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Abstract
In the paper we present a new framework for
dealing with probabilistic graphical models. Our
approach relies on the recently proposed Ten-
sor Train format (TT-format) of a tensor that
while being compact allows for efficient appli-
cation of linear algebra operations. We present a
way to convert the energy of a Markov random
field to the TT-format and show how one can ex-
ploit the properties of the TT-format to attack the
tasks of the partition function estimation and the
MAP-inference. We provide theoretical guaran-
tees on the accuracy of the proposed algorithm
for estimating the partition function and compare
our methods against several state-of-the-art algo-
rithms.

1. Introduction
Discrete graphical models have become a popular tool for
many applications in the fields of computer vision, machine
learning, social networking, etc. One of their advantages is
the ability to define the (unnormalized) joint distribution of
thousands of variables in a compact form of the product
of low-order factors. Such a form allows to model com-
plex dependencies and makes exact or approximate infer-
ence possible.

In this paper we consider undirected graphical models
(Markov random fields, MRFs) and touch on two inference
problems: the estimation of the normalization constant
(the partition function) and the search of the most prob-
able configuration of the variables (the MAP-inference).
When the factor-graph of dependencies of an MRF con-
tains cycles these problems become challenging. Both
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problems are of great practical importance, e.g. because
they are the key elements of the two popular methods that
obtain the parameters of a graphical model given training
data. Specifically, structured-output SVMs (Taskar et al.,
2004; Tsochantaridis et al., 2005) require accurate and fast
MAP-estimators and maximum likelihood training meth-
ods (Nowozin & Lampert, 2010) require good approxima-
tions of the partition function. Although a number of ap-
proximate methods have been proposed in recent years for
both problems, they (especially the partition function esti-
mation) are still far from the ultimate solution.

One way of defining the joint distribution of discrete vari-
ables is to express it as a multi-dimensional array of (un-
normalized) probabilities. We refer to these arrays as ten-
sors. The problems of the MAP-inference and the parti-
tion function estimation are then reduced to the search of
the maximal element in the tensor and to the summation of
all the elements of the tensor respectively. Direct storage
(and processing) of tensors requires exponential amount of
memory and computational effort. There exist several ten-
sor decomposition methods that allow for storing a tensor
in a format that requires less memory and provides efficient
algorithms for performing algebraic operations on tensors.

In our paper we make use of the recently proposed Tensor
Train (TT) decomposition approach (Oseledets, 2011). The
TT-decomposition method converts a tensor into a special
chain-like TT-format that allows to operate with the tensor
in an efficient manner. Oseledets & Tyrtyshnikov (2010)
show that to convert a tensor that is in some sense simple
(i.e. with low TT-ranks) into the TT-format it suffices to
process only a small fraction of its elements. In our pa-
per we show that MRF energy tensors (the negative loga-
rithms of the joint distributions) have low TT-ranks but the
unnormalized distribution tensors do not. Converting the
energy into the TT-format allows us to perform the MAP-
inference using the techniques coming from linear algebra.
To tackle the partition function estimation problem in the
case when the unnormalized distribution has large TT-ranks
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we exploit the factorization structure of MRFs. We con-
struct the TT-decomposition of each factor individually and
then combine them in such a way that allows to estimate
the partition function without explicitly building the TT-
representation of the unnormalized distribution. Our ap-
proach can be generalized for the problem of computing
the marginal distributions.

We evaluate our methods on several datasets and compare
them against several state-of-the-art techniques. We report
a significant improvement in the problems of the estimation
of the partition function and the marginal distributions and
show comparable results in the MAP-inference problem.

Our main contributions are:

• The algorithm for obtaining the TT-decomposition of
the MRF energy (the negative logarithm of the joint
distribution). We prove that for low-order graphical
models the energy tensor has a low TT-rank and derive
upper bounds on it.

• The algorithm for estimating the partition function
through the TT-decomposition of the MRF factors.
The key feature of the algorithm is that it does not
explicitly construct the TT-representation of the un-
normalized joint distribution.

• Theoretical bounds on the accuracy of the partition
function estimation.

The rest of the paper is organized as follows. We start with
the review of the related works in sec. 2. We introduce our
notation in sec. 3 and review the TT-decomposition ap-
proach in sec. 4. In sec. 5 we apply the TT-decomposition
to MRFs and in sec. 6 we propose an algorithm for
computing the partition function. Sec. 7 contains our
experimental evaluation.

