
Speeding up MCS Algorithm for the Maximum
Clique Problem with ILS Heuristic and Other
Enhancements

Evgeny Maslov, Mikhail Batsyn, and Panos M. Pardalos

Abstract In this chapter, we present our enhancements of one of the most efficient
exact algorithms for the maximum clique problem—MCS algorithm by Tomita, Su-
tani, Higashi, Takahashi and Wakatsuki (in Proceedings of WALCOM’10, 2010,
pp. 191–203). Our enhancements include: applying ILS heuristic by Andrade, Re-
sende and Werneck (in Heuristics 18:525–547, 2012) to find a high-quality initial
solution, fast detection of clique vertices in a set of candidates, better initial color-
ing, and avoiding dynamic memory allocation. A good initial solution considerably
reduces the search tree size due to early pruning of branches related to small cliques.
Fast detecting of clique vertices is based on coloring. Whenever a set of candidates
contains a vertex adjacent to all candidates, we detect it immediately by its color and
add it to the current clique avoiding unnecessary branching. Though dynamic mem-
ory allocation allows to minimize memory consumption of the program, it increases
the total running time. Our computational experiments show that for dense graphs
with a moderate number of vertices (like the majority of DIMACS graphs) it is more
efficient to store vertices of a set of candidates and their colors on stack rather than
in dynamic memory on all levels of recursion. Our algorithm solves p_hat1000-3
benchmark instance which cannot be solved by the original MCS algorithm. We got
speedups of 7, 3000, and 13000 times for gen400_p0.9_55, gen400_p0.9_65, and
gen400_p0.9_75 instances, correspondingly.

E. Maslov (B) · M. Batsyn · P.M. Pardalos
Laboratory of Algorithms and Technologies for Network Analysis, National Research University
Higher School of Economics, 136 Rodionova, Nizhny Novgorod, Russian Federation
e-mail: lyriccoder@gmail.com

M. Batsyn
e-mail: mbatsyn@hse.ru

P.M. Pardalos
e-mail: pardalos@ufl.edu

P.M. Pardalos
Center of Applied Optimization, University of Florida, 401 Weil Hall, P.O. Box 116595,
Gainesville, FL 32611-6595, USA

B.I. Goldengorin et al. (eds.), Models, Algorithms, and Technologies for Network
Analysis, Springer Proceedings in Mathematics & Statistics 59,
DOI 10.1007/978-1-4614-8588-9_7,
© Springer Science+Business Media New York 2013

93

mailto:lyriccoder@gmail.com
mailto:mbatsyn@hse.ru
mailto:pardalos@ufl.edu
http://dx.doi.org/10.1007/978-1-4614-8588-9_7


94 E. Maslov et al.

Keywords Maximum clique problem · MCS branch-and-bound algorithm · ILS
heuristic · Graph coloring

1 Introduction

The maximum clique problem refers to the problem of finding a clique (a complete
subgraph) with the largest number of vertices in a given graph. It has a lot of practi-
cal applications (Bomze et al., 1999 [3]; Du and Pardalos, 1999 [6]; Boginski et al.,
2003 [2]).

There exists a lot of exact branch-and-bound algorithms for the solving the
maximum clique problem: Bron and Kerbosch (1973) [4], Carraghan and Parda-
los (1990) [5], Fahle (2002) [7], Tomita and Seki (2003) [18], Tomita and Kameda
(2007) [17], Tomita et al. (2010) [19], Li and Quan (2010) [14, 15] and others. Ac-
cording to the published results for DIMACS graphs MCS algorithm by Tomita et
al. [19] and the Max-Sat based algorithms by Li and Quan [14, 15] report the best
performance among the existing exact methods known to the authors.

Since the maximum clique problem is NP-hard (Garey and Johnson, 1979, [9]),
there also exists a number of heuristic approaches which find solutions of high qual-
ity: Kopf and Ruhe (1987) [13], Jerrum (1992) [12], Feo and Resende (1995) [8],
Glover and Laguna (1997) [10], Singh and Gupta (2006) [16], Grosso et al.
(2008) [11] and others. One of the most successful heuristic algorithms is the it-
erated local search (ILS) developed by Andrade et al. (2012) [1].

