LOCALLY FLAT AND WILDLY EMBEDDED SEPARATRICES IN SIMPLEST MORSE-SMALE SYSTEMS

V.S. MEDVEDEV and E.V. ZHUZHOMA

Abstract

Let $M S^{f l o w}\left(M^{n}, k\right)$ and $M S^{\operatorname{diff}}\left(M^{n}, k\right)$ be MorseSmale flows and diffeomorphisms respectively the non-wandering set of those consists of k fixed points on a closed n-manifold $M^{n}(n \geq 4)$. We prove that the closure of any separatrix of $f^{t} \in M S^{f l o w}\left(M^{n}, 3\right)$ is a locally flat $\frac{n}{2}$-sphere while there is $f^{t} \in M S^{f l o w}\left(M^{n}, 4\right)$ the closure of separatrix of those is a wildly embedded codimension two sphere. For $n \geq 6$, one proves that the closure of any separatrix of $f \in M S^{\operatorname{diff}}\left(M^{n}, 3\right)$ is a locally flat $\frac{n}{2}$-sphere while there is $f \in M S^{\operatorname{diff}}\left(M^{4}, 3\right)$ such that the closure of any separatrix is a wildly embedded 2 -sphere.

1. Introduction

In 1960, Steve Smale [28] introduced a class of dynamical systems called later Morse-Smale systems. It was proved that Morse-Smale systems are structurally stable and have zero entropy [23, 25, 27]. In this sense, MorseSmale systems are simplest structurally stable ones. However, the dynamics is far from the complete classification beginning with 3-dimensional MorseSmale systems (see the surveys [7,21]). The reasons are heteroclinic intersections and the possibility for the closure of separatrices to be wildly embedded. This possibility was discovered by Pixton [22] who constructed the gradient-like Morse-Smale diffeomorphism $f: S^{3} \rightarrow S^{3}$ with two sinks, a source, and saddle such that the closure of 2-dimensional separatrix of the saddle is a wildly embedded 2 -sphere while the closure of the 1-dimensional separatrix forms a half of the wildly embedded Artin-Fox arc [5]. The similar examples was constructed in $[6,9]$, where the classification of gradient-like Morse-Smale diffeomorphisms was considered.

The effect of wildly embedded separatrices looks the most clear when the number of fixed points is minimal, and there are no heteroclinic intersections. It follows from $[8,22]$ that four is the minimal number of fixed points when the effect of wildly embedding holds for 3 -dimensional Morse-Smale

[^0]diffeomorphisms. One can easily prove that the closure of separatrix is locally flat for any 2-dimensional Morse-Smale systems (diffeomorphisms and flows) and 3-dimensional Morse-Smale flows. So, it is natural to consider the following aspects: 1) the possibility of wild embedding for Morse-Smale flows, and 2) to find the minimal number of fixed points for n-dimensional Morse-Smale systems, $n \geq 4$, when the effect of wild embedding holds.

Denote by $M S^{\text {flow }}\left(M^{n}, k\right)$ the set of Morse-Smale flows the nonwandering set of those consists of k fixed points on a closed n-manifold M^{n}. Note that a flow $f^{t} \in M S^{\text {flow }}\left(M^{n}, k\right)$ is a gradient one [28]. Similarly, denote by $M S^{\operatorname{diff}}\left(M^{n}, k\right)$ the set of Morse-Smale diffeomorphisms the nonwandering set of those consists of k periodic points. First of all, we remark that $k \geq 2$ because of M^{n} is compact [28]. If $k=2$ then the supporting manifold M^{n} is an n-sphere and the system is of north-south type [16, 26], see Fig. 1, (a). Since M^{n} is connected, for $k \geq 3$, a Morse-Smale system must have at least one saddle provide its non-wandering set consists of fixed points. Eells and Kuiper [14] proved that there are closed n-manifolds, $n \geq 4$, admitting Morse functions with exactly three critical points. As a consequence, there exist closed n-manifolds, $n \geq 4$, admitting gradient Morse-Smale systems (flows and diffeomorphisms) the non-wandering set of those consists of three fixed points. Thus, it is natural to exam the aspects above beginning with n-dimensional Morse-Smale systems, $n \geq 4$, the nonwandering set of those consists of three and four fixed points (a sink, source, and one or two saddles). The main results for Morse-Smale flows are the following theorems. We begin with flows with three fixed points.

Fig. 1

Theorem 1. Let $f^{t} \in M S^{f l o w}\left(M^{n}, 3\right), n \geq 4$. Then the non-wandering set of f^{t} consists of a sink, say ω, source, say α, and saddle, say σ. In addition,

- M^{n} is a simply connected (hence, orientable) manifold, and $n \in$ $\{4,8,16\}$;
- every separatrix of σ is $\frac{n}{2}$-dimensional;
- the closure of any separatrix of σ is a topologically embedded $\frac{n}{2}$-sphere that is a locally flat $\frac{n}{2}$-sphere.
The last item of this theorem allows to us prove the following theorem concerning the topological equivalence.

Theorem 2. Any flows $f^{t}, g^{t} \in M S^{\text {flow }}\left(M^{4}, 3\right)$ are topologically equivalent.

For four fixed points, we prove the existence of wildly embedded separatrices.

Theorem 3. Given any $n \geq 4$, there are a closed n-manifold M^{n} and gradient polar flow $f^{t} \in M S^{f l o w}\left(M^{n}, 4\right)$ such that f^{t} has no heteroclinic intersections, and the closure of some separatrix of f^{t} is a codimension two wildly embedded sphere.

One can show that the manifold M^{n} in Theorem 3 is simply connected. However, $M^{n} \neq S^{n}[17,18]$. As to diffeomorphisms, our main result is the following theorem.

Theorem 4. Let $f \in M S^{\operatorname{diff}}\left(M^{n}, 3\right), n \geq 4$. Then the non-wandering set of f consists of a sink, say ω, source, say α, and saddle, say s_{0}. In addition,

- M^{n} is an orientable manifold, and n is even;
- every separatrix of s_{0} is $\frac{n}{2}$-dimensional;
- the closure of the unstable and stable separatrices $S e p^{u}\left(s_{0}\right)$, $S^{s} p^{s}\left(s_{0}\right)$ are a topologically embedded $\frac{n}{2}$-spheres $W^{u}\left(s_{0}\right) \cup\{\omega\}=S_{\omega}, W^{s}\left(s_{0}\right) \cup$ $\{\alpha\}=S_{\alpha}$ respectively.

Moreover,

- for $n \geq 6$, the spheres S_{ω}, S_{α} are locally flat;
- for $n=4$, there is $f \in M S^{\operatorname{diff}}\left(M^{4}, 3\right)$ such that the spheres S_{ω}, S_{α} are wildly embedded.

The structure of the paper is the following. In Section 2, we give the main definitions and describe the special neighborhood of saddle fixed point. In Section 3, we prove Theorems 1, 2, and all items of Theorem 4 except the last one. In Section 4, we prove Theorem 3 and the last item of Theorem 4. Actually, this last proofs are the constructions of examples. For the flows, our construction is novel. For the diffeomorphisms, we follow [6, 22]. Therefore, for the reader convenient, we shortly give the main idea of the construction in [6, 22].

