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Abstract. Let MSflow(Mn, k) and MSdiff (Mn, k) be Morse-
Smale flows and diffeomorphisms respectively the non-wandering set
of those consists of k fixed points on a closed n-manifold Mn (n ≥ 4).
We prove that the closure of any separatrix of f t ∈ MSflow(Mn, 3)
is a locally flat n

2
-sphere while there is f t ∈ MSflow(Mn, 4) the clo-

sure of separatrix of those is a wildly embedded codimension two
sphere. For n ≥ 6, one proves that the closure of any separa-
trix of f ∈ MSdiff (Mn, 3) is a locally flat n

2
-sphere while there

is f ∈ MSdiff (M4, 3) such that the closure of any separatrix is a
wildly embedded 2-sphere.

1. Introduction

In 1960, Steve Smale [28] introduced a class of dynamical systems called
later Morse-Smale systems. It was proved that Morse-Smale systems are
structurally stable and have zero entropy [23, 25, 27]. In this sense, Morse-
Smale systems are simplest structurally stable ones. However, the dynamics
is far from the complete classification beginning with 3-dimensional Morse-
Smale systems (see the surveys [7, 21]). The reasons are heteroclinic in-
tersections and the possibility for the closure of separatrices to be wildly
embedded. This possibility was discovered by Pixton [22] who constructed
the gradient-like Morse-Smale diffeomorphism f : S3 → S3 with two sinks,
a source, and saddle such that the closure of 2-dimensional separatrix of the
saddle is a wildly embedded 2-sphere while the closure of the 1-dimensional
separatrix forms a half of the wildly embedded Artin-Fox arc [5]. The similar
examples was constructed in [6, 9], where the classification of gradient-like
Morse-Smale diffeomorphisms was considered.

The effect of wildly embedded separatrices looks the most clear when the
number of fixed points is minimal, and there are no heteroclinic intersec-
tions. It follows from [8,22] that four is the minimal number of fixed points
when the effect of wildly embedding holds for 3-dimensional Morse-Smale
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diffeomorphisms. One can easily prove that the closure of separatrix is lo-
cally flat for any 2-dimensional Morse-Smale systems (diffeomorphisms and
flows) and 3-dimensional Morse-Smale flows. So, it is natural to consider
the following aspects: 1) the possibility of wild embedding for Morse-Smale
flows, and 2) to find the minimal number of fixed points for n-dimensional
Morse-Smale systems, n ≥ 4, when the effect of wild embedding holds.

Denote by MSflow(Mn, k) the set of Morse-Smale flows the non-
wandering set of those consists of k fixed points on a closed n-manifold
Mn. Note that a flow f t ∈MSflow(Mn, k) is a gradient one [28]. Similarly,
denote byMSdiff (Mn, k) the set of Morse-Smale diffeomorphisms the non-
wandering set of those consists of k periodic points. First of all, we remark
that k ≥ 2 because of Mn is compact [28]. If k = 2 then the supporting
manifold Mn is an n-sphere and the system is of north-south type [16, 26],
see Fig. 1, (a). Since Mn is connected, for k ≥ 3, a Morse-Smale system
must have at least one saddle provide its non-wandering set consists of fixed
points. Eells and Kuiper [14] proved that there are closed n-manifolds,
n ≥ 4, admitting Morse functions with exactly three critical points. As
a consequence, there exist closed n-manifolds, n ≥ 4, admitting gradient
Morse-Smale systems (flows and diffeomorphisms) the non-wandering set of
those consists of three fixed points. Thus, it is natural to exam the aspects
above beginning with n-dimensional Morse-Smale systems, n ≥ 4, the non-
wandering set of those consists of three and four fixed points (a sink, source,
and one or two saddles). The main results for Morse-Smale flows are the
following theorems. We begin with flows with three fixed points.

(a) (b) (c)

Fig. 1

Theorem 1. Let f t ∈MSflow(Mn, 3), n ≥ 4. Then the non-wandering
set of f t consists of a sink, say ω, source, say α, and saddle, say σ. In
addition,

• Mn is a simply connected (hence, orientable) manifold, and n ∈
{4, 8, 16};

• every separatrix of σ is
n

2
-dimensional;
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• the closure of any separatrix of σ is a topologically embedded
n

2
-sphere

that is a locally flat
n

2
-sphere.

The last item of this theorem allows to us prove the following theorem
concerning the topological equivalence.

Theorem 2. Any flows f t, gt ∈MSflow(M4, 3) are topologically equiv-
alent.

For four fixed points, we prove the existence of wildly embedded separa-
trices.

Theorem 3. Given any n ≥ 4, there are a closed n-manifold Mn and
gradient polar flow f t ∈ MSflow(Mn, 4) such that f t has no heteroclinic
intersections, and the closure of some separatrix of f t is a codimension two
wildly embedded sphere.