2. Related work
In this section we briefly review the related works divided
into three groups: different formats for compact represen-
tation of tensors, usage of tensors in graphical models and
different inference methods.

Compared to the classical tensor formats (the canonical for-
mat (Caroll & Chang, 1970) and the Tucker format (Tucker,
1966)), the TT-format can be computed via stable and ro-
bust algorithms and has no intrinsic curse of dimensional-
ity. The Hierarchical Tucker (HT) format (Hackbusch &
Kühn, 2009; Grasedyck, 2010) is another stable tensor fac-
torization. The TT-format can be considered as the HT-
format with a linear dimension tree, and this comes as an
advantage from the algorithmic viewpoint: most of the al-
gorithms are much simpler in the TT-format.

Tensor-based techniques are often mentioned in articles re-
lated to graphical models with respect to the problem of un-

covering the unknown structure of the model. Jernite et al.
(2013); Ishteva et al. (2013) make local decisions based on
the properties of 4th order tensors (quartets). Song et al.
(2013) attack the problem using the hierarchical tensor de-
composition.

There are two popular ways of constructing a labeling
given learned parameters, i.e. performing inference, in a
graphical model: MAP-inference (mode of the posterior
distribution) and max-marginal inference (each variable
is set to the argmax of its marginal distribution). The
MAP-inference (a.k.a. energy minimization) is rather
well-studied. Recent experimental results of Kappes et al.
(2013) show that for many problems current methods give
satisfying results. Specifically, a lot of attention has been
given to the case of pairwise Markov random fields. The
max-marginal inference is based on the computation of
the marginal distributions. The latter is closely related to
the task of estimating the normalization constant (i.e. the
partition function) given the unnormalized distribution of
an MRF. We can outline several families of methods for the
computation of the partition function and the marginal dis-
tributions: sampling techniques (e.g. Annealed Importance
Sampling (Neal, 2001; Grosse et al., 2013) for the partition
function and Gibbs sampling (Wainwright & Jordan, 2008)
for the marginal distributions), message passing techniques
(e.g. classic Loopy Belief Propagation (Kschischang et al.,
2001) and its numerous modifications), KL-minimization
based methods (e.g. Mean Field (Wainwright & Jor-
dan, 2008) and Expectation Propagation (Minka & Qi,
2004)), graph decomposition-based techniques (e.g.
Tree-Reweighted Message-passing (Wainwright et al.,
2005)), MAP-inference based methods (e.g. randomized
MAP-predictors (Hazan et al., 2013) and the recent WISH
system (Ermon et al., 2013)).

3. Notation
In this paper we extensively use multi-dimensional arrays
of real numbers. We refer to one-dimensional arrays as
vectors, two-dimensional arrays as matrices and, finally,
arrays of higher dimensionality as tensors. We use bold
upper case letters (e.g. A) for tensors, ordinary upper case
letters (e.g. A) for matrices, and bold lower case letters
(e.g. a) for vectors.

We treat all arrays as functions of their indices: a(i) = ai,
A(x1, x2), A(x) = A(x1, . . . , xn), where n equals the
dimensionality of the tensor A.

By ‖ · ‖F we denote the matrix Frobenius norm and its
trivial generalization for tensors:

‖A‖F =

√ ∑
x1,...,xn

A2(x1, . . . , xn).
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By ‖ · ‖2 we denote the vector Euclidean norm and the ma-
trix spectral norm: ‖A‖2 = maxx6=0

‖Ax‖2
‖x‖2 .

In our derivations we use several different matrix products.
The operator “�” corresponds to the Hadamard product
(entrywise product), the operator “⊗” – to the Kronecker
product, and the operator “·” (which is often omitted) – to
the regular matrix product.

4. TT-format
An n-dimensional tensor A is said to be represented in the
TT-format if for each dimension i = 1, . . . , n and for each
possible value of the i-th dimension index xi = 1, . . . , di
(d = maxi=1,...,n di) there exists a matrixGA

i [xi] such that
all the elements of A can be computed as the following
matrix product:

A(x1, . . . , xn) = GA
1 [x1]G

A
2 [x2] . . . G

A
n [xn]. (1)

All the matrices GA
i [xi] related to the same dimension i

are restricted to be of the same size ri−1(A) × ri(A).
The values r0(A) and rn(A) equal 1 in order to make
matrix product (1) a number. In what follows we re-
fer to the representation of a tensor in the TT-format as
the TT-representation or the TT-decomposition. We re-
fer to the sequence {ri(A)}ni=0 as the TT-ranks of the
TT-representation of A and to its maximum as the max-
imal TT-rank of the TT-representation of A: r(A) =
maxi=0,...,n ri(A). The collections of the matrices
corresponding to the same dimension (technically, 3-
dimensional arrays) are called the TT-cores.

