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Abstract: The research deals with the construction, implementation and analysis of 

the model of the non-equilibrium financial market using econophysical approach and 

the theory of nonlinear oscillations. We used the scaled variation of supply and 

demand prices and elasticity of these two variables as dynamic variables in the 

simulation of the non-equilibrium financial market. View of the dynamic variables 

data was determined based on the strength of econophysical prerequisites using the 

model of hydrodynamic type. As a result, we found that the non-equilibrium market 

can be described with a good degree of accuracy with oscillator models with nonlinear 

rigidity and a self-oscillating system with inertial self-excitation. The most important 

states of model of oscillation non-equilibrium model of the market were found, 

including the appearance of chaos and its mechanisms. We have made the 

calculations of the correlation dimension for the financial time series. The results 

show that all observed time series have a clearly defined chaotic dynamic nature. 
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Introduction 

Since the second half of the XX century, the general trend of science development 

has been the penetration of the ideas and methods of physics in natural and 

traditional humanities. Methods of physical modeling are often used in sciences such 

as demography, sociology, linguistics and economics. 

In the mid-1990s there was an interdisciplinary research field, known as 

Econophysics, applying theories and methods originally developed by physicists in 

order to solve problems in economics, usually those including uncertainty or 

stochastic processes and nonlinear dynamics. The term “econophysics” was coined by 

H. Eugene Stanley to describe the large number of papers written by physicists on 

the issues of (stock and other) markets (for econophysics reviews see Chakraborti et 

al., 2011; Richmond et al., 2013; Savoiu, 2013). 

In 1988 Robert Savit presented the first studies of chaos in the financial markets 

(Savit, 1988). “Deterministic chaos” (or low-dimensional chaos) is a term used to 

denote the irregular behavior of dynamic systems arising from a strictly deterministic 
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time evolution without any source of noise or external stochasticity (Korsch and Jodl, 

1999). Most surprisingly, it turned out that such chaotic behavior can already be 

found for systems with a very low degree of freedom and it is, moreover, typical of 

most systems. 

Since the end of the XX century there have been two fields of research devoted to the 

low-dimensional chaos in the financial markets. Some researchers have focused on 

the detection of the chaos in the financial time series using fractal dimensions (for 

examples, box counting dimension, information dimension and correlation dimension) 

as various measures of chaos (Lai and Ye, 2003). So, Frank and Stengos examined 

gold and silver returns and found that the correlation dimension is between 6 and 7 

while the Kolmogorov entropy is about 0.2 for both assets (Murray and Stengos, 

1989). In 1991 Steven Blank analyzed the futures prices for the S&P500 index and 

soybeans (Blank, 1991). All of their results were consistent with those of markets 

with underlying generating systems characterized by deterministic chaos (they give 

necessary, but not sufficient, conditions to prove the existence of deterministic 

chaos). Gregory Decoster, Walter Labys and Douglas Mitchell searched for evidence 

of chaos in commodity futures (silver, copper, sugar and coffee) prices and found 

evidence of nonlinear structure (Decoster et al., 1992). Scott Mayfield and Bruce 

Mizrach estimated the dimension of the S&P500 (sampled at approximately 20-

second intervals) and concluded that the data are either of low dimension with high 

entropy or nonlinear but of high dimension (Mayfield and Mizrach, 1992). Yang and 

Brorsen found evidence of nonlinearity in several futures markets, which was 

consistent with deterministic chaos in about half of the cases (Yang and Brorsen, 

1993). Abhyankar, Copeland and Wong (1995) tested for the presence of chaos in 

the FTSE 100 Index using a six-month sample of about 60,000 minute-by-minute 

returns and found little to support the view that the process is chaotic at any 

frequency. Andreou, Pavlides and Karytinos (2000) examined four major currencies 

against GRD and found evidence of chaos in two out of four. Panas and Ninni (2000) 

found strong evidence of chaos in daily oil products for the Rotterdam and 

Mediterranean petroleum markets. Antoniou and Vorlow (2005) investigated the 

“compass rose” patterns revealed in phase portraits (delay plots) of FTSE 100 stock 

returns and found a strong nonlinear and possibly deterministic signature in the data 

generating processes. Other relevant works in this area are Hafner and Reznikova, 

(2012); Urrutia et al., (2002). 