One can show that the manifold Mn in Theorem 3 is simply connected.
However, Mn 6= Sn [17, 18]. As to diffeomorphisms, our main result is the
following theorem.

Theorem 4. Let f ∈ MSdiff(Mn, 3), n ≥ 4. Then the non-wandering
set of f consists of a sink, say ω, source, say α, and saddle, say s0. In
addition,

• Mn is an orientable manifold, and n is even;

• every separatrix of s0 is
n

2
-dimensional;

• the closure of the unstable and stable separatrices Sepu(s0), Sep
s(s0)

are a topologically embedded
n

2
-spheres Wu(s0)∪{ω} = Sω, W

s(s0)∪
{α} = Sα respectively.

Moreover,

• for n ≥ 6, the spheres Sω, Sα are locally flat;
• for n = 4, there is f ∈ MSdiff(M4, 3) such that the spheres Sω, Sα
are wildly embedded.

The structure of the paper is the following. In Section 2, we give the main
definitions and describe the special neighborhood of saddle fixed point. In
Section 3, we prove Theorems 1, 2, and all items of Theorem 4 except the
last one. In Section 4, we prove Theorem 3 and the last item of Theo-
rem 4. Actually, this last proofs are the constructions of examples. For the
flows, our construction is novel. For the diffeomorphisms, we follow [6, 22].
Therefore, for the reader convenient, we shortly give the main idea of the
construction in [6, 22].

Let f tNS be the north-south type flow on the 3-sphere S3, Fig. 1, (a).
If S3 thought of R3 completed by the infinity point, f tNS is defined by the
system ẋ1 = x1, ẋ2 = x2, ẋ3 = x3. The origin O = α = north is a source,
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and the infinity point ω = south is a sink. Let fNS = f1
NS be the shift-time

t = 1 along the trajectories.
Take the Artin-Fox configuration consisting of three arcs, see Fig. 1, (b).

One can assume that the Artin-Fox curve lAF is the union of shifts fmNS,
m ∈ Z, so that lAF connects ω and α, and lAF is invariant under fNS.
Well-known that the Artin-Fox closed arc lAF ∪ {α} ∪ {ω} is wild at ω and
α [5, 13]. Let T be a tubular neighborhood of lAF such that T is invariant
under fNS. Actually, T is an infinite cylinder that can be thought of the
support of Cherry type flow gt with a saddle, say σ, of type (2, 1) and an
attracting node, Fig. 1, (c). One can assume that the shift-time-one g1 = g
on ∂T coincides with the restriction fNS|∂T . The Pixton-Bonatti-Grines
diffeomorphism f : S3 → S3 equals fNS on S3 \ T and equals g on T . It is
easy to see that f is a gradient-like Morse-Smale diffeomorphism such that
the closure of unstable separatrix of σ is a topologically embedded 2-sphere
that is wild at ω.

Developing this idea we consider a 4-sphere S4 being the result after the
rotation R of 3-sphere S3 such that R(ω) = ω, R(α) = α. Instead of T ,
one takes R(T ), and instead of Cherry type flow gt we take the flow on the
special neighborhood U0 with a unique saddle of type (2, 2), see details in
Section 2.

Acknowledgments. The authors are grateful to D. Anosov, V. Grines and
O. Pochinka for useful discussions. We thank RFFI, grants 11-01-12056-
ofi-m-2011, 12-01-00672-a for support. This paper is in the frame work of
Russian Government Grant for the support of science research driven by
leading academics in Russia educational centers of high and occupational
education, agreement 11.G34.31.0039.

2. Main definitions and previous results

Basic definitions of dynamical systems see in [3,27,30]. A dynamical sys-
tem (diffeomorphism or flow) is Morse-Smale if it is structurally stable and
the non-wandering set consists of a finitely many periodic orbits (in partic-
ular, each periodic orbit is hyperbolic and, stable and unstable manifolds of
periodic orbits intersect transversally). Many definitions for Morse-Smale
diffeomorphisms and flows are similar. So, we shall give mainly the notation
for diffeomorphisms giving the exact notation for flows if necessary.

Let f :Mn →Mn be a Morse-Smale diffeomorphism of n-manifold Mn.
A periodic (in particular, fixed) point σ is called a saddle periodic point (in
short, saddle) if 1 ≤ dimWu(σ) ≤ n − 1, 1 ≤ dimW s(σ) ≤ n − 1 where
Wu(σ) and W s(σ) are unstable and stable manifolds of σ respectively. A
component ofWu(σ)\σ denoted by Sepu(σ) is called an unstable separatrix
of σ. If dimWu(σ) ≥ 2, then Sepu(σ) is unique. The similar notation holds
for a stable separatrix. Following [1], one says that the saddle σ is of type
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(µ, ν), if µ = dimWu(σ), ν = dimW s(σ). The number µ (ν) is called an
unstable (stable) Morse index.