Let $f_{N S}^{t}$ be the north-south type flow on the 3 -sphere S^{3}, Fig. 1, (a). If S^{3} thought of \mathbb{R}^{3} completed by the infinity point, $f_{N S}^{t}$ is defined by the system $\dot{x}_{1}=x_{1}, \dot{x}_{2}=x_{2}, \dot{x}_{3}=x_{3}$. The origin $O=\alpha=$ north is a source,
and the infinity point $\omega=$ south is a sink. Let $f_{N S}=f_{N S}^{1}$ be the shift-time $t=1$ along the trajectories.

Take the Artin-Fox configuration consisting of three arcs, see Fig. 1, (b). One can assume that the Artin-Fox curve $l_{A F}$ is the union of shifts $f_{N S}^{m}$, $m \in \mathbb{Z}$, so that $l_{A F}$ connects ω and α, and $l_{A F}$ is invariant under $f_{N S}$. Well-known that the Artin-Fox closed arc $l_{A F} \cup\{\alpha\} \cup\{\omega\}$ is wild at ω and $\alpha[5,13]$. Let T be a tubular neighborhood of $l_{A F}$ such that T is invariant under $f_{N S}$. Actually, T is an infinite cylinder that can be thought of the support of Cherry type flow g^{t} with a saddle, say σ, of type $(2,1)$ and an attracting node, Fig. 1, (c). One can assume that the shift-time-one $g^{1}=g$ on ∂T coincides with the restriction $\left.f_{N S}\right|_{\partial T}$. The Pixton-Bonatti-Grines diffeomorphism $f: S^{3} \rightarrow S^{3}$ equals $f_{N S}$ on $S^{3} \backslash T$ and equals g on T. It is easy to see that f is a gradient-like Morse-Smale diffeomorphism such that the closure of unstable separatrix of σ is a topologically embedded 2-sphere that is wild at ω.

Developing this idea we consider a 4 -sphere S^{4} being the result after the rotation \mathcal{R} of 3 -sphere S^{3} such that $\mathcal{R}(\omega)=\omega, \mathcal{R}(\alpha)=\alpha$. Instead of T, one takes $\mathcal{R}(T)$, and instead of Cherry type flow g^{t} we take the flow on the special neighborhood U_{0} with a unique saddle of type (2,2), see details in Section 2.

Acknowledgments. The authors are grateful to D. Anosov, V. Grines and O. Pochinka for useful discussions. We thank RFFI, grants 11-01-12056-ofi-m-2011, 12-01-00672-a for support. This paper is in the frame work of Russian Government Grant for the support of science research driven by leading academics in Russia educational centers of high and occupational education, agreement 11.G34.31.0039.

2. Main definitions and previous results

Basic definitions of dynamical systems see in $[3,27,30]$. A dynamical system (diffeomorphism or flow) is Morse-Smale if it is structurally stable and the non-wandering set consists of a finitely many periodic orbits (in particular, each periodic orbit is hyperbolic and, stable and unstable manifolds of periodic orbits intersect transversally). Many definitions for Morse-Smale diffeomorphisms and flows are similar. So, we shall give mainly the notation for diffeomorphisms giving the exact notation for flows if necessary.

Let $f: M^{n} \rightarrow M^{n}$ be a Morse-Smale diffeomorphism of n-manifold M^{n}. A periodic (in particular, fixed) point σ is called a saddle periodic point (in short, saddle) if $1 \leq \operatorname{dim} W^{u}(\sigma) \leq n-1,1 \leq \operatorname{dim} W^{s}(\sigma) \leq n-1$ where $W^{u}(\sigma)$ and $W^{s}(\sigma)$ are unstable and stable manifolds of σ respectively. A component of $W^{u}(\sigma) \backslash \sigma$ denoted by Sep ${ }^{u}(\sigma)$ is called an unstable separatrix of σ. If $\operatorname{dim} W^{u}(\sigma) \geq 2$, then $\operatorname{Sep}^{u}(\sigma)$ is unique. The similar notation holds for a stable separatrix. Following [1], one says that the saddle σ is of type
(μ, ν), if $\mu=\operatorname{dim} W^{u}(\sigma), \nu=\operatorname{dim} W^{s}(\sigma)$. The number $\mu(\nu)$ is called an unstable (stable) Morse index.

Special neighborhood. Let \mathbb{R}^{n} be Euclidean space endowed with coordinates $\left(x_{1}, \ldots, x_{n}\right)$, and a vector field \vec{V}_{s} defined by the system

$$
\begin{equation*}
\dot{x}_{1}=-x_{1}, \ldots, \dot{x}_{k}=-x_{k}, \quad \dot{x}_{k+1}=x_{k+1}, \ldots, \dot{x}_{n}=x_{n} \tag{1}
\end{equation*}
$$

We assume that $k \geq 2, n-k \geq 2$. The origin $O=(0, \ldots, 0)$ is a saddle of \vec{V}_{s} whose k-dimensional stable separatrix $W^{s}(O)$ and $(n-k)$-dimensional unstable separatrix $W^{u}(O)$ are the following

$$
\begin{aligned}
W^{s}(O) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{k+1}=0, \ldots, x_{n}=0\right\}=\mathbb{R}^{k} \subset \mathbb{R}^{n} \\
W^{u}(O) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=0, \ldots, x_{k}=0\right\} \stackrel{\text { def }}{=} \mathbb{R}_{k+1}^{n} \subset \mathbb{R}^{n}
\end{aligned}
$$

Lemma 5. The function $F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} x_{i}^{2} \sum_{j=k+1}^{n} x_{j}^{2}$ is the first integral for the system (1).

Proof. Taking in mind (1), one gets

$$
\begin{aligned}
\frac{d F}{d t} & =\sum_{\nu=1}^{n} \frac{\partial F}{\partial x_{\nu}} \dot{x}_{\nu}=\sum_{i=1}^{k}\left(2 x_{i}\right) \dot{x}_{i} \sum_{j=k+1}^{n} x_{j}^{2}+\sum_{j=k+1}^{n}\left(2 x_{j}\right) \dot{x}_{j} \sum_{i=1}^{k} x_{i}^{2} \\
& =-2 \sum_{i=1}^{k} x_{i}^{2} \sum_{j=k+1}^{n} x_{j}^{2}+2 \sum_{j=k+1}^{n} x_{j}^{2} \sum_{i=1}^{k} x_{i}^{2} \\
& =2 F\left(x_{1}, ., x_{n}\right)-2 F\left(x_{1}, ., x_{n}\right) \equiv 0 .
\end{aligned}
$$

By Lemma $5, F=1$ defines an $(n-1)$-manifold, denoted H^{n-1}, that divides \mathbb{R}^{n} into the two open sets
$\left\{\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \mid F(\vec{x})<1\right\} \stackrel{\text { def }}{=} U_{0}, \quad\left\{\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \mid F(\vec{x})>1\right\} \stackrel{\text { def }}{=} U_{\infty}$.
Clearly, U_{0} is an invariant neighborhood of O, called special.
Fix $k \geq 2$ and denote by T_{r}^{n-2} the set of points whose coordinates satisfy the equations

$$
x_{1}^{2}+\cdots+x_{k}^{2}=r^{2}, \quad r^{2}\left(x_{k+1}^{2}+\cdots+x_{n}^{2}\right)=1
$$

