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Abstract

We present a complete answer on the Lie algebra cohomology of formal vector fields on the d-
dimensional plane with coefficients in the symmetric powers of the coadjoint representation. At the
same time we compute the cohomology of the Lie algebra of formal vector fields that preserve a given
flag at the origin. The resulting cohomology are known to be responsible for the characteristic classes
of the flags of foliations and are well used in the local Riemann-Roch theorem [10].

We use the degeneration theorems of appropriate Hochschild-Serre spectral sequences and provide
the method which allows us to avoid one of the most complicated computation in the invariant theory
which was used by Gelfand, Feigin and Fuchs in order to cover the case of first symmetric power [17].
The method we provide gives a uniform and beautiful answer for all symmetric powers at the same
time.

0 Introduction

0.1 Main results

The main result of this paper concerns the homology computation of the Lie algebra of formal vector fields
on the n–dimensional plane (denoted for further by Wn). We compute the cohomology with coefficients
in symmetric powers of the coadjoint representation. The answer is simply enough to be repeated here:

Theorem (Theorem 2.3.17). For all k > 1 the relative cohomology of the Lie algebra Wn (relative to the
subalgebra of linear vector fields) with coefficients in k-th symmetric power of coadjoint representation
vanishes everywhere except the degree 2n. The description of relative and absolute cohomology in terms
of gln-invariants looks as follows:

Hi(Wn;S
kW ∗

n) =

{
[Sn+kgln]

gln ⊗ [Λi−2n(gln)]
gln , if 2n 6 i 6 n2 + 2n,

0, otherwise.

Recall that the algebra of gln–invariants in the symmetric algebra S
q
(gln) known to be the free sym-

metric algebra with n generators of degrees 1, 2, . . . , n. Respectively, the algebra of gln–invariants in the
exterior algebra Λ

q
(gln) is isomorphic to the free skew-symmetric algebra with n odd generators of degrees

1, 3, 5, . . . , 2n− 1. See e.g. [30, 12]. In particular, we can identify the 2n’th cohomology H2n(Wn;S
kW ∗

n)
with the subspace of polynomials of degree n + k in the polynomial algebra k[x1, x2, . . . , xn] subject to
the following convention on degrees: the generator xi has degree i. The formulas for generating cocycles
are given in Section §A.3.

The conjectural answer in the aforementioned theorem was stated informally in early 70’s by B. Feigin,
D. Fuchs and I.Gelfand after their cumbersome computation for a particular case of first symmetric
power of coadjoint representation ([17]). Later on, in 1989, the general answer to the problem was stated

∗The research was partially supported by the grant NSh-3349.2012.2, the grant by Ministry of Education and Science of
the Russian Federation under contract 14.740.11.081, by the grant RFBR-13-02-00478.
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(without any proof) by B. Feigin and B.Tsygan in [10] while they were using the desired Lie algebra
cohomology in order to prove the local Riemann-Roch theorem. In 2003, V.Dotsenko ([7]) provided
a direct homology computation for the linear dual problem in the case n = 1. Namely, he computed
the homology of the Lie algebra of polynomial vector fields on the line with coefficients in symmetric
powers of adjoint representation. We suggest below the uniform method which does not involve many
computations with invariants and covers the case of all positive n and all symmetric powers.

At the same time we are going to cover another important homology computation. The problem
mentioned below also takes it origin in formal geometry and has important applications in the foliation
theory (see e.g. [9].) Namely, we compute the cohomology of the Lie algebra of formal vector fields
that preserve a given flag of foliations. More precisely, let us fix the collection of natural numbers
n = (n0, . . . , nk) and fix a sequence of trivial embedded foliations {F1,F2, . . . ,Fk} in Rn0+...+nk such that
the foliation Fi+1 has codimension ni in Fi (n0 is a codimension of F1). I.e. Fi := Rn0+...+ni−1×Rni+...+nk

and any point p ∈ Rn0+...+ni−1 defines you a leaf of Fi. The Lie algebra W (n0, . . . , nk) consists of formal
vector fields that infinitesimally preserve all foliations near the origin (see section 1.2 for description of
this Lie algebra in terms of coordinates in Rn). Consider the maximal reductive subalgebra in the space
of linear vector fields that preserve the aforementioned flag. This subalgebra is isomorphic to the direct
sum of matrix algebras gln0

⊕ . . .⊕ glnk
. We state the answer for the relative cohomology first.

Theorem (Cor.2.2.16 below). Relative cohomology of the Lie algebra W (n0, . . . , nk) (relatively to sub-
algebra gln0

⊕ . . . ⊕ glnk
) are different from zero only in even degrees and coincides with the algebra of

gln0
⊕ . . . ⊕ glnk

invariants in the factor-algebra of the symmetric algebra S
q
(gln0

⊕ . . . ⊕ glnk
) by the

ideal generated by the set of subspaces Sn0+...+nr+1(gln0
⊕ . . .⊕glnr

) for r = 0, . . . , k. The latter ideal is
denoted by In0,...,nk

.
In particular, we have the following equivalences of vector spaces indexed by homological degree i

Hi(W (n0, . . . , nk),gln0
⊕ . . .⊕ glnk

;k) =


0, if i = 2k + 1,[
Sk(gln0

⊕...⊕glnk
)

In0,...,nk

]gln0
⊕...⊕glnk

, if i = 2k.

The union of these identities gives a graded isomorphism of the corresponding rings.

The theory of gl–invariants provides the following description of the algebra of gln0
⊕ . . . ⊕ glnk

-
invariants: [

S
q
(gln0

⊕ . . .⊕ glnk
)
]gln0

⊕...⊕glnk = k [Ψ01, . . . ,Ψ0n0 ; . . . ; Ψk1, . . . ,Ψknk
] .

Namely, the aforementioned ring is the free commutative algebra generated by the set of generators {Ψij},
index i ranges from 0 to k and j ranges from 1 to ni. The degree of the generator Ψij coincides with the
second index j. The intersection of the ideal In0,...,nk

with the subalgebra of invariants is generated by
monomials (Ψα01

01 . . .Ψ
α0n0
0n0

) . . . (Ψαr1
r1 . . .Ψ

αrnr
rnr ) such that

∑r
i=0

∑ni
j=1 αij > n0+ · · ·+nr, where the index

r ranges from 0 to k as above.
We do not mention here how one should compute the absolute cohomology of the Lie algebra

W (n0, . . . , nk) and refer these discussions to Section 2.3 and in particular to Theorem 2.3.18. So far
it is enough to state that there exists a straightforward procedure how to get this answer. The particular
case n = (1, 1, . . . , 1) where all dimensions are computed in terms of Catalan numbers is considered in
Section 4.1.

In order to advertise the description of characteristic classes of flags of foliations via cohomology of
the Lie algebra W (n1, . . . , nk) we mention the following particular application.

Let SL(n+ 1,R) be a simple Lie Group of square matrices of size n+ 1 over real numbers with the
determinant 1 and Γ its discrete subgroup such that the quotient space SL(n+ 1,R)/Γ is compact. Let
P be a subgroup that fixes a given line in Rn+1. Then P acts on SL(n+ 1,R)/Γ by left translations and
the orbits of this action defines a foliation FP of codimension n. The following Corollary is proved in
Section 2.4:
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Corollary (Statement 2.4.24). The foliation FP on SL(n+1,R)/Γ can not be a subfoliation. I.e., there
is a cohomological obstruction to the existence of a flag of foliations F1 ⊃ F2 on SL(n + 1,R)/Γ such
that the foliation F2 is concordant to FP.

0.2 Motivations: formal geometry

In this section we remind the connection between our computations and characteristic classes of different
structures which appear naturally in differential geometry and algebraic topology. This bridge is known
under the name Formal geometry. Below we recall the key idea of formal geometry (see e.g. [15]) which
is rather simple and was probably first announced in early 1970’s by I.M.Gelfand on his famous seminar.
We remind only the construction of characteristic classes of a manifold using Lie algebra cohomology
of the infinite-dimensional Lie algebra Wn. All other constructions which comes up with characteristic
classes of fibrations or foliations on the manifold are speculations around this main construction. For
details we refer to the following literature [12]ch.3,[15],[1],[3].

Indeed, with any complex smooth manifold M of dimension n we assign the infinite-dimensional
manifold M coor of formal coordinates on M . I.e. the points of M coor are in one-to-one correspondence
with the following pairs: a point p ∈ M together with a system of formal coordinates in the neibourhood
p with the origin in this point p. The manifold M coor may be also described as the space of ∞-jets of
submersions M → Cn with 0 as a target. From one side, the manifold M coor form a bundle over M whose
fibers are homotopy equivalent to GLn. The corresponding principle GLn-bundle is isomorphic to the
principal bundle associated with the tangent bundle on M . On the other hand, the tangent space at each
point M coor is isomorphic to the Lie algebra of formal vector fields Wn. The union of these isomorphisms
defines a map from the Chevalley complex of the Lie algebra Wn to the De Rham complex of M coor. The
relative version of this morphism is a map: ch : C

q
(Wn,gln;C) → Ω

q
DR(M

coor/GLn) If we pass to the
cohomology we get the following characteristic map:

ch : H
q
(Wn,gln;C) → H

q
(M coor/GLn) = H

q
(M ;k).

This map is known as the construction of characteristic classes of tangent bundle using the Lie algebra
cohomology of infinite-dimensional Lie algebras. The same construction works for real manifolds. The
main difference is that one has to replace the group GLn(R) by it’s compact subgroup O(n) of orthogonal
matrices.

One can follow the same procedure on manifolds with additional differential geometric data. For
example, if a manifold M admits a foliation F of codimension d then one can consider the space of formal
coordinates on leaves of this foliation F . The tangent space to the corresponding infinite-dimensional
manifold will be once again isomorphic to the Lie algebra Wd. This provides the way how one can
get the characteristic classes of foliations generalizing the Godbillon-Vey characteristic class. Similar
construction may be given if one is interested in the characteristic classes of G-fibration over M with a
compact group G (see e.g. [20]). This note was started by considering the following constructions of the
same kind:

1. Let us fix the dimension n of a manifold and fix a codimension d of a foliation. With each foliation
with prescribed dimensions we assign the infinite-dimensional manifold of charts on the underlying
manifold such that the first n− d coordinates should be the coordinates on a leaf.

In particular, the above situation is interesting even in the case of fibration f : S 7→ M where the
fiber over each point p ∈ M is a compact manifold of dimension n− d. (See e.g.[10] for details and
[8, 13, 14] for applications to the local Riemann-Roch theorem).

2. Consider a flag of foliations with a given collection of codimensions. The assigned infinite-dimensional
manifold will consists of charts preserving leaves. I.e. the first n1 coordinates will be the coordi-
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nates on a leaf of the foliation with smallest codimension, n1 + n2 will be coordinates on a leaf of
the second foliation and so on. (See [9] for detailed construction.)

The corresponding infinite-dimensional Lie algebra in first example is known to coincide withW (n− d, d).
In the second example one has to compute the cohomology of the Lie algebra W (n1, . . . , nk), where
(n1, . . . , nk) is the collection of codimensions. All these cohomology problems are covered in this note.

0.3 Outline of the paper

The paper is organized as follows:
Section 1 contains some standard definitions (Subsection 1.1), the description of all infinite-dimensional

Lie algebras whose cohomology we compute (Subsection 1.2) and the description of the acyclic Weyl su-
peralgebra (Subsection 1.3).

Section 2 contains statements of all main results of this paper. We start from Subsection 2.1 where we
recall the classical result by Gelfand and Fuchs and it’s generalization due to the author. In Subsection 2.2
we formulate main Theorems 2.2.10 and 2.2.14 on relative cohomology of Lie algebras WL(m|n) and
W (n1, . . . , nk). In Subsection 2.3 we explain the difference between relative and absolute cohomology. A
particular cohomological obstruction to have a flag of foliations is explained in Subsection 2.4.

Section 3 contains the proof of the main Theorem 2.2.10. We state several homological results
on relative homology of parabolic subalgebra in Subsection 3.1, however, the proofs of these results are
postponed to Appendix B. In Subsection 3.2 we use these results in order to describe the Hochschild-Serre
spectral sequences assigned with embeddings of parabolic subalgebra into the infinite-dimensional Lie
algebras of formal vector fields. In Subsection 3.3 we show how does the degenerations of aforementioned
Hochschild-Serre spectral sequences implies main Theorem 2.2.10.