Special neighborhood. Let Rn be Euclidean space endowed with coordinates

(x1, . . . , xn), and a vector field ~Vs defined by the system

ẋ1 = −x1, . . . , ẋk = −xk, ẋk+1 = xk+1, . . . , ẋn = xn. (1)

We assume that k ≥ 2, n − k ≥ 2. The origin O = (0, . . . , 0) is a saddle of
~Vs whose k-dimensional stable separatrix W s(O) and (n − k)-dimensional
unstable separatrix Wu(O) are the following

W s(O) = {(x1, . . . , xn) |xk+1 = 0, . . . , xn = 0} = R
k ⊂ R

n,

Wu(O) = {(x1, . . . , xn) |x1 = 0, . . . , xk = 0} def
= R

n
k+1 ⊂ R

n.

Lemma 5. The function F (x1, . . . , xn) =
∑k

i=1 x
2
i

∑n
j=k+1 x

2
j is the first

integral for the system (1).

Proof. Taking in mind (1), one gets

dF

dt
=

n
∑

ν=1

∂F

∂xν
ẋν =

k
∑

i=1

(2xi)ẋi

n
∑

j=k+1

x2j +

n
∑

j=k+1

(2xj)ẋj

k
∑

i=1

x2i

=− 2

k
∑

i=1

x2i

n
∑

j=k+1

x2j + 2

n
∑

j=k+1

x2j

k
∑

i=1

x2i

= 2F (x1, ., xn)− 2F (x1, ., xn) ≡ 0.

�

By Lemma 5, F = 1 defines an (n − 1)-manifold, denoted Hn−1, that
divides Rn into the two open sets

{~x = (x1, . . . , xn) |F (~x) < 1} def
= U0, {~x = (x1, . . . , xn) |F (~x) > 1} def

= U∞.

Clearly, U0 is an invariant neighborhood of O, called special.
Fix k ≥ 2 and denote by T n−2

r the set of points whose coordinates satisfy
the equations

x21 + · · ·+ x2k = r2, r2(x2k+1 + · · ·+ x2n) = 1.

Then T n−2
r ⊂ Hn−1 and T n−2

r is naturally homeomorphic to the product

of the spheres Sk−1
1,k (r)× Sn−k−1

k+1,n

(

1
r

)

where

Sk−1
1,k (r) =

{

(x1, . . . , xk, 0, . . . , 0) |
k
∑

i=1

x2i = r2

}

⊂ R
k,

Sn−k−1
k+1,n

(

1

r

)

=







(0, . . . , 0, xk+1, . . . , xn) |
n
∑

j=k+1

x2j =
1

r2







⊂ R
n
k+1.
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The sphere Sk−1
1,k (r) bounds the disk Dk

1,k = {(x1, . . . , xk, 0, . . . , 0) |
k
∑

i=1

x2i ≤

r2} ⊂ R
k. For r = 1, denote Sk−1

1,k (1) by Sk−1
1,k . Similarly, Sn−k−1

k+1,n (1) =

Sn−k−1
k+1,n . One can check that every trajectory of ~Vs belonging to Hn−1

intersects T n−2
r at a unique point. Therefore, Hn−1 is homeomorphic to

T n−2
r × R.

Let Hn−1
c (0 ≤ τ ≤ 1) be the union of trajectory arcs of ~Vs that start at

Sk−1
1,k × Sn−k−1

k+1,n and finish at Sk−1
1,k

(

1√
e

)

× Sn−k−1
k+1,n (

√
e). In other words,

Hn−1(0 ≤ τ ≤ 1) =
⋃

0≤τ≤1

fτ

(

Sk−1
1,k × Sn−k−1

k+1,n

)

.

Certainly, Hn−1(0 ≤ τ ≤ 1) ⊂ Hn−1.

Flatness and wildness. For 1 ≤ m ≤ n, we presume Euclidean space R
m to

be included naturally in R
n as the subset whose final (n−m) coordinates

each equals 0. Let e : Mm → Nn be an embedding of closed m-manifold
Mm in the interior of n-manifold Nn. One says that e(Mm) is locally
flat at e(x), x ∈ Mm, if there exists a neighborhood U(e(x)) = U and
a homeomorphism h : U → R

n such that h(U ∩ e(Mm)) = R
m ⊂ R

n.
Otherwise, e(Mm) is wild at e(x) [13]. The similar notation for a compact
Mm, in particular Mm = [0; 1]).

For the reference, we formulate the following lemma proved in [17] (see
also [16, 18]).

Lemma 6. Let f : Mn → Mn be a Morse-Smale diffeomorphism, and
Sepτ(σ) a separatrix of dimension 1 ≤ d ≤ n−1 of a saddle σ. Suppose that
Sepτ(σ) has no intersections with other separatrices. Then Sepτ (σ) belongs
to unstable (if τ = s) or stable (if τ = u) manifolds of some node peri-
odic point, say N , and the topological closure of Sepτ(σ) is a topologically
embedded d-sphere that equals W τ (σ) ∪ {N}.