Then $T_{r}^{n-2} \subset H^{n-1}$ and T_{r}^{n-2} is naturally homeomorphic to the product of the spheres $S_{1, k}^{k-1}(r) \times S_{k+1, n}^{n-k-1}\left(\frac{1}{r}\right)$ where

$$
\begin{aligned}
S_{1, k}^{k-1}(r) & =\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \mid \sum_{i=1}^{k} x_{i}^{2}=r^{2}\right\} \subset \mathbb{R}^{k} \\
S_{k+1, n}^{n-k-1}\left(\frac{1}{r}\right) & =\left\{\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right) \left\lvert\, \sum_{j=k+1}^{n} x_{j}^{2}=\frac{1}{r^{2}}\right.\right\} \subset \mathbb{R}_{k+1}^{n}
\end{aligned}
$$

The sphere $S_{1, k}^{k-1}(r)$ bounds the disk $D_{1, k}^{k}=\left\{\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right) \mid \sum_{i=1}^{k} x_{i}^{2} \leq\right.$ $\left.r^{2}\right\} \subset \mathbb{R}^{k}$. For $r=1$, denote $S_{1, k}^{k-1}(1)$ by $S_{1, k}^{k-1}$. Similarly, $S_{k+1, n}^{n-k-1}(1)=$ $S_{k+1, n}^{n-k-1}$. One can check that every trajectory of \vec{V}_{s} belonging to H^{n-1} intersects T_{r}^{n-2} at a unique point. Therefore, H^{n-1} is homeomorphic to $T_{r}^{n-2} \times \mathbb{R}$.

Let $H_{c}^{n-1}(0 \leq \tau \leq 1)$ be the union of trajectory arcs of \vec{V}_{s} that start at $S_{1, k}^{k-1} \times S_{k+1, n}^{n-k-1}$ and finish at $S_{1, k}^{k-1}\left(\frac{1}{\sqrt{e}}\right) \times S_{k+1, n}^{n-k-1}(\sqrt{e})$. In other words,

$$
H^{n-1}(0 \leq \tau \leq 1)=\bigcup_{0 \leq \tau \leq 1} f_{\tau}\left(S_{1, k}^{k-1} \times S_{k+1, n}^{n-k-1}\right)
$$

Certainly, $H^{n-1}(0 \leq \tau \leq 1) \subset H^{n-1}$.
Flatness and wildness. For $1 \leq m \leq n$, we presume Euclidean space \mathbb{R}^{m} to be included naturally in \mathbb{R}^{n} as the subset whose final $(n-m)$ coordinates each equals 0 . Let $e: M^{m} \rightarrow N^{n}$ be an embedding of closed m-manifold M^{m} in the interior of n-manifold N^{n}. One says that $e\left(M^{m}\right)$ is locally flat at $e(x), x \in M^{m}$, if there exists a neighborhood $U(e(x))=U$ and a homeomorphism $h: U \rightarrow \mathbb{R}^{n}$ such that $h\left(U \cap e\left(M^{m}\right)\right)=\mathbb{R}^{m} \subset \mathbb{R}^{n}$. Otherwise, $e\left(M^{m}\right)$ is wild at $e(x)$ [13]. The similar notation for a compact M^{m}, in particular $\left.M^{m}=[0 ; 1]\right)$.

For the reference, we formulate the following lemma proved in [17] (see also $[16,18]$).

Lemma 6. Let $f: M^{n} \rightarrow M^{n}$ be a Morse-Smale diffeomorphism, and $\operatorname{Sep}^{\tau}(\sigma)$ a separatrix of dimension $1 \leq d \leq n-1$ of a saddle σ. Suppose that $S_{e p}{ }^{\tau}(\sigma)$ has no intersections with other separatrices. Then $S^{2}{ }^{\tau}(\sigma)$ belongs to unstable (if $\tau=s$) or stable (if $\tau=u$) manifolds of some node periodic point, say N, and the topological closure of $\operatorname{Sep}^{\tau}(\sigma)$ is a topologically embedded d-sphere that equals $W^{\tau}(\sigma) \cup\{N\}$.

Note that a separatrix $\operatorname{Sep}^{\tau}(\sigma)$ is a smooth manifold. Hence, $\operatorname{Sep}^{\tau}(\sigma)$ is locally flat at every point [13]. However a-priori, $\operatorname{clos} \operatorname{Sep}^{\tau}(\sigma)=W^{\tau}(\sigma) \cup$ $\{N\}$ could be wild at the unique point N.

3. Local flatness

Here we prove Theorems 1, 2, and all items of Theorem 4 except the last one.

Morse-Smale flows. The crucial statement for the proof of Theorem 1 is the following lemma.

Lemma 7. Let M_{*}^{4} be a compact 4-manifold the boundary of whose consists of two 3-spheres S_{1}^{3} and S_{2}^{3}, $\partial M_{*}^{4}=S_{1}^{3} \cup S_{2}^{3}$. Suppose that there is a vector field \vec{V} on M_{*}^{4} such that

1. \vec{V} has a unique fixed point s_{*} which is a hyperbolic saddle of type $(2,2)$;
2. \vec{V} is transversal to ∂M_{*}^{4}, to be precise $\left.\vec{V}\right|_{S_{1}^{3}}$ is inside and $\left.\vec{V}\right|_{S_{2}^{3}}$ is outside of M_{*}^{4};
3. Every trajectory of \vec{V}, except the trajectories belonging to the separatrices $W^{s}\left(s_{*}\right), W^{u}\left(s_{*}\right)$ of the saddle s_{*}, intersects the both spheres S_{1}^{3}, S_{2}^{3};
4. The stable separatrix $W^{s}\left(s_{*}\right)$ and unstable separatrix $W^{u}\left(s_{*}\right)$ intersects the spheres S_{1}^{3}, S_{2}^{3} along the closed curves $W^{s}\left(s_{*}\right) \cap S_{1}^{3}=C_{1}$, $W^{u}\left(s_{*}\right) \cap S_{2}^{3}=C_{2}$ respectively.

Then each of the curves C_{1}, C_{2} is unknotted in S_{1}^{3}, S_{2}^{3} respectively.
Proof. The curves C_{1}, C_{2} bound in $W^{s}\left(s_{*}\right), W^{u}\left(s_{*}\right)$ the closed disks D_{1}, D_{2} respectively. Since S_{1}^{3}, S_{2}^{3} are transversal to \vec{V}, s is inside of each D_{1}, D_{2}, and $s_{*}=D_{1} \cap D_{2}$.

Suppose the contradiction, and assume that C_{1} is knotted in S_{1}^{3} (the case when C_{2} is knotted in S_{2}^{3} is similar). Due to the extended version of Grobman-Hartman theorem, there is a neighborhood U of $D_{1} \cup D_{2}$ such that $\left.\vec{V}\right|_{U}$ is locally equivalent to the vector field defined by the linear part of \vec{V} at s_{*}. By Proposition $2.15[24],\left.\vec{V}\right|_{U}$ is equivalent to \vec{V}_{s} when $n=k=2$.

By conditions, the exterior of C_{1} in S_{1}^{3} is homeomorphic to the exterior of C_{2} in S_{2}^{3}. Hence, C_{2} is knotted in S_{2}^{3}, [15]. Moreover, S_{2}^{3} can be considered as a result of knot surgery of S_{1}^{3} along the knot C_{1}. Because of this surgery is not trivial, S_{2}^{3} is not homeomorphic to a 3 -sphere $[15,20]$. The contradiction follows the statement.

Proof of Theorem 1. Note that any Morse-Smale flow without periodic trajectories has at least one source and sink [28]. In addition, any such flow is gradient in some Riemannian metric [28,29]. It follows from [14] that $n \in\{4,8,16\}$ and the dimension of each separatrix is $\frac{n}{2}$ provided $f^{t} \in M S^{f l o w}\left(M^{n}, 3\right), n \geq 4$.