Oseledets (2011, Th. 2.1) shows that for an arbitrary ten-
sor A a TT-representation exists but is not unique.

We use the symbols GA
i [xi](αi−1, αi) to denote the el-

ement of the matrix GA
i [xi] in the position (αi−1, αi).

Equation (1) can be equivalently rewritten as the sum of
the products of the elements of the TT-cores:

A(x) =
∑

α0,...,αn

GA
1 [x1](α0, α1) . . . G

A
n [xn](αn−1, αn). (2)

Representation of a tensor A via the explicit enumeration
of all its elements requires to store

∏n
i=1 di numbers com-

pared to
∑n
i=1 di ri−1(A) ri(A) numbers if the tensor is

stored in the TT-format. Thus, the TT-format is very effi-
cient in terms of memory if the corresponding TT-ranks are
small.

There exist several algorithms that can compute the TT-
representation of a tensor. The TT-SVD algorithm (Os-
eledets, 2011) can find an exact representation but is
suitable only for small dimensionality n. The recently
proposed alternating minimal energy (AMEn-cross) algo-
rithm (Dolgov & Savostyanov, 2013; Oseledets & Tyrtysh-

Table 1. Efficient operations on tensors in the TT-format. For each
operation we show its complexity and the maximal TT-rank of the
result.

OPERATION OUTPUT RANKS COMPLEXITY

C = A · const r(C) = r(A) O(d r(A))
C = A+ const r(C) = r(A)+1 O(nd r2(A))
C = A+B r(C) ≤ r(A)+r(B) O(nd r2(C))
C = A�B r(C) ≤ r(A) r(B) O(nd r2(A) r2(B))
c = Mb r(c) ≤ r(M) r(b) O(nd2r2(M)r2(b))
sumA – O(nd r2(A))
‖A‖F – O(nd r3(A))
C = round(A, ε) r(C) ≤ r(A) O(nd r3(A))

nikov, 2010) can construct an approximation of a tensor
using only a small fraction of its elements.

An attractive property of the TT-format is the ability to ef-
ficiently perform several types of operations on tensors if
they are in the TT-format: basic linear algebra operations,
such as the addition of a constant and the multiplication
by a constant, the summation and the entrywise product of
tensors (the results of these operations are tensors in the
TT-format generally with the increased TT-ranks); compu-
tation of global characteristics of a tensor, such as the sum
of all elements and the Frobenius norm; and the important
rounding operation. See table 1 for a review of the oper-
ations that we use in this work and the paper (Oseledets,
2011) for a detailed description.

The rounding operation builds a lower-rank approximation
of a tensor. Given a tensor A in the TT-format and a pre-
cision parameter ε ≥ 0 the rounding operation (we refer
to it as the TT-rounding and denote by round(A, ε)) finds
a tensor Ã that on the one hand is close to the tensor A:
‖A − Ã‖F ≤ ε‖A‖F , but on the other hand has minimal
TT-ranks among all tensors B : ‖A−B‖F ≤ ε√

n−1‖A‖F .
Although the TT-rounding is only suboptimal (in a sense
that there are no guarantees on finding the minimal TT-
ranks within the desired accuracy), in practice it often per-
forms well and allows us to apply multiple operations to
tensors while controlling the growth of the TT-ranks.

In addition to tensors one can also use the TT-format to
operate on huge matrices and vectors. For a vector b with
a mapping from its indices to n-dimensional vectors y =
(y1, . . . , yn)

1 we define a TT-representation of the vector b
as a TT-representation of the tensor B where B(y) = by .

Now we define a TT-representation of a matrix M . Let x
and y be n-dimensional vectors corresponding to the row
and column indices of the matrix M respectively. We can

1 The length of the vector b should be equal to
∏n

i=1 di.
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rearrange the elements of the matrix M into the tensor M
and convert the latter into the TT-format:

M((x1, y1), . . . , (xn, yn)) = GM
1 [x1, y1] . . . G

M
n [xn, yn]

where the matrices GM
i [xi, yi], i = 1, . . . , n, serve as the

TT-cores with compound indices (xi, yi). In what follows
we denote the elements of matrices in the TT-format with-
out nested parentheses: M(x1, . . . , xn; y1, . . . , yn). Note
that a matrix in the TT-format is not restricted to be square.
Although index-vectors x and y are of the same length the
sizes of the domains of the dimensions can vary.

