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Abstract—We present a new recommender system developed
for the Russian interactive radio network FMhost based on a
previously proposed model. The underlying model combines a
collaborative user-based approach with information from tags of
listened tracks in order to match user and radio station profiles.
It follows an adaptive online learning strategy based on the user
history. We compare the proposed algorithms and an industry
standard technique based on singular value decomposition (SVD)
in terms of precision, recall, and NDCG measures; experiments
show that in our case the fusion-based approach shows the best
results.
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work; hybrid recommender system ; information fusion; quality of
service

I. INTRODUCTION AND RELATED WORK

Music recommendation is an important direction in the
field of recommender systems. Many recent works in this area
have appeared at the International Society for Music Informa-
tion Retrieval Conference (ISMIR) [1], Workshop on Music
Recommendation and Discovery (WOMRAD) [2], [3], and
the Recommender Systems conference (RecSys) [4]. Several
broadcasting services, e.g., last.fm, Yahoo!LaunchCast, and
Pandora, are known for their recommender systems and work
on a commercial basis (however, the latter two do not operate
in Russia). Despite many high quality works on different
aspects of music recommendation, there are only a few studies
devoted to online radio station recommender systems [5].
This work deals with the Russian online radio hosting service
FMhost, in particular, its new hybrid recommender system.

Recently, the focus of computer science research dealing
with music industry has shifted from music information re-
trieval and exploration [6], [7], [8] to music recommendation
[9], [10]. It is not a new direction (see, e.g., [11]); however,
it is now inspired by new capabilities of large online services
that can provide not only millions of tracks for listening, but
also thousands of radio stations to choose from at a single web
site. In addition to this, social tagging is an important factor
that lets us apply new recommender algorithms based on tag
similarity [12], [13], [14].

A widely acclaimed public contest on music recommender
algorithms, KDD Cup1, was recently held by Yahoo!. In KDD
Cup, track 1 was devoted to learning to predict users’ ratings
of musical items (tracks, albums, artists, and genres) where
the items formed a taxonomy: tracks belong to albums, albums
belong to artists, where albums and tracks are also tagged with
genres. Track 2 aimed at developing learning algorithms for
separating music tracks scored highly by specific users from
tracks that have not been scored by them. It attracted a lot of
attention to the problems that are both typical for recommender
systems and specific for music recommendation: scalability
issues, capturing the dynamics and taxonomical properties of
the items [15]. Another large music recommender contest, the
Million Songs Dataset Challenge2, with open data was held
in 2012 by the Computer Audition Lab at UC San Diego
and LabROSA at Columbia University [16]. The core data
consists of triples (user, song, count); it covers approximately
1.2 million users and more than 380,000 songs.

Current music recommendation trends reflect the advan-
tages of hybrid approaches and call for user-centric quality
measures [17]. For instance, the work [18] proposes a novel
approach based on the so-called “forgetting curve” to evaluate
“freshness” of predictions. The work [19] studies the problem
of how much metadata one needs in music recommendation:
a subjective evaluation of 19 users has revealed that pure
content-based methods can be drastically improved with genre
tags. Finally, the authors proposed a recommender approach
that starts from an explicit set of music tracks provided by the
user as evidence of his/her preferences and then infers high-
level semantic descriptors for each track [20].

In [21], the authors proposed a music recommender sys-
tem Starnet for social networking. It generates social recom-
mendations based on positive ratings of friends, non-social
recommendations based on positive ratings of other users in
the network, and random recommendations. Hottabs is nother
interesting recently developed online music recommendation
system is Hottabs [22], it is dedicated to the learning how

1http://kddcup.yahoo.com/
2http://labrosa.ee.columbia.edu/millionsong/



to play guitar. Some authors aim at improving music recom-
mender systems with semantic extraction techniques [23], [24].
In [25], the author describes a system of genre recommenda-
tion for music and TV programs, which can be considered as
an alternative channel selector. The authors of [26] proposed
a recommender system GroupFan which is able to aggregate
preferences of a group of users to their mutual satisfaction.

