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EIGENSTATES OF QUANTUM PENNING–IOFFE NANOTRAP AT

RESONANCE

M. V. Karasev∗ and E. M. Novikova∗

We discuss the choice of physical parameters of a quantum Penning nanotrap under the action of a

perturbing inhomogeneous Ioffe magnetic field and also the role of resonance frequency operation modes.

We present a general scheme for constructing the asymptotic behavior of the eigenstates by the generalized

geometric quantization method and obtain the reproducing measure in the integral representation of

eigenfunctions.
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1. Introduction

The ideal Penning trap consists of a hyperbolic-shaped capacitor producing an axially symmetric
electric saddle-type potential and a source of a homogeneous magnetic field directed along the saddle axis.
The magnetic field must be sufficiently strong to compensate the decrease in the electric potential and to
ensure the charge confinement in the transverse directions. Of course, the electric potential in actual traps
contains anharmonic corrections and the magnetic field has an inhomogeneity and can deviate from the
axial direction (see Sec. 2 below).

The Penning traps find more and more extensive applications as detectors [1]–[5], artificial “atoms” [6],
and controlled quantum devices with wide perspectives, for example, in the design of quantum comput-
ers [7], [8]. The standard physical presentation of the theory of these traps can be found, for example,
in [9]–[11], but there is no discussion of some principal points related to the quantum properties of these
devices.

The quantum Penning trap is characterized by three spatial scales:

1. the magnetic length l0 = (f/B0)1/2, where f is the magnetic flux quantum and B0 is the magnetic
field intensity at the trap center,

2. the characteristic size l of the electric field inhomogeneity (the capacitor size), and

3. the characteristic size L of the magnetic field B inhomogeneity in the trap, which is determined as
L−1 = |∇B|/B (at the trap center).

These physical dimensional parameters define two dimensionless parameters

�
def= (l0/l)2, a semiclassical parameter,

ε
def= (l/L)1/2, the parameter of perturbation due to the magnetic inhomogeneity.

(1.1)
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We assume that the magnetic field deviation from the axial direction is of the order of ε (see the details
below).

We can also introduce a parameter characterizing the anharmonicity of the electric field of the trap, but
we do not do this here and assume that this anharmonicity is of the order of ε3 in dimensionless variables
for simplicity.

The maximal value of quantum gaps (distances between neighboring energy levels) in the ideal trap
without inhomogeneity and anharmonicity taken into account is equal to

δ
def=

Eλ2

l20
, (1.2)

where E is the rest energy of a particle (electron) and λ is its Compton wave length. The trap can be
considered a quantum device if the value of δ can be observed sufficiently well in experiments, which implies
the requirement that the magnetic scale l0 must be sufficiently small, i.e., that the magnetic field B0 must
be sufficiently large. We note that this field can be created either by a macrodevice or by a nanostructure
with a gigantic magnetic moment (for example, by doped nanofilms [12]). Precisely the inhomogeneity of
the trap magnetic field characterized by the scale L is significant in the last case.

For example, we choose L ∼ 150 nm. Nanostructures of such sizes can produce a magnetic field
B0 ∼ 20T, which corresponds to the magnetic scale l0 ∼ 5 nm. Without the field inhomogeneity taken
into account, the value of the maximum possible quantum gaps in the trap is then sufficiently large:
δ ∼ 3 · 10−3 eV, i.e., the trap can indeed function as a quantum device. Choosing the trap size l ∼ 30 nm,
we obtain the values

� ∼ 3 · 10−2, ε ∼ 5 · 10−1 (1.3)

for the small parameters introduced above. With the magnetic field inhomogeneity taken into account,
the maximum possible energy gaps in such a trap are of the order of ε2δ ∼ 6 · 10−4 eV, which is quite
distinguishable in experiments.

We note that the semiclassical parameter � in (1.1) and (1.3) is necessarily a small quantity, and the
Weyl estimate of the asymptotic behavior of the number of eigenvalues (with the multiplicity taken into
account) in this energy interval can hence be applied to the leading part of the trap Hamiltonian. This
estimate gives an extremely small value of the order of δ · �

2 ∼ 3 · 10−8 eV for the spectral gaps of the
Hamiltonian of an ideal trap in general position. The energy gaps can be increased to the maximum value
because of the resonance between the normal frequencies of the trap. The resonance generates multiplicity
of eigenvalues and hence increases the distance between them.

The Penning trap has three normal frequencies, determined by the intensities of the electric and
magnetic fields (see the details in Sec. 2). The frequencies can be at resonance for some relations between
these controlling fields. The principal resonance corresponds to the arithmetic proportion 2 : (−1) : 2, the
next higher resonance corresponds to the proportion 8 : (−1) : 4, and so on.

The spectral gaps of an ideal trap take the maximum value δ (discussed above) precisely at the three-
frequency resonance, and the system can operate as a quantum device. Moreover, if a perturbation of the
order of ε2 (this occurs due to the magnetic field inhomogeneity in our case) is added to such an ideal
harmonic system, then the spectral gaps in general position are determined by a value of the order of
ε2 · δ · � ∼ 2 · 10−5 eV, which is too small to be observed.