In our opinion, the most comprehensive review of mathematical models of financial 

markets is presented in the book by R. J. Elliott and P. E. Kopp (Elliot and Kopp, 

2005). Despite the many pithy models presented in the book and various articles (Cai 

and Huang, 2007; Chen, 2008; Holyst et al., 2001), we could not find a mathematical 

model of the financial market whose solutions are changes in ask and bid prices. The 

importance of building such a model has various reasons, especially - the possibility 

of obtaining of financial time series and their further analysis and prediction. 

We have built a model of the "big" market that is such a market which operates many 

economic agents pursuing their own respective interests and goals. We believe that 

the market is a system that generates aggregated factors from the combined action 

of individual interests and needs. In this case, economic dynamics are based on some 
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basic dynamic structure. Aggregated factors are manifested on a macroscopic scale 

and act according to the laws of deterministic connections and relationships. 

During the constructing of the model we proceeded from the assumption that the 

market in terms of generalized macroscopic flows of capital, goods and services in 

the phase space of a corresponding economic dynamic system is homeomorphic to 

the so-called dynamic systems of hydrodynamic type. If there are interaction counter 

flows in such systems, then they tend to be a phenomenon of generalized turbulence 

(Mantegna and Stanley, 1996) generating a crisis mode of the states of dynamic 

systems. 

Modern stock markets are armed with powerful computer technology that allows for 

the management and documentation of real economic processes, which unfold in 

such markets in real time. Changing the conditions of such markets is very fast, and 

this fact allows you to receive time series, representing them on a small scale of 

time, which is a prerequisite for the detection of the deterministic component of 

dynamic processes. 

Thus, the aim of the study is building a model of the non-equilibrium financial market 

that can generate the deterministic component of empirical time series using the 

econophysical assumptions and the nonlinear oscillation theory. 

This paper is organized as follows. In section 1 we present the nonlinear dynamic 

model of the non-equilibrium financial market model, including the definition of the 

dynamic variables. In section 2 we present the nonlinear dynamic model of the non-

equilibrium financial market model as a nonlinear oscillator. In section 3 we present 

the results and discussions, including the definition of the regular and the chaotic 

states of the financial market. In section 4 we give the numerical results of 

correlation dimension from the financial time series. In section 5 we conclude this 

paper. 

1 Construction of the Non-equilibrium Financial Market Model 

1.1 Dynamic Variables 

We suppose that the financial market can be considered as a non-equilibrium open 

system (or dissipative system). In physics, a dissipative system is an open system 

which is operating out of, and often far from, equilibrium in an environment with 

which it exchanges energy and matter (Chen, 2015). Open systems have input and 

output flows, representing exchanges of matter, energy or information with its 

surroundings. The input and output flows on the financial market are the information 

flows and money flows. We suppose also that the financial market can be in 

equilibrium and non-equilibrium states. If the intensity of the external information 

flow is small, then the financial market is in equilibrium. If the intensity of the 

external information flow is large, then the financial market is in non-equilibrium. 

A dynamic system can be described simply as a system of N first-order differential 

equations 
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( )1,..., , 1,...,i
i i N

dx
x f x x i N

dt
≡ = =& ,  

where the independent variable t  can be read as time and the ( )ix t  are dynamic 

variables whose time dependence is generated by the equations, starting from 

specified initial conditions ( )0 , 1,...,ix i N= . It should be noted that the dynamic 

system is autonomous because it is not explicitly t -dependent (Ruelle, 1989). 

Let’s define the dynamic variables of the mathematical model: 

• ( )1Y t
 
states the localized variable of the demand function, 

• ( )2Y t
 
states the localized variable of the supply function, 

• ( )1X t
 
states locally varying demand price, 

• ( )2X t states locally varying supply price, 

• 
( ) ( )0 0

1 2 0Y Y Q= =
 
states the equilibrium values of the functions of supply and 

demand in a market equilibrium condition, 

• 
( ) ( )0 0
1 2 0X X P= =

 
states the equilibrium values of the price of supply and 

demand in the equilibrium state of the market ( )0 0,R P Q= , 

• ( ) ( ) ( )0 , 1,2i i iY t Q Y t y iδ− ≡ ≡ =
 
states variations of the volume of demand 

and supply near ( )0 0,R P Q= , 

• ( ) ( ) ( )0 , 1, 2j j jX t P X t x jδ− ≡ ≡ =
 
states variations of prices of supply and 

demand near ( )0 0,R P Q= , 

• ( )1 1 2,F x x
 
states function of aggregated demand in cumulative product of 

the market as a function of various kinds of price, 

• ( )2 1 2,F x x
 
states function of aggregated supply in cumulative product of the 

market as a function of various kinds of price. 