It remains to prove that the both $\operatorname{clos} W^{u}(\sigma) \stackrel{\text { def }}{=} S_{\omega}$ and $\operatorname{clos} W^{s}(\sigma) \stackrel{\text { def }}{=} S_{\alpha}$ are locally flat. If $n=8$ or $n=16$, each S_{ω} and S_{α} is of codimension ≥ 3. By [31], S_{ω} and S_{α} are locally flat. Let us consider the case $n=4$. There are neighborhoods U_{α}, U_{ω} of α and ω respectively homeomorphic to a 4-ball such that $\partial U_{\alpha} \cap W^{s}(\sigma)$ (resp., $\partial U_{\omega} \cap W^{u}(\sigma)$) is a simple closed curve, say C_{α} (resp., C_{ω}). By Lemma 7, C_{α} (resp., C_{ω}) is unknotted in ∂U_{α} (resp., $\left.\partial U_{\omega}\right)$. This implies that S_{ω} and S_{α} are locally flat.

Proof of Theorem 2. Let $\omega_{f}, \alpha_{f}, \sigma_{f}$ be the sink, source, and saddle of f^{t} respectively. There are neighborhoods $U\left(\omega_{f}\right), U\left(\alpha_{f}\right)$ of α_{f}, σ_{f} respectively such that the boundaries $\partial U\left(\omega_{f}\right), \partial U\left(\alpha_{f}\right)$ are transverse to f^{t}, and $\sigma_{f} \notin$ $U\left(\omega_{f}\right) \cup U\left(\alpha_{f}\right)$. Without loss of generality, one can assume that the both $U\left(\omega_{f}\right)$ and $U\left(\alpha_{f}\right)$ homeomorphic to a 4-ball. The similar notation holds for g^{t}.

By Proposition 2.15 [24], there are neighborhoods $V\left(\sigma_{f}\right), V\left(\sigma_{g}\right)$ of σ_{f}, σ_{g} respectively such that each flow $\left.f^{t}\right|_{V\left(\sigma_{f}\right)},\left.g^{t}\right|_{V\left(\sigma_{g}\right)}$ is equivalent to $\left.f_{s}^{t}\right|_{U_{0}}$, where U_{0} is the special neighborhood. In particular, each intersection $V\left(\sigma_{f}\right) \cap \partial U\left(\alpha_{f}\right)=T_{f}, V\left(\sigma_{g}\right) \cap \partial U\left(\alpha_{g}\right)=T_{g}$ is a solid torus. We see that there is a homeomorphism $h: V\left(\sigma_{f}\right) \rightarrow V\left(\sigma_{g}\right)$ taking the trajectories of $\left.f^{t}\right|_{V\left(\sigma_{f}\right)}$ to the trajectories of $\left.g^{t}\right|_{V\left(\sigma_{g}\right)}$. Since T_{f} and T_{g} are transversal to the flows f^{t} and f^{g} respectively, h induces the homeomorphism $T_{f} \rightarrow T_{g}$ denoted again by h. Obviously, h takes $S e p^{u}\left(\sigma_{f}\right)$ to $S e p^{u}\left(\sigma_{g}\right)$. Therefore, h takes $S e p^{u}\left(\sigma_{f}\right) \cap T_{f}$ to $S e p^{u}\left(\sigma_{g}\right) \cap T_{g}$. According to the flow structure in the special neighborhood U_{0}, the both $\operatorname{Sep}^{u}\left(\sigma_{f}\right) \cap T_{f}$ and $S e p^{u}\left(\sigma_{g}\right) \cap T_{g}$ are axes of solid toruses T_{f} and T_{g} respectively.

By Lemma 7, the curves $S e p^{u}\left(\sigma_{f}\right) \cap T_{f}$ and $S e p^{u}\left(\sigma_{g}\right) \cap T_{g}$ are unknotted in the 3 -spheres $\partial U\left(\alpha_{f}\right)$ and $\partial U\left(\alpha_{g}\right)$ respectively. Hence, the complements to T_{f} and T_{g} are solid toruses, and h can be extended to a homeomorphism $\partial U\left(\alpha_{f}\right) \rightarrow \partial U\left(\alpha_{g}\right)$. It follows that there is a homeomorphism $h_{*}: M^{4} \backslash$ $\left(\alpha_{f} \cup \omega_{f}\right) \rightarrow M^{4} \backslash\left(\alpha_{g} \cup \omega_{g}\right)$ taking the trajectories to the trajectories. Then h_{*} is easily extended to M^{4} to get a homeomorphism taking the trajectories of f^{t} to the trajectories of g^{t}.

Morse-Smale diffeomorphisms. Here, $f \in \operatorname{MS}^{\operatorname{diff}}\left(M^{n}, 3\right), n \geq 4$. By a connectedness of M^{n}, the non-wandering set of f consists of a sink, say ω, source, say α, and saddle, say σ. Let us show that $2 \leq d=\operatorname{dim} \operatorname{Sep}^{\tau}(\sigma) \leq$ $n-2$. Suppose the contradiction. By Lemma $6, W^{s}(\sigma) \cup\{\alpha\} \stackrel{\text { def }}{=} S_{\alpha}^{1}$, $W^{u}(\sigma) \cup\{\omega\} \stackrel{\text { def }}{=} S_{\omega}^{n-1}$ are topologically embedded circle and $(n-1)$-sphere respectively. Since $n \geq 4$, there is a neighborhood U_{ω} of S_{ω}^{n-1} homeomorphic to $S_{\omega}^{n-1} \times(-1 ;+1)[10,13]$. Without loss of generality, one can assume that $f\left(U_{\omega}\right) \subset U_{\omega}$. The sphere S_{ω}^{n-1} does not divide M^{n} because S_{ω}^{n-1} intersects S_{α}^{1} at a unique point σ. As a consequence, $M_{1}^{n}=M^{n} \backslash U_{\omega}$ is a connected manifold with two boundary component each homeomorphic to S_{ω}^{n-1}. Gluing n-balls to this components, one gets a closed manifold M_{2}^{n}. Since $f\left(U_{\omega}\right) \subset U_{\omega}$, one can extend f to M_{2}^{n} such that f will have a source and two sinks. This is impossible.

By [16], the absence of one-dimensional separatrices implies that a MorseSmale diffeomorphism has unique source and unique sink. It follows that M^{n} is orientable.

Let M_{j} be the number of periodic points $p \in \operatorname{Per}(f)$ those stable Morse index equals $j=\operatorname{dim} W^{s}(p)$, and $\beta_{i}=\operatorname{rank} H_{i}\left(M^{n}, \mathbb{Z}\right)$ the Betti numbers. According to [28],

$$
\begin{gather*}
M_{0} \geq \beta_{0}, \quad M_{1}-M_{0} \geq \beta_{1}-\beta_{0}, \quad M_{2}-M_{1}+M_{0} \geq \beta_{2}-\beta_{1}+\beta_{0}, \cdots \tag{2}\\
\sum_{i=0}^{n}(-1)^{i} M_{i}=\sum_{i=0}^{n}(-1)^{i} \beta_{i} \tag{3}
\end{gather*}
$$

Suppose σ is of type $(n-k, k)$. Then $M_{0}=M_{n}=M_{k}=1$. For f^{-1}, one holds $M_{0}=M_{n}=M_{n-k}=1$. For $j \neq 0, n, k, n-k$, one holds $M_{j}=0$. Since the left parts of (3) for f and f^{-1} are equal, $(-1)^{k}=(-1)^{n-k}$. Hence, $n=2 m$ is even, where $m \geq 2$.