When both a matrixM and a vector b are represented in the
TT-format, it is possible to efficiently compute the matrix-
by-vector product c = Mb. The result of this operation
(the vector c) will be represented in the TT-format as well.

Matrix operations on top of the TT-representations allow us
to apply different linear algebra methods on a large scale.
For example, we can use the DMRG method based on the
search of the smallest eigenvalue in a matrix (Khoromskij
& Oseledets, 2010) to do an approximate MAP-inference
in an MRF.

5. Markov random fields as tensors
Let G = (V, E) be a hypergraph. The set of nodes V and
the set of hyperedges E are both finite. Let all the nodes be
indexed from 1 to n and all the hyperedges from 1 to m.

With each node i = 1, . . . , nwe associate a variable xi that
takes values from a domain Xi = {1, . . . , di}. For each
hyperedge ` = 1, . . . ,m we denote the tuple of the inci-
dent variables by x`. The `-th potential Θ` is a real-valued
function defined on the joint domain of the variables x`.

The energy function of the Markov random field (MRF)
defined on the hypergraph G is the sum of all the poten-
tials: E(x) =

∑m
`=1 Θ`(x

`). The exponentiation of the
negative energy defines the unnormalized (Gibbs) distribu-
tion P̂(x) = exp(−E(x)). We use the symbol Z to denote
the normalization constant (which is frequently called the
partition function), i.e. Z =

∑
x P̂(x). The functions

Ψ`(x
`) = exp(−Θ`(x

`)) are called the factors of MRF.

Both the energy and the unnormalized probability can be
considered as n-dimensional tensors in which the values of
the variables x act as indices. The potentials and the fac-
tors become n-dimensional tensors as well if we add non-
essential variables for non-existing dimensions: Θ`, Ψ`.
Using this notation we can write the following identities:
E =

∑m
`=1 Θ` and P̂ =

⊙m
`=1 Ψ`.

The factors (or the potentials) allow to store the joint distri-
bution (or the energy) in memory in a compact form. The
TT-format is an alternative way to compactly represent a
multi-dimensional array. In the next section we explore

. . .α1α0

xn

G1 G2 Gn

x2x1

αn

Figure 1. A graphical model obtained by the TT-decomposition of
the joint distribution tensor.

whether it is possible to build an accurate TT-representation
of the unnormalized distribution and the energy of an MRF.

The TT-representation of the joint distribution ten-
sor P = 1

Z P̂ has a special interpretation. The inner vari-
ables αi, i = 0, . . . , n can be viewed as hidden variables
in the chain model (see fig. 1). Marginalization w.r.t. them
gives us the probability distribution w.r.t. the variables x:

P(x) =
∑
α

P(x,α), (3)

where P(x,α) is the joint distribution of the variables x
and α. The domain size of each αi is equal to the corre-
sponding TT-rank ri(P).

5.1. The TT-format for MRF energy

In this section we present the general algorithm that con-
verts the energy tensor E into the TT-format. The proposed
algorithm is much faster and more accurate than the direct
application of the AMEn algorithm.

The algorithm consists of the following three main steps.

Step 1. For each potential Θ`(x
`), which we treat as a

tensor indexed only by the variables x`, we find its TT-
representation. Potentials are usually tensors of a relatively
small dimensionality which allows for computing the re-
quired TT-decomposition using the TT-SVD algorithm. In
some cases it is possible to explicitly construct the TT-
representation for a potential (several examples are pro-
vided in the supplementary material).

Step 2. Once all the potential tensors Θ` are in the TT-
format, we add non-essential variables in order to make
each of them n-dimensional. These non-essential variables
can be added to TT-representations constructively.

For clarity we describe this procedure with the follow-
ing example. Suppose that our MRF has 5 nodes in to-
tal with their associated variables x1, x2, x3, x4, x5 and our
potential Θ`(x

`) depends only on variables x1, x2, x4 (i.e.
x` = (x1, x2, x4)). After the first step of the algorithm we
have the following TT-representation of our potential:

Θ`(x1, x2, x4) = GΘ`
1 [x1]G

Θ`
2 [x2]G

Θ`
4 [x4], (4)

where the cores GΘ`
1 [x1], GΘ`

2 [x2], GΘ`
4 [x4] are matrices

of sizes r0× r1, r1× r2, r3× r4, respectively, and due to
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the matrix multiplication operation r0 = r4 = 1, r2 = r3.
To introduce non-essential variables we need to define the
missing cores as the identity matrices: GΘ`

3 [x3] ≡ Ir2 =
Ir3 andGΘ`

5 [x5] ≡ Ir4 = I1
2. Note that this procedure does

not increase the maximal TT-rank of Θ`.