Let’s consider that ( )1 1 2,F x x
 
and ( )2 1 2,F x x

 
are continuous and differentiable in the 

variables 1x and 2x
 
in the vicinity of the equilibrium point ( )0 0,R P Q= . 

Let’s construct a matrix of first partial derivatives of functions ( )1 1 2,F x x
 

and 

( )2 1 2,F x x
 
near the point ( )0 0,R P Q= : 

1 1

1 2

2 2

1 2

F F

x x
L

F F

x x

∂ ∂ 
 ∂ ∂
 =
 ∂ ∂
 ∂ ∂ 

 (1) 
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Given that the price variations 1x
 
and 2x

 
are small, use the L . Onsager’s relations 

(Onsager, 1931) of reciprocity in matrix form: 

1 11 12 1

2 21 22 2

y L L x

y L L x

    
=    

    
 (2) 

where { }ijL
 
states phenomenological matrix coefficients (1). The matrix equation (2) 

connects the extensive ( )1 2,y y
 
and intensive ( )1 2,x x

 
variables of the model; in 

terms of the thermodynamics of irreversible processes – flows and driving forces 

associated with data flows. 

Economic dynamics of non-equilibrium market due to deviations of demand ( )1Y t
 

and supply ( )2Y t from their equilibrium state 
( ) ( )0 0

1 2 0Y Y Q= =
 

should induce a 

temporary change in the variation of prices ( )1 2,x x . In the first approximation, these 

dynamics can be represented as a system of ordinary differential equations: 

1 11 12 1

2 21 22 2

x K K y

x K K y

    
=    

    

&

&
 (3) 

where ix&
 
states first order derivative with respect to time, { }ijK

 
states the entries 

of dynamic market conditions. 

The joint solving of equations (2) and (3) gives the equation describing the dynamics 

of economic and non-equilibrium dynamic system: 

1 11 12 1

2 21 22 2

x A A x

x A A x

    
=    

    

&

&
 (4) 

where 
11 12 11 12 11 12

21 22 21 22 21 22

A A K K L L

A A K K L L

    
=    

      

states matrix, which determines the 

dynamics of such a non-equilibrium system. 

1.2 Bid Price Dynamics  

Let’s proceed to the nonlinear dynamic analysis of economic system (4). If 1 0x = , 

then 2 22 2x A x=& . Locally varying supply price ( )2X t
 

comes near 0P , therefore 

22 0A < . In this case time of relaxation 2 0X P→
 
is 2 221 Aτ = . Also there should 

appear states 2 0x =&  around the state of dynamic equilibrium 1 2x x= .  This is 

possible if 22 21 21A A τ= = . Consequently, up to the first order values ( 1x
 
and 2x ) 

the second equation of the system (4) takes the following form: 
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( )2 2 1
2

1
x x x

τ
= − −&  (5) 

Similar arguments about the coefficients of the first equation of (4) lead to the fact 

that 11 11A τ= , where 1τ
 
states characteristic time of relaxation 1 0X P→ . If 1x  

and 2x
 
are small enough, then 12A  is constant. In this case, the solution of (3) is a 

noise relaxation oscillations near the equilibrium state ( )0 0,R P Q= . Relaxation 

means the return of a perturbed system into equilibrium. 

According to the Le Chatelier-Braun principle (Atkins, 1993), if a system deviates 

from the state of the stable equilibrium, then the forces arise and try to return the 

system back to the equilibrium state. If ( )1 0 0X t P P−  , then as a first 

approximation it can be considered that these forces are proportionate to deviation. 

With the growth of the amplitude values of deviations ( )1X t
 
and ( )2X t

 
from 

( )0 0,R P Q=
 
variations in prices of supply and demand start to "cling" to each 

other.There is a simple nonlinear interaction between supply and demand in the 

system (4). Consequently, there is a relation between variables 1x
 

and 2x , 

describing the elasticity of 1x  due to 2x . In this case, elasticity is the measurement 

of how responsive the ask price is to a change in the bid price. 

