Vf, VW (V®)).
Lemma 2.1. The following identity holds for any f,h € C$*(RY):

/((Dz@)‘lvf,vm dp = —/f-Lq>h dy = —/h-Lq)f dys.
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Proof. Let us apply the relations V¥ = (V®)~! and D?¥ = (D?®)~! o VU. One
has

Lofo V¥ =Tr[D*f(VV)  D*V] — (Vf(VT), VIV).
Note that
Lo f(VV) = div, (v f(vq/)), (2.5)

where div,v = div(v) — (v, VW) is the divergence of the vector field v with respect
to v. Hence

/f~Lq>h dp = /f(V\Il)div,,(Vh(V‘I/)) dv = —/<D2\11 VF(VD), VR(VD)) dv

. /<(D2<I>)‘1Vf, Vh) dy,

Conclusion: &, satisfies the following quasilinear diffusion equation:
Ve = —Le®,, (2.6)

where Lg is the generator of the Dirichlet form

Eo(f,h) = /((D2<I>)‘1Vf,Vh> dp.

It is well-known that the second “carré du champ” operator I's introduced by
D. Bakry (see, for instance, [2]) is responsible for spectral properties of the corre-
sponding diffusion

1

Lo(f) = 3 (LeTa(f) — 2Pa(Laf. 1)),

where 'y f = <(D2<I>)_1Vf7 Vf>. We will compute I'y in Sections 3-4.

Example 2.2. Computation of I'; in the one-dimensional case:
Consider a Dirichlet form

One has

Tao(f) = a*(f')* +ad f'f" + %(f’)2 ((¢)? - aa” + ad'V' +24>V").

\%4

Let a = ﬁ, where ¢ solves eV = e~ W(#)". We get from this equation that

" "

(4) " 2
(p (p ’ 7" ’
= (5) =W P+ -V

14 P
Substituting this into the formula for I'y, one can easily obtain
(f//)Q (Pm I 1 N2 ((p'”)g " "eot
Do(f) = o — s £+ U [(omr + s + W),
D=ty ! ! T2V et T
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3. Differential-geometric viewpoint. Recall that the Hessian of a smooth func-
tion f on a Riemannian manifold M is the tensor defined on a couple of vector fields
X, Y by the following formula

D3 f(X,Y) = (VxVuf,Y)ur
In coordinates

f 5 O

D2f).,. = ) )
(D )i 01,0z}, kO’
where I‘gk are the corresponding Christoffel symbols. Following E. Calabi [9] we
consider a Riemannian metric g on R? given by the Hessian of the function ® (with
respect to the standard Euclidean connection). In a fixed standard orthogonal
coordinate system one has

(3.7)

9ij = (I)xixj .
In the computations below we follow the standard geometric agreements: (Einstein
summation) the expressions A‘B;, AYB;; etc. mean that one takes a sum over
repeating indexes:

d
AZ.BZ = ZAiBi, AijkBijl = Z AijkBijl
i=1 1<i,5<d

The inverse metric ¢g~' is denoted by ¢%.

The Riemannian gradient can be computed as follows:

0
(Vamf); =g" 83{:'

Our manifold M belongs to the class of the so-called Hessian manifolds (see [I0],
[27]), which are real analogs of the Kéhler manifolds intensively studied in differen-
tial geometry. Some of the computations below can be found in [9] or [27] but we
give them for completeness of the picture.

All the objects related to M (considered as a Riemannian manifold) will be
written with the subscript M: V), is the gradient, DJQV[ is the Hessian, and A,y is
the Laplace-Beltrami operator on M.

Let us rewrite the Dirichlet form

Eolfih) = [((DP0) 7V £,9h) d

in geometric terms:

5¢(f, h) = /]M<VMf,th>M d/l,.

Computation of the Riemannian volume
volpy; = +/det g de = WV =3V gy

gives another useful expression for Eg:
Ealri) = [ (Varf Vaihjuse™ dvolur, (35)
M

where )
pP= i(W(VfIJ) + V).
In what follows we compute the Ricci tensor of g. The Christoffel symbol

k1 kl(aglj gl 3gij)
1] 2

ozt = OxJd oz!
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takes a simplified form

1
F?j = §9qu)ijla
where

2P
0z;0x;0x;
For computing the Ricci curvature tensor we apply the following well-known formula
for the Riemannian tensor with lowered indexes:

1/ 9%ga gk D?gi, D%g;i
ikt = = (5= LB L E—— e (Tmrs _1"7.”1"5,),
g Q(amaaxk * om0 0wiodl axzaxk) t9 ( gkt T Lkl

The first part of this expression vanishes and we get

1
Rijr = ngs <(I)milq)sjk - (I)mikq)sjl)~

D, =

Hence
Rici, = %g]lgms (q)milq)sjk - (Dmikq)sjl>~
Now we take into account the Monge-Ampere equation. Differentiating
logdetg =W(V®) -V

we get another version of .