We illustrate the combinatorics of our main result in two particular cases in Section 4. Namely, we
show the description of the representing cocycles in the absolute case W (1, . . . , 1) in Subsection 4.1. We
present a simple formulas for the generating cocycles for the Lie algebra cohomology H

q
(Wn;S

mW ∗
n)

in Subsection 4.2 when n = 1. The description of generating cocycles for arbitrary n requires more
definitions and, therefore, is presented in Appendix A.3.

Appendix A is concentrated on a careful description of the relative chains and cocycles for infinite-
dimensional Lie algebras under consideration.

Apendix B contains general results on cohomology of parabolic Lie subalgebras based on the existence
of BGG resolution. The particular case of upper block-triangular matrices leads to Lemmas 3.1.26
and 3.1.28 which was used in the proof of main Theorem 2.2.10.
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1 notations and recollections

1.1 Lie algebra cohomology

The Chevalley–Eilenberg complex C
q
(g;k) of a Lie algebra g is a free differential graded commutative

algebra generated by the dual vector space g∗ shifted by 1 with the differential defined on the generators
as a map d : g∗ → Λ2g∗ linear dual to the commutator in the Lie algebra g∗. The cohomology of this
complex counts the cohomology of the Lie algebra g with trivial coefficients. We refer the reader to the
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main monograph [12] on this subject for detailed definitions of cohomologies with arbitrary coefficients.
The same monograph also contains the description of most frequently used method of computations and
the particular computation for infinite-dimensional Lie algebras. A review of the definition of homology of
Lie algebras in terms of derived functors may be found in textbooks on homological algebra (see e.g. [29]
ch.7).

In this article we are mostly interested in the Lie algebra cohomology of infinite-dimensional Lie
algebras. There are several ways on how to avoid the problems related to the finiteness conditions. One
way is to consider a grading on a Lie algebra such that the graded components are finite-dimensional.
Then all considered modules should be graded and the duals should be also graded duals. Another
possibility is to consider the topology on a Lie algebra. This produces the following changes in the
definitions. The duals should be considered as continuous duals. In particular, the Chevalley-Eilenberg
complex C

q
(g;L) of a topological Lie algebra g consists of continuous skew-symmetric maps from the

several copies of g to a topological module L.
The main computational method we use below is the spectral sequences by Hochschild and Serre. Let

us briefly recall the nature of this spectral sequence. Consider an embedding of Lie algebras i : h ↪→ g
and choose a decomposition g ≃ h ⊕ g/h as h-modules. Then there is a canonical filtration on the
Chevalley-Eilenberg complex of the Lie algebra g associated with this embedding i:

C
q
(g;L) = Hom(Λ

q
g;L) ⊃ Hom(Λ

q
g ⊗ Λ1g/h;L) ⊃ . . . ⊃ Hom(Λ

q
g ⊗ Λkg/h;M) ⊃ . . . (1.1.1)

The spectral sequence associated with this filtration is called the Hochschild-Serre spectral sequence and
has the following first term Ep,q

1 = Hq(h;Hom(Λp(g/h);M)).
We do all computations over the field k of zero characteristic. All reasonable applications deals with

the case of complex or real numbers. There is no difference between complex and real numbers for the
algebraic counterpart of this paper. However, one has to separate these two cases while working with
applications via formal geometry for complex or real smooth manifolds respectively.

1.2 Lie algebras of formal vector fields and their subalgebras

The main infinite-dimensional Lie algebra in this article is a Lie algebra of formal vector fields on the
n-dimensional plane. We use the standard notation Wn following textbook [12].

Recall the definition. Let us fix coordinates x1, . . . , xn on the n-dimensional plane kn. The ring of
∞-jets at the origin 0 ∈ kn coincides with the ring of formal power series k[[x1, . . . , xn]] on n variables.
We will also use shorter notation On for the same ring. The infinite-dimensional Lie algebra of derivations
of this ring is called the Lie algebra of formal vector fields on kn and is denoted by Wn. Any vector field
ν ∈ Wn admits presentation in coordinates ν =

∑n
i=1 νi

∂
∂xi

, where νi ∈ On. The subspace of vector fields

with linear coefficients
{∑

i,j cijxi
∂

∂xj

}
form a Lie subalgebra isomorphic to the Lie algebra gln = gln(k)

of n× n-matrices.

1.2.1 Extension by g-valued functions

With any Lie algebra g with a commutator [, ]g we can assign a new infinite-dimensional Lie algebra
Wn n g ⊗ On (denoted later by W (n;g)). This algebra is a semi-direct product of the Lie algebra
of formal vector fields and the Lie algebra of g-valued formal power series on kn. In particular, the
commutator in this algebra looks as follows:

[η1 + g1 ⊗ p1, η2 + g2 ⊗ p2] = [η1, η2] + [g1, g2]g ⊗ p1p2 + g2 ⊗ η1(p2)− g1 ⊗ η2(p1), (1.2.2)

where ηi ∈ Wn, gi ∈ g, pi ∈ On with i ∈ {1, 2}. This algebra was used in [20] in order to define the
characteristic classes of G-bundles (whenever G is a compact group) using the constructions of formal
geometry.
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1.2.2 Vector fields preserving foliation structures

Let us substitute in the example from the previous Section 1.2.1 instead of g the infinite-dimensional
Lie algebra Wm which does not admit the Lie group at all. However, the geometrical meaning of the
Lie algebra Wn nWm ⊗On is clear. Indeed, the Lie algebra Wn nWm ⊗On is a subalgebra of the Lie
algebra Wn+m of formal vector fields on kn+m consisting of those vector fields that preserve the trivial
foliation kn × km. Where for any p ∈ km the product kn ×{p} is considered to be a leaf of this foliation.
In other words, a vector field ν =

∑n+m
i=1 νi

∂
∂xi

belongs to Wn nWm ⊗On whenever for all i from 1 to n
the formal power series νi does not depend on xn+1, . . . , xn+m.

Let us also recall the generalization of this Lie algebra to the case of a flag of foliations. Namely, let
us fix a collection of integers n = (n0, n1, . . . , nk) and consider a collection of trivial embedded foliations
{F1 ⊃ . . . ⊃ Fk} with prescribed codimensions. Namely, Fi := kn0+...+ni−1 × kni+...+nk and each leaf of
Fi is equal to p×kni+...+nk for appropriate point p ∈ kn0+...+ni−1 . The Lie algebra W (n0, n1, . . . , nk) is a
Lie subalgebra of Wn0+n1+...+nk

consisting of those vector fields that preserve the aforementioned flag of
foliations. In other words, a vector field ν =

∑n+m
i=1 νi

∂
∂xi

belongs to W (n0, n1, . . . , nk) if and only if for
all i the formal power series νi depends only on variables x1, . . . , xn0+...+nr where r is the integer defined
by the inequality n0 + . . .+ nr−1 < i < n0 + . . .+ nr. W (n0, n1, . . . , nk) contains a direct sum of matrix
subalgebras glnr

where r ranges from 0 to k. Each glnr
is generated by the fields xi

∂
∂xj

where i, j satisfy

for some r the inequality n0 + . . .+ nr−1 < i, j < n0 + . . .+ nr.

1.2.3 Vector fields that are linear in the normal direction to the leaves of a foliation

We also want to give special notations for another class of subalgebras of vector fields. These Lie algebras
are very useful for our homological computations:
Define WL(n|m) as a subalgebra of W (m,n) consisting of those fields ν =

∑n+m
i=1 νi

∂
∂xi

such that for
all i = 1,. . . ,n the power series νi is a polynomial of degree no more than 1. I.e. the intersection of
WL(n|m) with Wn is a subspace of Wn spanned by linear and constant vector fields. Similarly, one can
define the Lie algebra WL(n0, . . . , nk|nk+1, . . . , nk+l) by the same property. We say that a vector field
ν =

∑n0+...+nk
i=1 νi

∂
∂xi

from W (n0, . . . , nk+l) belongs to WL(n0, . . . , nk|nk+1, . . . , nk+l) if all νi are linear
or constant for all integer i from the interval [1, n0 + . . .+ nk].

Analogously to the case of one group of variables we suggest to consider the extension of the Lie
algebra of vector fields preserving a flag by the Lie algebra of g-valued functions. Let W (n1, . . . , nk;g)
be the semi-direct product W (n1, . . . , nk) n g ⊗ On1+...+nk

with the commutator defined analogously
to (1.2.2). Let WL(n1, . . . , nk|nk+1, . . . , nk+l;g) be it’s subalgebra whose intersection with Wn1+...+nk

consists of linear or constant vector fields.

1.3 Weyl superalgebra

In this section we recall a standard construction from homological algebra. The Weyl Lie superalgebra
described below is acyclic, but has a standard filtration such that the corresponding spectral sequence
coincides in some cases with the one coming from the universal bundle over the classifying space. One
can define characteristic classes of fibrations using a filtered map from a Weyl superalgebra. The details
of this construction may be found, for example, in [12, 20].

Let g be a given Lie algebra. Consider the differential-graded Lie superalgebra g[1]
Id→ g. Both odd

and even parts of this algebra are isomorphic to g. The commutator on the even part g coincides with
the commutator in the initial Lie algebra g, the restriction of the commutator on the odd part is zero
and the remaining commutators g⊗ g[1] → g[1] are prescribed by the adjoint action of g on itself. This
algebra is Z-graded: even part differs from zero in degree 0, odd part differs from zero only in degree −1.
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The differential is the identity map Id : g[1] → g:

g[1]
Id→ g := . . . −−−−→ 0 −−−−→ g

Id−−−−→ g −−−−→ 0 −−−−→ . . .

The Chevalley-Eilenberg complex C
q
(g[1]

Id→ g) of this Lie super-algebra is called the Weyl superalgebra

of g and is denoted by W
q
(g). The Weyl algebra W

q
(g) is acyclic because the initial Lie algebra g[1]

Id→ g
has no cohomology at all. However, this complex W

q
(g) is interested as a filtered complex. Indeed,

consider the Hochschild-Serre filtration associated with the embedding of the initial Lie algebra g into

g[1]
Id→ g. We call this filtration standard and denote it by F

q
W

q
(g). In particular, we have the following

isomorphisms for the associated graded terms:

F 2kW
q
(g)/F 2k+1W

q
(g) = C

q
(g;Skg∗)[−2k] and F 2k−1W

q
(g)/F 2kW

q
(g) = 0

I.e. for even numbers the associated graded complex coincides with the Chevalley-Eilenberg complex of
the initial Lie algebra g with coefficients in the symmetric power of the coadjoint representation. The
associated graded complexes for odd numbers of filtration are empty.

Remark 1.3.3. Let g be a semi-simple Lie algebra and therefore admits a compact Lie group G. The
spectral sequence associated with the standard filtration on the Weyl algebra W

q
(g) is an example

of transgression and coincides with the Borel-Moore spectral sequence associated with the universal

fibration: EG
G→ BG. In particular, the cohomology of BG differs from zero only in even degrees and

the even cohomology H2n(BG) coincides with the space of invariants [Sng∗]g of the symmetric power of
the coadjoint representation.

Similarly to the Chevalley-Eilenberg complex theWeyl algebra defines a contravariant functor from the
category of Lie algebras to the category of filtered dg-algebras. In particular, any morphism φ : g → h of
Lie algebras defines a morphism of corresponding Weyl superalgebras W(φ) : W

q
(h) → W

q
(g) compatible

with standard filtrations. Moreover, the acyclicity of Weyl algebras implies the possibility to define a
map in the opposite direction. Namely, let h be a subalgebra of g. Let φ be a possible inverse map
g → h, φ not need to be a map of Lie algebras but should be a map of h-modules. Then there is a unique
way how to associate the map of filtered complexes from W

q
(h) → C

q
(g;k) where the filtration on Weyl

superalgebra is standard and the filtration on Chevalley-Eilenberg complex C
q
(g;k) is the Hochschild-

Serre filtration (1.1.1) associated with the embedding h ↪→ g.