We show above that $k \neq 1$ and $k \neq n-1$. As a consequence, $M_{1}=$ $M_{n-1}=0$. Let us show that $k=m$. Suppose the contradiction. Assume for definiteness that $k>m$. It follows from (2) that $\beta_{1}=\ldots=\beta_{n-k-1}=0$ because of $M_{1}=\ldots=M_{n-k-1}=0$. The Poincare duality implies that $\beta_{1}=\ldots=\beta_{k-1}=0$. Hence, $\beta_{i}=0$ for all $i=1, \ldots, n-1$. Then (3) becomes $1+(-1)^{k}+(-1)^{n}=1+(-1)^{n}$. This is impossible.

It remains to prove that $S_{\omega}^{k}=W^{u}\left(s_{0}\right) \cup\{\omega\}, S_{\alpha}^{k}=W^{s}\left(s_{0}\right) \cup\{\alpha\}$ are locally flat. It follows from [12] (see $[11,31]$) that k-manifold has no isolated wild points provided $n \geq 5, k \neq n-2$. As a consequence, $S_{\omega}^{k}, S_{\alpha}^{k}$ are locally flat k-spheres. This completes the proof of Theorem 4 except the last item.

4. Wild embedding

Here, we prove Theorem 3 and the last item of Theorem 4.
Examples of Morse-Smale flows. First, we introduce the special MorseSmale flows $M S_{k, n-k}^{\text {flow }}\left(M^{n}, 4\right) \subset M S^{f l o w}\left(M^{n}, k\right)$, where $k \geq 2, n-k \geq 2$. In \mathbb{R}^{n}, consider the linear vector field \vec{V}_{n} defined by the system

$$
\begin{equation*}
\dot{x}_{1}=x_{1}, \quad \dot{x}_{2}=x_{2}, \quad \dot{x}_{n-1}=x_{n-1}, \quad \dot{x}_{n}=x_{n} . \tag{4}
\end{equation*}
$$

Clearly, $O=(0, \ldots, 0)$ is a repelling node, and $(n-1)$-sphere $S_{j}^{n-1}=$ $\left\{\vec{x}=\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}^{2}+\cdots+x_{n}^{2}=j^{2}\right\}$ is transversal to \vec{V}_{n} for any $j \in \mathbb{N}$. Let S_{1}^{k-1} be a smoothly embedded in $S_{1}^{n-1}(k-1)$-sphere. Denote by $T\left(S_{1}^{k-1}\right) \subset S_{1}^{n-1}$ a closed tubular neighborhood of S_{1}^{k-1} diffeomorphic to $S_{1}^{k-1} \times D^{n-k}$. Let Q^{n} be the union of rays starting at $O=(0, \ldots, 0)$ through $T\left(S_{1}^{k-1}\right)$. Actually, each ray is the node O and a trajectory through $T\left(S_{1}^{k-1}\right)$. Since $\partial T\left(S_{1}^{k-1}\right)$ is diffeomorphic to $S^{k-1} \times S^{n-k-1}$, the boundary of the set $R \stackrel{\text { def }}{=} \mathbb{R}^{n} \backslash\left(O \cup\right.$ int $\left.Q^{n}\right)$ is diffeomorphic to $S^{k-1} \times S^{n-k-1} \times \mathbb{R}$ where the last factor \mathbb{R} corresponds to the time parameter of (4).

Recall that $\partial U_{0}=S^{k-1} \times S^{n-k-1} \times \mathbb{R}$ where the last factor \mathbb{R} corresponds to the time parameter of (1). Let $\eta: \partial U_{0} \rightarrow \partial R$ be the natural identification. Then $\left(\operatorname{clos} U_{0}\right) \bigcup_{\eta} R$ is a manifold. Because of η is a homotopy identity on the factor $S^{k-1} \times S^{n-k-1}$, one can extend the structure of smooth manifold to $O \cup\left(\operatorname{clos} U_{0}\right) \bigcup_{\eta} R \stackrel{\text { def }}{=} R_{n}$ such that the set $\left(S_{1}^{n-1} \backslash T\left(S_{1}^{k-1}\right)\right) \bigcup_{\eta}\left(S_{1, k}^{k-1} \times\right.$ $D_{k+1, n}^{n-k}$) is homeomorphic to S_{1}^{n-1} that bounds the neighborhood of O in R_{n} homeomorphic to \mathbb{R}^{n}.

Let A be a closed annulus bounded by S_{1}^{n-1}, S_{2}^{n-1} in \mathbb{R}^{n}, and $\mathbb{B}_{2}^{n} \subset \mathbb{R}^{n}$ the closed n-ball bounded by S_{2}^{n-1}. By construction, η glue $H^{n-1}(0 \leq \tau \leq$

1) with $\partial\left(A \backslash Q^{n}\right)$. Therefore, η glue $\partial\left(S_{2}^{n-1} \backslash Q^{n}\right)$ with

$$
\partial\left(D_{1, k}^{k}\left(\frac{r}{\sqrt{e}}\right) \times S_{k+1, n}^{n-k-1}\left(\frac{\sqrt{e}}{r}\right)\right)=S_{1, k}^{k-1}\left(\frac{r}{\sqrt{e}}\right) \times S_{k+1, n}^{n-k-1}\left(\frac{\sqrt{e}}{r}\right) .
$$

Put by definition,

$$
\begin{aligned}
D^{n}(\tau \leq 0) & =\cup_{0 \leq \tau \leq 1} f_{\tau}\left(D_{1, k}^{k}\left(\frac{r}{\sqrt{e}}\right) \times S_{k+1, n}^{n-k-1}\left(\frac{\sqrt{e}}{r}\right)\right), \\
B_{n} & =D^{n}(\tau \leq 0) \cup_{\eta} \partial\left(\mathbb{B}_{2}^{n} \backslash Q^{n}\right)
\end{aligned}
$$

The set B_{n} is a part of R_{n} with the piecewise smooth boundary

$$
\partial B_{n}=\left(S_{2}^{n-1} \backslash Q^{n}\right) \cup_{\eta}\left(D_{1, k}^{k}\left(\frac{r}{\sqrt{e}}\right) \times S_{k+1, n}^{n-k-1}\left(\frac{\sqrt{e}}{r}\right)\right)
$$

The vector fields \vec{V}_{s}, \vec{V}_{n} define the vector field \vec{v} on $\int B_{n}$. Smoothing the boundary of B_{n} and \vec{v} to get a smooth vector field (denoted by \vec{v} again) that is transversal to ∂B_{n}. By construction, \vec{v} has the repelling node O and the saddle, say s_{0}, of the type $(n-k, k)$. Note that $S_{1, k}^{k-1}=W^{s}\left(s_{0}\right) \cap$ $S_{1}^{n-1}=S_{1, k}^{k-1}, S_{k+1, n}^{n-k-1}=W^{u}\left(s_{0}\right) \cap \partial B_{n}=S_{k+1, n}^{n-k-1}$. Take the copy B_{n}^{\prime} of B_{n} with the vector field $-\vec{v}$. Clearly, $-\vec{v}$ has an attracting node, say O^{\prime}, and saddle, say s_{0}^{\prime}, of the type $(k, n-k)$. The intersection of $W^{s}\left(s_{0}^{\prime}\right)$ with ∂B_{n}^{\prime} is a sphere $S_{k+1, n}^{n-k-1, *}$. Without loss of generality, one can assume that $S_{k+1, n}^{n-k-1, *} \cap S_{k+1, n}^{n-1, *}=\emptyset$ because of $k \geq 2$.