Step 3. By exploiting the summation operation of the TT-
format we combine all the tensors obtained after step 2 into
the energy tensor

E =

m∑
`=1

Θ`. (5)

The following theorem provides an upper bound on the
maximal TT-rank of the tensor constructed by the described
algorithm (the proof is provided in the supplementary ma-
terial).

Theorem 1. If the order of each potential Θ`, ` =
1, . . . ,m does not exceed p, then the aforementioned al-
gorithm constructs a TT-representation for the energy E
in such a way that its maximal TT-rank is polynomially
bounded:

r(E) ≤ d
p
2 ·m, (6)

where each variable xi takes at most d possible values.

The algorithm often allows us to construct an accurate TT-
decomposition of the energy tensor. Generally, after step 3
we can apply the rounding procedure to the energy tensor E
in order to reduce its TT-ranks and to get a more compact
representation, if possible.

5.2. Probability

The algorithm described in section 5.1 can easily be mod-
ified to construct a TT-representation for the unnormalized
probability P̂.

All the steps of the algorithm are essentially the same as
those from the previous section. The difference is that in-
stead of the potentials Θ` we operate on the factors Ψ` and
in step 3 instead of the summation we compute the entry-
wise product

P̂ =

m⊙
`=1

Ψ`. (7)

Note that this algorithm computes a precise TT-
representation of P̂. However, the TT-ranks of P̂ are ex-
ponential in the number of nodes, because the TT-ranks are
multiplied within the entrywise product operation. Thus,
it becomes impossible to use the TT-format for P̂ in large
problems. The TT-ranks remain huge even after applying
the TT-rounding operation, so an accurate low-rank TT-
representation of the unnormalized distribution probably
does not exist. We illustrate this effect experimentally on

2By Ik we denote the k × k identity matrix.
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Figure 2. The maximal TT-ranks of TT-representations con-
structed for the energy tensor E and the corresponding unnor-
malized probability tensor P̂ for homogeneous Ising models with
temperature 10 and pairwise weight 1. Details are in section 7.1.

fig. 2. See sec. 7.1 for the detailed description of the exper-
iment.

6. Partition function
A straightforward approach to compute the partition func-
tion is to represent the entire unnormalized probability ten-
sor P̂ in the TT-format and compute the sum of its el-
ements. However, the tensor P̂ turns out to have huge
TT-ranks and therefore its TT-representation does not fit
into memory. An attempt to approximate the tensor P̂
with another tensor that has moderate TT-ranks leads to
large inaccuracies. On the other hand, each individual fac-
tor Ψ` has low TT-ranks and can be represented in the TT-
format exactly. In this section we propose an algorithm
that estimates the partition function by using only the TT-
representations of the factors {Ψ`}m`=1 without building the
TT-representation of the entire unnormalized probability
tensor P̂.

6.1. The algorithm

We assume that all the factors are already in the TT-format
(see section 5.2 for details):

Ψ`(x
`) = Ψ`(x) = GΨ`

1 [x1] . . . G
Ψ`
n [xn]. (8)

Hereinafter we use G`i [xi](α
`
i−1, α

`
i) as a shorthand for

GΨ`
i [xi](α

Ψ`
i−1, α

Ψ`
i ) to lighten the notation.

Recall the definition of the partition function Z:

Z =
∑
x

m∏
`=1

Ψ`(x)︸ ︷︷ ︸
∈ R

=
∑

x1,...,xn

m⊗
`=1

(
G`1[x1] . . . G

`
n[xn]

)
.

Here we use the fact that the Kronecker product “⊗” and
the regular product coincide when applied to numbers.

Using the mixed-product property of the Kronecker prod-
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Algorithm 1 Compute the partition function Z
Input: factors Ψ1, . . . ,Ψm, rounding precision ε
Output: Z̃ ≈ Z
for ` := 1 to m do

Find TT-cores G`1, . . . , G
`
n for Ψ`

end for
Initialize fn+1 := 1
for i := n downto 1 do

Initialize Bi := 0
for xi := 1 to di do

Construct TT-matrix Ai[xi] =
m⊗̀
=1

G`i [xi]

Bi := Bi +Ai[xi]
end for
fi := Bi · fi+1

fi := round(fi, ε)
end for
Z̃ := f1

uct AC ⊗BD = (A⊗B)(C ⊗D) we can rewrite Z as

Z =
∑

x1,...,xn

(
G1

1[x1]⊗ . . .⊗Gm1 [x1]
)
. . .(

G1
n[xn]⊗ . . .⊗Gmn [xn]

)
.