Consider, 

( ) ( )12 12A t cE t=  (6) 

where ( )12E t  – the elasticity of 1x  due to 2x , c  – parameter, used for dimensions 

matching. With help of choosing of measure units we can prove that 1c = . 

Introduce the dimensionless time 1T t τ= . Multiplying the equation (5) to 1τ , we get 

the following equation: 

( )2
2 1

dx
x x

dT
σ= − −  (7) 

where 
1 22

2 11

A

A

τσ
τ

= = . Factor σ shows the relation between the relaxation speeds 

1 0X P→
 
and 2 0X P→ , i.e. it represents the relative sensitivity to changes in market 

prices of supply and demand. If 2 1τ τ< , then we can observe an effect of delay of 

the reaction of demand price to rapid change in the supply price, which leads to 

certain dynamic effects.  
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1.3 Ask Price Dynamics  

In the view of (6) and (7), the first equation of system (4) takes the following form: 

( )1
1 1 12 2

dx
x cE t x

dT
τ= − +  (8) 

1.4 Elasticity Dynamics  

The value ( )12E t
 
is regarded as an independent dynamic variable, provided in the 

following form: 

( ) ( ) ( )0
12 12 12E t E E tδ= +  (9) 

where 
( )0
12E

 
states elasticity in the equilibrium state. 

The essence of the non-equilibrium dynamics of the market leads to the conclusion 

that in the first nonlinear approximation, the differential equation for ( )12E t
 
takes 

the following form: 

12 12 1 2E eE kx x= − +&  (10) 

where , 0e k >  – constants, 1 Ee τ= , Eτ
 
states characteristic time of relaxation 

( ) ( )0
12 12E t E→ . 

Let’s introduce 1 21C Lτ= , 1K kτ= , 1 Eβ τ τ=
 
and multiply (10) to 1τ . Then we get 

the following equation: 

12 12 1 2E E Kx xβ= − +&  (11) 

Let’s also introduce some characteristic elasticity scale λ  and new renormalized 

quantities: 

( )0
12 12

1 2, , , , , ,
E E K K dx dy dz

z x x y x x y z
t C C dT dT dT

ρ ρ
λ

= = − = = = = =& & &  (12) 

Therefore the equations (7), (8) and (11) respectively take the following forms: 

( )x y xσ= − −&  (13) 

y x y xzρ= − −&  (14) 

z z xyβ= − +&  (15) 

The system of equations (13), (14) and (15) is well known as Lorenz system (Lorenz, 

1963). 
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2 Nonlinear Oscillations  

Now let’s reduce the number of equations describing the non-equilibrium market. 

Introduce a new variable: 

22u z xσ≡ −  (16) 

Taking into account (16), equation (13) takes the following form: 

( ) ( )31 1
1 1

2 2
x x x u xσ σ ρ = − + − + − −  
&& &  (17) 

Taking into account (16), equation (15) takes the following form: 

( ) 22u u xβ σ β= − + −&  (18) 

The system of equations (17) and (18) corresponds to the dynamic model of an 

oscillator with inertial nonlinear inflexibility (Hayfeh and Mook, 1995). Equation (17) 

represents the dynamics of inharmonic oscillations along the coordinate axis Ox  in 

two-humped potential pit, damped with the member ( )1 xσ− + &  and described by the 

function 

( ) ( )4 2 4 21 1 1 1 1
, 1

8 2 2 8 2
V u x x u x x xσ ρ ω = − − − ≡ −  

 (19) 

The value ( ) ( ) 1
1

2
u uω σ ρ= − −

 
is not a constant. Consequently, the system 

generates complex auto-oscillatory relations between ( )u x
 
and ( )x u , defined by 

equations (17) and (18). 

The system of equations (17) and (18) generates a complex irregular movement in a 

plane of the variables ( ),u x  that under certain relations between the parameters 

, ,σ β ρ  generate a phenomenon called dynamic chaos (Wiggins, 2003). 

The system of equations (17) and (18) is equivalent to Lorenz system, but now it can 

interpreted in the following way. 

First of all, let’s u const= . Then (17) is an equation of nonlinear oscillator 

V
x x

x
γ ∂+ = −

∂
&& & , where 1γ σ= +  - dissipation parameter and potential function 

depends on ρ , σ , u  parameters and has a view (19). 