1.3.1 Relative case

Let h be a Lie subalgebra of g. With any g-module M one can assign the relative Chevalley-Eilenberg
complex C

q
(g,h;M) that consists of those chains c ∈ Hom(Λ

q
g,M) such that both c and its differential

dCE(c) vanish while restricting at least one of the arguments on h.
We can apply the same procedure for the Weyl super-algebra. Indeed, we define the relative Weyl

superalgebra W
q
(g,h) to be the relative Chevalley-Eilenberg complex of the Lie superalgebra g[1]

Id→ g
relatively to the Lie subalgebra (0 → h). In particular, the components of the associated graded complex
with respect to the standard filtration looks as follows:

F 2kW
q
(g,h)/F 2k+1W

q
(g,h) = C

q
(g,h;Skg∗)[−2k] and F 2k−1W

q
(g,h)/F 2kW

q
(g,h) = 0 (1.3.4)

Note that relative Weyl dg-algebra is no more acyclic. However, if h is semi-simple and admits a compact
group H then the cohomology of the relative Weyl algebra W

q
(g,h) should be equal to the cohomology

of the classifying space BH ≃ EH/H ≃ {point}/H. That is the total cohomology H
q
(W

q
(g,h)) are even

and coincides with the ring of invariants [S
q
h]h.
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2 Relative chains versus truncated Weyl super-algebras

In this section, first, we recall the classical results from [16] concerning the description of the relative
cohomology ring of the Lie algebra Wn modulo subalgebra of linear vector fields gln and the similar
results obtained by the author in [20] on cohomology ring of the Lie algebra Wn n g ⊗ On. Second,
we consider a particular case of the Lie algebras W (m,n) and state similar results for the Lie algebra
WL(m|n). Third, we state the main general results which we prove in the next Section 3. All results
in this section either follows from careful description of relative chains based on hunting gl-invariants
or follows from the theorems from the next section. In both cases we will give direct links either to
Appendix A or to Section 3.

2.1 known results

Recall one of the first cohomological computation in formal geometry due to Gelfand and Fuchs:

Theorem 2.1.5. ([16]) The space of relative cochains of formal vector fields Wn with constant coefficients
is isomorphic to the truncated cohomology of the classifying space BSUn, in particular there are no relative
cochains of odd degree:

H
q
(BSUn)

H>2n(BSUn)
=

[S
q
(gln)]

gln

[S>n(gln)]
gln

=
W

q
(gln,gln)

F 2n+1W
q
(gln,gln)

≃−→ C
q
(Wn,gln;k)

This computation is based on the description of relative chains as gln-invariants. We refer to the
original paper [16] and to the Appendix A.2 for details. The similar computation with gln-invariants was
done by the author in [20] and leads to the following result:

Theorem 2.1.6. ([20]) The ring of relative chains of the Lie algebra of formal vector fields extended by
g-valued functions coincides with the quotient of the relative Weyl superalgebra W

q
(gln ⊕ g,gln) modulo

the (2n+ 1)-st part of standard filtration:

W
q
(gln ⊕ g,gln)/F

2n+1W
q
(gln ⊕ g,gln)

≃−→ C
q
(Wn n g ⊗On,gln;k).

We will go further and state the analogous result for the Lie subalgebra of constant and linear vector
fields extended by g-valued functions. In Section 1.2.3 these algebras are denoted by WL(m|0;g) or
WL(m|;g) for simplicity.

Theorem 2.1.7. The relative chain complex of the Lie algebra WL(m|0;g) is isomorphic to the truncated
Weyl superalgebra of the Lie algebra g:

W
q
(g)/F 2m+1W

q
(g)

≃−→ C
q
(WL(m|0;g),glm;k). (2.1.8)

In particular, we can substitute the Lie algebra of vector fields on kn as a possible g and get the
following:

W
q
(Wn,gln)/F

2n+1W
q
(Wn,gln)

≃−→ C
q
(WL(m|n),glm ⊕ gln;k). (2.1.9)

This observation becomes crucial for further implications. Namely, the computation of the cohomology
of the Lie algebra WL(m|n) for different m will be enough in order to get the description of the spectral
sequence associated with the standard filtration on the relative Weyl algebra W

q
(Wn,gln).
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2.2 Main theorems

Denote by π the natural surjection WL(m|n) � Wn � gln of gln-modules.

Theorem 2.2.10. The morphism from Weyl superalgebras associated with the projection π leads to the
following quasi-isomorphism of dg-algebras:

H
q
(BSUn)/H

>2(n+m)+1(BSUn) = W
q
(gln,gln)/F

2(n+m)+1W
q
(gln,gln)

quis−→
quis−→ C

q
(WL(m|n),glm ⊕ gln;k). (2.2.11)

In other words, the relative cohomology of the Lie algebra WL(m|n) is isomorphic to the truncated ring
of polynomials k

q62(m+n)[Ψ2, . . . ,Ψ2n] of degrees less or equal than 2m+ 2n. Where the polynomial ring
is generated by n even variables Ψ2, . . . ,Ψ2n with degΨ2i = 2i.

Proof. The proof of this theorem is postponed to Section 3 (page 18). In this section we will only explain
why this result implies all others.

Together with Equation (2.1.9) we get the main corollary of this paper:

Corollary 2.2.12. For all m > 1 the relative cohomology of the Lie algebra Wn with coefficients in the
m-th symmetric power of the coadjoint representation are different from zero only in degree 2n and is
equal to the space of invariants [Sm+n(gln)]

gln:

H2n(Wn,gln;S
m(W ∗

n)) = [Sm+n(gln)]
gln , and Hi ̸=2n(Wn,gln;S

m(W ∗
n)) = 0

Proof. The isomorphism (2.1.9) between the Chevalley-Eilenberg complex of the Lie algebra WL(m|n)
and the truncated Weyl superalgebra for Wn implies the following short exact sequence of complexes that
relates two subsequent values of m:

0 → F 2m−1W
q
(Wn,gln)

F 2m+1W
q
(Wn,gln)

→ C
q
(WL(m|n),glm ⊕ gln;k)

pm→ C
q
(WL(m− 1|n),glm−1 ⊕ gln;k) → 0

We denote the surjective map by pm. As was mentioned in (1.3.4) the standard filtration on the Weyl
algebra has the same odd and even parts: F 2m = F 2m−1. and the associated graded F 2m/F 2m+1 is
isomorphic to the Chevalley-Eilenberg complex with coefficients in the m-th symmetric power of the
coadjoint representation. Theorem 2.2.10 implies that relative cohomology of the Lie algebra WL(m|n)
is the truncation of the polynomial ring H

q
(BSUn) = k[Ψ2, . . . ,Ψ2n] by polynomials of degree 2(m+ n).

Therefore, the map pm is surjective on cohomology rings and is also the truncation by polynomials of
degree 2(m − 1 + n). Hence, the map pm should be surjective on cohomology rings and we get a short
exact sequence of cohomologies:

H
q
(Wn,gln;S

mW ∗
n)[2m] �

� // H
q
(WL(m|n),glm ⊕ gln;k)

pm // //

≃
��

H
q
(WL(m− 1|n),glm−1 ⊕ gln;k)

≃
��

k
q62(m+n)[Ψ2, . . . ,Ψ2n] // // k

q62(m−1+n)[Ψ2, . . . ,Ψ2n]

Thus, we conclude that the shifted cohomology of the cochain complex C
q
(Wn,gln;S

mW ∗
n)[2m] are

different from zero only in degree 2(m + n) and coincides with the polynomials of degree 2(m + n).
Making the opposite homological shift we get the following answer:

Hi(Wn,gln;S
mW ∗

n) =


H2(m+n)(BSUn) = [Sm+n(gln)]

gln =
{polynomials of degree 2(n+m) in k[Ψ2, . . . ,Ψ2n]},

if i = 2n,

0, otherwise.

(2.2.13)
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We also state here the generalization of Theorem 2.2.10 to the Lie algebra related to a flag of foliations
with given codimensions.

Theorem 2.2.14. For any given collection of codimensions (m;n1, . . . , nk, arbitrary Lie algebra g and
a (glm ⊕ gln1

⊕ . . .⊕ g)-equivariant projection π : WL(m|n1, . . . , nk;g) � gln1
⊕ . . .glnk

⊕ g we get the
following quasi-isomorphism (2.2.15) between the quotient of the Weyl algebra and the Chevalley-Eilenberg
complex of the Lie algebra of vector fields:

W
q
(gln1

⊕...⊕glnk
⊕g,gln1

⊕...⊕glnk
)

In1,...,nk
(g)

quis //

quis

++WWWWWWWWWWWWWWWWWWWWWWWWW
W

q
(W (n1, . . . , nk;g),gln1

⊕ . . .⊕ glnk
)/F 2m+1

quis

��
H
q
(BSUn1×...×BSUnk

)⊗W
q
(g)

In1,...,nk

C
q
(WL(m|n1, . . . , nk;g),glm ⊕ . . .glnk

;k).

(2.2.15)

Where the ideal In1,...,nk
(g) is generated by symmetric powers S(m+1+

∑j
i=1 ni)(gln1

⊕ . . . ⊕ glnj
) with j

ranges from 1 to k and the symmetric power S(m+1+
∑k

i=1 ni)(gln1
⊕ . . . ⊕ glnk

⊕ g). Moreover, quasi-
iso (2.2.15) is compatible with filtrations: Standard filtration on Weyl algebra and the Hochschild-Serre
filtration on Chevalley-Eilenberg complex. What means that the same result remains valid in the non-
relative case (see Theorem 2.3.18).

Proof. The proof repeats the one of Theorem 2.2.10. However, one may prove this theorem by induction
on the number k of foliations in the flag. The key ingredient will be Computation (2.2.13) and the
consecutive degeneration of Hochschild-Serre spectral sequences based on the following embeddings of
Lie algebras:

WL(m|n1, . . . , nk;g) ⊃ WL(m|n1, . . . , nk) ⊃ . . . ⊃ WL(m|n1).

We omit straightforward but rather technical details.

In particular, Theorem 2.2.14 describes the cohomology ring of the Lie algebra of vector fields pre-
serving a given flag of foliations.

Corollary 2.2.16. There exists an isomorphism between the truncated ring of characteristic classes and
the relative cohomology ring of the Lie algebra of vector fields preserving a given flag of foliations:

H
q
(BSUn1 × . . .×BSUnk

)

In1,...,nk

quis−→ H
q
(W (n1, . . . , nk),gln1

⊕ . . .⊕ glnk
;k),

where the ideal In1,...,nk
is generated by the union of subspaces H>2(n1+...+nr)(BSUn1 ⊕ . . .⊕BSUnr) for

r = 0, . . . , k.
In particular, we have the following equivalences of vector spaces indexed by the homological degree i

Hi(W (n1, . . . , nk),gln1
⊕ . . .⊕ glnk

;k) =


0, if i is odd, Sl(gln1

⊕...⊕glnk
)(

k∏
j=1

Sn1+...+nj+1(gln1
⊕...⊕glnj

)

)

gln1

⊕...⊕glnk

, if i = 2l.

The union of these identities gives a graded isomorphism of corresponding rings.

Proof. Substitution m = 0 and g = 0 in Theorem 2.2.14.
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2.3 Absolute case

So far we have been discussing only relative cohomologies because we think that this is the core of the
construction. Below we explain what should be done in order to compute the absolute cohomology.
The general prescription looks as follows: in all statements from the previous Section 2.2 one has to
replace the relative Weyl algebra for matrix Lie algebras by the absolute one’s. For example, all maps in
Diagram (2.2.15) remains being quasi-iso if one replaces the relative complexes by absolute one’s.

Let us state certain main corollaries which we find important for applications in the geometry of
foliations:

Theorem 2.3.17. The absolute cohomology of the Lie algebra of formal vector fields Wn with coefficients
in the m’th symmetric power (m > 1) of the coadjoint representation is the tensor product of the relative
cohomology and the cohomology H

q
(gln;k) of the matrix Lie algebra:

Hi(Wn;S
mW ∗

n) =

{
[Sn+mgln]

gln ⊗ [Λi−2n(gln)]
gln , if 2n 6 i 6 n2 + 2n,

0, otherwise.

Proof. Consider the Hochschild-Serre spectral sequence associated with the canonical embedding gln ↪→
Wn. The first term of this sequence is Epq

1 = Hq(gln;k)⊗Hp(Wn,gln;S
kW ∗

n). Computation 2.2.13 implies
that for p ̸= 2n the corresponding space Epq

1 is zero and, therefore, this spectral sequence degenerates in
the first term.