Denote the Kronecker product of matrices G`i [xi], ` =
1, . . . ,m by Ai[xi]:

Ai[xi] = G1
i [xi]⊗ . . .⊗Gmi [xi].

The matrix Ai[xi] for any fixed xi is of size
(ri−1(Ψ1) . . . ri−1(Ψm)) × (ri(Ψ1) . . . ri(Ψm)) and
consists of the following elements:

Ai[xi](α
1
i−1, . . . , α

m
i−1;α

1
i , . . . , α

m
i ) =

= G1
i [xi](α

1
i−1, α

1
i ) . . . G

m
i [xi](α

m
i−1, α

m
i ).

So the matrix Ai[xi] can be treated as a matrix in the TT-
format with all TT-ranks equal to 1 (sinceG`i [xi](α

`
i−1, α

`
i)

is a 1× 1 matrix).

Now the partition function Z can be expressed as a product
of n matrices:

Z =
∑

x1,...,xn

A1[x1] . . . An[xn] =

=

(∑
x1

A1[x1]

)
. . .

(∑
xn

An[xn]

)
= B1 . . . Bn,

whereBi =
∑di
xi=1Ai[xi].A matrixBi can be represented

in the TT-format as a sum of di matrices of TT-rank 1.
Therefore the maximal TT-rank of Bi does not exceed di
and so we can store the TT-representation of the matrix Bi
in memory.

We have rewritten Z as a product of n matrices in the TT-
format with the maximal TT-rank at most d. Note that
B1 and Bn are row and column vectors respectively, so
B1 . . . Bn is a number.

To compute Z we build the matrices Bi in the TT-format
and then multiply them one by one. During the process we
apply the TT-rounding procedure after each multiplication
to keep the maximal TT-rank of the intermediate product as
small as possible. The resulting algorithm is summarized
as algorithm 1. One can vary performance vs. accuracy
trade-off by changing the rounding precision parameter ε.

In addition to the partition function Z the described ap-
proach allows one to efficiently compute the unnormal-
ized marginal distributions of the variables. Specifically,
the unnormalized unary marginals p̂i(xi) can be computed
as follows: p̂i(xi) = B1 . . . Bi−1Ai[xi]Bi+1 . . . Bn. Note
that all the products B1 . . . Bi−1 and Bi+1 . . . Bn for i =
1, . . . , n can be pre-computed with only 2 passes through
the data. If we additionally pre-compute all the products
Bi . . . Bj for 1 ≤ i < j ≤ n, we will be able co compute
the unnormalized marginal distribution for an arbitrary sub-
set of variables.

6.2. Analysis of the accuracy of algorithm 1

In this section we provide theoretical guaranties on the ac-
curacy of the partition function estimation via algorithm 1.

Denote the approximation of the product of the matri-
ces {Bj}nj=i in the TT-format by fi. We have fn =

Bn and Z̃ = f1. Using the matrix-by-vector prod-
uct and the TT-rounding procedure the algorithm sequen-
tially computes fi = round(Bifi+1, ε), where the pre-
cision ε of the TT-rounding controls the relative accu-
racy: ‖Bifi+1 − fi‖2 ≤ ε ‖Bifi+1‖2 . Note that the TT-
rounding procedure guarantees the previous inequality for
the Frobenius norm instead of the 2-norm. However, here
both Bifi+1 and fi are vectors and so the Frobenius norm
and the 2-norm coincide.

The next theorem contains the main result on the accuracy
of algorithm 1. After the theorem we provide a more inter-
pretable corollary.
Theorem 2. For an MRF and a rounding parameter ε ≥ 0
the absolute error of the partition function estimation Z̃
computed by algorithm 1 is bounded as follows:∣∣∣Z − Z̃∣∣∣ ≤ ‖B1‖2 . . . ‖Bn−2‖2 · ‖Bn−1fn − fn−1‖2 +

+ ‖B1‖2 . . . ‖Bn−3‖2 · ‖Bn−2fn−1 − fn−2‖2 + . . .+

+ ‖B1f2 − f1‖2 . (9)

The proof of the theorem is provided in the supplementary
material. Note that all the items on the right-hand side are
computable.
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Figure 3. Comparison of the 2-norm and the Frobenius norm of
the matrix Bi against the upper bound Ui. The plot was con-
structed for a heterogeneous Ising model of size 10.
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Figure 5. Confidence bounds on the computation of the partition
function Z obtained by theorem 2 and upper bound (11). The
details are provided in section 7.2.