In the field of parameters, corresponding with complicated chaotic dynamics, 

( )1 0σ ρ − > , thus for small u the coefficient for quadratic term is negative and 

potentially has two symmetrically posed minimums. For big u  the coefficient for 

quadratic term becomes positive and at least one (Fig. 1). However u  in the system 

under consideration is not a parameter, but a dynamic variable as a subject of (18). 
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It controls the change of  
2x  value in time, not instantly, but with inertness and 

smoothing that are determined by β  parameter. 

Figure 1 Potential function ( )V x  

 

Source: WolframAlpha 

System dynamics can be presented as fluctuation inside one of potential pits with 

occasional transfer to another one caused by u  parameter change and the 

corresponding potential form change. 

3 Results and Discussion 

3.1 Asymptotically Stable Equilibrium Price  

Let’s proceed to a qualitative analysis of the systems of differential equations 

(Wiggins, 2003). Let’s find the stationary points and determine their stability. 

The system of differential equations (17) and (18) has three stationary points: 

( )0,0O , ( ) ( ) ( )( )1,2 1 , 2 1E β ρ σ β ρ± − − −  (20) 

If 1ρ < , then the zero point is asymptotically stable. At the same time there are no 

other real stationary points 1,2E . Point 1ρ =
 
is a point of supercritical pitchfork 

bifurcation. If 1ρ > , then the zero stationary point is unstable.  

Real stationary points 1,2E
 
appear if 1ρ > . At the same time, if 1 cρ ρ< < , then 

the points are stable; if cρ ρ> , then 1,2E  – unstable. Here 
3

1c

σ βρ σ
σ β

+ +=
− −

, 

where 1σ β> − . In these cases,  ( )1 0β ρ − ≠
 
and stable equilibrium market price 

does not exist. 

The condition for the existence of equilibrium (not necessarily stable) market price is 

the equality of supply and demand prices ( ) ( )1 2 0X t X t P= =
 
or achieving a state of 
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equilibrium system ( )0 0,R P Q= . In the notation of the Lorenz system for variations 

in the price of supply and demand, this condition is equivalent to 0x y= = . 

Consequently, if and only if 

( )0
12 1

E

λ
< , the market may contain asymptotically stable 

equilibrium price (fig. 2). It is the equilibrium state of the financial market. The real 

financial market is not in an equilibrium state. 

Figure 2 Asymptotically stable solution ( )tx  at 7.0=ρ  

 

Source: Wolfram Mathematica 10.2 

3.2 Dynamic Chaos and Financial Time Series  

Let’s fix σ  and β , i.e. ratio of times of relaxation 1

2

τ
τ  

and 1

E

τ
τ

. Consider 1

2

10
τ
τ

=
 

and 1 8

3E

τ
τ

= . At the same time we vary the parameter 

( )0
12Eρ
λ

= .  

For sufficiently large values ρ  ( 28ρ ≥ ), i.e. for big elasticity 

( )0
12E

λ
, random 

(irregular) paths ( )x t
 
and ( )u t

 
appear in the system of equations (17) and (18) 

(fig. 3). For Lorenz system, whenT → ∞  phase path fills an attractive special area 

near points 1E
 
and 2E , which is called a strange attractor, in this case – the Lorenz 

attractor (Lorenz, 1963). Lorenz attractor is stable, i.e. it is preserved under small 

changes in the parameters. An attractor is a set of states (points in the phase space), 

invariant under the dynamics, towards which neighboring states in a given basin of 

attraction asymptotically approach in the course of dynamic evolution (Baker and 

Gollub, 1996). The Lorenz attractor has a correlation dimension of 2.05 0.01±  

(Grassberger and Procaccia, 1983). For more details, see Lichtenberg and Lieberman 

(1983) and Tabor (1989). 
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Figure 3 Chaotic solution ( )tx  at 28=ρ  

 

Source: Wolfram Mathematica 10.2 

Strange attractors are one example of the appearance and manifestation of the 

evolutionary phenomenon that is called a catastrophe (Arnold, 1992). Accidents in 

dynamic systems give rise to such a phenomenon as dynamic chaos. One of the most 

difficult and important tasks – to learn how to predict occurrence of the phenomenon 

of dynamic chaos and precede the appearance of this kind of phenomena. 

Thus, in complex dynamic systems such as financial markets, there are basic 

nonlinear dynamics, which generate the observed sequence of their states in its 

various modes of display, which are called time series. Time series that are obtained 

from empirical observations and that are "well" organized carry meaningful 

information about the deterministic component of the dynamics that form these 

series. 