Note that a separatrix Sepτ (σ) is a smooth manifold. Hence, Sepτ (σ) is
locally flat at every point [13]. However a-priori, clos Sepτ (σ) = W τ (σ) ∪
{N} could be wild at the unique point N .

3. Local flatness

Here we prove Theorems 1, 2, and all items of Theorem 4 except the last
one.

Morse-Smale flows. The crucial statement for the proof of Theorem 1 is the
following lemma.

Lemma 7. Let M4
∗ be a compact 4-manifold the boundary of whose con-

sists of two 3-spheres S3
1 and S3

2 , ∂M
4
∗ = S3

1 ∪ S3
2 . Suppose that there is a

vector field ~V on M4
∗ such that
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1. ~V has a unique fixed point s∗ which is a hyperbolic saddle of type (2, 2);

2. ~V is transversal to ∂M4
∗ , to be precise ~V |S3

1

is inside and ~V |S3

2

is

outside of M4
∗ ;

3. Every trajectory of ~V , except the trajectories belonging to the separa-
trices W s(s∗), Wu(s∗) of the saddle s∗, intersects the both spheres S3

1 ,
S3
2 ;

4. The stable separatrix W s(s∗) and unstable separatrix Wu(s∗) inter-
sects the spheres S3

1 , S
3
2 along the closed curves W s(s∗) ∩ S3

1 = C1,
Wu(s∗) ∩ S3

2 = C2 respectively.

Then each of the curves C1, C2 is unknotted in S3
1 , S

3
2 respectively.

Proof. The curves C1, C2 bound in W s(s∗), Wu(s∗) the closed disks D1,

D2 respectively. Since S3
1 , S

3
2 are transversal to ~V , s is inside of each D1,

D2, and s∗ = D1 ∩D2.
Suppose the contradiction, and assume that C1 is knotted in S3

1 (the
case when C2 is knotted in S3

2 is similar). Due to the extended version
of Grobman-Hartman theorem, there is a neighborhood U of D1 ∪D2 such

that ~V |U is locally equivalent to the vector field defined by the linear part of
~V at s∗. By Proposition 2.15 [24], ~V |U is equivalent to ~Vs when n = k = 2.

By conditions, the exterior of C1 in S
3
1 is homeomorphic to the exterior of

C2 in S3
2 . Hence, C2 is knotted in S3

2 , [15]. Moreover, S3
2 can be considered

as a result of knot surgery of S3
1 along the knot C1. Because of this surgery is

not trivial, S3
2 is not homeomorphic to a 3-sphere [15,20]. The contradiction

follows the statement. �
Proof of Theorem 1. Note that any Morse-Smale flow without periodic

trajectories has at least one source and sink [28]. In addition, any such
flow is gradient in some Riemannian metric [28, 29]. It follows from [14]
that n ∈ {4, 8, 16} and the dimension of each separatrix is n

2 provided

f t ∈MSflow(Mn, 3), n ≥ 4.

It remains to prove that the both closWu(σ)
def
= Sω and closW s(σ)

def
= Sα

are locally flat. If n = 8 or n = 16, each Sω and Sα is of codimension ≥ 3.
By [31], Sω and Sα are locally flat. Let us consider the case n = 4. There
are neighborhoods Uα, Uω of α and ω respectively homeomorphic to a 4-ball
such that ∂Uα ∩W s(σ) (resp., ∂Uω ∩Wu(σ)) is a simple closed curve, say
Cα (resp., Cω). By Lemma 7, Cα (resp., Cω) is unknotted in ∂Uα (resp.,
∂Uω). This implies that Sω and Sα are locally flat. �

Proof of Theorem 2. Let ωf , αf , σf be the sink, source, and saddle of f t

respectively. There are neighborhoods U(ωf ), U(αf ) of αf , σf respectively
such that the boundaries ∂U(ωf), ∂U(αf ) are transverse to f t, and σf /∈
U(ωf) ∪ U(αf ). Without loss of generality, one can assume that the both
U(ωf) and U(αf ) homeomorphic to a 4-ball. The similar notation holds
for gt.
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By Proposition 2.15 [24], there are neighborhoods V (σf ), V (σg) of σf ,
σg respectively such that each flow f t|V (σf ), g

t|V (σg) is equivalent to f
t
s|U0

,
where U0 is the special neighborhood. In particular, each intersection
V (σf ) ∩ ∂U(αf ) = Tf , V (σg) ∩ ∂U(αg) = Tg is a solid torus. We see
that there is a homeomorphism h : V (σf ) → V (σg) taking the trajectories
of f t|V (σf ) to the trajectories of gt|V (σg). Since Tf and Tg are transversal

to the flows f t and fg respectively, h induces the homeomorphism Tf → Tg
denoted again by h. Obviously, h takes Sepu(σf ) to Sep

u(σg). Therefore,
h takes Sepu(σf )∩ Tf to Sepu(σg)∩ Tg. According to the flow structure in
the special neighborhood U0, the both Sep

u(σf )∩Tf and Sepu(σg)∩Tg are
axes of solid toruses Tf and Tg respectively.