In our approach, we apply ILS heuristic (Andrade et al., 2012 [1]) to obtain an
initial solution and speed up the original MCS algorithm. This solution provides a
good lower bound and many branches having an upper bound not greater than this
lower bound are pruned. Our computational results prove the effectiveness of this
approach especially for large dense graphs due to the great reduction in the number
of the search tree nodes.

Another enhancement we apply follows the ideas of Fahle (2002) [7] to add
the vertices adjacent to all candidates to the current clique immediately without
branching. We suggest an algorithm of fast detection of such vertices by means of
coloring. The next enhancement is using of a full-fledged greedy coloring at the first
node of the search tree without reordering of vertices. Finally, we propose to avoid
dynamic memory allocation and use only fast stack memory for candidates and their
colors on all steps of the algorithm.

The chapter is organized as follows. In the next section, we describe the maxi-
mum clique problem and prove three propositions needed fast detection of clique
vertices. Section 3 contains a description of our algorithm. Computational results
showing a comparison with the original MCS algorithm are presented in Sect. 4.



Speeding up MCS Algorithm for the Maximum Clique Problem 95

2 Maximum Clique Problem

Let G = (V ,E) be an undirected graph, where V = {1,2, . . . , n} is the set of ver-
tices, E ⊆ V × V is a set of edges. The adjacency matrix of G(V,E) is denoted as
A = (aij ), where aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E. A complementary
graph of G(V,E) is the graph G(V,E), where E = (V ×V )\E. Graph G(V,E) is
complete if all its vertices are pairwise adjacent, i.e. ∀i, j ∈ V, (i, j) ∈ E. A clique
C is a subset of V such that all vertices in this subset are pairwise adjacent. A clique
which has the maximum size (number of vertices) in a graph is called a maximum
clique. The number of vertices of a maximum clique in graph G(V,E) is denoted by
ω(G). The maximum clique problem refers to the problem of finding a maximum
clique in a given graph.

It is possible to formulate the notion of a clique in terms of a chromatic number:
a clique is a graph which chromatic number is equal to the number of vertices. It
can help to identify a clique by means of coloring (see Proposition 1).

Definition 1 A reasonable coloring is a sequential coloring which would not use a
new color for a vertex if it is possible to color it into one of the already used colors.

Proposition 1 If a graph with k vertices is colored in k colors by a reasonable
coloring, then this graph is complete.

Proof By contradiction: let this graph be incomplete. This means that it has at least
two non-adjacent vertices. Let these vertices be i and j , and vertex i is colored
before vertex j by our reasonable coloring. Since k vertices are colored in k colors
then every vertex has a unique color. But then vertex j will be colored into the same
color as vertex i because no other vertex is colored in this color and our coloring is
reasonable. This contradicts with the condition that k colors are used. �

Vertices with higher degree are usually contained in larger cliques. For example,
a vertex which is adjacent to all other vertices in a graph is contained in all cliques
including the maximum one. Such vertices can be found faster after coloring of a
given graph (see Propositions 2 and 3).

Proposition 2 If a vertex is adjacent to all vertices of a graph, then it will have a
unique color in any coloring of the graph.

Proof By definition, another vertex cannot have the same color in a coloring be-
cause it is adjacent to this vertex. �

Definition 2 A greedy coloring is a sequential coloring which on every step colors
a vertex of a graph in a minimal possible color.

Proposition 3 For any greedy coloring if a vertex has a unique color then it is
adjacent to all vertices with greater color.



96 E. Maslov et al.

Proof By contradiction: let there be a vertex i with a unique color k and a vertex j

with a greater color which is not adjacent to i. Vertex j should be colored in color k

or even smaller color because no vertices have color k except i which is not adjacent
to j and our coloring always uses a minimal possible color. This contradicts with
the condition that j has a greater color than k. �

Following the df algorithm (Fahle, 2002 [7]) we check whether there are can-
didates which are adjacent to all the other candidate vertices and thus should be
immediately added to the current clique without any branching. In contrast with the
df implementation, we can check it much faster using Propositions 2 and 3, because
we have to check only vertices which have a unique color after coloring. For such a
vertex, we should only check if it is adjacent to all vertices with a smaller color.

Following the MCS algorithm of Tomita et al. (2010) [19] for an upper bound in
our algorithm we use the same greedy coloring which assigns the minimal possible
color number to every vertex one by one.