0log det g _ il ow oV
ol = —=—2 = ¢l =g, Vo
T Dy, b= ik (V) = G
Finally we get the following expression for the Ricci tensor:
1 . 1 ow ov
i ik — 7 it mS(I)mi (I)s' n (bml ( s o ) .
Ricgg 199 1Psjk — 49 k|95 oz, (V@) — or. (3.9)

Note that the first part defines a non-negative quadratic form.
1 . ; 1
Zgjlgmsq)milq)sjkfzgk _ 4 Jl ms( mzlf )( sykgk) > 0.

4. T';-operator and geometric properties of M. In this section we calculate
the second carré du champ operator I's

ra(f) = 5 (LaTalf) — 2Ma(Las. 1)).

Applying formula which represents the Dirichlet form &g via the energy in-
tegral over M equipped with the measure p = e~ dvol we rewrite the diffusion
operator Lg as follows:

L@ = AM — V]y] . VMP

We apply here the Bochner’s identity

. 1
D3 fll3rs + Ric(Varf, Ve f) = §A]VI|va|2 —(Vuf,VulAmf)m

A generalization of this formula to the metric-measure spaces (see, for instance,
[29]) gives the following expression for I's:

Lao(f) = D3 fllEs + (Ric + D3 P) (Var f, Var f).-
Recall that the quantity
Reo, == Ric+ D}, P

is called the Bakrny/)mery tensor. The notation R, will be explained in the very
last section of the paper.
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The Bakry-Emery tensor has been introduced in [3]. According to a classical
result of Bakry and Emery the positivity of this tensor implies the log-Sobolev
inequality for manifolds with measures.

Let us compute Ric+ D3, P. Applying the coordinate expression for the Hessian

(3.7) we get
’f i, 9f

1
2 P _ = L)
(DMf)zk D7,y 29 ikl 8xj .

Consequently
2

o f 9gij of
D3 F(V))ik = gaghj 5 — 0 VO + (S22 ~Tig,;) 50 0 VO
( Mf( )) k Git9kj axlaxj o + al'k ik9sj 81‘] °
= o af |
= Gilgki 0x0x; Ox;
Differentiating the relation D?® - D?W¥(V®) = Id one can easily obtain than for
every vector e the following identity holds

D?(0.®) - D*W¥(V®) + D?*® - D*(9,V)(V®) - D*® = 0.

1
oVo + g@wk Vo

Hence
D?*(0,0)(V®) = —(D*®) "' D?(9.9)(D*®) 2

With the help of all these computations one can easily verify that the Hessian of a
smooth function f has the following symmetric expression:

Corollary 4.1.
Dif = %[sz + D*® - D*[fo (VV)] o VP - D*|.

Writing down the expressions for the Hessians of V' and W(V®) and applying
(3.9) one can easily get

Corollary 4.2. The Bakrny’mery tensor Reo,, has the following coordinate ex-
pression

Rici, + (D3 P)ik

FoaL) FoaL0) 1 0%V 1 W
( ) ( ) - + -G9iu9kj 77— ©
0%y, 0202/ \ Ox 40707}, 20x;0x, 2 0x0x;
Finally we obtain Theorem [[.1] and even more

1 .
_ Zgjlgrns

Vo.

Theorem 4.3. The Bakrny/’mery tensor R, satisfies

1 o? 1 2
(Roo;u)ij 2 5% + 29“91@3‘3(21?; oVQ.
One has
Ry >C-g
provided

1

(D2®)~ 2 D*V(D*®)" % + (D>®)> D*W (V®)(D?®)7 > 2C - Id.

In particular, if V and W are convez, when R ;0 > 0.
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5. Concentration and isoperimetric properties of M. We denote by d the
standard Euclidean distance and by dj; the distance on the manifold M.

Almost everywhere below we deal with log-concave measures. Recall that the
probability measure with Lebesgue density p = e~V dx is called log-concave if V is
a convex function. Note that this function may take value +oco outside of a convex
set A. A function 8; € L'(u) is called logarithmic derivative of p along z; is the

following identity holds
/Bz«p dp = /%sﬁ dp

for every ¢ € C5°(R%). If V is regular enough, the only reasonable candidate for
Bi is Vy,. If V,,. is well-defined and integrable with respect to p, then this is indeed
the case. However, not every log-concave measure has a logarithmic derivative. It
is easy to check that the normalized Lebesgue on a compact convex set does not
have any logarithmic derivative.