The gaps can be increased by artificially adding a perturbation of the order of ε to the ideal trap
(this can be achieved by the magnetic field deviating from the axial direction in our case) such that
its eigenfrequency resonance (we call it the secondary resonance) arises in this additional “azimuthal”
perturbing Hamiltonian. The initial physical perturbations of the order of ε2 then generate gaps of the
order of ε2δ rather than ε2δ·�, as in the case without the secondary resonance. We can thus use the resonance
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effect, namely, the principal resonance between the normal frequencies and the secondary resonance between
the frequencies of the “azimuthal” Hamiltonian, to obtain distinguishable quantum states and transitions
between them in the Penning trap.

We further note that the value of the semiclassical parameter � and the values ε, ε2, . . . of perturbations
added to the principal Hamiltonian of the ideal trap relate to each other as � ∼ ε4. Moreover, the spectrum
degeneration both in the ideal trap Hamiltonian and the “azimuthal” Hamiltonian is infinitely large, and the
standard classical perturbation methods hence do not work in this problem, and we must therefore use the
contemporary methods of algebraic averaging [13] and the generalized geometric quantization. The central
role is then played by the structures of the primary and secondary symmetry algebras of the principal and
“azimuthal” Hamiltonians. Because of the frequency resonance, these algebras are noncommutative and
have nontrivial (infinite-dimensional) irreducible representations.

The noncommutativity implies a nontrivial symplectic geometry. The continuous geometric objects
(such as symplectic leaves of a symmetry algebra) permit modeling and effectively changing the discrete
infinite matrix structure. And the integration over a continuous measure permits avoiding the summation
of infinite series of matrix elements as in the classical perturbation theory. We can thus use the newest
methods of quantum geometry to bypass the “stumbling block” of perturbation theory.

We here encounter an interesting additional fact: the symmetry algebras in the resonance Penning
trap are not Lie-type algebras. This means that the algebra cannot be described by linear commutation
relations. Even in the simplest case of two-frequency resonance, the symmetry algebra of the Penning trap
is described by nonlinear commutation relations [14], [15]. The case of a three-frequency resonance, which
we consider in this paper, is much more informative than the case of a two-frequency resonance.

To deal with non-Lie algebras, we must construct an analogue of the entire structure of geometric
quantization and the theory of representations for such algebras. Here, we use the methods developed
in [15]–[17].

In addition to the algebraic structure, an important role is played by the averaged perturbing Hamil-
tonians. These Hamiltonians are obtained as a result of applying the general algebraic procedure [13], [15]
using the projections on the (primary and secondary) symmetry algebras. These Hamiltonians can be
considered systems with a reduced number of degrees of freedom.

As the first perturbing Hamiltonian in the order of ε, we consider the deviation of the homogeneous
magnetic field from the axial direction. The Hamiltonian of this perturbation has a very simple form:
it is a quadratic form in the canonical phase variables. At first sight, such a perturbation seems trivial,
but we unexpectedly see that the projection of such a perturbing Hamiltonian on the (primary) symmetry
algebra can again be at resonance with its own noncommutative symmetry algebra. Hence, there is a
nonobvious secondary resonance in the “azimuthal” Hamiltonian and the secondary symmetry algebra. This
algebra is again not a Lie-type algebra (we present its generators, commutation relations, and irreducible
representations below).

We thus obtain a double resonance system in the Penning trap, i.e., the principal resonance oscilla-
tor and the perturbing quadratic Hamiltonian at resonance. The classical trajectories of this system are
represented as combinations of two cyclic rotations: fast (due to the principal oscillator) and slower (due
to the “azimuthal” perturbation). These trajectories are coiled on two-dimensional tori. This double res-
onance system has a noncommutative secondary symmetry algebra. Its irreducible representations control
the spectral degeneration.

On the geometric level, we can say that symplectic leaves of a secondary symmetry algebra determine
the reduced phase spaces of a double-resonance system. The effective Hamiltonian on these phase spaces
is generated by the projection of the secondary perturbation on the secondary symmetry algebra. The
number of degrees of freedom thus decreases, and we obtain one degree of freedom instead of three initial
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degrees.
As the secondary perturbation in our case, we take the linear inhomogeneity magnetic field, i.e., the

so-called Ioffe correction. The linear inhomogeneity of the field generates a quadratic inhomogeneity of the
magnetic potential and hence contributes cubically (in the phase coordinates) to the Hamiltonian. Such a
cubic correction near the Penning trap center is indeed a small perturbation compared with the coordinate
scaling.

The final effective Hamiltonian is obtained by projecting this secondary Ioffe perturbation on the
secondary symmetry algebra. It turns out that this Hamiltonian in the irreducible representation is realized
by an ordinary second-order differential operator. The nondegenerate spectrum and the eigenfunctions of
this final operator are precisely the tools needed for calculating approximate spectral data of the initial
Hamiltonian of the Penning trap.