Let $B_{n} \cup_{\psi} B_{n}^{\prime} \stackrel{\text { def }}{=} M^{n}$ be the manifold obtained by the identification ψ of the boundaries of B_{n}, B_{n}^{\prime} [19]. The fields $\vec{v},-\vec{v}$ defines on M^{n} the Morse-Smale vector field \vec{V} that induces the Morse-Smale flow denoted by $f_{k, n-k}^{t}\left(S_{1, k}^{k-1},\right)$. Obviously, $f_{k, n-k}^{t}\left(S_{1, k}^{k-1},\right) \in M S_{k, n-k}^{t}\left(M^{n}, 4\right)$. For $k=n-2$ and $n \geq 4$, take $S_{1}^{k-1}=S_{1}^{n-3}$ to be smoothly embedded and knotted codimension two sphere. Well-known that such spheres exist [13]. According to [4], [2]), and [12], the spheres $W^{s}\left(s_{0}\right) \cup O, W^{u}\left(s_{0}^{\prime}\right) \cup O^{\prime}$ are wild at O and O^{\prime} respectively. This completes the proof of Theorem 3.

Examples of Morse-Smale diffeomorphisms. Here, we keep the notation of section 2 for $n=4, k=2$. Given a 2 -torus T^{2} that is the boundary of solid torus $P^{3}=S^{1} \times D^{2}, T^{2}=\partial P^{3}=S^{1} \times \partial D^{2}$, any curve $\{\cdot\} \times \partial D^{2}$ is called a meridian, and $S^{1} \times\{\cdot\}$ is a parallel. Recall that a 3 -sphere S^{3} can be obtained after a gluing of two copy of solid torus $P^{3}, S^{3}=P^{3} \cup_{\nu} P^{3}$, where the glue mapping $\nu: T^{2} \rightarrow T^{2}$ takes a meridian to parallel and vise versa. This representation of S^{3} is a standard Heegaard splitting of genus 1.

Given any $t \in \mathbb{R}$, we introduce 2 -torus

$$
\mathbb{T}_{t}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}^{2}+x_{2}^{2}=\exp (-2 t), x_{3}^{2}+x_{4}^{2}=\exp 2 t\right\} \subset H^{3}
$$

that is the boundary of the following solid toruses

$$
P_{12, t}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}^{2}+x_{2}^{2}=\exp (-2 t), x_{3}^{2}+x_{4}^{2} \leq \exp 2 t\right\}
$$

$$
P_{34, t}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}^{2}+x_{2}^{2} \leq \exp (-2 t), x_{3}^{2}+x_{4}^{2}=\exp 2 t\right\},
$$

that form a standard Heegaard splitting $P_{12, t}^{3} \cup_{i d} P_{34, t}^{3}$ of genus 1. The 3sphere $P_{12, t}^{3} \cup_{i d} P_{34, t}^{3}$ bounds the 4 -ball, say B_{0}^{4}. Moreover, $P_{12, t_{0}}^{3}$ and $P_{34, t_{0}}^{3}$ divide U_{0} into three domains $B_{0}^{4}, U_{12}\left(t \leq t_{0}\right), U_{34}\left(t \geq t_{0}\right)$, Fig. 2, where

(a)

(b)

Fig. 2

$$
\begin{aligned}
U_{12}^{4}\left(t \leq t_{0}\right)= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid\left(x_{1}^{2}+x_{2}^{2}\right.\right. \\
& \left.>\exp \left(-2 t_{0}\right), x_{3}^{2}+x_{4}^{2}<\exp 2 t_{0},\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{3}^{2}+x_{4}^{2}\right)<1\right\}, \\
U_{34}^{4}\left(t \geq t_{0}\right)= & \left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid\left(x_{1}^{2}+x_{2}^{2}\right.\right. \\
& \left.<\exp \left(-2 t_{0}\right), x_{3}^{2}+x_{4}^{2}>\exp 2 t_{0},\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{3}^{2}+x_{4}^{2}\right)<1\right\} .
\end{aligned}
$$

We see that a 2-torus $\mathbb{T}_{t_{0}}^{2}$ divides H^{3} into two parts $\mathbb{T}_{t \leq t_{0}}^{2}=\cup_{t \leq t_{0}} \mathbb{T}_{t}^{2}$, $\mathbb{T}_{t \geq t_{0}}^{2}=\cup_{t \geq t_{0}} \mathbb{T}_{t}^{2}$ such that $\partial U_{12}\left(t \leq t_{0}\right)=\mathbb{T}_{t \leq t_{0}}^{2}$ and $\partial U_{34}\left(t \geq t_{0}\right)=\mathbb{T}_{t \geq t_{0}}^{2}$.

Let us introduce the coordinates (t, u, v) on $H^{3}=\partial U_{0}$ as follows

$$
\begin{array}{ll}
x_{1}=e^{-t} \cos 2 \pi u, & x_{2}=e^{-t} \sin 2 \pi u \\
x_{3}=e^{t} \cos 2 \pi v, & x_{4}=e^{t} \sin 2 \pi v \tag{5}
\end{array}
$$

where $u, v \in[0 ; 1)$ are cyclic coordinates on meridians or parallels on \mathbb{T}_{t}^{2}. Later on, (t, u, v) becomes $\left(t_{2}, u_{2}, v_{2}\right)$.

Take the copy of \mathbb{R}^{4} endowed with the coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, and the flow $f_{N S}^{t}$ that is defined by (4) for $n=4$. The diffeomorphism

$$
f_{N S}=f_{N S}^{1}:\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \rightarrow\left(e x_{1}, e x_{2}, e x_{3}, e x_{4}\right)
$$

is a shift-time-one along the trajectories of $f_{N S}^{t}$. Clearly, the family of spheres

$$
S_{m}^{3}=\left\{\left(x_{1}, \ldots, x_{4}\right): x_{2}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=e^{2 m}\right\}, \quad S_{m}^{2}=S_{m}^{4} \cap\left\{x_{4}=0\right\}
$$

is invariant under $f_{N S}$.
Now we construct the special Artin-Fox curve as follows. On S_{0}^{2}, one takes the points $Y_{0}^{0}\left(\frac{1}{2} ; 0 ; \frac{\sqrt{3}}{2} ; 0\right), Y_{1}^{0}(0 ; 0 ; 1 ; 0), Y_{2}^{0}\left(\frac{\sqrt{3}}{2} ; 0 ; \frac{1}{2} ; 0\right)$. Between the spheres S_{0}^{3} and $f_{N S}\left(S_{0}^{3}\right)=S_{1}^{3}$, one takes arcs d_{1}, d_{2}, d_{3} forming ArtinFox configuration such that d_{1} connects Y_{0}^{0}, Y_{1}^{0}, and d_{2} connects $f_{N S}\left(Y_{1}^{0}\right)$, $f_{N S}\left(Y_{2}^{0}\right)$, and d_{3} connects $Y_{2}^{0}, f_{N S}\left(Y_{0}^{0}\right)$, Fig 3, (a). One can assume that the union

$$
l^{\circ} \stackrel{\text { def }}{=} \cup_{k \in \mathbb{Z}} f_{N S}^{k}\left(d_{1} \cup d_{2} \cup d_{3}\right)
$$

is a simple arc connecting the origin $O=N$ and the infinity point S such that $l=\{S, N\} \cup l^{\circ}$ is Artin-Fox curve [5]. Here, we consider the 3 -sphere

(b)

Fig. 3
S^{3} the both as \mathbb{R}^{3} completed by the infinity point S, and as the natural part of the 4 -sphere S^{4}. Without loss of generality, we can suppose that l intersects transversally all spheres $S_{m}^{3}, m \in \mathbb{Z}$.