In this section we study concentration properties of the manifold M under as-
sumption that the target measure v is compactly supported. They easily follows
from the concentration properties of p with the help of the following lemma. A
similar result see in [11] (Lemma 3.2).

Lemma 5.1. The following estimate holds
dis(z,y) < (VO(y) = Ve(x),y — x) < d(z,y) - d(VE(z), VO(y))

Proof. Take two points x,y and join them with the line t — x+tv, where v = ﬁ.
By the definition of the Riemannian distance one has

d3s(z,y) < </Od(%y) V(D2®(z + tv)v, v) dt>2

d(z,y)
< d(x,y)/ <D2<I>(:1: + tv)v,v) dt
0

d(z,y) (Ve (x + tv), v)[0 Y = d(z,5)(VO(y) — VO(z),v)
(VO (y) - VO(z),y — )
d(z,y) - d(V(y), VO(x)).

IAIA

O

Corollary 5.2. Assume that v has a bounded support diam(supp(v)) = D. Then
for every A C R? one has

h2
w(x :dy(z, A) < h) > ,u(x cd(z, A) < 5)
Proof. According to the previous lemma
p(z :dy(z, A) < h) > p(x: d(z, A)d(Ve(z), VE(A)) < h?)
> p(z :d(z, A)D < h?).
O
In particular, one can estimate the concentration function of the metric-measure

space (M, dar, 1v). Recall that a function IC,, is called concentration function for u
if it satisfies the following inequality:

p(z:d(z, A) < h)>1—e kM
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for every set A with u(A) > 1 and any h > 0.

In particular, if diam(supp(r)) = D and p is standard Gaussian, then
22 1
pl (e, A) < ) 21— HB) ) > 2 (5.10)

In the absence of the uniform bound some concentration estimates are still avail-
able.

Corollary 5.3. Let K, and K, be concentration functions of i and v respectively.
Then for every h > 0,t >0 and A C R satisfying u(A) > %

,u(m sdpy(x, A) < h) >1— e_’CH(hTQ) _ e k)

Proof.
p(z :dy(z, A) < h) > p(z:d(z, A)d(Ve(z), VE(A)) < h?)
> p(z: d(Ve(z), VO(A)) < t;d(z, A)t < h?)
> p(z:d(z, A)t < h?) — px : d(VE(z), VO(A)) > t)
=p(z:d(z, A)t <h*) —v(y : d(y, VB(A)) > t)

The very last inequality follows from the definition of the concentration function
2
pla s d(z, Ayt < h?) > 1— (%),

—v(y:d(y, V®(A)) >t) =v(y : d(y, VP(A)) <t) — 1> —e ()
]

This means, in particular, that the concentration function of our metric-measure
space M can be estimated by

K (h) > —log tiI>1(f)[e_K:“(hT) + e 0], (5.11)

Till the end of the section we deal with the log-concave target and source mea-
sures. It is well known (the most general statement of this type has been obtained
by Emanuel Milman [23]) that concentration inequalities imply isoperimetric in-
equalities under assumption of the positivity of the the Bakrnymery tensor. More
precisely

Theorem 5.4. [E. Milman] Let M be a smooth complete oriented connected Rie-
mannian manifold equipped with the measure p = e~ * dvol. Assume that the cor-
responding Bakrnymery tensor is nonnegative and the concentration function KCpy
satisfies Kar(r) > a(r), Vr > a~t(log2). Then the isoperimetric function Iy (t) of
M can be estimated from below by

1
min(clt'y(log E),Cz), v(z) = -

al(z)’
where the constant ¢y is universal and co depend solely on «.

We apply this theorem and the concentration inequalities obtained above to get
isoperimetric inequalities on M. We have to overcome on this way certain technical
difficulty: eventual non-completeness of M. In the following lemma we establish
sufficient conditions for a Hessian manifold to be complete, but these conditions are
not always fulfilled in the applications we consider.
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Lemma 5.5. Assume that V and W are smooth functions, defined on the whole
RY, C = sup, | D*W (2)|| < co and there exists ¢ > 0 such that D*V (x) > c-1d for
every x € RY. Then M is unbounded and complete.