Our algebraic method thus approximately reduces the initial three-dimensional Schrödinger differential
operator with double resonance to a one-dimensional differential operator. This procedure can be treated
in a sense as an analogue of the method of separation of variables. But instead of seeking such variables,
we seek the irreducible representations of the primary and secondary non-Lie symmetry algebras. The
calculations of the irreducible representations in the case of non-Lie algebras follow [16].

On the geometric level, this algebraic “separation of variables” presents the classical trajectories of the
initial Hamiltonians as a combination of three cyclic rotations: fast, slower, and the slowest (with respect
to the averaged Ioffe correction). Such a double resonance reduction using the secondary symmetry algebra
in a physical hyperbolic-type system recalls another hyperbolic-type physical example (but elliptic) that
arises in the Zeeman–Stark effect [18].

The approximate eigenstates of the initial quantum Penning trap (in the double resonance case) can
be represented as follows: the eigenfunctions of the reduced ordinary differential operator together with
“squeezed” coherent states for the secondary symmetry algebra are integrated over two-dimensional sym-
plectic leaves with respect to a special reproducing measure. Calculating this measure is one of our main
results in this paper.

In the semiclassical approach, the obtained integral can be transformed and written explicitly as an
integral of squeezed coherent states over a periodic trajectory of the averaged secondary Ioffe Hamiltonian.
Such an integral representation of semiclassical eigenfunctions, which permits avoiding the usual difficulties
with focal points, follows the general approach [19] but specifically combines it with quantum geometry and
the theory of representations for non-Lie symmetry algebras (a more detailed presentation can be found
in [15], [20]).

2. Hamiltonian of the Penning trap

The Hamiltonian of the Penning trap with perturbations has the form

̂H = ̂H0 + ε ̂H1 + ε2
̂H2 + O(ε3). (2.1)

Here, ̂H0 is the Hamiltonian of the ideal trap

̂H0 =
1
2
[p̂2

1 + p̂2
2 + p̂2

3 + 2ω(p̂1q2 − p̂2q1) + (ω2 − ω2
0)(q

2
1 + q2

2) + 2ω2
0q

2
3 ], (2.2)

where p̂j = −i� ∂/∂qj are momentum operators corresponding to the Cartesian coordinates qj , j = 1, 2, 3,
and ω and ω0 are positive parameters satisfying the resonance condition

ω2 =
9
8
ω2

0 . (2.3)

732



The magnetic field of the ideal trap is homogeneous, directed along the third coordinate axis, and equal
to 2ω.

The electric potential of the ideal trap has the form

U0 =
ω2

0

2
(2q2

3 − q2
1 − q2

2).

It satisfies the Laplace equation ΔU0 = 0 and represents the model electric field between two hyperbolic
cups. The real electric capacitor in the trap does not usually have such a hyperbolic shape but has a
cylindrical or cubic shape; its potential U satisfies the Laplace equation ΔU = 0 and is approximated by
the function U0 in a neighborhood of the trap center q = 0:

U = U0 + fourth-order terms + . . . .

After the coordinate scale is changed in a small region near the center, all fourth- and higher-order terms
become insignificant and can be included in the remainder of the order O(ε3) in (2.1).

The term ̂H1 in (2.1) appears because of the homogeneous magnetic field deviation from its “ideal”
direction along the third axis. The value of this deviation (i.e., of the parameter ε in (2.1)) is assumed to
be small, and the deviation direction is determined by the vector B = (B1,B2,B3). Hence,

̂H1 =
1
2
̂k[q × B],

where k
def= (p1 + ωq2, p2 − ωq1, p3) is the angular momentum.

The term ̂H2 in (2.1) contains an inhomogeneous Ioffe correction to the magnetic field. The value
of this correction in (2.1) is of the order O(ε2), but we assume this only for simplicity; this value can be
greater but must still be less than the correction of the order of ε in (2.1). The analytic expression for ̂H2

has the form

̂H2 = ̂k1(β1q2q3 + γ1(q2
2 − q2

3)) + ̂k2(β2q3q1 + γ2(q2
3 − q2

1)) +

+ ̂k3(β3q1q2 + γ3(q2
1 − q2

2)) +
1
8
|[q × B]|2,

where βj and γj are parameters of the Ioffe field.
We can perform a canonical transformation (preserving the commutation relations) of the phase coor-

dinates (q1, q2, q3; p1, p2, p3) → (x+, x−, x0; p+, p−, p0) by the formulas

q1 =
4
√

2√
ω0

(x+ + x−), p1 =
√

ω0

2 4
√

2
(p+ + p−),

q2 =
4
√

2√
ω0

(p+ − p−), p2 =
√

ω0

2 4
√

2
(x− − x+),

q3 =
1

4
√

2
√

ω0

x0, p3 = 4
√

2
√

ω0p0.