Many online services (e.g., last.fm and LaunchCast) call
their audio streams “radio stations”, however they are actually
just playlists from a database of tracks which are based on
a recommender system rather than real predefined channels.
FMhost3, on the other hand, provides users with online radio
stations in the classical meaning of this term: human DJs
perform live, and a radio station actually represents a strategy
or mood of a specific person (DJ) who plays his/her own
tracks, performs contests etc. Thus, the problem we aim to
solve differs from most of the work done in terms of music
recommendation, and some of the challenges are unique. For
instance, our system is scalable and it allows users to listen to
music without being registered, and as a result our test dataset
contains only 4266 registered users with a recorded listening
history. The dataset contains 2206 radio stations with 24803
non-zero entries in the user–station matrix; it is small and
sparse, so standard recommendation techniques (e.g., SVD that
we compare our algorithms to) fail to achieve good prediction
quality.

The paper is organized as follows. In Section II, we
describe the online radio service FMhost. In section III, we
propose a novel recommender model, two basic recommender
algorithms, a third algorithm that combines them, and show the
recommender system architecture. Quality of service (QoS)
measurements, a comparison with an SVD-based approach,
and some insights on FMhost user behaviour are discussed in
Section IV. Section V concludes the paper.

II. ONLINE SERVICE FMHOST.ME

A. A concise online broadcasting dictionary

We begin by briefly introducing some basic domain termi-
nology. A chart is a track rating of a particular radio station;
for example, a rock chart shows a certain number (e.g., 10) of
most popular rock tracks, ranked from the most popular (rank
1) to the least popular (rank 10) according to a survey. A live
performance (or just live for short) is a performance with one
or several DJs (disk jockeys) assigned to it. They perform using
their own PCs, and the audio stream is being redirected from
them to an Icecast server and then distributed to the users. The
DJs may also have their own blog for each live, where people
can interact with DJs who perform live. LiquidSoap is a sound
generator that broadcasts audio files (*.mp3, *.aac etc.) into an
audio stream, and Icecast is a retranslation server that redirects
an audio stream from one source (e.g., LiquidSoap) to many
receivers.

B. The FMhost project

FMhost is an interactive radio network. The portal allows
users to listen and broadcast their own radio stations. There

3http://host.fm/en/

are four user categories in the portal: (1) unauthorized user,
(2) listener, (3) Disk Jockey (DJ), and (4) radio station owner.

User capabilities vary with their status. Unauthorized lis-
teners can listen to any station but cannot vote or become DJs
and cannot use the recommender system and the rating system.
Listeners can vote for tracks, lives, and radio stations. They are
allowed to use the recommender system and the rating system,
and they can subscribe to lives, radio stations, or DJs. They
also can be appointed to a live and become a DJ.

There are three types of broadcasting: (1) stream redirec-
tion from another server, (2) AutoDJ translation, and (3) live
performance. Stream redirection applies when a radio station
owner has a separate dedicated server, uses FMhost as a broad-
casting platform, and broadcasts with his own sound genera-
tor, e.g., SamBroadcaster (http://spacial.com/sam-broadcaster),
LiquidSoap (http://savonet.sourceforge.net/) etc. AutoDj is a
special option that allows the users to play music directly from
the FMhost server. Every radio owner gets some space where
he/she can download tracks, and then LiquidSoap generates the
audio stream and the Icecast (http://www.icecast.org/) server
redirects it to the listeners. Usually the owner sets a schedule
for his radio station. Live performances are done by DJs.
Everyone who has performed live at least once can be called
a DJ. He or she can also be added to a radio station crew.
Moreover, a DJ can perform lives at any station, not only on
his own station where he or she is in a crew.

FMhost was the first project of its kind in Russia, starting in
2009. Following FMhost’s success, there now exist several ra-
dio broadcasting portals: http://frodio.com/, http://myradio24.
com/, http://www.radio-hoster.ru/, http://www.taghosting.ru/,
http://www.economhost.com/, and even http://fmhosting.ru/. In
late 2011, FMhost was taken down for a major redesign of both
codebase and recommender system architecture. In this paper,
we describe the results of this upgrade.

The previous version of the recommender system experi-
enced several problems, including tag discrepancy and personal
tracks without tags at all. A survey conducted by FMhost with
about a hundred respondents showed that more than half of
them appreciated the previous version of our recommender
system, and more than 80% of the answers were either
positive or neutral (see Table 1 in [27]); nevertheless, the
new recommender model and algorithms provide even better
recommendations and make even less prediction mistakes.