Proof. Tt is sufficient to show that there exists € > 0 such that dy(z,y) > ed(z,y).
It follows from the Caffarelli-type estimate (see, for instance, [20]) that the norm

of ||D?W¥||, where ¥ = ®*, is uniformly bounded by \/g Since V® and V¥ are
reciprocal and D?® = (D?W¥)~! 0 V®, one has D?® > \/gld. Hence

dyr(x,y) = /\/m ds > \/7 d(z,y).

v 7(0)—z,v(1) =y
]

Corollary 5.6. Assume that V and W satisfy the assumptions of Lemma [5.5
Then the isoperimetric function of M satisfies the conclusion of Theorem [5.4) with

Kar satisfying .

The assumptions of Lemma [5.5] are very restrictive. However, it is possible to
prove some isoperimetric-type estimates in the situation when M is not complete.

Proposition 5.7. Let u = v be the standard Gaussian measure and v be a log-
concave measure with bounded support Q, where diam(2) = D. There exists an
universal constant ¢ such that M satisfies the following Poincaré inequality

/IVMfI2 dp > %/(f — /f du)2 dp, (5.12)

where diam(Q2) = D for every locally Lipschitz function f : R? — R with a bounded
(in the standard Euclidean metric) support.

Proof. Without loss of generality we assume that 0 € Q C {z : |z| < D}.
Step 1. Let us construct a sequence of smooth convex functions W, with the
following properties:
1. the measures v, = e~"» dz converge weakly to v,

2. every W,, has uniformly bounded second derivatives,

3. for every n > 0 there exists a number N(n) such that D*Wj > n -1d on

{z :|z| > 2D} for k > N(n).

This type of construction is quite standard and we omit here the details. We
need to show that the corresponding sequence (or just a subsequence) of optimal
transportations V®,, converges in a sense to V®. In fact, we show the following
a priori estimate: sup,, [ [|D?®, > dy < cc. Then it follows immediately from the
compactness embedding theorem (applied to local Sobolev spaces) and convexity
of @, that there exists a subsequence (denoted again by the same index) such that
1) V®, — V& almost everywhere, 2) 0,0, ®n — 0,0, weakly in L (R?) and
L?(v) for every i, j.

Let us show that the desired estimate holds indeed. We apply the following a
priori bound proved in [I8] (see section 9 below)

loc

/|VV|26*de > /Tr[DQCIJ -D*W(V®) - D?*®] eV da, (5.13)

which holds for every sufficiently regular measures e~V dx, e=" dx and the cor-
responding optimal transportation V®. The direct application of this inequality
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gives, however, nothing, because the sequence D?W,, is not supposed to be uni-
formly bounded from below by a positive matrix. Let us do the following trick: we
apply this inequality to the measures fi,, = e~ PUVE*/2) .y and 7, = e=P@*/2) .y,
with some convex function P to be chosen later. Note that V®,, pushes forward i,
onto 7,, hence estimate is applicable. One obtains

/|P’(|V<I>n|2/2) D23,V + z|2e PUVEL/2) gy

> /Tr [D?®,, - (D*W,, + D*[P(22/2)]) 0 V&, - D*®,,]e”PIVE*/2) gy
By the Cauchy-Bunyakovsky inequality for every couples of vectors a, b there exists
C. such that
la+b* = la]* + 2{a, b) + [b|* < (1 +&)[al” + Cc[b.
Thus
/IP’(|V<I>n|2/2) D2, VD, + a2ePUVE/2) gy < O / [aPePUVEI/2) gy

+(1 +5)/[P’(|V<I>n|2/2)]2 D23, VP, |2e LUV /2) gy,
Applying the identity
D*0, V0,2 = Tx(D*®, - (Y&, & Ve,) - D*0,)
one gets

C€/|w|2efP<\vq>n|2/2> dvy
> /Tr [D*®,, - [D2Wn + D*[P(2?/2)] — (1 +&)(P'(2?/2))*r @ x}

0 Vb, - D>, ]e PIVE/2) gy,
We prove the desired estimate if we find a bounded P such that
D*W,, + P'(2%/2) - 1d + [P"(2%/2) — (1 +&)(P'(2?/2))?|z @2 > c-1d  (5.14)

for some ¢ > 0. To this end we choose for P any smooth non-decreasing function
such that P(t) = 6t for t < 2D? and P(t) = 2D?§ + 1 for t > 3D?. Choosing a
sufficiently small §, sufficiently big n, and taking into account property 3) of W,, we
easily conclude that holds at least starting from some number ng. Indeed,
for carefully chosen parameters the part depending on P is uniformly bounded from
below for t < 2D? and exceeds —SUp,, s, |z/>2p [[D*Wa(z)|| for t > 2D?. Finally,
using that 1 < P < 2D2%§ + 1, we get

C. / 2f? dy > ce~2P*5HD / 1D%02, dn,

where || - ||s is the Hilbert-Schmidt norm. We note that ® is a smooth function
as far as W, is smooth inside of the support € of the measure v. This follows from
the regularity theory for the Monge—Ampere equation (see [I8] for details).