3 Algorithm Description

The main procedure of our algorithm has the following steps:

1. Find an initial clique with the ILS heuristic (see Andrade et al. (2012) [1] for a
detailed description).

2. Perform initial ordering of vertices as follows. Find the vertex with the minimum
degree in the graph and put it to the beginning of the current candidates set S. If
several vertices have the same minimum degree then take the vertex which has
the minimum support (sum of the vertex neighbors degrees) among them. For
several vertices having the same minimum support, ties are broken arbitrarily.
Then delete it from the graph and repeat this step until the graph has edges. The
remaining set of vertices called Rmin is put to the beginning of S.

3. Color the current candidates set S with a standard greedy sequential coloring
(use minimal possible color on each step) from the beginning (Rmin set) to the
end.

4. While the current candidates set S has unconsidered candidates call the recursive
brand-and-bound procedure described below.

The recursive branch-and-bound procedure has the following steps:

1. Consider the last candidate in S. If its color number plus the size of the current
clique is less or equal to the size of the best found clique then:

– If we are not at the first level of recursion return from recursion because
the candidates are ordered by colors and all the remaining candidates have
a smaller color number.

– Otherwise consider the candidate which is previous to this one in S and repeat
this step for it.



Speeding up MCS Algorithm for the Maximum Clique Problem 97

2. Add this candidate to the current clique Q.
3. Remove it from the current candidates set S.
4. Form a new candidates set S′ taking from set S only the neighbors of this can-

didate. We take these neighbors from S in the initial order obtained on step 2 of
the main procedure.

5. Color the new candidates set S′ with standard greedy sequential coloring.
6. If the number of colors is equal to the size of the new candidate set S′, add all

these candidates to the current clique (see Proposition 1). Return from recursion.
7. If there are candidates having a unique color (see Proposition 2), check each of

them if it is adjacent to all the candidates with a smaller color (see Proposition 3).
If yes, then add such vertices to the current clique and remove them from S′.

8. Sort the new candidates set S′ in the ascending order with respect to their color
numbers.

9. Recursively call this procedure for the new candidates set S′

To store candidate vertices and their colors on every level of the search tree, we
allocate stack memory of a predetermined size, enough for any DIMACS graph with
the number of vertices from 100 to 1500 and for any possible search tree depth. We
suggest to use a greedy coloring on the first step, but do not reorder the vertices by
their color numbers as in MCS algorithm. So on the first level we have to keep in
the candidates set those vertices for which their color number plus the current clique
size is not greater than the currently best clique size.

4 Computation Results

We test our algorithm on hard DIMACS instances which need more than 10 minutes
to be solved. The computational results are presented in Tables 1 and 2. Table 1
shows the number of the search tree nodes for our algorithm and for MCS algorithm.
The last two columns contain the size of the maximum clique and the size of the
best clique found by the ILS heuristic applied in our algorithm. We run the ILS
heuristic with 100000 scans for all the considered instances except gen400_p0.9_55
and p_hat1000-3 for which we use 60 millions scans. The greatest reduction of the
search tree size in comparison with MCS algorithm is got for gen instances: 60 times
reduction for gen400_p0.9_55, 7000 times for gen400_p0.9_65 and 240000 times
for gen400_p0.9_75.

The comparison of the computational time for our algorithm and MCS al-
gorithm is given in Table 2. The best results are obtained for gen400_p0.9_75
(our algorithm is 13000 times faster for it), gen400_p0.9_65 (3000 times faster),
gen400_p0.9_55 (7 times faster), and p_ hat1000-3 graphs. MCS algorithm is un-
able to solve p_hat1000-3 instance (at least in 10 days) while our algorithm solves it