Theorem 2.3.18. The absolute cohomology of the Lie algebra of vector fields preserving a given flag
of foliations may be computed via the cohomology of the truncated Weyl algebra. We have a quasi-
isomorphism:

W
q
(gln1

⊕ . . .⊕ glnk
)

In1,...,nk

quis−→ C
q
(W (n1, . . . , nk);k)

where the ideal In1,...,nk
is generated by symmetric powers S(1+

∑j
i=1 ni)(gln1

⊕ . . . ⊕ glnj
) with j ranges

from 1 to k.

Proof. The implication from the relative case (Corollary 2.2.16) is standard. The method used in [16, 20]
for the same implications related with the cohomology of Lie algebras Wn and W (n;g) respectively is
also applied in our situation.

In Section 4.1 we will show a particular computation of the generating series of cohomology of a
truncated Weyl algebra for the case ni = 1 for all i. From the geometrical point of view this cohomology
corresponds to characteristic classes of a full flag of foliations.

2.4 Characteristic classes of flags of foliations

In this subsection we first recall the standard construction of characteristic classes of (flags) of foliations
and then show how does our cohomological computation predicts a cohomological obstruction to have a
flag of foliations.

As we have mentioned in the introduction the concept of formal geometry assigns to a foliation F of
codimension n on a smooth manifold X a characteristic map

ch : H
q
(Wn, o(n);R) −→ H

q
DR(X)

where o(n) is the Lie algebra of the subgroup of orthogonal matrices of size n × n. If the foliation F is
framed, i.e. the trivialization of the normal bundle is fixed, then the corresponding characteristic classes
comes from the characteristic map

ch : H
q
(Wn;R) −→ H

q
DR(X)

11



with the source space being isomorphic to the absolute cohomology of the Lie algebra Wn. For a folia-
tion of codimension 1 relative and absolute characteristic maps coincide and lead to a definition of the
Godbillon-Vey class ([19],[3]). Therefore, we call the absolute cohomology by generalized Godbillon-Vey
classes.

The same construction assigns to a flag of foliations of codimensions (n1, . . . , nk) on a smooth manifold
X a characteristic map

ch : H
q
(W (n1, . . . , nk), o(n1)⊕ . . . o(nk);R) −→ H

q
(X)

and whenever all foliations are framed we get the characteristic map from the absolute Lie algebra
cohomology:

ch : H
q
(W (n1, . . . , nk);R) −→ H

q
(X)

The construction of characteristic maps becomes very explicit whenever a foliation is determined by a
system of determining forms:

Definition 2.4.19. The system of smooth 1-forms ω1, . . . , ωn on a manifold X determines a framed
foliation of codimension n iff the following conditions are satisfied:

(ı) The set ω1,. . . ,ωn is linearly independent at each point. Equivalently, the n-form ω1 ∧ . . . ∧ ωn has
no zero’s on X.

(ıı) For all i there exists a collection of 1-forms ηij such that dωi =
∑n

j=1 ωj ∧ ηij , where d is the De
Rham differential. Equivalently, the product ω1 ∧ . . . ∧ ωn ∧ dωi is zero for all i = 1,. . . ,n.

If the system ω1, . . . , ωn is a system of determining forms of a foliation F on a manifold X, then
the restriction of ωi on any component of an intersection of a leaf of F and any open contractible set
on X is identically zero for all i. Note, that the system of determining forms ω1, . . . , ωn defines a flag
of foliations {F1 ⊃ . . . ⊃ Fk} of codimensions n1, n1 + n2, . . . ,

∑k
i=1 ni = n iff for all r = 1,. . . ,k the

collection ω1,. . . ,ωn1+...+nr is a system of determining forms of the foliation Fr. This is equivalent to the
following condition:

∀i 6
r∑

j=1

nr there exists ηij ∈ Ω1
DR(X) such that dωi =

n1+...+nr∑
j=1

ωj ∧ ηij .

The matrix units eij with 1 6 i, j 6 n form a basis of the Lie algebra gln. We define a linear map

chω : gln1
⊕ . . .⊕ glnk

→ Ω1
DR(X)

by mapping a matrix unit eij from the r’th factor glnr
to the 1-form ηn1+...+nr−1+i,n1+...+nr−1+j . Recall

that the Weyl superalgebra W
q
(gln1

⊕ . . .⊕ glnk
) is a free acyclic skew-commutative algebra, therefore,

any linear map of generators eij is extended in a unique way to the map of dg-algebras:

chω : W
q
(gln1

⊕ . . .⊕ glnk
) −→ Ω

q
DR(X)

Statement 2.4.20. The map chω assigned to a system of determining forms of a flag of foliations on
a manifold factors through the truncated Weyl superalgebra and determines characteristic classes of this
flag of foliations:

W
q
(gln1

⊕ . . .⊕ glnk
) // // W

q
(gln1

⊕...⊕glnk
)

In1,...,nk

chω

((PPPPPPPPPPPP
quis

��
C

q
(W (n1, . . . , nk);R)

ch // Ω
q
DR(X)

where the ideal In1,...,nk
and the vertical quasi-iso were defined in Theorem 2.3.18.
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Remark 2.4.21. The construction of characteristic classes via system of determining forms does not require
any knowledge of infinite-dimensional Lie algebras and their cohomology. (See e.g. [6] ch.6.) However,
the proofs and the exposition becomes clear while working with Gelfand-Fuchs cohomology. See e.g. [19]
for the comparison of these two languages.

Let us fix two integers m and n. The commutative diagram of embeddings of Lie algebras:

glm
� � //

� _

��

gln ⊕ glm
� � //

� _

��

glm+n� _

��
Wm

� � // W (m,n) � � // Wm+n

defines the following commutative diagram of dg-algebras:

W
q
(glm)/Im

quis

��

W
q
(gln⊕glm)
Im,n

oo

quis

��

W
q
(glm+n)/Im+n

quis

��

oo

C
q
(Wm;k) C

q
(W (m,n);k)oo C

q
(W (m+ n); k)oo

This construction is universal and should be compatible with the characteristic maps of foliations. Indeed,
for a flag of two foliations F ′ ⊃ F on a manifold X of codimensions m and m + n respectively we have
the following commutative diagram:

H
q
(Wm;R)

ch(F ′) ((QQQQQQQQQQQQQ
H

q
(W (m,n);R)

ch(F ′⊃F)
��

oo H
q
(W (m+ n);R)

ch(F)uukkkkkkkkkkkkkkk
oo

H
q
(X)

(2.4.22)

Corollary 2.4.23. A foliation F on a manifold X of codimension n may not be included into a flag of
foliations F ′ ⊃ F if it has a nonzero characteristic class of degree greater than n2 + 2.

Proof. Let us count the top possible degrees of elements in the truncated Weyl superalgebras. Indeed, ele-

ments of maximal degree in W
q
(gln)
In

belongs to the subspace Λtop(gl∗n)⊗Sn(gln). Therefore, H
i(Wn;k) = 0

for i > n2 + 2n. Also by degree reasons we know that Hi(W (n− d, d); k) = 0 for i > (n− d)2 + d2 + 2n.
The maximum of expressions (n− d)2 + d2 + 2n for d = 1,. . . ,n− 1 is reached when d = 1 or d = n− 1
and is equal to n2 + 2. Consequently,

∀i > n2 + 2 and ∀d < n Hi(W (n− d, d); k) = 0.

Therefore, the nonzero element in the image of ch(F) of homological degree greater than n2+2 contradicts
with the existence of commutative diagram (2.4.22)

Let us show that the example of a foliation mentioned in the introduction satisfies the conditions of
Corollary 2.4.23. Denote by SL(n+ 1,R) the Lie group of matrices with real coefficients of determinant
1. Let Γ be a discrete subgroup of SL(n+1,R) such that the quotient space SL(n+1,R)/Γ is compact.
Let P be a subgroup that fixes a given line in Rn+1. Any orbit of the left action of P on the quotient
space SL(n+ 1,R)/Γ defines a leaf of a foliation of codimension n on SL(n+ 1,R)/Γ. Denote the latter
foliation by FH .

Statement 2.4.24. The foliation FP on the compact space SL(n+1,R)/Γ has a nontrivial characteristic
class of the top degree n2 + 2n and, therefore, for n > 2 may not be a subfoliation.
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Proof. The main feature of examples of foliations coming from the action of a Lie subgroup H on a
compact quotient of a Lie group G by a discrete subgroup Γ is that most of computations inherits
the structure of computations for the corresponding Lie algebras h = Lie(H) ⊂ g = Lie(G). Standard
arguments shows that their exists a collection of 1-forms ωi,j ∈ Ω1(SL(n+1,R)/Γ) where i, j range from 1
to n+1,

∑n+1
i=1 ωi,i = 0 and dωi,j =

∑n+1
k=1 ωikωkj . The foliation FP is defined by the system of determining

forms ω1,n+1,. . . ,ωn,n+1. The direct check shows that there exists a class in Hn2+2n(Wn;R) whose image

under characteristic map is equal to the product ∧(i,j)̸=(n+1,n+1)ωi,j ∈ Ω(n+1)2−1(SL(n + 1,R)/Γ). The
latter product is a volume form on the space SL(n + 1,R)/Γ and, therefore, represents a nontrivial
cohomological class.

3 The core of the proof

Let us state several technical results and show afterwords how do they imply Theorem 2.2.10. The idea
is to compute the relative cohomology of the Lie algebra Wm+n of all vector fields and then show that
the inclusion WL(m|n) ↪→ Wm+n produces the surjective map of relative cohomology rings in opposite
direction. The surjectivity follows from the degenerations of the Hochschild-Serre spectral sequences
associated with embeddings of a parabolic subalgebra. Therefore, we start this section from general
results on cohomologies of parabolic subalgebras.

3.1 Parabolic subalgebra

Consider the Lie algebra of matrices glm+n. Let pmn be it’s parabolic subalgebra with maximal reductive
subalgebra isomorphic to the Lie algebras of matrices with two blocks glm ⊕ gln. Note that pmn is
embedded into the Lie algebraWL(m|n) and, moreover, pmn is isomorphic to the intersectionWL(m|n)∩
glm+n inside Wm+n. In this subsection we state general homological results on relative homology of
parabolic subalgebra pmn ↪→ glm+n. All proofs are postponed to Appendix B.

Denote the vector space km by V and the vector space kn by U , such that glm = gl(V ), gln = gl(U),
glm+n = gl(V ⊕ U) and the parabolic subalgebra pmn is isomorphic to gl(V )⊕ gl(U)⊕ V ∗ ⊗U . Recall,
that the set of irreducible gln = gl(U)-modules are numbered by dominant highest weights λ = {λ1 >
. . . > λn} with all λi ∈ Z. Moreover, if λn and, consequently, all λi are nonnegative integers then the
collection λ is called a Young diagram and the corresponding irreducible gln module is called polynomial
(or holomorphic). This means that the matrix coefficients of this module are polynomial. Moreover, this
module may be defined using Schur-Weyl duality: Let |λ| =

∑
λi be the number of boxes in the Young

diagram λ. Let Σλ be an irreducible representation of the symmetric group S|λ| assigned to the same
diagram λ. Then the irreducible polynomial gl(U)-module with the highest weight λ is isomorphic to
the image of the Schur functor

Sλ(U) := U⊗|λ| ⊗S|λ| Σλ (3.1.25)

(We refer to [11] for details on Schur-Weyl duality and to [27] ch1.8 for the detailed definition of a Schur
functor). Schur functors are defined for Young diagrams of arbitrary length. However, if the length
l(λ) > dim(U) then Sλ(U) is zero, otherwise it is a nontrivial irreducible gl(U)-module. The symmetric
power SiU is also an example of a Schur functor assigned to the Young diagram {i} of length 1. The
trivial module k is isomorphic to S0U .

We also consider SλU to be an irreducible pmn-module where the action of glm is trivial.

Lemma 3.1.26. The higher relative cohomology of the Lie algebra pmn with coefficients in a pmn-module
Hom(SλU ;L) vanishes for all Young diagrams λ of length less than or equal to n = dim(U) and for all
finite-dimensional glm+n-modules L. The zero cohomology is isomorphic to the space of glm+n-invariant
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maps between Sλ(U ⊕ V ) and L:

H>0(pmn,glm ⊕ gln;Hom(Sλ(U);L)) =0,

H0(pmn,glm ⊕ gln;Hom(Sλ(U);L)) ≃Homglm+n
(Sλ(V ⊕ U);L).