Step 2. The property 2) of approximating measures ensures that every metric-
measure space M,, = (R?, D2®,,, ) is complete (Lemma/5.5) and has a non-negative
Bakryf]:]mery tensor. Theorem is applicable and we conclude that every M,
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satisfies an isoperimetric inequality defined by its concentration function Ky, . In
particular, one has for every locally Lipschitz function f

[V g av=cecz [(r= [ ) o, (5.15)

where C,, is (any) constant satisfying Zys, (t) > Cpt, 0 <t < 3, Ty, is the isoperi-
metric function of M,,, and c is a universal constant. It remains to prove that we
get (5.12) in the limit.

We apply (5.11) to estimate KCpz,. Choosing ¢ to be equal to D in (5.11]) one
can easily see that the term K, (D) tends to zero. This follows from the weak

convergence and the fact that v is supported on the set Q@ C {z : |z| < D}.

This means that the concentration function of the limiting space is estimated from
4

below by K. (h?/D). Clearly, Ky(h) > c% for some universal c. Let us apply a

simple rescaling argument. Consider the new metric dy = %dM. The metric-

measure space M = (R, JM,’Y) still has a non-negative Bakrnymery tensor and
its concentration function is bigger than ch®. Hence its Poincaré constant can
be estimated by some universal number. Then it follows immediately that C' =

Since ® is smooth, it is sufficient to prove for a function of the type
f = g(V®), where g is locally Lipschitz such that the support of g lies positive

distance of 99Q. Let us apply (5.15) to f, = g(V®,,). It remains to show that
nm/|anfn\2 aw:nm/WMfF dy.

Note that lim, [ |V, fol® dy = 3, [ Oria; Pnge,(V®0)ge,(V®,) dy. One has
V&, — V& almost everywhere. The desired convergence follows immediately from
the fact that 0p,., n — Op,; @ weakly in L?(7). The proof is complete. O

6. Applications: Bounds for integral operator norms and reverse Hoélder
inequalities.

6.1. A variance estimate for the operator norm | D?®||. In this section we
will apply some results and techniques developed in [20]. Denote by

A= D9

the operator norm of D?®. The following inequality for the operator norm has
been proved in [20]. Assume that V and W are twice continuously differentiable
functions. Then

A A
sup Vi > inf va(vq)) SN — LoA + M

9
vilv|=1 vilv]=1 A

(6.16)

where LgA is understood in the distributional sense. To be more precise, for every
nonnegative smooth compactly supported function 7 one has

/( sup Vi, )n dp > /( 'inf WUU(V(I)))AZT} dqu/(VMA, V) m du

viv|=1 lv|=1

VulA, VA
—|—/—< M M >M77d,u.

A
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If there exists a global smooth field of the eigenvectors v corresponding to the
largest eigenvalue A, this identity follows immediately from Lemma 7.1 of [20] and
the relations

(0,D*®)v = VA, Tr[9,D*®-Dv-(D*®)""] >0

(see Theorem 7.3 [20]). For the full justification of this formula in the general case
see the proof of Theorem 7.3 in [20].

Approximating function f(A) by smooth compactly supported functions, one
obtains the following theorem.

Theorem 6.1. For every non-negative differentiable function f the following in-
equality holds

[oe@r@) anz w02y au+ [(r0)+520) 0 Tusr du,

where
vi(x) = sup Vee(x), w_(z)= inf We(x).

e:le|]=1 e:le|=1

In what follows we obtain some bounds on the operator norms of D?® in the
case when the target measure is a log-concave measure on a bounded convex set
Q and the source measure p = -y is Gaussian. It is an open problem whether
JID?*®| dy < Cdiam(Q) for some universal C. We obtain below some related
results.

Theorem 6.2. Let u = v be the standard Gaussian measures and v be a log-concave
measure on a bounded convex set ). There exists an universal constant ¢ such that

/Adu—(/ﬂdu)QSCD,

where A is the operator norm of D*®, and diam(Q) = D.