Corollary 1. For an MRF and a rounding parameter ε ≥ 0
the absolute error of the partition function estimation Z̃
computed by algorithm 1 is bounded as follows:∣∣∣Z − Z̃∣∣∣ ≤ ‖B1‖2 . . . ‖Bn‖2 ((1 + ε)n−1 − 1). (10)

Although the bound from the corollary is less tight, it al-
lows one to find a sufficient ε for the target accuracy.

To use theorem 2 we need to evaluate the 2-norms of some
vectors and matrices in the TT-format. The vector 2-norm
coincides with the Frobenius norm of the corresponding
tensor, so one can compute ‖Bifi+1 − fi‖2 using the
Frobenius norm operation of the TT-format. For matrices
the direct computation of the 2-norm in the TT-format is
difficult. However, it can be bounded from above by the
Frobenius norm or empirically tighter bound that uses the
specific structure of the matrix Bi:

‖Bi‖2 =

∥∥∥∥∑
xi

G1
i [xi]⊗ . . .⊗Gmi [xi]

∥∥∥∥
2

≤

≤
∑
xi

∥∥G1
i [xi]⊗ . . .⊗Gmi [xi]

∥∥
2
=

=
∑
xi

∥∥G1
i [xi]

∥∥
2
. . . ‖Gmi [xi]‖2 = Ui. (11)

Here we have used the following identity: ‖A⊗B‖2 =
‖A‖2 ‖B‖2. Note that here G`i [xi] for all ` = 1, . . . ,m are
ordinary (small) matrices, so we can easily compute their
2-norms.

In fig. 3 we experimentally compare the values of the
Frobenius norm ‖Bi‖F , the 2-norm ‖Bi‖2, and the
suggested upper bound Ui. For a specific Ising model
for each node iwe report the logarithms of the three values.

7. Experiments
In all our experiments we use a non-optimized MATLAB
implementation3 of our methods. For operations related
to the TT-format we use the TT-Toolbox4 implemented
in MATLAB as well. In our evaluation we mainly use
the homogeneous and heterogeneous Ising models, and
we refer to the supplementary material for the detailed
description of the experimental setup.

7.1. TT-ranks of energies and distributions
In this experiment we illustrate the claims made in sec. 5.1
and 5.2 about the TT-ranks of the energy and the unnor-
malized distribution tensors constructed for an MRF. In
fig. 2 for each size of the Ising model we report the max-
imal TT-ranks of both the energy and the unnormalized
probability for the cases when they are represented in the
TT-format exactly and after the TT-rounding procedure
with precision 10−8. As was claimed, for the energies
the TT-ranks grow slowly with the increase of the size
of the model as opposed to the probabilities. The exact
TT-representations of the probability tensors of sizes 11
and 12 did not fit into 8GB of memory.

7.2. Partition functions
In this experiment we evaluate algorithm 1 for computing
the partition function of an MRF.

First we compare our method (TT) against the following
methods implemented in the LibDAI system (Mooij, 2010):
Belief Propagation (BP) (Kschischang et al., 2001), Tree
Expectation Propagation (TREEEP) (Minka & Qi, 2004),
and the Mean Field method (MF) (Wainwright & Jordan,
2008). In addition, we compare our method against the
annealed importance sampling method (AIS) (Neal, 2001)
as a representative of the family of MCMC methods. The
results are shown in plot 4a. For AIS method we select
parameters (1000 intermediate distributions, 70 samples
each) to maximize the accuracy achieved within 60 seconds
per model. The ground-truth values are computed using the
junction tree algorithm. For each value of temperature T
we generate 50 homogeneous 10 × 10 Ising models and
report the absolute error of the logarithm of the computed
partition functions (we show the median, lower and upper
quartiles).

In the second experiment we compare our method with the
recently proposed WISH method (Ermon et al., 2013) on
a dataset taken form their paper. The results of the com-
parison are presented in plot 4b. Here pairwise weights are
generated uniformly from [−f, f ] with parameter f vary-
ing from 0.25 to 3.