By Lemma 7, the curves Sepu(σf )∩Tf and Sepu(σg)∩Tg are unknotted
in the 3-spheres ∂U(αf ) and ∂U(αg) respectively. Hence, the complements
to Tf and Tg are solid toruses, and h can be extended to a homeomorphism
∂U(αf ) → ∂U(αg). It follows that there is a homeomorphism h∗ : M4 \
(αf ∪ωf ) →M4 \ (αg ∪ωg) taking the trajectories to the trajectories. Then
h∗ is easily extended toM4 to get a homeomorphism taking the trajectories
of f t to the trajectories of gt. �

Morse-Smale diffeomorphisms. Here, f ∈ MSdiff (Mn, 3), n ≥ 4. By a
connectedness of Mn, the non-wandering set of f consists of a sink, say ω,
source, say α, and saddle, say σ. Let us show that 2 ≤ d = dimSepτ(σ) ≤
n − 2. Suppose the contradiction. By Lemma 6, W s(σ) ∪ {α} def

= S1
α,

Wu(σ)∪ {ω} def
= Sn−1

ω are topologically embedded circle and (n− 1)-sphere
respectively. Since n ≥ 4, there is a neighborhood Uω of Sn−1

ω homeomor-
phic to Sn−1

ω × (−1;+1) [10,13]. Without loss of generality, one can assume
that f(Uω) ⊂ Uω. The sphere Sn−1

ω does not divide Mn because Sn−1
ω in-

tersects S1
α at a unique point σ. As a consequence, Mn

1 = Mn \ Uω is a
connected manifold with two boundary component each homeomorphic to
Sn−1
ω . Gluing n-balls to this components, one gets a closed manifold Mn

2 .
Since f(Uω) ⊂ Uω, one can extend f to Mn

2 such that f will have a source
and two sinks. This is impossible.

By [16], the absence of one-dimensional separatrices implies that a Morse-
Smale diffeomorphism has unique source and unique sink. It follows that
Mn is orientable.

Let Mj be the number of periodic points p ∈ Per (f) those stable Morse
index equals j = dimW s(p), and βi = rank Hi(M

n,Z) the Betti numbers.
According to [28],

M0 ≥ β0, M1 −M0 ≥ β1 − β0, M2 −M1 +M0 ≥ β2 − β1 + β0, · · · (2)

n
∑

i=0

(−1)iMi =

n
∑

i=0

(−1)iβi. (3)
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Suppose σ is of type (n − k, k). Then M0 = Mn = Mk = 1. For f−1, one
holds M0 = Mn = Mn−k = 1. For j 6= 0, n, k, n − k, one holds Mj = 0.
Since the left parts of (3) for f and f−1 are equal, (−1)k = (−1)n−k. Hence,
n = 2m is even, where m ≥ 2.

We show above that k 6= 1 and k 6= n − 1. As a consequence, M1 =
Mn−1 = 0. Let us show that k = m. Suppose the contradiction. Assume
for definiteness that k > m. It follows from (2) that β1 = . . . = βn−k−1 = 0
because of M1 = . . . = Mn−k−1 = 0. The Poincare duality implies that
β1 = . . . = βk−1 = 0. Hence, βi = 0 for all i = 1, . . ., n − 1. Then (3)
becomes 1 + (−1)k + (−1)n = 1 + (−1)n. This is impossible.

It remains to prove that Skω = Wu(s0) ∪ {ω}, Skα = W s(s0) ∪ {α} are
locally flat. It follows from [12] (see [11,31]) that k-manifold has no isolated
wild points provided n ≥ 5, k 6= n−2. As a consequence, Skω, S

k
α are locally

flat k-spheres. This completes the proof of Theorem 4 except the last item.

4. Wild embedding

Here, we prove Theorem 3 and the last item of Theorem 4.

Examples of Morse-Smale flows. First, we introduce the special Morse-

Smale flows MSflowk,n−k(M
n, 4) ⊂ MSflow(Mn, k), where k ≥ 2, n − k ≥ 2.

In R
n, consider the linear vector field ~Vn defined by the system

ẋ1 = x1, ẋ2 = x2, ẋn−1 = xn−1, ẋn = xn. (4)

Clearly, O = (0, . . . , 0) is a repelling node, and (n − 1)-sphere Sn−1
j =

{~x = (x1, . . . , xn) |x21 + · · · + x2n = j2} is transversal to ~Vn for any j ∈ N.