Proof. The formal proof can be obtained by applying Theorem to f = 1. One
obtains inequality

1> 4/<VM\/K7VM\/K>M dy. (6.17)

Then the result follows from the Poincaré inequality for M proved in (5.12). Note,
however, that (5.12)) is proved for compactly supported functions only, which is not
the case with A. To avoid this difficulty we approximate v (in the same way as in
the Proposition|5.7) by smooth log-concave measures v, = e~"» dx with uniformly
bounded second derivatives. We get (6.17)) for M, (note that it is applicable to
locally Lipschitz functions, see the proof Proposition . By the Poincaré inequal-
2
ity we get boundedness of ¢, ( J Ay dp — ( VA, du) ), where ¢, are Poincaré
constants of (R%, D?®,,,~). In the same way as in Proposition we get in the

2
limit that C(fA dy — (f \/Kd,u) ) is bounded by 1, where C' ~ & . O

6.2. Reverse Holder inequalities. We conclude this section by a brief discussion
of the reverse Holder inequalities for A. Application of Theorem to the powers
of A gives a kind of reverse Holder inequalities for p > 0:

/AP+1 dy < (/A% d7)2+ch/Ap dry.
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It is also possible to obtain certain reverse Holder inequalities with universal con-
stants. To this end let us note that

(VA, VA)
A

We come back to the standard Gaussian measure and Euclidean structure. One
gets

(VA VA = (D*®)7IVA, VA) >

/AP dy>(p+ 1)/|VA|2AP*2 dy.

Apply the Poincaré inequality for the standard Gaussian measure:
4 1
/Ap dy > %(/M dy — (/Ap/2 )?).
p

One gets that for p satisfying 4(p + 1) > p? there exists C}, such that
/AP dy < Cp(/AP/2 dv)*.

7. Computations of higher order and Calabi-type estimates. In this section
we give a list of formulas which can be useful for further investigations. In particular,
in this section we generalize the classical Calabi’s computations from [9] (see also
[8]). We don’t give any specific applications of this, but we believe that this may
be an important technical tool for many other problems. For instance, the Calabi
estimates were in the heart of the Yau’s approach to the complex Monge-Ampere
equation in his solution of the Calabi’s problem.

7.1. Basic quantities. Unlike the Calabi’s approach we deal with the diffusion
operator Le and don’t use neither covariant derivatives nor geometrical identi-
ties. Nevertheless, we use the language of Riemannian geometry which is very well
adapted for this computations.

The functions V', W and ® are supposed to be smooth. We use the standard
summation convention. All the computation are made in the fixed (global) chart
and g = D?®. f,, denotes the partial derivative of f with respect to x,, and we
set:

Vi=Vei, Vi = Vaizyy---
Oy =V, j = Viayoo .o @ = g% 0y,
It is convenient to set
Wi =W,,(V®), WY =W,,,,(V®),....
First we note that the relation V,, = —Ls®,, can be rewritten as follows:
—Vit+ W; = g7 . (7.18)
It is convenient to apply the following relations in the computation
(Pij)e =~y
Logij = —Vij + Wij + @Dy, (7.19)

Log”? =V - WY 4 ") (7.20)
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Proof. One has
Lof =g"fi; —W'fi.
From the relation g g;x = d; one gets
(9°)m = =97 ¢*@jpm = — ;5. (7.21)
(gis)mT = _gijgksq)jka + 2gijgkbgas(1)barq)jkm = _(I)i:;r + 2(1):7%(1)27’ (722)
Differentiating —V,, = Ls®,, one obtains
Lagij = —Va,a, + Wara, (VO)gingjs + 9% 9" Papi ®raj-

This is exactly (|7.19)).

We get from ((7.22)) that
9" (G ) mr = —™ 97 §F O s + 2™ 9 g g By @
In the other hand, (7.19)) implies

_ng(I)jkmr = Vacjxk - erxs (V‘I))grjgks - gargbpq)abj(l)?“pk - W (V(I))(I)jlw-

T

Hence
9" (G mr =97 9" Vi, + 97979 9P Pt Prpie — 97 9" 9rj Ghp W, 2, (VD)
— 979" W, (V)P
Then implies (7.20). O

The following lemma is obtained by direct computations and we omit the proof

here. One gets (7.23) by differentiating (7.19)). The relation (7.24) follows from
7.23)), (7.22), and ([7.20[) by the Leibnitz rule.

Lemma 7.1. One has
Lo®iji =(Pabi®5p + Papy ®f + Pk @) — 205, @7, 5, (7.23)
= Viji + Wi + (W7 @i + W gir, + Wi Dsy).

Le®* = — (®1@75 + 00k 4 oD ) + 4Dj PP Dk (7.24)
_ V’ijk 4 Wz_]k + (stq)jk =+ V‘?]@Zk‘ + Vskq)’ij)
+ 0%, [@VDIF + DTSRI 4 dFYDY].
7.2. Calabi-type estimates. We are interested in the quantity
Lo (D).