(2.4)

Hamiltonian (2.2) then takes the normal form

̂H0 =
ω0

2
√

2
[2(p̂2

+ + x2
+) − (p̂2

− + x2
−) + 2(p̂2

0 + x2
0)] =

=
ω0√

2
[2ẑ ∗

+ẑ+ − ẑ ∗
−ẑ− + 2ẑ ∗

0 ẑ0] +
3�ω0

2
√

2
, (2.5)

where
ẑ± =

1√
2
(x± + ip̂±), ẑ0 =

1√
2
(x0 + ip̂0). (2.6)
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Remark 1. Such a change of coordinates corresponds to the transformation in L2(R3)

ψ(q1, q2, q3) �→ Ψ(x+, x−, x0) = F [ψ],

F [ψ] =
1

25/8 4
√

ω0

√
π�

∫

R

exp
{

i 4
√

ω0

25/4�
(x+ − x−)q2

}

ψ

( 4
√

2√
ω0

(x+ + x−), q2,
x0

4
√

2
√

ω0

)

dq2.

The inverse transformation is

F−1[Ψ] =
4
√

ω0

√
�

23/8
√

π

∫

R

eip2q2Ψ
(√

ω0

25/4
q1 −

4
√

2√
ω0

�p2,

√
ω0

25/4
q1 +

4
√

2√
ω0

�p2,
4
√

2
√

ω0q3

)

dp2.

It follows from formula (2.5) that the Hamiltonian of the ideal Penning trap under condition (2.3) is
a linear combination of three oscillators whose frequencies are at resonance 2 : (−1) : 2. The spectrum of
the Hamiltonian ̂H0 is discrete and infinitely degenerate.

We consider the symmetry algebra, i.e., the algebra of all operators commuting with ̂H0. The operators

S± = ẑ ∗
±ẑ±, S0 = ẑ ∗

0 ẑ0,

Aρ = ẑ ∗
+ẑ0, Aσ = ẑ ∗

+(ẑ ∗
−)2, Aθ = (ẑ ∗

−)2ẑ ∗
0

(2.7)

can be regarded as its generators. Of course, the adjoint operators A∗
ρ, A∗

σ, and A∗
θ must be included in the

set of generators of the symmetry algebra.
The commutation relations between the generators are [21]

[S+, Aρ] = �Aρ, [S0, Aρ] = −�Aρ,

[S+, Aσ] = �Aσ, [S−, Aσ] = 2�Aσ,

[S−, Aθ] = 2�Aθ, [S0, Aθ] = �Aθ,

[Aρ, A
∗
σ] = −�A∗

θ, [Aρ, Aθ] = �Aσ,

[Aσ, A∗
θ] = −4�

(

S− +
�

2

)

Aρ, [A∗
ρ, Aρ] = �(S0 − S+),

[A∗
σ, Aσ] = �(4S+S− + S2

− + 2�S+ + 3�S− + 2�
2),

[A∗
θ, Aθ] = �(S2

− + 4S−S0 + 3�S− + 2�S0 + 2�
2).

(2.8)

The other commutators are either adjoint to those listed above or are equal to zero.
Relations (2.8) admit the three Casimir operators (commuting with all generators)

Cρ = AρA
∗
ρ − S+(S0 + �),

Cσ = AσA∗
σ − S+S−(S− − �),

Cθ = AθA
∗
θ − S0S−(S− − �).

(2.9)

These three operators are simply zeros in realization (2.7).
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There also are Casimir quasioperators

C+ = AρA
∗
σ − S+A∗

θ,

C− = AσA∗
θ − S−(S− − �)Aρ,

C0 = AρAθ − (S0 + �)Aσ.

(2.10)

The commutators of these operators with all generators are proportional to operators (2.10). Opera-
tors (2.10) also vanish in realization (2.7).

The symmetry algebra of resonance oscillator (2.5) can thus be determined as an algebra with nine
generators and relations (2.8) factored by the ideal generated by elements (2.9) and (2.10).

Of course, this quotient algebra still has one additional Casimir element

C = 2S+ − S− + 2S0, (2.11)

which in fact is the operator ̂H0 given by (2.5), namely,

̂H0 =
ω0√

2

(

C +
3�

2

)

.

We analyze perturbed operator (2.1) following the general scheme of algebraic averaging [13], [15].
Namely, we perform a unitary transformation that annihilates the part of the perturbation in (2.1) that
does not commute with the leading term ̂H0. The new perturbation commutes with ̂H0 and hence belongs
to the symmetry algebra described above:

V −1 · ̂H · V = ̂H0 + ε ̂H10 + ε2
̂H20 + O(ε3), (2.12)

where
[ ̂H0, ̂H10] = [ ̂H0, ̂H20] = 0 (2.13)

(see [21] for the details).
The operators ̂H10 and ̂H20 can be expressed in terms of generators of symmetry algebra (2.8) as

̂H10 = B3

(

2S+ + S− +
3�

2

)

− B1 + iB2√
2

Aρ − B1 − iB2√
2

A∗
ρ, (2.14)

̂H20 = f+S+ + f−S− + f0S0 + (gρAρ + ḡρA
∗
ρ) +

+ (gσAσ + ḡσA∗
σ) + (gθAθ + ḡθA

∗
θ) + r. (2.15)