C. FMhost conceptual improvements

The new version features a more complex system of user
interactions. Every radio station has an owner who is not
just a name but also has the ability to assign DJs for lives,
prepare radio schedule, and assign lives and programs. A new
broadcasting panel allows the DJs to play tracks with new
features such as an equalizer or fading between tracks. A new
algorithm for the recommender system, a new rating system,
and a new chart system will also be launched in the new
version. The rating system has been developed to rank radio
stations and DJs according to their popularity and quality of
work. A new core is being implemented, and a new concept
of LiquidSoap and Icecast is being designed. The new system
fixes all problems that were identified in the previous version.



III. MODELS, ALGORITHMS AND RECOMMENDER
ARCHITECTURE

A. Input data and general structure

Our model is based on three data matrices. The first matrix
A = (aut) tracks the number of times user u visits radio
stations with a certain tag t. Each radio station r broadcasts
audio tracks with a certain set of tags Tr. The sets of all
users, radio stations, and tags are denoted by U , R, and T
respectively. The second matrix B = (brt) contains how many
tracks with a tag t a radio station r has played. Finally,
the third matrix C = (cur) contains the number of times a
user u has visited a radio station r. For each of these three
matrices, we denote by vA, vB , and vC the respective vectors
containing sums of elements: vA =

∑
t∈T

aut, vB =
∑
t∈T

brt, and

vC =
∑
r∈R

aur. We also introduce for each matrix A, B, C the

corresponding frequency of visits matrices Af , Bf , and Cf ;
the frequency matrix is a result of normalization the matrix
with the respective vector of visits, e.g., Af = (aut · (vAu )−1).
Our model is not static: the matrices A, B, and C change after
a user u visits a radio station r with a tag t, i.e., each value
aut, brt, and cur is incremented by 1 after this visit.

The model consists of three main blocks: Individual-
Based Recommender System (IBRS) model, Collaborative-
Based Recommender System (CBRS) model, and Fusion Rec-
ommender System (FRS) that aggregates the results of the first
two. Each model has its own algorithmic implementation.

B. IBRS

The IBRS model uses matrices Af and Bf and aims to
provide a particular user u0 ∈ U with top N recommendations
represented mathematically by a special structure TopN (u).
Formally, TopN (u0) is a triple (Ru0

,�u0
, score), where Ru0

is a set of at most N radio stations recommended to a par-
ticular user u0, �u0 is a well-defined quasiordering (reflexive,
transitive, and complete) on the set Ru0 , and score is a function
which maps each radio station r from Ruo to [0, 1].

The algorithm computes the l1-norm (Manhattan) dis-
tance between a user u0 and a radio station r: d(u0, r) =∑
t ∈ T |au0t − brt|. Then distances between the user u0 and

all radio stations r ∈ R are computed, and the algorithm
constructs the relation ≺u0

according to the following rule:
ri � rj iff d(u0, ri) ≤ d(u0, ri). The function score operates
on Ru0 according to the following rule:

score(ri) = 1− d(u0, ri)/max
rj∈R

d(u0, rj).

Finally, after selecting N radio stations with N largest values
in Ru0

, we have a ranked list TopN (u0) of radio stations
recommended to the user u0. In case there are several elements
with the same score (rank) so that TopN (u) is not uniquely
defined, we simply choose the first elements according to some
arbitrary ordering (e.g., lexicographically by their names).

As shown in Fig. 1, our simplified model takes into account
only “listened tracks” but the previously proposed one [27] also
deals with “liked tracks”, “liked radio stations”, and “favorite
radio stations”.

Fig. 1. The recommender system architecture

C. CBRS

The CBRS model is based on the Cf matrix (normalised
number of times a user u has visited a radio station r). This
matrix also yields a vector nC which stores the total number of
stations listened by each user u ∈ U . This vector also changes
over the time, and this value is used as a threshold to transform
matrix Cf to similarity matrix D via cosine similarity between
users i and j:

sim(i, j) =
cfi · cfj√∑

r∈R c
2
fir ∗

∑
r∈R c

2
fjr

After computing D, the algorithm constructs the list
Topk(u0) = (Uu0

,�u0
, sim) of k users similar to the target

user u0 who awaits recommendations. We define the set of all
radio stations user u0 has listened to by L(u0) = {r|cfur =
0}. In a similar way, we define

TopN (u0) = (Ru0
,�u0

, score),

where score(r) = sim(u∗) · cfu∗r
and u∗ = arg max

u∈Uu0
,r∈U/L(u0)

sim(u) · cfur.