The computation of this quantity was the main technical point of the Calabi’s
approach. Function R = ifbabcéabc coincides with the scalar curvature for the
case of constant V' and W (this corresponds to the optimal transportation of the
Lebesgue measure on convex sets). Calabi has shown that in this case

AyR > C(d)R?.

Thus R is superharmonic and this fact can be used to control the growth of R. In
fact, Le (@“bcéabc) controls the fourth-order derivatives too.

We compute this quantity by applying the Leibnitz rule and the Lemmata from
the previous section. Let us omit the lengthy computations and state the final
result.
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Proposition 7.2. One has
Lo (@%@ gp.) = I+ 114 111,
where
[=3V @7 0Y + 3W0T 0,5, 1= -2V "D, + 2W By,

I = 30°°Q4T Dy Dy + 20D, Bf B ) — 6OUIDE, D g + 20D .
A remarkable observation which goes back to Calabi is the following
Proposition 7.3. There exists a universal constant C > 0 such that

I > C |00 @ By + PPy 2 0.

Proof. First we note that the value of the expression ®**°®,;. is invariant with
respect to any orthogonal coordinate change. Indeed,

e, = Tr [(D%)*1 : B} ,
where

i

By = T[(D%) - (0%), - (D*0) - (D%0), ]

The direct computations give immediately that B = O* BO, where & — Oz is an
orthogonal transformation and Bis the corresponding matrix in the new basis. This
implies the invariance.

Fix a point x and choose an orthogonal basis in such a way that D?®(z) is
diagonal. Denote by uf, 1 <i < n the eigenvalues of (D?®)~!. Then

III = ,Ufa/ffb,ufc,uld (3(I)abcq)defq)aefq)dbc Meﬂf + 2®abc(1)ade(1)befq)cdf ,U/e,uff
- 6(I)abcdq)abe(I)cele ,Ue + 2<I)3bcd>'
Note that
, 2
P @@ p e p Pae = plpps ! (u“%bc@aef) -
Rearranging the indices one can rewrite III in the following way:
a c 3 3 €
b [§(qu)abf(pcdf)2 + i(ﬂfq)acf(pbdf)Q +2 {,u (I)abe(bcde] [Hf¢ach>bdf:|

- 3(I)abcd(\/ /4Le (I)abe)( V /14e (I)cde) - 3©abcd( V ,U/f (I)acf)( V /if (I)bdf) + 2(D(2zbcd:| .

Set:
Yab = (\//ﬁ(babla e a\/ﬁq)abn)~
Then
I = € Qabea,
where

Qabcd = 2(I)ibcd - 3¢)abcd<Yaba YVCd> - 3q)abcd<Yac; }/bd> + 2<Yab; ch><Yac; }/bd>

3 3
+§<Yab7 ch>2 + §<YaC7 de>2~

for every fixed a, b, c,d. It is easy to check that the function

3 3
222 — 3ay — 3wz + 2yz + 5@/2 + 522
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is non-negative. Hence
Qabcd Z C((I)Zbcd + <Yaba ch>2 + <YaC7 )/bd>2)-
The proof is complete. O

Corollary 7.4. (Calabi-type estimates). Note that
Deplel B 1By = Tr{(D%b)*l .B?. (DQ@)*l},

where B is defined as above. Now it is an easy exercise to recover the following
Calabi’s estimate:

ORI @ Dy = Tr|(D2@) ! - B2 (D20) ]

> (B (0%0)7)) = (@)

Hence, if i and v are both normalized Lebesgue measure on convex sets, then

C
Lq> ((I)abc(babc) > g(¢abc®abc)2'

for some universal ¢ > 0 .

8. A remark on Kihler manifolds and convex sets. Let us assume that pu is
a log-concave measure and v is the normalized Lebesgue measure on a convex set
Q. Tt was shown in [16] that for any Lipschitz function f: Q — R with [, f dz =0
under certain additional technical assumption on ® (regularity at infinity) one has
the following Poncaré-type inequality

/f2 de/Qm(Vf) dz, (8.25)
Q Q

where
Qo ,z(v) = sup{4gij(V<I>*)vivj; veR", Q. (v) < 1},
and
Qo2 (v) = V"0 (¢ g PPk Pity) © VO

This inequality implies some thin-shell estimates on the simplex. An important
point in the proof from [16] was the embedding of the initial space into a toric
Kéhler manifold. This Kahler manifold admits a nonnegative Ricci tensor. Finally,
the results follow from the Bochner’s identity. It was pointed out to the author by
Bo’az Klartag that inequality can be generalized to the case when v is any
log-concave measure if instead of Kahler structure one applies the metric-measure
space studied in this paper and Theorem

For applications of Hessian structures in statistics see [27] and the related refer-
ences.