The scalar coefficients in the last formula have the forms

f+ = ξ2(1 − 9η2)
√

2
8ω0

, f− = ξ2

(

1 − 7 + 20η2

3

)
√

2
8ω0

,

f0 = −ξ2(1 − η2)
5
√

2
24ω0

, gρ = ξ2η
√

1 − η2
eiϕ

√
2ω0

,

gσ =
23/4

√
ω0

(γ2 − iγ1), gθ =
1

27/4√ω0
(2β3 − β1 − β2 + 4iγ3),

r = −�ξ2(1 + 7η2)
√

2
8ω0

,

(2.16)
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where we use the notation

ξ2 = B2
1 + B2

2 + 2B2
3, η =

√
2B3

ξ
, (2.17)

and the angle ϕ is determined by the relation

B1 + iB2 = ξ
√

1 − η2 eiϕ. (2.18)

3. Secondary resonance algebra

The perturbing terms ̂H10, ̂H20, . . . in (2.12) commute with the leading term ̂H0. It therefore suffices
to consider the Hamiltonian

̂H10 + ε ̂H20 + O(ε2) (3.1)

on eigenspaces of the resonance oscillator ̂H0. We can determine these eigenspaces by calculating the
irreducible representations of algebra (2.8).

We note that the generators Aρ and A∗
ρ in (2.14) commute with S−, and hence [ ̂H10, S−] = 0. Hamil-

tonian (3.1) is hence a perturbation of the integrable system defined by the Hamiltonian ̂H10.
The symmetry algebra of the operator ̂H10 given by (2.14) is trivial in general position (commutative

and generated by the operator S− and by ̂H10 itself), and its spectrum is nondegenerate. But under a
special resonance condition on the components of the perturbing magnetic field B, this algebra becomes
noncommutative, and the spectral degeneration appears. The condition for such a secondary resonance has
the form [21]

(k − l)2(B2
1 + B2

2) = 16
(

(k + l)2 +
kl

2

)

B2
3 , (3.2)

where k and l are some positive coprime numbers.
For simplicity, we consider only the case of the simplest secondary resonance k : l = 1 : 0 in (3.2), i.e.,

we assume that
B2

1 + B2
2 = 16B2

3. (3.3)

This condition means that the angle between the trap axis and the direction of the perturbing magnetic
field B is approximately equal to 76◦.

Under condition (3.2), the spectrum of Hamiltonian (2.1) or (2.12) has the form

ω0√
2

(

n +
3
2

)

� + ε

(

6m− n +
3
2

)

�B3 + O(ε2), (3.4)

where n ∈ Z and m ∈ Z+. We describe the corresponding eigensubspace of the Hamiltonian ̂H0 + ε ̂H10 in
L2(R3) in Appendix A. The correction of the order O(ε2) in this spectrum is determined by the secondary
perturbation ̂H20 given by (2.15). To take this correction into account, we must perform the averaging as
in Sec. 2. We apply a unitary transformation to obtain the new Hamiltonian

̂H10 + ε ̂H200 + O(ε2) (3.5)

with a new “azimuthal” perturbation that commutes with the leading part: [ ̂H10, ̂H200] = 0.
If condition (3.3) is satisfied, then the symmetry algebra of the operator ̂H10 given by (2.14) is non-

commutative. The generators of this secondary resonance algebra are

A0 = S−, (3.6)

A±
def= (1 ± η)S+ + (1 ∓ η)S0 ∓

√

1 − η2(eiϕAρ + e−iϕA∗
ρ), (3.7)

B =

√

2
3
eiϕ/2Aσ +

2√
3
e−iϕ/2Aθ, (3.8)
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where η = 1/3 and the angle ϕ is given by (2.18).
The commutation relations between generators (3.6), (3.7), and (3.8) have the forms [21]

[A0, B] = 2�B, [A−, B] = 2�B, [A+, B] = 0,

[B∗, B] = 2�(A2
0 + 2A0A− + 3�A0 + �A− + 2�

2).
(3.9)

There are the Casimir elements

M = A+ − A− + A0, C = A+ + A− − A0, K = BB∗ − A0(A0 − �)A−. (3.10)

Theorem 1. Under secondary resonance conditions (3.3), the “azimuthal” Hamiltonian ̂H200 in (3.5)
is expressed in terms of generators of secondary symmetry algebra (3.9) as

̂H200 = κB + κ̄B∗ + μ0A0 + μ+A+ + μ−A− + ν, (3.11)

where the scalar coefficients are

κ =
1

27/4
√

3ω0
[(2β3 − β1 − β2 + 4iγ3)eiϕ/2 + 4(γ2 − iγ1)e−iϕ/2],

μ0 = −14
√

2
3ω0

B2
3, μ+ = −17

√
2

9ω0
B2

3, μ− =
2
√

2
9ω0

B2
3, ν = −�

97
√

2
16ω0

B2
3

(3.12)

and the angle ϕ is determined by the relations cosϕ = B1/4B3 and sin ϕ = B2/4B3.

The process of calculating the averaged Hamiltonian ̂H200 is described in detail in Appendix B.