98 E. Maslov et al.

Table 1 The number of search tree nodes

Benchmark Our algorithm MCS Maximum clique Heuristic solution

brock800_1 1095645796 1097174023 23 19

brock800_2 970862419 972110520 24 20

brock800_3 625139200 625234820 25 19

brock800_4 424101537 424176492 26 19

gen400_p0.9_55 55079436 3425049256 55 54

gen400_p0.9_65 822991 6500277298 65 64

gen400_p0.9_75 41445 10140428816 75 75

keller5 10337321299 10339211493 27 27

MANN_a45 219979 221476 345 344

p_hat1000–2 21587044 25209207 46 44

p_hat1000–3 8773710250 – 68 67

p_hat1500–2 607200969 660539819 65 61

p_hat700–2 416003 670369 44 42

p_hat700–3 81631372 98911559 62 60

Table 2 Running time
Benchmark ILS Our algorithm MCS

brock800_1 167 6482 6337

brock800_2 164 5886 5737

brock800_3 166 3994 3830

brock800_4 166 3009 2849

gen400_p0.9_55 4320 5133 39015

gen400_p0.9_65 8 25 77620

gen400_p0.9_75 7 8 110579

keller5 96 78957 78875

p_hat1000–2 172 360 272

p_hat1000–3 54185 214611 >1000000

p_hat1500–2 346 10231 11859

p_hat700–3 44 1303 1529

in 3 days. The total time of solving all the considered DIMACS instances is reduced
by 75 %.

Acknowledgements The authors would like to thank professor Mauricio Resende and his co-
authors for the source code of their powerful ILS heuristic. The authors are supported by LATNA
Laboratory, National Research University Higher School of Economics (NRU HSE), Russian Fed-
eration government grant, ag. 11.G34.31.0057.



Speeding up MCS Algorithm for the Maximum Clique Problem 99

References

1. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum indepen-
dent set problem. J. Heuristics 18(4), 525–547 (2012). doi:10.1007/s10732-012-9196-4

2. Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the market graph. In:
Nagurney, A. (ed.) Innovations in Financial and Economic Networks, pp. 29–45. Edward El-
gar, Cheltenham Glos (2003)

3. Bomze, I., Budinich, M., Pardalos, P.M., Pelillo, M.: Handbook of Combinatorial Optimiza-
tion. Kluwer Academic, Dordrecht (1999). Chap. “The maximum clique problem”

4. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun.
ACM 16(9), 575–577 (1973). doi:10.1145/362342.362367

5. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique problem. Oper.
Res. Lett. 9(6), 375–382 (1990). doi:10.1016/0167-6377(90)90057-C

6. Du, D., Pardalos, P.M.: Handbook of Combinatorial Optimization, Supplement, vol. A.
Springer, Berlin (1999)

7. Fahle, T.: Simple and fast: improving a Branch-and-Bound algorithm for maximum clique. In:
Proceedings of the 10th Annual European Symposium on Algorithms, ESA ’02, pp. 485–498.
Springer, London (2002)

8. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim.
6(2), 109–133 (1995). doi:10.1007/BF01096763

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York (1979)

10. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997)
11. Grosso, A., Locatelli, M., Pullan, W.: Simple ingredients leading to very efficient

heuristics for the maximum clique problem. J. Heuristics 14(6), 587–612 (2008).
doi:10.1007/s10732-007-9055-x

12. Jerrum, M.: Large cliques elude the metropolis process. Random Struct. Algorithms 3(4),
347–359 (1992). doi:10.1002/rsa.3240030402

13. Kopf, R., Ruhe, G.: A computational study of the weighted independent set problem for gen-
eral graphs. Found. Control Eng. 12, 167–180 (1987)

14. Li, C.M., Quan, Z.: Combining graph structure exploitation and propositional reasoning for the
maximum clique problem. In: Proceedings of the 2010 22nd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI’10, vol. 1,, Arras, France, pp. 344–351. IEEE
Press, New York (2010)

15. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on maxsat for the max-
imum clique problem. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI-10, pp. 128–133. AAAI Press, Atlanta (2010)

16. Singh, A., Gupta, A.K.: A hybrid heuristic for the maximum clique problem. J. Heuristics
12(1–2), 5–22 (2006). doi:10.1007/s10732-006-3750-x

17. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum
clique with computational experiments. J. Glob. Optim. 37(1), 95–111 (2007)

18. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique.
In: Proceedings of the 4th International Conference on Discrete Mathematics and Theoretical
Computer Science, DMTCS’03, pp. 278–289. Springer, Berlin (2003)

19. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-
and-bound algorithm for finding a maximum clique. In: Proceedings of the 4th International
Conference on Algorithms and Computation, WALCOM’10, pp. 191–203. Springer, Berlin
(2010)

http://dx.doi.org/10.1007/s10732-012-9196-4
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1016/0167-6377(90)90057-C
http://dx.doi.org/10.1007/BF01096763
http://dx.doi.org/10.1007/s10732-007-9055-x
http://dx.doi.org/10.1002/rsa.3240030402
http://dx.doi.org/10.1007/s10732-006-3750-x