Note that score takes values in the range of [0, 1]. The problem
of choosing exactly N best stations is solved in the same way
as in the IBRS submodel.

D. FRS

After IBRS and CBRS have finished their work and pro-
vides the results, we have two ranked lists of recommended
stations TopIN (u0) and TopCN (u0) for a target user u0 from
IBRS and CBRS respectively. The FRS submodel proposes
a simple solution for aggregating these lists into the final
recommendation structure TopEN (u0) = (REu0

,�Eu0
, scoreE).

For every r ∈ RCu0
∪ RIu0

, the function scoreE(r) maps r to
the weighted sum

β · scoreC(r) + (1− β) · scoreI(r),



where β ∈ [0,1], scoreC(r) = 0 for all r 6∈ RC , and
scoreI(r) = 0 for all r 6∈ RI . The algorithm adds the best
N radio stations according to this criterion to the set RCu0

.

IV. QUALITY OF SERVICE ASSESSMENT

To evaluate the quality of the developed system, we pro-
pose a variant of cross-validation technique [28]. We represent
the dataset with an object-attribute table (binary relation)
T ⊆ U × I , where uT i iff user u ∈ U used (purchased,
watched, listened etc.) item i ∈ I . To evaluate the quality of
recommendations in terms of precision and recall, we split
the initial user set U into training and test subsets Utrain and
Utest, with test set smaller than the training set, e.g., with a
20/80 proportion. Recommendation precision and recall are
evaluated on the test set, and this part of the algorithm is
similar one step of conventional cross-validation. Then each
user vector u from Utest is divided into two parts which
consist of evaluated items Ivisible and items Ihidden which we
have intentionally hidden. Note that in the existing literature,
the proportion between size of Ivisible and Ihidden is not
discussed even in similar schemes [29]. Then, for example,
a user-based algorithm makes recommendations according to
similarity between users from the test and training sets. Each
user from Utest gets recommendations as a set of fixed size
rn(u) = {i1, i2, · · · , in}. Precision and recall are defined as

Recall =
|rn(u) ∩ uI ∩ Ihidden|
|uI ∩ Ihidden|

,

Precision =
|rn(u) ∩ uI ∩ Ihidden|
|rn(u) ∩ Ihidden|

,

where uI is a set of all items from I used by u. These
measures are calculated for each user and then averaged. The
experiment can be repeated several times, e.g. 100, for different
test and training set splits, and then the values are averaged
again. In addition, one can select the set Ihidden at random,
but with a specific proportion, e.g. 20%. The idea behind the
method comes from traditional cross-validation, but in case
of recommender systems some modifications are needed. We
used a modified m-fold cross-validation, which is performed
by splitting the initial set into m disjoint subsets, where each
subset is used as a test set and the other subsets are considered
as training ones. To evaluate ranking quality based on the
number of performed listenings we use Normalized Discounted
Cumulative Gain (NDCG).

Before we proceed to the detailed description of the proce-
dure, we discuss some important aspects of the FMHost data
that we have mined.

A. Basic statistics

The dataset contains following entities: users, tags, radio
stations, and tracks. We have selected users with at least one
tag in the profile, and then all the tags related to the selected
users. At the next step, we have chosen radio stations that
the selected users have listened to or with selected tags in the
radio station profiles. Finally, we have chosen tracks related to
at least one of the selected radio stations and to at least one
tag. The resulting dataset contains 4266 users, 3618 tags, 2209
radio stations, and 4165 tracks. The corresponding matrices
have the following number of nonempty entries: 38504 in the

user–tag matrix, 18539 in the radio station–tag, 24803 in the
user–radio station, 18781 in the track–tag, and 22525 in the
radio station–track matrix.

It is a well-known fact that social networking data often
follows the so called power law distribution [30]. In order
to choose which number of active users or radio stations we
have to take into account for making recommendations, we
performed a simple statistical analysis of the user and radio
station activity. Around 20% of the users (only registered ones)
were analysed.