Corollary 1. Under principal and secondary resonance conditions (2.3) and (3.3), the spectrum of

Hamiltonian (2.1) of the perturbed Penning trap has the asymptotic expansion

ω0√
2

(

n +
3
2

)

� + ε

(

6m− n +
3
2

)

�B3 + ε2λn,m,k + O(ε3), (3.13)

where n ∈ Z, m ∈ Z+, and λn,m,k are eigenvalues of operator (3.11) over algebra (3.9) in its irreducible

representation with Casimir elements (3.10) equal to

K = 0, C = n�, M = (4m − n)�. (3.14)

4. Irreducible representations of the secondary resonance algebra

We recall that we consider the resonance case k : l = 1 : 0. We now describe the irreducible represen-
tations of algebra (3.9).

In the space of antiholomorphic functions over the field C, we define the inner product

(u, v) =
∑

j≥0

sn,m(j)uj v̄j . (4.1)

Here, u(z̄) =
∑

j≥0 uj z̄
j, v(z̄) =

∑

j≥0 vj z̄
j, and the numbers sn,m(j) for fixed n and m and each j =

0, 1, 2, . . . are given by the formulas

sn,m(j) = (2�)jj!

(

m − n/2 + 3/4 + (−1)n/4
)

j
(

m − n/2 + 3/4 − (−1)n/4
)

j

, n ≤ 2m,
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and

sn,m(j) = (2�)jj!

(

[(n + 1)/2]− m + 1
)

j
(

1 − (−1)n/2
)

j

, n > 2m.

The reproducing kernel in the space with inner product (4.1) has the form

Kn,m(w, z) def=
∑

j≥0

(wz)j

sn,m(j)
. (4.2)

We here use the term “reproducing” because of the property that if we take inner product (4.1) of two
functions Kn,m( · , z) and Kn,m( · , w), then the result is equal to Kn,m(w, z).

The reproducing kernel Kn,m given by (4.2) can be expressed in terms of known special functions. For
this, we introduce numbers a and c as

a
def= m − n

2
+

3
4
− (−1)n

4
, c

def= m − n

2
+

3
4

+
(−1)n

4
, n ≤ 2m,

a
def= 1 − (−1)n

2
, c

def=
[

n + 1
2

]

− m + 1 n > 2m.

(4.3)

Then the reproducing kernel Kn,m is given by the hypergeometric series (Vol. 1 of [22])

Kn,m(w, z) = 1F1

(

a; c;
zw

2�

)

.

We now can define the family of coherent states pn,m(z) for our algebra such that

(pn,m(z), pn,m(w))L2 = Kn,m(w, z). (4.4)

The inner product in the left-hand side of (4.4) is taken in the space L2 = L2(R3), i.e., in the original
Hilbert space for Schrödinger operator (2.1).

The family of coherent states satisfying (4.4) can be defined by the formula

pn,m(z) = Fn,m(z, B)pn,m(0), (4.5)

where

Fn,m(z, w) =
∞
∑

j=0

Γ(c)
j!Γ(j + c)

(

zw

2�2

)j

= Γ(c)
(

2�√
zw

)c−1

Ic−1

(√
zw

�

)

and Iν is the Bessel function of an imaginary argument (see Vol. 2 of [22]), Γ is the gamma function, and
the number c is defined in (4.3).

The vacuum vector pn,m(0) in (4.5) is an eigenvector of all commuting generators A0, A+, and A− of
algebra (3.9) annihilated by the generator B∗, i.e.,

B∗
pn,m(0) = 0, A0pn,m(0) = �(2(m + m−) − n)pn,m(0),

A+pn,m(0) = 2�mpn,m(0), A−pn,m(0) = 2�m−pn,m(0).
(4.6)
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The normalized solution of the system of Eqs. (4.6) has the form

pn,m(0) = χ2(m+m−)−n,m,m− .

Here, the vectors χt0,t+,t− are determined by formula (A.1) (see Appendix A), and the number m− is equal
to

m− =
[

1 + max{n − 2m, 0}
2

]

, (4.7)

where the symbol [ · ] denotes the integer part.
Coherent states (4.5) can be expanded in the orthonormal basis χ2(m+m−)−n+2j,m,m−+j in the common

eigensubspace (in L2(R3)) of the operators C and M :

pn,m(z) =
∑

j≥0

h̄n,m,j(z̄)χ2(m+m−)−n+2j,m,m−+j ,

where

hn,m,j(z̄) =
z̄j

√

sn,m(j)

is an orthonormal basis in the space of antiholomorphic functions with inner product (4.1).
The coherent states permit intertwining the initial representation of algebra (3.9) with its irreducible

representations. The intertwining map has the form

g → In,m(g) def=
1

2π�

∫

C

g(z̄)pn,m(z)l(|z|2) dz̄ dz. (4.8)

Here, l is the density of the reproducing measure with respect to which the reproducing property
∫