Let Sk−1
1 be a smoothly embedded in Sn−1

1 (k − 1)-sphere. Denote by

T (Sk−1
1 ) ⊂ Sn−1

1 a closed tubular neighborhood of Sk−1
1 diffeomorphic to

Sk−1
1 × Dn−k. Let Qn be the union of rays starting at O = (0, . . . , 0)

through T (Sk−1
1 ). Actually, each ray is the node O and a trajectory through

T (Sk−1
1 ). Since ∂T (Sk−1

1 ) is diffeomorphic to Sk−1×Sn−k−1, the boundary

of the set R
def
= R

n \ (O ∪ int Qn) is diffeomorphic to Sk−1 × Sn−k−1 × R

where the last factor R corresponds to the time parameter of (4).
Recall that ∂U0 = Sk−1×Sn−k−1×R where the last factor R corresponds

to the time parameter of (1). Let η : ∂U0 → ∂R be the natural identification.
Then (clos U0)

⋃

η R is a manifold. Because of η is a homotopy identity on

the factor Sk−1×Sn−k−1, one can extend the structure of smooth manifold

to O∪ (clos U0)
⋃

η R
def
= Rn such that the set

(

Sn−1
1 \ T (Sk−1

1 )
)
⋃

η(S
k−1
1,k ×

Dn−k
k+1,n) is homeomorphic to Sn−1

1 that bounds the neighborhood of O in
Rn homeomorphic to R

n.
Let A be a closed annulus bounded by Sn−1

1 , Sn−1
2 in R

n, and B
n
2 ⊂ R

n

the closed n-ball bounded by Sn−1
2 . By construction, η glue Hn−1(0 ≤ τ ≤
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1) with ∂(A \Qn). Therefore, η glue ∂(Sn−1
2 \Qn) with

∂

(

Dk
1,k

(

r√
e

)

× Sn−k−1
k+1,n

(√
e

r

))

= Sk−1
1,k

(

r√
e

)

× Sn−k−1
k+1,n

(√
e

r

)

.

Put by definition,

Dn(τ ≤ 0) = ∪0≤τ≤1 fτ

(

Dk
1,k

(

r√
e

)

× Sn−k−1
k+1,n

(√
e

r

))

,

Bn = Dn(τ ≤ 0) ∪η ∂ (Bn2 \Qn) .
The set Bn is a part of Rn with the piecewise smooth boundary

∂Bn = (Sn−1
2 \Qn) ∪η

(

Dk
1,k

(

r√
e

)

× Sn−k−1
k+1,n

(√
e

r

))

.

The vector fields ~Vs, ~Vn define the vector field ~v on
∫

Bn. Smoothing the
boundary of Bn and ~v to get a smooth vector field (denoted by ~v again)
that is transversal to ∂Bn. By construction, ~v has the repelling node O
and the saddle, say s0, of the type (n − k, k). Note that Sk−1

1,k = W s(s0) ∩
Sn−1
1 = Sk−1

1,k , Sn−k−1
k+1,n = Wu(s0) ∩ ∂Bn = Sn−k−1

k+1,n . Take the copy B′
n of

Bn with the vector field −~v. Clearly, −~v has an attracting node, say O′,
and saddle, say s′0, of the type (k, n− k). The intersection of W s(s′0) with

∂B′
n is a sphere Sn−k−1,∗

k+1,n . Without loss of generality, one can assume that

Sn−k−1,∗
k+1,n ∩ Sn−k−1,∗

k+1,n = ∅ because of k ≥ 2.

Let Bn ∪ψ B′
n

def
= Mn be the manifold obtained by the identification

ψ of the boundaries of Bn, B
′
n [19]. The fields ~v, −~v defines on Mn the

Morse-Smale vector field ~V that induces the Morse-Smale flow denoted by
f tk,n−k(S

k−1
1,k , ). Obviously, f tk,n−k(S

k−1
1,k , ) ∈MStk,n−k(M

n, 4). For k = n−2

and n ≥ 4, take Sk−1
1 = Sn−3

1 to be smoothly embedded and knotted
codimension two sphere. Well-known that such spheres exist [13]. According
to [4], [2]), and [12], the spheresW s(s0)∪O, Wu(s′0)∪O′ are wild at O and
O′ respectively. This completes the proof of Theorem 3.

Examples of Morse-Smale diffeomorphisms. Here, we keep the notation of
section 2 for n = 4, k = 2. Given a 2-torus T 2 that is the boundary of solid
torus P 3 = S1 ×D2, T 2 = ∂P 3 = S1 × ∂D2, any curve {·} × ∂D2 is called
a meridian, and S1 × {·} is a parallel. Recall that a 3-sphere S3 can be
obtained after a gluing of two copy of solid torus P 3, S3 = P 3 ∪ν P 3, where
the glue mapping ν : T 2 → T 2 takes a meridian to parallel and vise versa.
This representation of S3 is a standard Heegaard splitting of genus 1.