In particular, if λ = 0 we have the following degeneration property for all glm+n-modules L:

H>0(pmn,glm ⊕ gln;L) = 0 and H0(pmn,glm ⊕ gln;L) = [L]glm+n (3.1.27)

Proof. The proof of this Lemma is postponed to Appendix B where items 1 and 3 of Theorem B.2.47
covers the generalization of this statement for an arbitrary parabolic subalgebra. Corollary B.2.51 explains
what one get in the case we are interested in.

Lemma 3.1.28. The relative Hochschild-Serre spectral sequence associated with an embedding pmn ↪→
glm+n with coefficients in any finite-dimensional glm+n-module L degenerates in the first term. More
precisely, we have

Hp(p−
mn,glm ⊕ gln; Λ

q(n+
mn)

∗ ⊗ L) =


0, if p ̸= q,

H2p(CGr(m,m+ n))⊗ [L]glm+n =
= H2p(glm+n,glm ⊕ gln;L),

if p = q.

Where CGr(m,m + n) = SUm+n

SUm×SUn
is the Grassmanian on m-dimensional complex subspaces in m + n-

dimensional one.

Proof. This lemma is also proven in Appendix B using the parabolic BGG resolution. Part 2 of Theo-
rem B.2.47 is a generalization of this lemma to the case of an arbitrary parabolic subalgebra of a reductive
Lie algebra.

The cohomology of the complex Grassmanian CGr(m,m+n) is known to coincide with the cohomol-
ogy ring Hq(glm+n,glm ⊕ gln;k) (see e.g. [12]). These cohomology are known to be even and numbered
by m-n-shuffle permutations (see Section B.2.1 for details).

3.2 Degeneration of Hochschild-Serre spectral sequences

In this section we prove the degenerations of Hochschild-Serre spectral sequences corresponding to the
embedding pmn ↪→ Wm+n and pmn ↪→ WL(m|n) in the first term and prove the surjectivity map between
these spectral sequences by applying Lemmas from previous Section 3.1. We use the same notation and
description of the decomposition of Lie algebras as in Appendix A and refer for the detailed description
of chains. Only sketched version is given in this section.

As above we denote V = km, U = kn and V ⊕ U = km+n. We have the following decompositions as
gln ⊕ glm = gl(V )⊕ gl(U)-modules:

pmn ≃ n−
mn ⊕ glm ⊕ gln ≃ V ∗ ⊗ U ⊕ V ⊗ V ∗ ⊕ U ⊗ U∗,

Om ≃ ⊕̂
i>0

SiV ∗,

Wm+n ≃ ⊕̂
i>0

Si(V ⊕ U)∗ ⊗ (V ⊕ U),

WL(m|n) ≃ (V ⊕ V ∗ ⊗ V )⊕ ⊕̂
i>0

Si(V ⊕ U)∗ ⊗ U,

(3.2.29)

where pmn := WL(m|n) ∩ glm+n ↪→ Wm+n is a parabolic subalgebra of matrices with two diagonal
blocks and lower diagonal matrices; n−

mn (resp. n+
mn) are lower (resp. upper) block-triangular nilpotent

matrices.
The embedding pmn ↪→ WL(m|n) produces the Hochschild-Serre filtration on the relative chain com-

plex C
q
(WL(m|n),glm ⊕ gln;k) and we denote by Ep,q

r (WL(m|n)) the corresponding spectral sequence.
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Similarly, we denote by Ep,q
r (Wm+n) the relative Hochschild-Serre spectral sequence associated with the

embedding pmn ↪→ Wm+n. Since the Lie algebra WL(m|n) is embedded into Wm+n we have the map of
aforementioned spectral sequences in the opposite direction:

πr
m,n : Ep,q

r (Wm+n) −→ Ep,q
r (WL(m|n))

Below we prove that these spectral sequences degenerates in the first terms and the map π1
m,n is surjective.

Lemma 3.2.30. The relative Hochschild-Serre spectral sequence Ep,q
r (Wm+n) with the embedding pmn ↪→

Wm+n degenerates in the first term and

Ep,q
1 (Wm+n) = H2q(CGr(m,m+ n))⊗Hp−q(Wm+n,glm+n;k) (3.2.31)

Proof. Lemma 3.1.28 implies the following description of the first term:

Epq
1 = Hq(pmn,glm ⊕ gln; Λ

p

(
Wm+n

pmn

)∗
) = Hq

(
pmn,glm ⊕ gln; Λ

p

(
n+
mn ⊕ Wm+n

glm+n

)∗)
=

= Hq
(
pmn,glm ⊕ gln; Λ

q(n+
mn)

∗)⊗ [Λp−q

(
Wm+n

glm+n

)∗]glm+n

=

= H2q
(
glm+n,glm ⊕ gln;k

)
⊗ Cp−q(Wm+n,glm+n;k).

Theorem 2.1.5 implies that the space of relative cochains Cp−q(Wm+n,glm+n;k) vanishes for odd p− q.
Therefore, Epq

1 vanishes when p+ q is odd and the spectral sequence degenerates in the first term.

Lemma 3.2.32. The relative Hochschild-Serre spectral sequences associated with the embedding pmn ↪→
WL(m|n) degenerates in the first term:

Ep,q>0
1 (WL(m|n)) = 0 and Ep,0

1 (WL(m|n)) = Hp(WL(m|n),glm ⊕ gln;k).

Moreover, the morphism πr
mn : Ep,q

r (Wm+n,pmn) → Ep,q
r (WL(m|n),pmn) of the relative Hochschild-Serre

spectral sequences coming from the inclusion of Lie algebras πmn : WL(m|n) ↪→ Wm+n is surjective. In
particular,

H
q
(Wm+n,glm+n;k) = E

q,0
1 (Wm+n) � E

q,0
1 (WL(m|n)) = H

q
(WL(m|n),glm ⊕ gln;k).

Proof. Decomposition (3.2.29) into the direct sum of finite-dimensional gl(U)× gl(V )-modules predicts

that pmn-module WL(m|n)
pmn

is a direct sum of modules Li⊗U with Li being an irreducible finite-dimensional
gl(U ⊕ V )-module and U an irreducible tautological gl(U)-module. Therefore, it’s dual satisfy the

condition from Lemma 3.1.26. Let us show that the exterior algebra Λ
q (WL(m|n)

pmn

)∗
also decomposes into

the direct sum of modules Hom(SλU,Li) such that we can apply Lemma 3.1.26. This follows from the
general argument in the spirit of Howe duality [22]:

Indeed, let A and B be a pair of vector spaces. Then the exterior algebra Λ
q
(A⊗B) has a multiplicity

free decomposition ⊕λS
λt
(A) ⊗ Sλ(B) as gl(A) × gl(B)-module, where sum is taken over all possible

Young diagrams; Sλ() denotes the Schur functor associated with the Young diagram λ (after (3.1.25)).
The Young diagram transposed to λ is denoted by λt.
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Consequently, we have the following decomposition:

Λ
q(WL(m|n)

pmn

)∗
= Λ

q(
(V ⊕ U)∗ ⊕

i>2
Si(V ⊕ U)⊗ U∗

)
=

= Λ
q
((V ⊕ U)∗)

⊗
Λ
q(

⊕
i>2

Si(V ⊕ U)⊗ U∗
)

=

= Λ
q
((V ⊕ U)∗)

⊗(
⊕
λ
Sλt

(
⊕
i>2

Si(V ⊕ U)

)
⊗ SλU∗

)
=⊕

λ

Λ
q
((V ⊕ U)∗)

⊗
Sλt

(
⊕
i>2

Si(V ⊕ U)

)
︸ ︷︷ ︸

gl(U⊕V )−module

⊗
SλU∗︸ ︷︷ ︸

gl(U)−module

Now we are able to apply Lemma 3.1.26 in order to compute the first term of the Hochschild-Serre
spectral sequence. The vanishing of the higher cohomology in Lemma 3.1.26 implies that for q > 0 we
have

Epq
1 (WL(m|n)) = Hq

(
pmn,glm ⊕ gln; Λ

p

(
WL(m|n)

pmn

)∗)
= 0.

For q = 0 we have the following collection of identities and inclusion:

E
q
,0

1 (WL(m|n) := H0

(
pmn,glm ⊕ gln; Λ

q(WL(m|n)
pmn

)∗)
=

= H0

(
pmn,glm ⊕ gln;

(⊕
λ

(
Λ
q
((V ⊕ U)∗)

⊗
Sλt

(
⊕
i>2

Si(V ⊕ U)

))⊗
SλU∗

))
⊂

⊂
[
Λ
q
((V ⊕ U)∗)

⊗(
⊕
λ
Sλt

(
⊕
i>2

Si(V ⊕ U)

)
⊗ Sλ(V ⊕ U)∗

)]glm+n

=

=

[
Λ
q
((V ⊕ U)∗)

⊗
Λ
q(

⊕
i>2

Si(V ⊕ U)⊗ (V ⊕ U)∗
)]glm+n

=

=

[
Λ
q(Wm+n

glm+n

)∗]glm+n

≃ H
q
(Wn+m,glm+n;k). (3.2.33)

The inclusion also follows from Lemma 3.1.26. Note, that this is indeed an inclusion and not an iso-
morphism because if the length of the diagram λ is greater than n then SλU = 0, however, Sλ(U ⊕ V )
may be different from zero. The middle identity in (3.2.33) follows from the Howe decomposition for
the exterior algebra of Wm+n

glm+n
. Once again, we identify relative cochains on Wm+n and cohomology using

Theorem 2.1.5.
Finally, we get that the Ep,q

1 (WL(m|n) vanishes for q > 0 and there is a surjection from the zero line

of the first term of the spectral sequence E
q,0
1 (Wm+n) = H

q
(Wm+n,glm+n;k) to the the zero line of the

spectral sequence E
q
,0

1 (WL(m|n)) = H
q
(WL(m|n),glm ⊕ gln;k).

3.3 Final conclusions

The degeneration of Hochschild-Serre spectral sequences associated with embeddings pmn ↪→ WL(m|n)
and pmn ↪→ Wm+n implies the following corollary:
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Corollary 3.3.34. There exists a commutative diagram of surjections:

H
q
(Wm+n,glm ⊕ gln;k)

κmn // //

π∗
mn ** **UUUUUUUUUUUUUUUUUUUUU

H
q
(Wm+n,glm+n;k) =

= H
q62(m+n)(BSUm+n)

π̃∗
mnttttiiiiiiiiiiiiiiii

H
q
(WL(m|n),glm ⊕ gln;k)

Morphism π∗
mn is the one associated with the natural embedding πmn : WL(m|n) ↪→ Wm+n. Morphism

κmn is the augmentation of the cohomology of Grassmanian H
q
(glm+n,glm ⊕ gln;k).

Moreover the surjections π̃∗
mn are compatible for different m and n. That is, for any pair of tuples

m 6 m′ and n 6 n′ there exists a commutative diagram of surjections:

H
q
(Wm′+n′ ,glm′ ⊕ gln′ ;k)

κm′n′ // //

����

H
q62(m′+n′)(BSUm′+n′)

π̃∗
m′n′// //

����

H
q
(WL(m′|n′),glm′ ⊕ gln′ ;k)

pm′→m
����

H
q
(Wm+n,glm ⊕ gln;k)

κmn // // H
q62(m+n)(BSUm+n)

π̃∗
mn// // H

q
(WL(m|n),glm ⊕ gln;k)

(3.3.35)

Proof. Morphism π∗
mn is surjective because the morphism of the first terms of Hochschild-Serre spectral

sequences Ep,q
1 (Wm+n)

π1
mn→ Ep,q

1 (WL(m|n)) is surjective. The projection κmn is the projection on the

zero line E
q,0
1 (Wm+n) and the map π∗

mn is the map of zero lines of the first terms of spectral sequences.
All horizontal arrows in Diagram (3.3.35) are surjective by aforementioned results. The middle vertical

arrow is surjective because the map H
q
(BSUN ′) → H

q
(BSUN ) is surjective whenever N ′ > N . The

commutativity of the Diagram implies that the map pm′→m is also surjective.