9. Hessian manifolds as CD(K, N)-spaces and diameter bounds. We recall
that a smooth d-dimensional manifold equipped with a measure p = e~F dvol,
P € C?(M) is called CD(K, N)-space if the modified Bakry—Emery tensor

1
satisfies
RN,}L > K.

In the case N = oo the tensor R, coincides with the Bakryf]é)mery tensor.
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Let us show that our metric-measure space is a CD(K, N)-space.

Lemma 9.1.

1 1 )

Proof. The result follows from Corollary It is helpful to apply the following
relation

q)gni ;rllc = gjlgmsq)wynwwzq)wsijk = Tr[(DQ(I))_lDQq)M (D2(I))_1D2(I>wk]-
By the Cauchy inequality and (|7.18))
1
Tr[(D*®)"'D*®,,(D*®)"'D*®,,] > = (Tr(D*®) "' D*®,,)* = g(_vi + W)

O

SHR

Theorem 9.2. Assume that p = e~Vdx is a log-concave measure and v is the
normalized Lebesgue measure on a convez set Q. Then M = (R%, g, u) is CD(0,2d)-
space.
If, in addition,
DV >C-1d
with C > 0, then (R%, g, 1) is C’D(%7 2d) -space, where m = SUp,cgupp(y) | D2®]|.

Proof. Recall that 1 = e~F dvolyr, where P = 3(V+W (V®)). Since W is constant
on supp(v), one gets from the previous lemma that

C 1
> — — A
Roop = 2m9+ dVMP®VMP

O

Remark 9.3. It was pointed out to the author by Bo’az Klartag that this result can
be obtained by embedding M onto the corresponding toric 2d-dimensional K&hler
manifold and applying computations in C? (which are easier than in the real case).
This gives a geometric interpretation of the constant 2d appearing in the CD (K, N)-
condition.

It is known that the C D(K, N)-spaces satisfy the Myer’s and the Bishop-Gromov
comparison theorem (see [29]). But this holds in general for complete manifolds
only, which is not always the case with M. Indeed, one can easily verify that if p
is the standard Gaussian measure and v is the Lebesgue measure on a simple set
(ball or cube), then M is bounded and not complete. Nevertheless, some classical
results can be easily verified for the case of geodesically convex manifolds, which are
manifold admitting the following property: every two points x,y € M can be joined
by a shortest geodesic curve (t) : ¢ — exp, (tv), t € [0,dist(x,y)], v € TM,, |v| =
1.

In particular, the standard proof of the Bishop-Gromov comparison theorem for
volume growth of balls can be easily generalized to geodesic convex spaces. Applying
this fact we get immediately the following result.

Corollary 9.4. Assume that p = e~ Vdx is a log-concave measure and v is the
Lebesgue measure on a convex set ). Assume, in addition, that M is geodesically

convex. Then
p({z : dy (2, o) <1})
r2d

r—

i$ a non-increasing function.
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It is known (see [29] for precise statements and for the references) that concentra-
tion inequalities together with non-negativity of the Ricci tensor imply boundedness
of the manifold. Here we apply concentration arguments to our space M.

Theorem 9.5. Let p =~ be the standard Gaussian measure and v is the Lebesgue
measure on a convex set with diameter D. Assume, in addition, that M is geodesi-
cally convex. There exists a universal constant C > 0 such that

diam(M) < CVdV/D.
Proof. We follow the arguments from [22] Theorem 7.4. Apply the concentration

inequality (5.10]).

4
(s dy(z, A) < h) > 1—e207, p(A) > % (9.26)
) _ . _diam(M)
Choose a ball {z : dy(0,2) < r} = B,(0) on M with r = ———=. Take z at

distance 3r from the origin. One has B,.(0) C By, (2). If u(B,(0)) > 1 set A = B,(0)
and apply (9.26). By Corollary

H(B,(2) 2 u(Bu(2)) - (1)

Note that B,.(z) is included in the complement of A,., hence

A1 1\
e 202 > 5 . (Z) . (927)

set: A = BS(0). One has

1
(B (0)) > (B, (0)) o7
The ball Bz (0) is included in the complement of Az. One obtains

4 1
Inequalities (9.27)) and (9.28)) imply the desired bound. O

Remark 9.6. There are some reasons to believe that the assumption of geodesic
convexity of M can be omitted, but we were not able to prove this.
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