Let \mathcal{R} be the rotation of the half-space \mathbb{R}_{+}^{3} about 2-plane $x_{4}=0=x_{3}$ that is defined as

$$
\begin{array}{ll}
\bar{x}_{1}=x_{1}, & \bar{x}_{2}=x_{2}, \\
\bar{x}_{3}=x_{3} \cos 2 \pi v-x_{4} \sin 2 \pi v, & \bar{x}_{4}=x_{3} \sin 2 \pi v+x_{4} \cos 2 \pi v, \tag{6}
\end{array}
$$

where $v \in[0,1]$. Since S and N are fixed under \mathcal{R} and $l^{\circ}=l \backslash(\{S, N\}) \subset$ $\mathbb{R}_{+}^{3}, \mathcal{R}(l)=l_{\mathcal{R}}$ is a topologically embedded 2 -sphere. It follows from $[2,12]$ that $l_{\mathcal{R}}$ is wild at S and N.

One can introduce the smooth injective parametrization $\theta: \mathbb{R} \rightarrow l^{\circ}$ such that l intersects every $S_{m}^{3}, m \in \mathbb{Z}$, at three points $l^{\circ}(m), l^{\circ}\left(m+\frac{1}{3}\right)$, $l^{\circ}\left(m+\frac{2}{3}\right)$ with parameters $t=m, m+\frac{1}{3}, m+\frac{2}{3}$ respectively. Since l is invariant under $f_{N S}$, there is a tubular neighborhood $T\left(l^{\circ}\right)$ of l° such that $T\left(l^{\circ}\right)$ is invariant under $f_{N S}$, and $T\left(l^{\circ}\right)$ is diffeomorphic to $\mathbb{R} \times D^{2}$, and
$T\left(l^{\circ}\right)$ intersects every $S_{m}^{3}, m \in \mathbb{Z}$, at three disks
$D_{m, 0}=\{m\} \times D^{2}, \quad D_{m+\frac{1}{3}, 1}=\left\{m \left\lvert\, \frac{1}{3}\right.\right\} \times D^{2}, \quad D_{m+\frac{2}{3}, 2}=\left\{m+\frac{2}{3}\right\} \times D^{2}$,
where $Y_{i}^{0} \in D_{\frac{i}{3}, i}, i=1,2,3$.
Clearly, $\mathcal{R}\left(\mathbb{R} \times D^{2}\right)_{A F}$ is a neighborhood of $\mathcal{R}\left(l^{\circ}\right)=l_{\mathcal{R}}^{\circ}$ which is homeomorphic to $\mathbb{R} \times D^{2} \times S^{1}$ the boundary of those is $\mathbb{R} \times S^{1} \times S^{1}$. Therefore, this boundary is endowed with the coordinates (t, u, v) defined by (6). Here, we denote (t, u, v) by $\left(t_{1}, u_{1}, v_{1}\right)$.

Put by definition, $\mathcal{I}=\int\left(\mathbb{R} \times D^{2}\right)_{A F} \cup\{N, S\}, M_{1}=S^{4} \backslash \mathcal{I}$, and $M_{2}=$ clos U_{0}. We see that ∂M_{1} is homeomorphic to $\mathbb{R} \times S^{1} \times S^{1} \simeq \partial M_{2}=H^{3}$. Recall that H^{3} endowed with the coordinates $\left(t_{2}, u_{2}, v_{2}\right)$. The mapping $\Xi: \partial M_{2} \rightarrow \partial M_{1}$ is defined as follows:

$$
\begin{equation*}
t_{1}=t_{2}, \quad u_{1}=u_{2}-v_{2}, \quad v_{1}=v_{2} . \tag{7}
\end{equation*}
$$

According to [19], the set $M_{*}^{4}=M_{1} \cup_{\Xi} M_{2}$ is a noncompact manifold. Clearly, the set $M_{1}^{\prime}=S^{4} \backslash \int\left(\mathbb{R} \times D^{2}\right)_{A F}$ is compact, and $M_{1}=M_{1}^{\prime} \backslash\{N, S\}$.

The toruses $\mathbb{T}_{0}^{2}, \mathbb{T}_{1}^{2}$ divide H^{3} into three sets $\mathbb{T}_{t \geq 1}^{2}, \mathbb{T}_{0 \leq t \leq 1}^{2}, \mathbb{T}_{t \leq 0}^{2}$ where $\mathbb{T}_{0 \leq t \leq 1}^{2}$ is compact while the others are non-compact. Denote by $\Xi_{t \geq 1}, \Xi_{0 \leq t \leq 1}, \Xi_{t \leq 0}$ the restriction of Ξ on $\mathbb{T}_{t \geq 1}^{2}, \mathbb{T}_{0 \leq t \leq 1}^{2}, \mathbb{T}_{t \leq 0}^{2}$ respectively. Similarly, the circles $\left(\{0\} \times \partial D^{2}\right)_{A F},\left(\{1\} \times \partial D^{2}\right)_{A F}$ divide the boundary of $\left(\mathbb{R} \times D^{2}\right)_{A F}$ into three cylinders $C_{0 \leq t \leq 1}=\left([0 ; 1] \times S^{1}\right)_{A F}$, $C_{t \geq 1}=\left([1 ;+\infty) \times S^{1}\right)_{A F}, C_{t \leq 0}=\left((-\infty ; 0] \times S^{1}\right)_{A F}$ where $C_{0 \leq t \leq 1}$ is compact while the others are not. Denote $\mathcal{R}\left(C_{0 \leq t \leq 1}\right), \mathcal{R}\left(C_{t \geq 1}\right), \mathcal{R}\left(C_{t \leq 0}\right)$ by

$$
\begin{aligned}
C_{0 \leq t \leq 1, \mathcal{R}} & \simeq[0 ; 1] \times S^{1} \times S^{1}, \quad C_{t \geq 1, \mathcal{R}} \simeq[1 ;+\infty) \times S^{1} \times S^{1} \\
C_{t \leq 0, \mathcal{R}} & \simeq(-\infty ; 0] \times S^{1} \times S^{1}
\end{aligned}
$$

respectively.
Clearly, $\mathbb{R}\left(S_{m}^{2}\right)=S_{m}^{3} \subset \mathbb{R}^{4} \backslash\{N, S\}$. Let $K(\geq m)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right.$: $\left.x_{2}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \geq e^{2 m}\right\}$ be the exterior of S_{m}^{3}, and $K(\leq m)$ the interior of S_{m}^{3} with the hole N. Denote by $K\left(m_{1}, m_{2}\right)$ the closed annulus between the spheres $S_{m_{1}}^{3}, S_{m_{2}}^{3}$. Because of (7), $M_{*}^{4}=M_{1} \cup_{\Xi} M_{2}$ is the union of the following sets:

1) $U_{12}(t \leq 0) \cup_{\Xi_{t \leq 0}}[K(\leq 0) \backslash \mathcal{I}] \stackrel{\text { def }}{=} B_{N}$,
2) $U_{34}(t \geq 1) \cup_{\Xi_{t \geq 1}}[K(r \geq 1) \backslash \mathcal{I}] \stackrel{\text { def }}{=} B_{S}$
3) $B^{4}(0 \leq t \leq 1) \cup_{\Xi_{0 \leq t \leq 1}}[K(-1,1) \backslash \mathcal{I}] \stackrel{\text { def }}{=} B_{*}$.