Finally, we can show how does Corollary 3.3.34 imply the main result on the cohomology of the Lie
algebra WL(m|n):

Proof of Theorem 2.2.10. Theorem 2.1.7 explains that the chain complex C
q
(WL(m|n),glm ⊕ gln;k) is

quasi-iso to the truncated Weyl superalgebra W
q
(Wn,gln)/F

2m+1W
q
(Wn,gln). Let us fix the integer

parameter n and vary the parameter m. Corollary 3.3.34 implies that for different m′ > m the morphism
pm′→m is surjective and, therefore, the homology H

q
(WL(m|n),glm⊕gln;k) are bounded from above by

the homology of the inverse limit of truncated Weyl algebras. The inverse limit of truncated Weyl algebras
when m goes to infinity is the nontruncated Weyl algebra W

q
(Wn,gln) whose homology coincides with

the ring of characteristic classes H
q
(BSUn). Hence, the cohomology ring H

q
(WL(m|n),glm ⊕gln;k) is a

quotient of the polynomial ring k[Ψ2, . . . ,Ψ2n]. The same compatibility conditions for all possible m′ > m
implies that the map π̃∗

mn : H
q62(m+n)(BSUm+n) → H

q
(WL(m|n),glm⊕gln;k) factors through the map

H
q62(m+n)(BSUm+n) → H

q62(m+n)(BSUn) which sends additional generators Ψ2(n+1), . . . ,Ψ2(m+n) to
zero and survives Ψ2, . . . ,Ψ2n. Finally, we ends up with the isomorphism H

q
(WL(m|n),glm⊕gln;k) and

the truncated polynomial ring k
q62(n+m)[Ψ2, . . . ,Ψ2n].

The proof of Theorem 2.2.14 follows from the same degeneration properties of the Hochschild-Serre
spectral sequences corresponding to the parabolic subalgebra p := WL(m|n1, . . . , nk;g) ∩ glm+n1+...+nk

.

4 Particular computations

4.1 dimension series for absolute cohomology of W (1, . . . , 1).

Relative cohomological classes of the Lie algebra W (n1, . . . , nk) (relative to the product of orthogonal
groups O(n1)× . . .×O(nk)) are in one-to-one correspondance with the continuous characteristic classes
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of flags of foliations. The absolute cohomology of the Lie algebra W (n1, . . . , nk) corresponds to the case
of framed foliations. We omit the detailed construction based on the concept of formal geometry and
refer the reader to [9]. In this section we will show an example of application of Theorem 2.3.18 in order
to describe these cohomological classes. Corollary 4.1.40 below describes the absolute cohomology classes
of the Lie algebra W (1, . . . , 1) with trivial coefficients.

Remark 4.1.36. The orthogonal group O(1) is trivial and therefore the normal bundle of the foliation
of codimension 1 is trivial. Similarly, the relative normal bundles of Fi+1 ⊂ Fi for a flag of foliations
{F1 ⊃ F2 ⊃ · · · ⊃ Fk} should be trivial whenever the corresponding codimension is equal to 1. Hence,
for the case of full flags (i.e. all codimensions are equal to 1) we have the trivial orthogonal group and
the space of characteristic classes are the same for framed and nonframed foliations.

Let ζi (respectively ξi) be the i’th odd (respectively even) generator of the Weyl superalgebra
W

q
(gl1 ⊕ . . .⊕ gl1︸ ︷︷ ︸

k copies

). I.e. ζi (resp. ξi) is a basis of Λ1gl∗1 (resp. S1gl∗1) associated with the i’th

copy of gl1. Let I be the ideal in the aforementioned Weyl superalgebra generated by subspaces

Sj+1

gl1 ⊕ . . .⊕ gl1︸ ︷︷ ︸
j copies

 with j ranges from 1 to k. I equals to the ideal I1,...,1 which was defined in

Corollary 2.2.16 or Theorem 2.3.18 for arbitrary collection of codimensions.

Theorem 4.1.37. The set of monomials{
ζα1 . . . ζαsξ

i1
1 ξi22 . . . ξiαs

αs
: 1 6 α1 < . . . < αs 6 N and

∀k 6 αs i1 + . . .+ ik 6 k,
i1 + . . .+ iαs = αs

}
(4.1.38)

form a basis of cohomological classes of the truncated Weyl superalgebra
W
q
(

N copies︷ ︸︸ ︷
gl1 ⊕ . . .⊕ gl1)

I1,...,1
. The Poincare

generating series of the homology of the truncated Weyl superalgebra is as follows:

∑
q>0

qk dimHk(W
q
(gl1 ⊕ . . .⊕ gl1)/I1,...,1) = 1 +

N∑
n=1

q2n+1(1 + q)n−1C(n), (4.1.39)

where C(n) = 1
(n+1)

(
2n
n

)
is the n’th Catalan number.

Proof. Consider the second term of the spectral sequence associated with the standard filtration on the
truncated Weyl superalgebra:

E2 = k[ζ1, . . . , ζN ; ξ1, . . . ξN ]/(I1,...,1), d2 =

N∑
i=1

ξi
∂

∂ζi
.

All higher differentials in this spectral sequence vanish. Recall that the ideal I is generated by the
following collection of monomials:

ξi11 · . . . · ξikk with i1 + . . .+ ik > k

Let us prove that monomials yielding the restriction (4.1.38) in the statement of Theorem form a basis
of the cohomology of the complex given by the second term (E2, d2). The differential d2 is a direct sum
of N commuting differentials ξi

∂
∂ζi

. Let us compute the cohomology of E2 with respect to the differential

ξN
∂

∂ζN
. In other words, we consider the spectral sequence associated with the bicomplex where differential

d2 is the sum of two commuting differentials ξN
∂

∂ζN
and

(∑N−1
i=1 ξi

∂
∂ζi

)
. The differential ξN

∂
∂ζN

maps
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monomials to monomials. Therefore, representing cocycles may be also chosen to be monomials. Consider
a monomial f = ζϵ11 . . . ζϵNN ξi11 . . . ξiNN . In order to be nonzero in the fraction of Weyl algebra by monomial
ideal I1,...,1 we have the following restrictions:

∀i = 1 . . . N ϵi ∈ {0, 1}, and ∀k = 1 . . . N we have i1 + . . .+ ik 6 k.

There are two possibility for the monomial f to represent a nonzero cohomological class with respect to
the differential ξN

∂
∂ζN

. Either ϵN = iN = 0 or ϵN = 1, iN > 1 and i1+ . . .+iN = N . The first case implies
that we can forget about variables ξN and ζN and deal with the problem of chasing cocycles for the Weyl
algebra with the less number of generating gl1. This case is covered by induction arguments. Let us
show that in the second case all monomials are survived with respect to the differential δ :=

∑N−1
i=1 ξi

∂
∂ζi

and by higher differentials in this spectral sequence. Indeed, the condition iN > 1 and i1 + . . .+ iN = N
means that for all i monomial ξif belongs to the ideal I and δf = 0. As one knows from the homotopy
transfer theorem (see e.g. [18],[25]) or just from the description of the spectral sequence (e.g. [29]) all
higher differentials δk in the spectral sequence should be of the form δd−1δ . . . d−1δ. Hence, if δf is
zero on the level of chains then δk(f) = 0 for all k and, consequently, monomials (4.1.38) represents the
generating set of cocycles.

In order to count the Poincare series it remains to count the generating series of the set (4.1.38) of
monomials representing the linear independent homological classes. Recall that the number of monomials
{ξi11 . . . , ξinn } of degree n subject to the condition i1+ . . .+ik 6 k for all k 6 n is equal to the n’th Catalan
number C(n) = 1

(n+1)

(
2n
n

)
. This description of Catalan numbers may be found in [28]. Therefore, the

generating series of monomials of the form ζϵ11 . . . ζϵnn ξi11 . . . ξinn , that belong to the set (4.1.38), is equal to
(1 + q)n−1q1q2nC(n) where the factor (1 + q)n−1 means that ϵi for i < n may be either 0 or 1, factor q1

comes from the degree of ζn and the factor q2n represents the degree of the monomial ξi11 . . . ξinn which is
2(i1 + . . .+ in) = 2n. The final set of monomials is the union of the aforementioned sets with n ranging
from 1 to N .

Consider a flag of foliations F1 ⊃ F2 ⊃ · · · ⊃ FN whose codimensions Fi+1 in Fi are equal to 1 for
all i. Let ω1,. . . ,ωN be the system of determining forms that defines this flag of foliations. I.e. we have
∀k = 1,. . . ,N dωk =

∑k
i=1 ωi∧νik and the tangent space to the leaves of the foliation Fk is annihilated by

forms ω1,. . . ,ωk. The space of characteristic classes of a flag of foliations are described by Theorem 4.1.37:

Corollary 4.1.40. The Poincare series of the cohomology of the Lie algebra W (1, . . . , 1) with trivial
coefficients is given by Identity 4.1.39. The corresponding characteristic classes of flags of foliations
generalizes the Godbillon-Vey class. What means, that each monomial in ζi = νii and ξi = dνii from
Theorem 4.1.37 produces a characteristic class of a flag of foliations which is defined by a collection of
1-forms ωk with dωk =

∑k
i=1 ωi∧νik. In particular, the corresponding cohomological class does not depend

on the choice of ωi’s.

Proof. We use Theorem 2.3.18 in order to identify the cohomology ring of the Lie algebra W (1, . . . , 1)
and the truncated Weyl superalgebra. The generalization of Godbillon-Vey class is also straightforward.
We refer to [12] for detailed description of the Godbillon-Vey class using the Lie algebra homology of
formal vector fields on the line.

4.2 Formulas for cocycles in the case of a line (n = 1)

For the case of vector fields on a line there are some simplifications of direct description of cochains
representing cocycles for the Lie algebra cohomology H

q
(Wn;S

mW ∗
n). These simplifications are based on

a direct description of the space of chains which is simpler for the case of line. Indeed, let us identify
the space of q-linear functionals on the Lie algebra W1 with the ring of polynomials k[y1, . . . , yq] using
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the following identification of basis in these two spaces. With a monomial f := yr11 . . . y
rq
q we associate a

q-linear functional Df : W⊗q
1 → k in the following way:

Df :

(∑
r>0

a1rx
r ∂

∂x
, . . . ,

∑
r>0

aqrx
r ∂

∂x

)
7→ r1! . . . rq!a1r1 . . . aqrq . (4.2.41)

Then the space of chains Cp(W1;S
mW ∗

1 ) = Hom(ΛpW1 ⊗ SmW1;k) are identified with the subspace of
polynomials in p+m variables k[y1, . . . , yp; z1, . . . , zm], such that they are skew-symmetric with respect
to the permutations of the first p variables and symmetric with respect to the permutations of the last m
variables. In this notations the Chevalley-Eilenberg differential d : Cp(W1;S

mW ∗
1 ) → Cp+1(W1;S

mW ∗
1 )

is described by the following formula (see e.g. the description given in [12][§2.3] for m = 0):

dP (y1, . . . , yp+1; z1, . . . , zm) =∑
16s<t6p+1

(−1)s+t−1(ys − yt)P (ys + yt, y1, . . . , ŷs, . . . , ŷt, . . . , yp+1; z1, . . . , zm)+

+
∑

16s6p+1
16t6m

(−1)s(ys − zt)P (y1, . . . , ŷs, . . . , yp+1; ys + zt, z1, . . . , ẑt, . . . , zm).

Theorem 4.2.42. The cochains

a2m := (y21 − y22)z1 . . . zm ∈ C2(W1;S
mW ∗

1 ),

a3m := (y1 − y2)(y2 − y3)(y3 − y1)z1 . . . zm ∈ C3(W1;S
mW ∗

1 )

represents the basis in the cohomology H
q
(W1;S

mW ∗
1 ).

Proof. It is a direct check that d(a2m) = d(a3m) = 0 what means that they are cocycles. Moreover, a2m
belongs to the relative chain complex C2(W1,gl1;S

mW ∗
1 ) and is equal to the cocycle ξ1m+1,m which is

defined in Proposition A.3.45 on page 24.
Alternatively, one can easily verify that the natural pairing between cocycle a2m and the cycle in

H q(W1,gl1;S
mW1) given in [7] is different from zero for all m. This will imply that the corresponding

cohomological class are different from zero. Theorem 2.3.17 implies that there is only one nontrivial
cohomological class in this dimension.