TABLE I. BASIC PARAMETERS OF THE USER AND RADIO VISITS
DATASETS, WITH POWER-LAW FITS AND THE CORRESPONDING p-value .

Dataset n 〈x〉 σ xmax x̂min α̂ ntail p-value
User dataset 4187 5.86 12.9 191 12 ± 2 2.46(0.096) 117 0.099

Radio dataset 2209 11.22 60.05 1817 46 ± 11 2.37(0.22) 849 0.629

Table I shows p-values of statistical tests performed with
the Matlab package introduced in [30]. It shows that the power
law does fit the radio station dataset, and the probability to
make an error by ruling out the null hypothesis (no power
law) is about 0.1 for the user dataset. Thus, radio station visits
dataset is more likely to follow the power law than the user
visits dataset, but we should take it into account for both
datasets; Fig. 2 shows how the power law actually fits our
data.

This analysis implies useful consequences according to the
well-known “80:20” rule W = P (α−2)/(α−1), which means
that the fraction W of the wealth is in the hands of the richest
P of the population. In our case, 50% of users make 80% of all
radio station visits, and 50% of radio stations have 83% of all
visits (which is actually a rather flat distribution compared to
most services). Thus, if the service tends to take into account
only active stations and users, it can cover 80% of all visits by
considering 50% of their active audience. However, new radio
stations still deserve to be recommended, so this rule can only
be applied to the user database.

B. Quality assessment

For quality assessment in the IBRS subsystem, we count
average precision and recall on the set RN ⊂ R, where
N is the number of randomly “hidden” radio stations. We
suppose that for every station r ∈ RN and every user u ∈ U
the algorithm does not know whether the radio stations were
visited, and we change Af and R accordingly. Then IBRS
attempts to recommend Top-N radio stations for the modified
matrix Af . Top-N average precision and recall are computed
as follows:

Precision =

∑
u∈U

|RI
u∩Lu∩RN |
|Lu∩RI

u|

|U |
,

Recall =

∑
u∈U

|RI
u∩Lu∩RN |
|Lu∩RN |

|U |
.

To deal with CBRS, we use a modification of the leave-one-
out technique. At each step of the procedure for a particular
user u, we “hide” all radio stations r ∈ RN by setting cfur =
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Fig. 2. Power law at FMHost. On the left, users sorted by the number of radio stations they have listened to. On the right, radio stations sorted by the number
of their users. Both graphs (on log scale) show power law dependencies.

0. Then we perform CBRS algorithm assuming that cfu′r is
unchanged for u′ ∈ U/u and then compute

Precision =

∑
u∈U

|RC
u ∩Lu∩RN |
|Lu∩RC

u |

|U |
,

Recall =

∑
u∈U

|RC
u ∩Lu∩RN |
|Lu∩RN |

|U |
.

To tune the FRS system, we can use a combination of these
two procedures trying to find the optimal β as

β∗ = argmax
β

2 · Precision · Recall
(Precision + Recall)

.

After the launch of the system, we suppose to be able
to collect enough reliable statistics in about one month of
active operation in order to tune β and choose appropriate
similarity and distance measures and thresholds. We suppose
that the resulting system will provide reasonably accurate
recommendations using only a single (last) month of user
history and only 50% of the most active users. For quality
assessment during the actual operation, we will compute Top-
N precision and recall measures as well as NDCG. In addition,
online surveys can be launched to assess user satisfaction with
the new RS system.

C. Experimental results

The IBRS algorithm uses the user–tag matrix A and the
radiostation–tag matrix B. As a result, we have a matrix of
predicted scores that contains recommendations of radiosta-
tions for users. Figure 6 shows the precision, recall, and NDCG
measure of IBRS versus the size of recommendation list. For
the first recommended item, precision is about 30% and then
it rapidly drops as Top-N grows to 5-10 elements. Then it
becomes close to 1% while N goes to 100. Recall for the first
recommended radiostation is 50%, and then recall value slowly
increases as Top-N grows. NDCG slowly increases while Top-
N grows. Our Matlab implementation of IBRS runs for about
80s for all users.