C

Kn,m(w, z)Kn,m(z̄, w)l(|z|2) dz̄ dz = K(w, w). (4.9)

is satisfied. Inner product (4.1) can be expressed in terms of the measure as

(u, v) =
∫

C

u(z̄)v̄(z̄)l(|z|2) dz̄ dz. (4.10)

Map (4.8) has the intertwining property

A0,±In,m(g) = In,m(A0,±(g)),

BIn,m(g) = In,m(B(g)),

B∗In,m(g) = In,m(B∗(g)),

(4.11)

where A0, A+, A−, B, and B∗ are initial generators of the algebra and A0, A+, A−, B, and B
∗ are generators

of its irreducible representation.
The operators B and B

∗ in the irreducible representation are given by the second-order differential
operators [21] as

B = 2�z̄

(

z̄
d

dz̄
+ m − n

2
+

3
4
− (−1)n

4

)

,

B
∗ = 4�

2

(

z̄
d

dz̄
+ m − n

2
+

3
4

+
(−1)n

4

)

d

dz̄
,

n ≤ 2m,

B = 2�z̄

(

z̄
d

dz̄
+ 1 − (−1)n

2

)

,

B
∗ = 4�

2

(

z̄
d

dz̄
− m +

[

n + 1
2

]

+ 1
)

d

dz̄
,

n > 2m.

(4.12)
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The operators A± and A0 are given by the first-order differential operators as

A0 = 2�

(

m − n

2
+ z̄

d

dz̄

)

,

A+ = 2�m, A− = 2�z̄
d

dz̄
,

n ≤ 2m,

A0 = 2�

(

1 − (−1)n

4
+ z̄

d

dz̄

)

,

A+ = 2�m, A− = 2�

([

n + 1
2

]

− m + z̄
d

dz̄

)

,

n > 2m.

(4.13)

Theorem 2. The density of the reproducing measure l is given by the formula

l(|z|2) =
Γ(a)
2Γ(c)

e−|z|2/2�

(

|z|2
2�

)c−1

Ψ
(

a − 1; c;
|z|2
2�

)

.

Here, Ψ is the Tricomi function (see Vol. 1 of [22])

Ψ(α, N + 1; x) =
(−1)N−1

N !Γ(α − N)

{

1F1(α, N + 1; x) log x +

+
∞
∑

r=0

(α)r

(N + 1)r
[ψ(α + r) − ψ(1 + r) − ψ(1 + N + r)]

xr

r!

}

+

+
(N − 1)!

Γ(α)

N−1
∑

r=0

(α − N)r

(1 − N)r

xr−N

r!

(the last sum is omitted if N = 0), where ψ(z) = d log Γ(z)/dz is the logarithmic derivative of the Γ
function.

Remark 2. The function y(x) def= l(2�x) is a solution of the degenerate hypergeometric equation

xy′′(x) + (x + 2 − c)y′(x) + (2 − a)y(x) = 0,

where a and c are defined in (4.3). We note that c ∈ N. This equation has two linearly independent
solutions (see Vol. 1 of [22])

y1(x) = e−xxc−1
1F1(a − 1, c; x), y2(x) = e−xxc−1Ψ(a − 1, c; x).

These solutions have the asymptotic behavior as x → 0

y1(x) ∼ xc−1,

y2(x) ∼

⎧

⎪

⎨

⎪

⎩

Γ(c − 1)
Γ(a − 1)

, c > 1,

− 1
Γ(a − 1)

[log x + ψ(a − 1) − 2γ], c = 1.

Here, γ = limk→∞
( ∑k

n=1 1/n− log k
)

= 0.5772156649 . . . is the Euler–Mascheroni constant.
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The asymptotic behavior of y1 and y2 as x → +∞ has the forms

y1(x) ∼ Γ(c)
Γ(a − 1)

xa−2, y2(x) ∼ e−xxc−a.

The density of the reproducing measure must satisfy the condition that the integral
∫ ∞

0

xkl(2�x) dx

converges for all k ∈ Z+. Therefore, l(2�x) = const · y2(x), where const is determined by the normalization
condition

∫ ∞

0

l(2�x) dx =
1
2
.

We can easily calculate the integral in the left-hand side of this normalization condition by integrating the
equation for l.

5. Integral formula for the eigenstates

We apply (4.8) and (4.11) to the operator ̂H200 given by (3.11) and obtain

̂H200In,m(g) = In,m(H(g)),

where
H

def= κB + κ̄B
∗ + μ0A0 + μ+A+ + μ−A− + ν. (5.1)

Hence, to calculate the spectrum and the eigenvectors of the operator ̂H200 on an eigenspace of the operators
̂H0 and ̂H10, we must consider the eigenvalue problem in the space of antiholomorphic functions with inner
product (4.10) for the operator H given by (5.1):

Hg = λg. (5.2)

It follows from (4.12) or (4.13) that Eq. (5.2) is an ordinary second-order differential equation with
coefficients linear and quadratic in z̄.

We let λ = λn,m,k and g = gn,m,k, where k = 0, 1, 2, . . . is a new quantum number enumerating the
eigenvalues, denote the eigenvalues and eigenfunctions of operator (5.2). Then the vectors In,m(gn,m,k) are
eigenvectors of ̂H200.