Given any t ∈ R, we introduce 2-torus

T
2
t = {(x1, x2, x3, x4) |x21 + x22 = exp (−2t), x23 + x24 = exp2t} ⊂ H3

that is the boundary of the following solid toruses

P 3
12,t =

{

(x1, x2, x3, x4)|x21 + x22 = exp (−2t), x23 + x24 ≤ exp 2t
}

,
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P 3
34,t =

{

(x1, x2, x3, x4)|x21 + x22 ≤ exp (−2t), x23 + x24 = exp 2t
}

,

that form a standard Heegaard splitting P 3
12,t ∪id P 3

34,t of genus 1. The 3-

sphere P 3
12,t ∪id P 3

34,t bounds the 4-ball, say B4
0 . Moreover, P 3

12,t0 and P 3
34,t0

divide U0 into three domains B4
0 , U12(t ≤ t0), U34(t ≥ t0), Fig. 2, where

x
1 2

3 4

T

tU

x

x x
3 4x x

x
1 2x

2

U
12

34

O

H
3

0U

(a) (b)

r

0
( )

(t t0)

t +1

Fig. 2

U4
12(t ≤ t0) =

{

(x1, x2, x3, x4)| (x21 + x22

> exp (−2t0), x
2
3 + x24 < exp 2t0, (x

2
1 + x22)(x

2
3 + x24) < 1

}

,

U4
34(t ≥ t0) =

{

(x1, x2, x3, x4)| (x21 + x22

< exp (−2t0), x
2
3 + x24 > exp 2t0, (x

2
1 + x22)(x

2
3 + x24) < 1

}

.

We see that a 2-torus T
2
t0

divides H3 into two parts T
2
t≤t0 = ∪t≤t0T2

t ,

T
2
t≥t0 = ∪t≥t0T2

t such that ∂U12(t ≤ t0) = T
2
t≤t0 and ∂U34(t ≥ t0) = T

2
t≥t0 .

Let us introduce the coordinates (t, u, v) on H3 = ∂U0 as follows

x1 = e−t cos 2πu, x2 = e−t sin 2πu,

x3 = et cos 2πv, x4 = et sin 2πv,
(5)

where u, v ∈ [0; 1) are cyclic coordinates on meridians or parallels on T
2
t .

Later on, (t, u, v) becomes (t2, u2, v2).
Take the copy of R4 endowed with the coordinates (x1, x2, x3, x4), and

the flow f tNS that is defined by (4) for n = 4. The diffeomorphism

fNS = f1
NS : (x1, x2, x3, x4) → (ex1, ex2, ex3, ex4)

is a shift-time-one along the trajectories of f tNS . Clearly, the family of
spheres

S3
m = {(x1, . . . , x4) : x22 + x22 + x23 + x24 = e2m}, S2

m = S4
m ∩ {x4 = 0}
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is invariant under fNS .
Now we construct the special Artin-Fox curve as follows. On S2

0 , one takes

the points Y 0
0

(

1

2
; 0;

√
3

2
; 0

)

, Y 0
1 (0; 0; 1; 0), Y

0
2

(√
3

2
; 0;

1

2
; 0

)

. Between the

spheres S3
0 and fNS(S

3
0) = S3

1 , one takes arcs d1, d2, d3 forming Artin-
Fox configuration such that d1 connects Y 0

0 , Y
0
1 , and d2 connects fNS(Y

0
1 ),

fNS(Y
0
2 ), and d3 connects Y 0

2 , fNS(Y
0
0 ), Fig 3, (a). One can assume that

the union

l◦
def
= ∪k∈Zf

k
NS(d1 ∪ d2 ∪ d3)

is a simple arc connecting the origin O = N and the infinity point S such
that l = {S,N} ∪ l◦ is Artin-Fox curve [5]. Here, we consider the 3-sphere

d

1
Y0

Sd1

S3

3

0

1

Y

Y

0

0

(a) (b)

1

2

Y0
S

d

d1

3

S3

3

0

1

Y

Y

0

0
2

(b)

0

Fig. 3

S3 the both as R
3 completed by the infinity point S, and as the natural

part of the 4-sphere S4. Without loss of generality, we can suppose that l
intersects transversally all spheres S3

m, m ∈ Z.
Let R be the rotation of the half-space R

3
+ about 2-plane x4 = 0 = x3

that is defined as

x1 = x1, x2 = x2,

x3 = x3 cos 2πv − x4 sin 2πv, x4 = x3 sin 2πv + x4 cos 2πv,
(6)

where v ∈ [0, 1]. Since S and N are fixed under R and l◦ = l \ ({S,N}) ⊂
R

3
+, R(l) = lR is a topologically embedded 2-sphere. It follows from [2, 12]

that lR is wild at S and N .
One can introduce the smooth injective parametrization θ : R → l◦ such

that l intersects every S3
m, m ∈ Z, at three points l◦(m), l◦

(

m+
1

3

)

,

l◦
(

m+
2

3

)

with parameters t = m, m+
1

3
, m+

2

3
respectively. Since l is

invariant under fNS , there is a tubular neighborhood T (l◦) of l◦ such that
T (l◦) is invariant under fNS , and T (l◦) is diffeomorphic to R × D2, and
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T (l◦) intersects every S3
m, m ∈ Z, at three disks

Dm,0 = {m}×D2, D
m+

1

3
, 1

=

{

m|1
3

}

×D2, Dm+ 2

3
,2 =

{

m+
2

3

}

×D2,

where Y 0
i ∈ D i

3
,i, i = 1, 2, 3.