The CBRS algorithm uses the user–radiostation matrix C.
To evaluate its quality, we used 3 × 3-fold cross-validation

which we described in the beginning of Section IV. Therefore,
as a result we have 9 different partitions of the initial data
into training and test set, and all measures are averaged
by all partitions. Figure 6 shows that CBRS precision is
smaller than IBRS precision for small Top-N size: for the first
recommended radiostation it is about 7%. However, for large
Top-N size it goes down to 2% (N = 100), which is better
than IBRS precision. In terms of recall CBRS also loses: recall
of the first recommended radiostation is about 10%, and then
for higher values of N it becomes closer to IBRS recall. NDCG
of CBRS is strictly less than the NDCG of IBRS, which shows
that IBRS is a better ranker than CBRS. The testing time for
the entire cross-validation procedure is about 50 minutes.

The hybrid recommender system FRS uses output matri-
ces with scores of recommended radiostations for IBRS and
CBRS. To make the final ranking, it employs a weighted sum
of the IBRS and CBRS output matrices. Parameter β is tuned
for each Top-N size. To this end, for β from 0 to 1 with
step 0.05 we have calculated the resulting weighted matrix;
for this matrix, we calculate precision, recall, the F-measure,
and NDCG. The procedure is repeated for N ranging from
1 to 100. The value of β is then tuned to maximize one of
the measures. By maximizing the F-measure, we improve the
general quality of the output but nearly ignore the ranking.
Maximizing NDCG takes into account ranking. The time
needed to tune β in the range from 0 to 1 with step 0.05
in our implementation is 200s. It takes up to 3s to calculate
the final recommendation matrix with the chosen β.

When we maximize the F-measure with respect to β, for
N = 1 IBRS has a slightly higher weight, about 0.57, but as
Top-N grows to 30-35 radio stations, the parameter β smoothly
decreases, thus increasing CBRS contribution; for N > 35 β
drops to 0 (see Fig. 3). These results can be explained by
the fact that IBRS provides higher precision and recall than
CBRS, but as N grows the F -meausre of CBRS is getting
higher than for IBRS. As a result, the F -measure for FRS is
not less than F -measure of either IBRS or CBRS individually,
and FRS performs efficiently for every tested recommender list
size. In particular, for N on the order of 15-20 radiostations
the F -measure of FRS is higher than for the best basic method
(IBRS) by 2-3%. For larger size of the top lists N , the FRS
F -measure is close to CBRS.
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Fig. 4. Tuning the parameter β to maximize NDCG

NDCG maximisation by the parameter β prefers IBRS at
first: the parameter begins with 0.6. But then in the range
of N from 2 to 10 radiostations β decreases to 0.4 and
stabilizes, oscillating for larger values of N around 0.40-0.41.
This implies that CBRS contributes slightly more to the final
recommendation (see Fig. 4). When we tune β to maximize
NDCG, the weighted sum approach performed better than
IBRS (which is better than CBRS with respect to NDCG) by
4-5% for all tested output sizes.

For comparison, we have also implemented a standard
collaborative filtering model based on singular value decom-
position (SVD) [31], [32], [33], [34], [35]. In this model, an
item’s rating is approximated as a scalar product of user and
item feature vectors (plus some baseline predictors). In our
setting, lacking explicit ratings, we have applied SVD to the
matrix of user listenings to radio stations. Due to the power
law dependencies we have discovered (see Section IV-A), we
have used the logarithm of the number of listenings (plus one)
in the model:

log(listenu,r + 1) ∼ µ+ bu + br + v>u vr,

where listenu,r is the number of times user u listened to radio
station r, µ is the general mean, bu and br are the baseline
predictors for the user u and the station r respectively, and
vu and vr are the vectors of the user and station features
respectively.

It was clear that there is not enough data and the matrix
is too sparse for SVD. This was also supported by our
experiments: we did not see any improvement at all as the
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Fig. 5. Root mean squared error in SVD experiments as a function of the
number of features. Solid line denotes error on the validation set; dashed line,
error on the training set.

number of SVD features grew, the quality on the validation
set was stable all the way from a single feature to about
100 and then started showing clear signs of overfitting; this
is depicted in Fig. 5. Results of the main experiments also
supported this observation: in Fig. 6, SVD clearly loses to the
methods proposed in this work.