4 Correlation Dimension of Financial Time Series 

The determination of the correlation dimension (Grassberger and Procaccia, 1983) for 

a supposed chaotic process directly from experimental time series is an often used 

means of gaining information about the nature of the underlying dynamics (see, for 

example, contributions in Ding et al., 1993; for reviews on dimension measurements 

see Grassberger et al., 1991). In particular, such analyses have been used to support 

the hypothesis that the time series results from an inherently low-dimensional chaotic 

process (Ding et al., 1993). 

The geometry of chaotic attractors can be complex and difficult to describe. It is 

therefore useful to have quantitative characterizations of such geometrical objects. 

One of these characterizations is the correlation dimension 2D . The correlation 

dimension has several advantages comparing to other dimensional measures: 

• 2D
 
is easy to compute from financial experimental data. 
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• Using 2D  one can distinguish a chaotic dynamic system ( 2D  is finite) from a 

stochastic system ( 2D → ∞ ). 

• 2D  is the lower bound estimate of attractor’s dimension d  ( 2d D≥ ). 

The correlation dimension of the attractor of dynamic system can be estimated using 

the Grassberger-Procaccia algorithm (GP algorithm) (Grassberger and Procaccia, 

1983). The implementation of GP Algorithm in this work is written in Mathematica 

Language for Wolfram Mathematica 10.2. 

Table 1 provides summary of calculated correlation dimension for financial time 

series. These time series include the following: 

• EUR/USD exchange rates (daily, from 04.01.1999 to 06.05.2016), 

• GBP/USD exchange rates (daily, from 04.01.1971 to 06.05.2016), 

• (HPQ) HP Inc. stock prices (daily, from 01.01.1995 to 06.05.2016). 

Table 1 Calculated correlation dimension for financial time series 

Signal 
Data 

Points 
Correlation 
Dimension 

EUR/USD 4361 4.56 

GBP/USD 11372 4.36 

HPQ 5285 4.88 

Source: Authors' calculations 

Based on the results, it is possible to state that currency exchange rates have chaotic 

dynamic nature, rather than “pure” randomness. The results show that all the 

observed time series have a clearly defined chaotic dynamic nature. It is also 

noticeable that the financial time series have the correlation dimension close to each 

other and equal to 4.5. 

It is not strictly proven that any of the financial time series has a chaotic dynamic 

nature. However, we can consider the dynamic system (17) and (18) as an 

approximate model of the financial market. So, we also suggest that the estimation 

of the correlation dimension shall be a preliminary step of financial time series 

analysis. Moreover, the implementation of GP algorithm, including all optimizations, is 

computationally effective. 

Conclusions 

The main contributions of this paper are as follows. 

• We present the nonlinear dynamic model of the financial market as a non-

equilibrium system, including the definition of regular and chaotic state of the 

market. It is pointed out that the system is in a condition of an asymptotically 

stable equilibrium when the scaled elasticity is small (the ask price and bid 

price eventually tend to their equilibrium values). 

• We report new numerical results of the correlation dimension from financial 

time series. The results show that all the observed time series have a clearly 
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defined chaotic dynamic nature. It is also noticeable that the time series have 

the correlation dimension close to each other and equal to 4.5. 

We found that the model of a nonlinear oscillator and the Lorenz model describe a 

non-equilibrium financial market. A model in the form of equations (17) and (18) 

gives the relationship between the demand price time, i.e. the dynamic component of 

financial time series. The analysis of the model suggests that market has an 

asymptotically stable equilibrium price at small scaled elasticity (

( )0
12 1

E

λ
< ). If the 

scaled elasticity 

( )0
12 28

E

λ
≥ , one of the crisis mode arises in the system - dynamic 

chaos. Given the dependence (16), these phenomena are characteristic for elasticity 

( )12E t . In addition, following from the properties of the Lorenz system that models 

financial markets, there is asymptotically stable and chaotic dependence of the 

supply price from time to time. 

The practical significance of the model of the financial market is associated with the 

solution of the problem of reconstruction of a dynamic system (Sugihara and May, 

1990). In some sense, this is the inverse problem – recovering of dynamic system, 

using empirically observed values of financial time series, generating these financial 

time series. Some results of the reconstruction of a dynamic system are presented in 

our papers (Dmitriev et al., 2014; Maltseva et al., 2014). 
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