It follows from (7) that the set

$$
S_{*,-m} \cup_{\left.\Xi\right|_{t \leq 0}}\left(P_{12,-m}^{3} \cup P_{12,-m+\frac{1}{3}}^{3} \cup P_{12,-m+\frac{2}{3}}^{3}\right) \stackrel{\text { def }}{=} S_{m, *}^{3}
$$

is a 3 -sphere, since the lens $L(1,-1), L(1,1)$ are the 3 -sphere $S^{3}=L(1,0)$. Note that if l deforms outside of some compact part to being rays, l becomes
a locally flat arc. It follows that the set $K_{N}(-m,-m-1)$ between $S_{m, *}^{3}$, $S_{m+1, *}^{3}$ can be embedded in \mathbb{R}^{4}. This implies that $K_{N}(-m,-m-1)$ homeomorphic to the annulus $S^{3} \times[0 ; 1]$, and hence B_{N} can be completed by a point to be a smooth manifold. Similarly, B_{S}. We see that $M^{4}=M_{1}^{\prime} \cup_{\Xi} M_{2}$ admits a structure of closed smooth 4-manifold.

The shift-time-one diffeomorphisms $f_{N S}: M_{1} \rightarrow M_{1}, f_{s}^{1}: M_{2} \rightarrow M_{2}$ induce the diffeomorphism $f: M^{4} \rightarrow M^{4}$ with two nodes, say α and ω, and a saddle. By construction, the spheres S_{ω}, S_{α} are wildly embedded. This completes the proof of Theorem 4.

References

1. R. Abraham, S. Smale. Nongeneracity of Ω-stability. Global Analysis. Proc. Sympos. Pure Math., 14 (1970), 5-8.
2. J. Andrews, M. Curtis. Knotted 2 -spheres in the 4 -sphere. Annals of Math., 70 (1959), 3, 565-571.
3. D. V. Anosov, V.V. Solodov. Hyperbolic Sets. Dynamical systems IX, Itogi Nauki Tekh., Ser.: Sovr. Probl. Mat., Fund. Napr., 66 (1991), 12-99. Engl. transl. in Encycl. Math. Sci., 66 (1995), Berlin, Springer.
4. E. Artin. Zur isotopie zweidimensionaler Flächen im R_{4}. Abh. Math. Sem. Univ. Hamburg, 4 (1925), 174-177.
5. E. Artin, R. H. Fox Some wild cells and spheres in three-dimensional space. Ann. of Math., 49 (1948), 979-990.
6. Ch. Bonatti, V. Grines. Knots as topological invariant for gradient-like diffeomorphisms of the sphere S^{3}. Journal of Dyn. and Control Syst., 6 (2000), 579-602.
7. Ch. Bonatti, V. Grines, R. Langevin. Dynamical systems in dimension 2 and 3: conjugacy invariants and classification. Computational and Appl. Math., 20 (2001), 1-2, 1-40.
8. Ch. Bonatti, V. Grines, V. Medvedev, E. Pecou. Three-dimensional manifolds admitting Morse-Smale diffeomorphisms without heteroclinic curves. Topology and Appl., 117 (2002), 335-344.
9. Ch. Bonatti, V. Grines, V. Medvedev, E. Pecou. Topological classification of gradient-like diffeomorphisms on 3-manifolds. Topology, 43 (2004), 369-391.
10. J.C. Cantrell. Almost locally flat embeddings of S^{n-1} in S^{n}. Bull. Amer. Math. Soc., 69 (1963), 716-718.
11. J. Cantrell, C. Edwards. Almost locally flat imbeddings of manifolds. Michigan Math. Jour., 12 (1965), 217-223.
12. A. V. Chernavsky. On singular points of topological embeddings and on the union of locally flat cells. Doklady Acad. USSR 3, 167 (1966), 528-530.
13. R. J. Daverman, G. A. Venema. Embeddings in Manifolds. GSM, Amer. Math. Soc., Providence, 106 (2009).
14. J. Eells, N. Kuiper. Manifolds which are like projective planes. Publ. Math. IHES, 14 (1962), 5-46.
15. C. McA. Gordon, J. Luecke. Knots are determinned by their complements. J. Amer. Math. Soc., 2 (1989), 371-415.
16. V. Grines, V. Medvedev, O. Pochinka, E. Zhuzhoma. Global attractor and repeller of Morse-Smale diffeomorphisms. Proc. Steklov Inst. Math., 271 (2010), 103-124.
17. V. Grines, V. Medvedev, E. Zhuzhoma. On Morse-Smale diffeomorphisms with four periodic points on closed orientable manifolds. Math. Notes, 74 (2003), no 3, 352-366.
18. V. Grines, V. Medvedev, E. Zhuzhoma. On existence of noncompact heteroclinic curves. Qual. Theory of Dyn. Syst., 4 (2003), 71-77.
19. Hirch M. Differential Topology. Sringer-Verlag, 1976.
20. P. Kronheimer, T. Mrowka. Witten's conjecture and property P. Geometry and Topology, 8 (2004), 295-310.
21. V. Medvedev, E. Zhuzhoma. Global dynamics of Morse-Smale systems. Proc. of the Steklov Inst. of Math., 261 (2008), 112-135.
22. D. Pixton. Wild unstable manifolds. Topology, 16 (1977), 167-172.
23. J. Palis. On Morse-Smale dynamical systems. Topology, 8 (1969), no 4, 385-404.
24. J. Palis, W. de Melo. Geometric Theory of Dynamical Systems, An Introduction. Springer-Verlag, NY,Heidelberg, Berlin, 1982.
25. J. Palis, S. Smale. Structural stability theorems. Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 223-231.
26. G. Reeb. Sur certaines propriétés topologiques des variétésfeuilletées. Act. Sci. ind., 1183 (1952), 91-154.
27. C. Robinson. Dynamical Systems: stability, symbolic dynamics, and chaos. Studies in Adv. Math., Sec. edition, CRC Press, 1999.
28. S. Smale. Morse inequalities for a dynamical system. Bull. Amer. Math. Soc., 66 (1960), 43-49.
29. S. Smale. On gradient dynamical systems. Annals Math., 74 (1961), 199-206.
30. S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73 (1967), 741-817.
31. J. Stallings On topologically unknotted spheres. Annals of Math., 78 (1963), 501-526.

Authors' addresses:
V.S. Medvedev

Institute of Applied Math. and Cybernetics, Nizhny Novgorod University.
E-mail: medvedev@unn.ac.ru
E.V. Zhuzhoma

Nizhny Novgorod State Pedagogical University.
E-mail: zhuzhoma@mail.ru

[^0]: 2000 Mathematics Subject Classification. Primary 58F10, 58F12; Secondary 58F09. Key words and phrases. Mosre-Smale systems, locally flat spheres, wild spheres.