A Chains on the Lie algebra Wn and gl-invariant’s

This section contains the detailed explanations of the known results and their generalizations mentioned
in Section 2.1. We will describe the action of matrix Lie subalgebras on the Lie algebras Wn, W (m;g),
WL(m|;g), WL(m|n) and use this description in order to identify the space of gl-invariant chains with
the truncated Weyl algebras. This description of the relative chain complexes has been written in details
in [16], [12] for the Lie algebra Wn and [20] deals with the Lie algebra W (m;g).

A.1 gl-decompositions

Let V be a vector space of dimension m. Let x1, . . . , xm be the basis of linear coordinates on this space.
Then as a glm = gl(V ) module the linear span of constant derivatives ∂

∂xi
is isomorphic to V and the

space of polynomial functions of degree k is spanned by monomials xi11 . . . ximm with i1 + . . . + im and
is isomorphic to the k-th symmetric power of V ∗. Therefore, the space of functions Om = O(V ) on V
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is isomorphic as a gl(V )-module to the completed direct sum ⊕̂k>0S
kV ∗. Consequently, we have the

following decompositions as glm-modules:

Wm ≃ ⊕̂
k>0

SkV ∗ ⊗ V, glm ≃ V ∗ ⊗ V

W (m;g) = Wm n g ⊗Om ≃glm

(
⊕̂
k>0

SkV ∗ ⊗ V

)
⊕ ⊕̂

k>0
SkV ∗ ⊗ g,

WL(m|;g) ≃glm

(
⊕̂

k=0,1
SkV ∗ ⊗ V

)
⊕ ⊕̂

k>0
SkV ∗ ⊗ g ≃glm (V ∗ ⊕ gl(V ))⊕ ⊕̂

k>0
SkV ∗ ⊗ g.

Let us now describe the space of relative chains in the aforementioned Lie algebras. First, we remind,
that these infinite-dimensional Lie algebras are topological. The underlying topology coming from the
topology on formal power series. The linear continuous functions on the formal power series on a vector
space is the polynomial ring on the dual space. In particular, we have the following identity:(

⊕̂
k>0

SkV

)∗
≃
(

⊕
k>0

SkV ∗
)

We use the usual dual sign ∗ having in mind that one should take the linear continuous dual.

A.2 Graphs representing chains on Wm

Consequently, we have the following description of the relative chain complexes:

C
q
(Wm,glm;k) =

[
Λ
q(Wm

glm

)∗]glm
=

[(
⊕̂

k=0,2,3,...
SkV ∗ ⊗ V

)]gl(V )

≃

≃
[
Λ
q(

⊕
k=0,2,3,...

SkV ⊗ V ∗
)]gl(V )

≃ ⊕
{p0,p2,p3,...}

[
⊗

k=0,2,3,...
Λpk(SkV ⊗ V ∗)

]gl(V )

. (A.2.43)

The index k = 1 is omitted in the right-hand side of Isomorphism A.2.43 because we factorize Wn by the
subspace gl(V ) ≃ V ∗ ⊗ V . The main observation due to Gelfand and Fuchs in [16] is the description of
the aforementioned ring of invariants. They observed that all nonzero invariants come from the subring[

⊕
p0
Λp0V ∗ ⊗ Λp0(S2V ⊗ V ∗)

]gl(V )

.

Let us explain their result using the language of graphs as one always do while working with gl-
invariants. (see e.g. [21] for the definition of the graph-complex in the similar problem of describing the
cohomology of the Lie algebra of Hamiltonian vector fields). Consider an oriented graph Γ yielding the
following conditions:

(ı) Each vertex has exactly one outgoing edge;
(ıı) The number of incoming edges in each vertex differs from 1. I.e. we allow 0, 2, 3,. . . incoming

edges.
Assign with Γ the relative cochain cΓ on the Lie algebra Wn using the right-hand side of Isomor-

phism (A.2.43). Suppose that Γ has p0 vertices with no incoming edges, p2 vertices with 2 incoming
edges and so on. Then Γ defines a gl(V )-invariant in the space ⊗

k=0,2,3,...
Λpk(SkV ⊗ V ∗) where each edge

in Γ defines a gl(V )-invariant pairing between appropriate factors V ∗ and V . To be strict one has to do
the following: first, fix an order of vertices: v1,. . . ,v∑ pi ; second, attach to each vertex with k incoming

edges a factor SkV ⊗ V ∗; third, each edge vi → vj defines a gl(V )-invariant pairing between V ∗ and V
coming from contravariant argument of Sin(vi)V ⊗ V ∗ and one of covariant arguments of Sin(vj)V ⊗ V ∗;
forth, make an alternation with respect to the vertices of the same valency. (See e.g. [12] for the detailed
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description.) The latter alternation procedure produces two following necessary conditions on Γ in order
to have a nonzero cochain cΓ:

(1) The outgoing arrows from different vertices with no incoming edges have different outcoming
vertices.

(2) The number of vertices with no inputs is less or equal to the dimension of V .
The condition (1) comes from the following fact: The permutation of two vertices of Γ with no inputs
should send cΓ to −cΓ, however the permutation of two incoming edges in any vertex should not change
the cochain cΓ. Therefore, whenever the first condition is not satisfied we get cΓ = −cΓ and thus cΓ = 0.
The condition (2) corresponds to the fact that Λ>dim(V )(V ∗) = 0.

Figure 1: Graph-
wheel Γ6

The conditions (1) and (2) are already enough to describe all possible
graphs representing nontrivial cochains. Let Γc be a connected component
of the graph Γ representing a nonzero cocycle cΓ. Then Γc has only vertices
with 0 or 2 inputs. Moreover, the number of vertices with no inputs and the
number of vertices with 2 inputs should be the same. The graph Γc looks as
a wheel, see Picture 1 below. We denote by Γr the corresponding connected
graph with 2r vertices. Finally, we get, that cΓ ̸= 0 only if Γ = Γr1 ⊔ . . .⊔Γrk

with r1 + . . . + rk 6 dim(V ). The direct check shows that all these Γ are
linearly independent. The map Ψ2r → cΓr defines an isomorphism from the
truncated ring H

q62n(BSUn) = k
q62n[Ψ2, . . . ,Ψ2n] to the relative cochain

complex C
q
(Wn,gln;k) and we get the conclusion of Theorem 2.1.5.

A.2.1 Chains on WL(m|;g).

The relative chain complex of the Lie algebra WL(m|;g) has the following
description in terms of gl-invariants:

C
q
(WL(m|;g),glm;k) ≃

[
Λ
q(

(V ∗ ⊕ gl(V ))⊕ ⊕̂
k>0

SkV ∗ ⊗ g

)∗]
=

=
⊕

{q0;p0,p1,...}

Λq0V ∗⊗
⊗
k>0

Λpk
(
SkV ⊗ g∗

)gl(V )

Same arguments shows that there are nontrivial invariants only in the case pk = 0 for k > 1 and
p1 = q0 6 dim(V ). So we ends up with an isomorphism with the truncated Weyl algebra

C
q
(WL(m|;g),glm;k) ≃

⊕
p>0,16q6m

[ΛqV ⊗ Λp(g∗)⊗ Λq(V ⊗ g∗)]gl(V ) ≃

≃ Λ
q
(g∗)⊗ S

q6dim(V )(g∗) ≃ W
q
(g)/F 2m+1

The description of the relative chains of the Lie algebra W (m; g) is somehow the union of the de-
scriptions of the chains on Wm and chains on WL(m|;g). We omit the details and refer to the previous
paper [20].

A.3 formulas for cocycles

All previous sections of Appendix A was presented here in order to be able to give a description of
cocycles representing the cohomology classes of H

q
(Wn,gln;S

mW ∗
n). The main idea is to describe the

images of cocycles coming from the cohomology of H
q
(Wn+m,gln+m;k).
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In order to distinguish with the previous case we denote the canonical n-dimensional vector space kn
by U and the m-dimensional vector space is denoted by V . Consider the glm+n-invariant

ξr ∈ Λr(V ∗ ⊕ U∗)⊗ Λr
(
S2(V ⊕ U)⊗ (V ∗ ⊕ U∗)

)
represented by the wheel graph Γr. Let φ(ξr) be the restriction of this invariant onto the subspace

Λr(V ∗ ⊕ U∗)⊗ Λr(S2(V ⊕ U)⊗ U∗)

The latter subspace is decomposed into the following direct sum:

Λr(V ∗ ⊕ U∗)⊗ Λr(S2(V ⊕ U)⊗ U∗) ≃

≃
⊕

s1+s2=r
t1+t2+t3=r

Λs1V ∗ ⊗ Λs2U∗ ⊗ Λt1(S2V ⊗ U∗)⊗ Λt2(V ⊗ U ⊗ U∗)⊗ Λt3(S2U ⊗ U∗) (A.3.44)

and the symmetry conditions implies that the nontrivial gl(V ) invariants exists for t1 = 0, s1 = t1 and
s2 = t2 respectively. Moreover, we have the following description of the subspace of gl(V )-invariants:

[
ΛsV ∗ ⊗ Λr−sU∗ ⊗ Λs(V ⊗ U ⊗ U∗)⊗ Λr−s(S2U ⊗ U∗)

]gl(V ) ≃

≃ Λr−sU∗ ⊗ Λr−s(S2U ⊗ U∗)⊗ [ΛsV ∗ ⊗ Λs(V ⊗ U ⊗ U∗)]gl(V ) ≃
≃ Λr−sU∗ ⊗ Λr−s(S2U ⊗ U∗)⊗ Ss(U ⊗ U∗).

We denote by ξr,s the image of the projection trs of φ(ξr) onto the aforementioned subspace of gl(V )
invariants:

trs :
[
Λr(V ∗ ⊕ U∗)⊗ Λr(S2(V ⊕ U)⊗ U∗)

]gl(V ) � ΛrU∗ ⊗ Λr(S2U ⊗ U∗)⊗ Ss(U ⊗ U∗)

Figure 2: Graph repre-
senting ξ6,1

where parameter s may vary from 1 to r. The underlying graphs associated
with the invariant ξr,s also look like a union of wheels. The main difference
with the graphs Γr is that now some vertices on the ring of a wheel will have
no incoming edges from the outside of the ring. (See Picture 2).

Proposition A.3.45. For any partition λ = {λ1 > . . . > λk} of the integer
(m+ n) the cochain

ξλ,n :=
∑

s1+...+sk=m

ξλ1,s1 ·. . .·ξλk,sk ∈
[
ΛnU∗ ⊗ Λn(S2U ⊗ U∗)⊗ Sm(U ⊗ U∗)

]gl(U)

defines a cocycle in C2n(Wn,gln;S
mW ∗

n). Moreover, the cocycles ξλ,n with
l(λ) 6 n are linearly independent and form a set of representatives of all
different cohomological classes.

Proof. The proof is a straightforward description of the images of cocycles
under surjections:

C
q
(Wm+n,glm+n;k) = H

q
(Wm+n,glm+n;k) � H

q
(WL(m|n),glm ⊕ gln;k) � H

q
(Wn,gln;S

kW ∗
n).

The linear independence of ξλ,n may be checked by showing that the pairing with the appropriate collec-
tion of chains is nondegenerate.
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B Relative cohomology of parabolic Lie subalgebra

In this section we will explain some vanishing cohomological results for the cohomology of a parabolic
subalgebra. All these results are simple applications of the BGG resolution. We formulate the key
corollaries in the full generality. That is, we work with a semisimple or reductive Lie algebra g and it’s
negative parabolic subalgebra pI . However, the applications we need in order to compute the Lie algebra
cohomology of certain class of vector fields is a very specific case: g = glm+n and Levi subalgebra of
parabolic subalgebra pI is the subset of matrices with two blocks hI = glm ⊕ gln.

B.1 Notation

Let g be a semisimple (reductive) Lie algebra with a chosen Cartan decomposition g = n− ⊕ h ⊕ n+.
Let R be the associated root system, S the subset of simple roots and W the corresponding Weyl group.
The subalgebra p is called parabolic if it contains the negative Borel subalgebra b− = h ⊕ n−. Let us
fix a subset I of simple roots and assign to it a standard parabolic subalgebra pI . Let RI be the subset
of roots generated by I. R+

I and R−
I denotes the subsets of positive and negative roots of RI .