V. CONCLUSION AND FURTHER WORK

In this work, we have described the underlying models,
algorithms, and system architecture of the new improved
FMHost service and tested it on the available real dataset.
We hope that the developed algorithms will help a user to find
relevant radio stations for listening. In the future optimization
and tuning, special attention should be paid to scalability issues
and user-centric quality assessment.

By using bimodal cross-validation, we have built a hybrid
algorithm FRS tuned to maximize either F -measure or NDCG
for various values of N and β. The FRS algorithm performs
better than the three other approaches, namely IBRS, CBRS,
and SVD, both in terms of F -measure and in terms of NDCG.

According to the NDCG@n measure, IBRS is strictly better
than CBRS, so the former one is a better ranker. The maximal
value of F -measure is obtained for the Top-N of size 15.

Surprisingly, in our experiments the state-of-the-art SVD-
based technique performed poorly in comparison to our pro-
posed algorithms. This can be explained by the small size and
sparseness of our dataset. We hypothesize that the methods
described in this work will suit datasets with similar properties.
Matrix factorization techniques remain a reasonable tool to
increase scalability, but they have to be carefully adapted and
assessed, taking into account the folksonomic nature of the
track tags and rather disappointing results of the SVD-based
technique. Another important issue is connected to the triadic
relational nature of the data (users, radio stations or tracks,
and tags), which constitutes the so called folksonomy [36], a
fundamental data structure in resource-sharing systems with
tags. As shown in [37], this data can be successfully mined
by means of triclustering, so we also plan to build a tag-based
recommender system by means of triclustering.

Acknowledgments: We would like to thank Rustam Tagiew
and Mykola Pechenizkiy for their comments and Vasily Za-
harchuk and Andrey Konstantiov for their very important work



IBRSCBRSFRS SVD

1 5 10 20 30 50 100

0

0.1

0.2

0.3

Top recommendations

Pr
ec

is
io

n

1 5 10 20 30 50 100

0

0.2

0.4

0.6

0.8

Top recommendations

R
ec

al
l

1 5 10 20 30 50 100

0

0.2

0.4

0.6

Top recommendations

N
D

C
G

Fig. 6. Experimental results for four algorithms: IBRS, CBRS, FRS, and SVD. Graphs, top to bottom: precision, recall, and NDCG as a function of the number
of top recommendations predicted for a user (averaged over all users).

at the previous stages of this project. Our research was done in
the framework of the Basic Research Program at the National
Research University Higher School of Economics in 2014, at
the Laboratory of Intelligent Systems and Structural Analysis
(Moscow) and Laboratory of Internet Studies (St. Petersburg).
Dmitry Ignatov was supported by Russian Foundation for
Basic Research (grant # 13-07-00504).

REFERENCES

[1] A. de Souza Britto Jr., F. Gouyon, and S. Dixon, Eds., Proceedings
of the 14th International Society for Music Information Retrieval
Conference, ISMIR 2013, Curitiba, Brazil, November 4-8, 2013, 2013.

[2] A. Anglade, C. Baccigalupo, N. Casagrande, Ò. Celma, and P. Lamere,
“Workshop report: Womrad 2010,” in RecSys, X. Amatriain, M. Torrens,
P. Resnick, and M. Zanker, Eds. ACM, 2010, pp. 381–382.

[3] A. Anglade, O. Celma, B. Fields, P. Lamere, and B. McFee,
“Womrad: 2nd workshop on music recommendation and discovery,”
in Proceedings of the fifth ACM conference on Recommender systems,
ser. RecSys ’11. New York, NY, USA: ACM, 2011, pp. 381–382.
[Online]. Available: http://doi.acm.org/10.1145/2043932.2044013

[4] Q. Yang, I. King, Q. Li, P. Pu, and G. Karypis, Eds., Seventh ACM
Conference on Recommender Systems, RecSys ’13, Hong Kong, China,
October 12-16, 2013. ACM, 2013.

[5] N. Aizenberg, Y. Koren, and O. Somekh, “Build your own music
recommender by modeling internet radio streams,” in WWW, A. Mille,
F. L. Gandon, J. Misselis, M. Rabinovich, and S. Staab, Eds. ACM,
2012, pp. 1–10.



[6] O. Hilliges, P. Holzer, R. Klüber, and A. Butz, “Audioradar: A
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