Clearly, R
(

R×D2
)

AF
is a neighborhood of R(l◦) = l◦R which is home-

omorphic to R×D2 × S1 the boundary of those is R× S1 × S1. Therefore,
this boundary is endowed with the coordinates (t, u, v) defined by (6). Here,
we denote (t, u, v) by (t1, u1, v1).

Put by definition, I =
∫ (

R×D2
)

AF
∪ {N,S}, M1 = S4 \ I, and M2 =

clos U0. We see that ∂M1 is homeomorphic to R × S1 × S1 ≃ ∂M2 = H3.
Recall that H3 endowed with the coordinates (t2, u2, v2). The mapping
Ξ : ∂M2 → ∂M1 is defined as follows:

t1 = t2, u1 = u2 − v2, v1 = v2. (7)

According to [19], the set M4
∗ = M1 ∪Ξ M2 is a noncompact manifold.

Clearly, the setM ′
1 = S4\

∫ (

R×D2
)

AF
is compact, andM1 =M ′

1\{N,S}.
The toruses T

2
0, T

2
1 divide H3 into three sets T

2
t≥1, T

2
0≤t≤1, T

2
t≤0

where T
2
0≤t≤1 is compact while the others are non-compact. Denote by

Ξt≥1, Ξ0≤t≤1, Ξt≤0 the restriction of Ξ on T
2
t≥1, T

2
0≤t≤1, T

2
t≤0 respec-

tively. Similarly, the circles
(

{0} × ∂D2
)

AF
,
(

{1} × ∂D2
)

AF
divide the

boundary of
(

R×D2
)

AF
into three cylinders C0≤t≤1 =

(

[0; 1]× S1
)

AF
,

Ct≥1 =
(

[1; +∞)× S1
)

AF
, Ct≤0 =

(

(−∞; 0]× S1
)

AF
where C0≤t≤1 is com-

pact while the others are not. Denote R(C0≤t≤1), R(Ct≥1), R(Ct≤0) by

C0≤t≤1,R ≃ [0; 1]× S1 × S1, Ct≥1,R ≃ [1; +∞)× S1 × S1,

Ct≤0,R ≃ (−∞; 0]× S1 × S1

respectively.
Clearly, R(S2

m) = S3
m ⊂ R

4 \ {N,S}. Let K(≥ m) = {(x1, x2, x3, x4) :
x22 + x22 + x23 + x24 ≥ e2m} be the exterior of S3

m, and K(≤ m) the interior
of S3

m with the hole N . Denote by K(m1,m2) the closed annulus between
the spheres S3

m1
, S3

m2
. Because of (7), M4

∗ =M1 ∪Ξ M2 is the union of the
following sets:

1) U12(t ≤ 0) ∪Ξt≤0
[K(≤ 0) \ I] def

= BN ,

2) U34(t ≥ 1) ∪Ξt≥1
[K(r ≥ 1) \ I] def

= BS

3) B4(0 ≤ t ≤ 1) ∪Ξ0≤t≤1
[K(−1, 1) \ I] def

= B∗.
It follows from (7) that the set

S∗,−m ∪Ξ|t≤0

(

P 3
12,−m ∪ P 3

12,−m+ 1

3

∪ P 3
12,−m+ 2

3

)

def
= S3

m,∗

is a 3-sphere, since the lens L(1,−1), L(1, 1) are the 3-sphere S3 = L(1, 0).
Note that if l deforms outside of some compact part to being rays, l becomes
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a locally flat arc. It follows that the set KN(−m,−m − 1) between S3
m,∗,

S3
m+1,∗ can be embedded in R

4. This implies that KN(−m,−m− 1) home-

omorphic to the annulus S3 × [0; 1], and hence BN can be completed by a
point to be a smooth manifold. Similarly, BS . We see thatM4 =M ′

1∪ΞM2

admits a structure of closed smooth 4-manifold.
The shift-time-one diffeomorphisms fNS : M1 → M1, f

1
s : M2 → M2

induce the diffeomorphism f :M4 →M4 with two nodes, say α and ω, and
a saddle. By construction, the spheres Sω, Sα are wildly embedded. This
completes the proof of Theorem 4.
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