3https://github.com/bihaqo/TT-MRF
4http://spring.inm.ras.ru/osel/download/

tt22.zip

https://github.com/bihaqo/TT-MRF
http://spring.inm.ras.ru/osel/download/tt22.zip
http://spring.inm.ras.ru/osel/download/tt22.zip
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Figure 6. The computation of the marginal distributions of the in-
dividual variables. We use a set of heterogeneous Ising models
and report the mean absolute error of the marginal for the “+1”
class (the lower, the better).

In this experiment the running time of our non-optimized
MATLAB implementation of the TT method was at most
53 seconds (32 seconds on average). The running times of
the BP, MF, and TREEEP methods were 0.018, 0.05, and
0.1 seconds correspondingly. The WISH system was run
on a cluster with timeouts of 15 minutes on each core.

Finally, fig. 5 presents the confidence bounds obtained by
upper-bounding the result of theorem 2 using eq. (11) and
taking the logarithm of the inequality.

7.3. Unary marginals
In this experiment we evaluate the ability of our method
to compute the marginal distributions. We compare our
method (TT) against Belief Propagation (BP) (Kschis-
chang et al., 2001), Tree Expectation Propagation
(TREEEP) (Minka & Qi, 2004), Mean Field (MF) (Wain-
wright & Jordan, 2008), and Gibbs sampling (Wainwright
& Jordan, 2008) all implemented in the LibDAI system.
The results of the comparison are presented in fig. 6. The
details of the experimental setup are in the supplementary
material.

7.4. MAP
In this experiment we evaluate the algorithm for finding
the minimal element in the energy tensor that corresponds

Table 2. The relative value of the energy for the MAP-inference
method based on the TT-decomposition. The lower bound ob-
tained by TRW-S is 0%, the energy of the TRW-S primal solution
is 100%.

PROBLEM n d TT ENERGY

GEO-SURF-3/GM6 320 3 48.41%
GEO-SURF-3/GM20 348 3 95.83%
GEO-SURF-3/GM203 187 3 98.69%
GEO-SURF-7/GM11 125 7 1769.65%
MATCHING/MATCHING1 19 19 135.47%

to MAP-inference. To find the minimal element in a
tensor, which is in the TT-format, we construct a diagonal
matrix in the TT-format containing all the elements of the
tensor and use the DMRG algorithm to find its minimal
eigenvalue (Khoromskij & Oseledets, 2010). We run the
method on several real-world problems from a recent
benchmark (Kappes et al., 2013) and compare it against
the popular TRW-S algorithm (Kolmogorov, 2006). Some
of the results are reported in table 2. The DMRG algorithm
shows comparable results and on geo-surf-3 problems
almost uniformly outperforms TRW-S.

8. Conclusion
In the paper we show how the modern tensor decomposi-
tion framework can be used for solving important problems
arising in probabilistic graphical models. Although we
consider only low-order models, the framework can further
be generalized for many important high-order cases.
Another direction for future work could be the search of
a new parametrization of graphical models, different from
the state-of-the-art log-linear one, with respect to which the
derivatives of the log-partition function can be computed
with high accuracy through the TT-decomposition.

Acknowledgements. We would like to thank Ivan Os-
eledets for valuable discussions and Stefano Ermon for pro-
viding the results of the WISH method. This work was sup-
ported by RFBR (projects 12-01-00938 and 12-01-33085).



Putting MRFs on a Tensor Train

References
Caroll, J. D. and Chang, J. J. Analysis of individual dif-

ferences in multidimensional scaling via n-way general-
ization of Eckart-Young decomposition. Psychometrika,
35:283–319, 1970.

Dolgov, S. V. and Savostyanov, D. V. Alternating minimal
energy methods for linear systems in higher dimensions.
Part II: Faster algorithm and application to nonsymmet-
ric systems. arXiv preprint 1304.1222, 2013.

Ermon, S., Gomes, C., Sabharwal, A., and Selman, B.
Taming the curse of dimensionality: Discrete integration
by hashing and optimization. In International Confer-
ence on Machine Learning (ICML), 2013.

Grasedyck, L. Hierarchical singular value decomposition
of tensors. SIAM J. Matrix Anal. Appl., 31:2029–2054,
2010.

Grosse, R., Maddison, C., and Salakhutdinov, R. Anneal-
ing between distributions by averaging moments. In
Advances in Neural Information Processing Systems 26
(NIPS), pp. 2769–2777. 2013.
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