Now we are able to specify the notations for subalgebras related to a chosen parabolic subalgebra pI :

pI := n− ⊕ h⊕
⊕

α∈R+
I
gα (Standard parabolic subalgebra),

hI := h⊕
⊕

α∈RI
gα (Maximal reductive subalgebra of pI),

n+
I :=

⊕
α∈R+\R+

I
gα

n−
I :=

⊕
α∈R−\R−

I
gα (Nilradical of pI).

We have a decomposition g = n−
I ⊕ hI ⊕ n+

I = pI ⊕ n+
I which we also call the generalized Cartan

decomposition.
In general, for any parabolic subalgebra p it is possible to choose a Borel subalgebra and a set of

generators I such that p = pI . (See e.g. [11, 23] for details on parabolic Lie subalgebras.) Moreover, it
is known that the corresponding description of BGG category O is absolutely parallel to the standard
one (see e.g. [24] for details on BGG). In particular, the parabolic BGG resolution was introduced in [26]
and may be shortly summarized in the following way:

Let P+ ⊂ P be the set of integral dominant weights for the root system R and Cartan subalgebra
h. Let P+

I ⊂ PI = P be the set of integral dominant weights for the root system RI and same Cartan
subalgebra h. I.e. the elements of P+ are in one-to-one correspondence with irreducible finite-dimensional
g-modules and the elements of P+

I correspond to irreducible finite-dimensional hI -modules. By WI ⊂ W
we denote the Weyl group associated with RI and by W I we denote the right coset WI\W represented
by elements of the minimal length in W .

Any weight λ ∈ P+
I defines a finite-dimensional irreducible hI -module LI(λ) with the highest weight

λ and the parabolic Verma module MI(λ) := U(g)⊗U(pI) LI(λ).

Theorem ([26]). Let λ ∈ P+ be a regular dominant weight, L(λ) be the corresponding irreducible g-
module with highest weight λ. Then there is an exact sequence

. . . → ⊕
ω∈W I ,l(ω)=k

MI(ω · λ) → . . . → MI(λ) � L(λ) → 0 (B.1.46)

For a nonregular integral dominant weight λ ∈ P+ a similar resolution exists. The k-th terms is
isomorphic to the direct sum of MI(ω · λ) such that ω is an element of the minimal length which sends
λ to ω · λ.
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B.2 Applications of BGG resolution

We are interested in the applications of BGG for the cohomological computations over parabolic subal-
gebras. Indeed, we are going to prove the following:

Theorem B.2.47. Let pI ⊂ g be a parabolic subalgebra in g, hI it’s Levi subalgebra as above. Then for
any finite-dimensional g-module L we have the following

1. the higher relative cohomology of the parabolic subalgebra pI with coefficients in L vanishes and the
zero’th cohomology are g-invariants:

H>0(pI ,hI ;L) = 0 and H0(pI ,hI ;L) = [L]g. (B.2.48)

2. For any pair λ ∈ P+ and µ ∈ P+
I of integral weights the relative extension groups between ir-

reducible g-module L(λ) and irreducible pI-module LI(λ) vanishes if λ and µ are in a differ-
ent linkage class. Moreover, if there exists ω ∈ W I such that ω · λ = µ then the cohomology
H

q
(pI ,hI ;Hom(L(λ), LI(µ))) is one dimensional and has homological degree l(ω):

H
q
(pI ,hI ;Hom(L(λ), LI(µ))) =

{
k[−l(ω)], if ω · λ = µ for ω ∈ W I ,
0, otherwise.

3. The relative Hochschild-Serre spectral sequence associated with the embedding pI ↪→ g with co-
efficients in L degenerates in the first term. In other words, we have the following collection of
isomorphisms:

H
q
(g,hI ;L) ≃ H

q
(pI ,hI ;L⊗ Λ

q
(n−

I )) ≃ H
q
(g,hI ;k)⊗ [L]g ≃

(
⊕

w∈W I
k[−2l(w)]

)
⊗ [L]g (B.2.49)

where W I is the right coset WI\W represented by elements of the minimal length in the Weyl group
W and by k[−2l(w)] we mean the one-dimensional vector space shifted in homological degree 2l(w).

Proof. Consider the category (pI ,hI)-mod of pI -modules that are semi-simple as hI -modules. I.e. each
module is a sum (probably infinite) of finite-dimensional hI -modules. Then the Lie algebra cohomology
which we are looking for may be considered as the derived Hom-functor in this category. In particular,
we can use a BGG resolution B

q
λ of the irreducible g-module L(λ) as defined in (B.1.46) in order to

compute the derived hom between L(λ) and arbitrary module N ∈ mod-(pI ,hI):

H
q
(pI ,hI ;Hom(L(λ), N)) = H

q
(pI ,hI ;Hom( ⊕

ω∈W I
MI(ω · λ)[−l(ω)], N)) =

H
q(

⊕
ω∈W I

HomhI
(LI(ω · λ), N)[−l(ω)]

)
(B.2.50)

In particular, if N is a trivial g-module then HomhI
(LI(ω · λ),k) differs from zero only for ω = Id

and λ = 0. What means that we have checked Identity (B.2.48) for irreducible g-module N . The
semisimplicity of the category of finite-dimensional g-modules implies that Identity B.2.48 is true for all
finite-dimensional g-modules and item 1 is proven.

If N is isomorphic to an irreducible hI -module LI(µ) with the highest weight µ then there exists at
most one ω ∈ W I such that ω · λ = µ. Consequently, the group Ext

q
(pI ,hI)-mod(L(λ), LI(µ)) is at most

one-dimensional and item 2 is proven.
Let us consider Identity (B.2.50) for the case N = Λ

q
((n+

I )
∗) ≃ Λ

q
(n−

I ) in order to prove item 3. Let
us describe the possible values of ω and λ when there are nontrivial hI -homorphisms between LI(ω · λ)
and the exterior algebra Λ

q
(n−

I )).
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Let us first consider in details the most degenerate case: pI coincides with Borel subalgebra b−. Recall
that n− ≃ ⊕α∈R− gα is the semisimple decomposition of n− as h-modules. Each gα-is one-dimensional
and we get the h-decomposition of the exterior algebra:

Λ
q
n− ≃ ⊕

S⊂R−
Λα∈Sgα

In particular, Λtopn− has the weight −2ρ (the sum of all negative roots). Therefore, the set X of h-eigen
values in Λ

q
n− is the intersection of the convex hull of the orbit W · 0 for the dot-action and the root

lattice. In particular, for any integral dominant weight λ ∈ P+ the intersection of the orbit W · λ of
dot-action and X is nontrivial only if λ = 0. In order to capture the possible values of ω we have to
recall another definition of the length. (See e.g. [5].) The length l(ω) of an element ω of the Weyl group
may be defined as the cardinality of the set ω(R+) ∩ R−. I.e. ω sends exactly l(ω) positive roots to
negative roots. Denote by n−

ω := ⊕α∈(ω(R+)∩R−) gα and n+
ω := ⊕α∈(R+∩ω(R−)) gα the corresponding dual

subspaces in n− and n+ respectively. For any given element ω ∈ W we get the isomorphisms:

Homh(kω·0,Λ
q
(n−)) = Homh(kω·0,Λl(ω)(n−

ω )) ≃ k,

where kω·0 is the one-dimensional h-module of weight ω · 0. The semisimplicity of the category of finite-
dimensional g-modules implies the case of general module L:

H
q
(b−,h;Hom(L,Λ

q
n−)) = H

q
(b−,h;Hom( ⊕

ω∈W
M(ω · 0)[−l(ω)],Λ

q
n−))⊗ [L]g =

= H
q(

⊕
ω∈W

Homh(kω·0,Λ
q
n−)[−l(ω)]

)
⊗ [L]g =

= H
q(

⊕
ω∈W

Homh(kω·0,Λl(ω)n−
ω [−l(ω)])[−l(ω)]

)
⊗ [L]g =

(
⊕

ω∈W
k[−2l(ω)]

)
⊗ [L]g.

Thus part 3 is proven for pI being a Borel subalgebra.
The same arguments works in the case of arbitrary parabolic subalgebra pI . It is enough to mention

that possible h-weights in the exterior algebra Λ
q
n−
I are bounded from above by the weights of Λ

q
n−

and, therefore, the derived hom from any nontrivial g-representation L(λ) to Λ
q
n−
I is zero. Moreover, the

representatives in the right coset WI\W were chosen to have a minimal length. In particular, this follows
that n−

ω belongs to n−
I iff ω ∈ W I and, therefore, there is exactly one nontrivial hI -homomorphism from

LI(ω · 0) to Λ
q
n−
I which factors through the subspace Λl(ω)n−

ω .

B.2.1 Particular case of matrices with two blocks

Let us explain what we get in the case g = glm+n and pI = pmn which is of our main interest. In this
case h consists of diagonal matrices and has dimension m + n; hI is isomorphic to glm ⊕ gln. Integral
dominant weights are numbered by non-increasing sequences of integer numbers:

P+ := {λ = (λ1 > . . . > λm+n) : λi ∈ Z} and P+
I := {λ = (λ1 > . . . > λm;λm+1 > . . . > λm+n) : λi ∈ Z}

The entire Weyl group W is the symmetric group Sm+n and the subgroup WI is a product Sm×Sn of two
symmetric groups. Consequently, the right coset W I := WI\W = Sm×Sn\Sm+n consists of m-n–shuffle
permutations. I.e. ω ∈ Sm+n belongs to W I iff ω(1) <. . .< ω(m) and ω(m+ 1) <. . .< ω(m+ n)

The dot-action ω · λ is the standard action shifted by −ρ. In our case of g = glm+n the half-sum of
positive roots ρ is equal to 1

2(m+n−1,m+n−3, . . . , 3−m−n, 1−m−n). Consequently, for ω ∈ Sm+n

the dot-action looks as follows:

ω · λ = ω(λ+ ρ)− ρ = (λω(1) + 1− ω(1), . . . , λω(n) + n− ω(n))
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Corollary B.2.51. Let LI(µ) be an irreducible polynomial gln-module with the highest weight µ = (µ1 >
. . . > µn > 0). Consider LI(µ)

∗ = LI(−µ) as an irreducible pmn-module. I.e. the action of glm and
of the nilpotent part n−

I is trivial. Then for any irreducible glm+n-module L(λ) with the highest weight
λ = (λ1 > . . . > λm+n) the relative cohomology H

q
(pmn,glm ⊕ gln;Hom(L(λ), LI(−µ))) vanishes except

the case λ = −µ where they are one dimensional in homological degree 0:

H>0(pmn,glm ⊕ gln;Hom(L(λ), LI(−µ))) = 0 for all λ, µ

and H0(pmn,glm ⊕ gln;Hom(L(λ), LI(−µ))) = k iff λ1 = . . . = λm = 0 & λm+i = −µn−i.

Proof. We apply item 2 of Theorem B.2.47 for the case g = glm+n, pI = pmn and hI = glm ⊕ gln.
The weight (0, . . . , 0 > −µn > . . . > −µ1) is dominant for the entire Lie algebra g. Hence, the dot-

action ω · (−µ) for a nontrivial shuffle permutation ω ̸= Id will be no more a dominant weight because
in each dot-orbit of the Weyl group there is no more than one integral dominant weight. Therefore,
ω · λ = −µ is equivalent to ω = Id and λ = −µ.

Let us reformulate Corollary B.2.51 in terms of Schur functors as we need it in Lemma 3.1.26. Indeed,
if µ is a highest weight of a polynomial gln-module, that is µ is a Young diagram, then LI(µ) = Sµ(U).
Let L(µ) := Sµ(V ⊕U) be the corresponding irreducible polynomial glm+n-module with the same highest
weight. Thus Corollary B.2.51 implies coincidence of dimensions:

dimH0(pmn,glm ⊕ gln;Hom(SµU ;L(λ))) = δλ,µ = dimHomglm+n
(Sµ(U ⊕ V );L(λ)).

Since the category of finite-dimensional glm+n-modules is semi-simple we get an isomorphism for arbitrary
glm+n-module L:

H0(pmn,glm ⊕ gln;Hom(SµU ;L)) ≃ Homglm+n
(Sµ(U ⊕ V );L). (B.2.52)

This is the reformulation of Corollary B.2.51 given in Lemma 3.1.26.
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