We can now reconstruct the eigenstates of the initial Hamiltonian ̂H by applying the unitary operator
V in (2.12) and another unitary operator V1 transforming (3.1) into (3.5). A method for calculating V was
described in [21], and the formula for V1 is given in Appendix B.

Theorem 3. If the frequencies ω and ω0 satisfy resonance condition (2.3) and the components of the

perturbing homogeneous magnetic field B satisfy secondary resonance condition (3.3), then the eigenstates

of the Penning trap Hamiltonian ̂H given by (2.1) are determined up to O(ε) by the integral formula

ψn,m,k =
1

2π�

∫

C

gn,m,k(z̄)V V1pn,m(z)l(|z|2) dz̄ dz, (5.3)

where gn,m,k are eigenfunctions of the ordinary second-order differential operator H given by (5.1) with the

generators A0,±, B, and B
∗ given by formulas (4.13) or (4.12).

The corresponding eigenvalues of ̂H have the form

ω0√
2

(

n +
3
2

)

� + ε

(

6m− n +
3
2

)

�B3 + ε2λn,m,k + O(ε3),

where n ∈ Z, m ∈ Z+, and λn,m,k are eigenvalues of H.
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Remark 3. The family of vectors V V1pn,m(z) in (5.3) can be considered some “squeezed” coherent
states of the secondary resonance algebra of the Penning trap. The squeezing is performed by unitary
transformations of the operators V and V1 reducing initial Hamiltonian (2.1) to form (3.11). The coherent
ground states pn,m(z) in (5.3) correspond to irreducible representations of the non-Lie secondary resonance
algebras (3.9).

We note that some coherent states of the Penning trap were studied in [23], [24].

Remark 4. We must still calculate the solutions gn,m,k of ordinary differential equation (5.2) in in-
tegral (5.3). But in the semiclassical approximation, this can be done explicitly, and formula (5.3) reduces
to an integral of the form

ψn,m,k � 1√
2π�

∫

Λn,m,k

e(i/�){Action}√{Jacobian} · V V1pn,m · {Measure} + O(�),

where Λn,m,k are level lines of the Wick symbol of the operator H satisfying the quantization condition, and
{Action}, {Jacobian}, and {Measure} are introduced on Λn,m,k by a canonical procedure [19], [20]. The
eigenvalues λn,m,k are determined up to O(�2) by the values of the Wick symbol on the level lines Λn,m,k.

Appendix A

We introduce the commuting operators

b0
def= ẑ∗−, b±

def=
√

1 ± ηeiϕ/2ẑ∗+ ∓
√

1 ∓ ηe−iϕ/2ẑ∗3 ,

where η = 1/3. The operators b0 and b± and the operators adjoint to them in the space L2(R3) satisfy the
commutation relations

[b∗0, b0] = �, [b∗±, b±] = 2�, [b∗±, b∓] = 0.

The operators b∗0 and b∗± annihilate the exponential

χ0(x+, x−, x0)
def=

1
(π�)3/4

e(x2
++x2

−+x2
0)/2�, ‖χ0‖ = 1.

We consider the vectors
χt(x+, x−, x0)

def= γtb
tχ0, (A.1)

where
γt =

1√
2t++t−�|t|t!

(A.2)

and t = (t0, t+, t−) such that tj ∈ Z+, |t| = t0 + t+ + t−, and t! = t0!t+!t−!.

Proposition 1. Vectors (A.1) satisfy the formula

χt =
1√

2t0�t++t−t!
Ht0

(

x−√
�

)

Hν,ϕ
t+,t−(x+, x0)χ0.

Here, Ht0 are Hermite polynomials, and Hν,ϕ
t+,t− denote the polynomials

Hν,ϕ
t+,t−(x+, x0)

def= d
t+
+ d

t−
− (1),

where

d±
def=

√

1 ± ηeiϕ/2

(

x+ − �

2
∂

∂x+

)

∓
√

1 ∓ ηe−iϕ/2

(

x0 −
�

2
∂

∂x0

)

.
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Corollary 2. In the initial coordinates, basis (A.1) is given by the formulas

F−1[χt] =

√

2t0

t!
P ν,ϕ

t0,t+,t−

(√
ω0(q1 + iq2)
25/4

√
�

,

√
ω0(q1 − iq2)
25/4

√
�

,
4
√

2
√

ω0q3√
�

)

F−1[χ0],

F−1[χ0] =
ω

3/4
0

25/8(π�)3/4
exp

{

− ω0√
2�

(

q2
1 + q2

2

4
+ q2

3

)}

,

where P ν,ϕ
t0,t+,t− are polynomials in three variables. They are defined by the formula

P ν,ϕ
t0,t+,t−

def= D
t+
+ D

t−
− (yt0),

where D± are the mutually commuting differential operators

D± =
√

1 ± ηeiϕ/2

(

ȳ − 1
2

∂

∂y

)

∓
√

1 ∓ ηe−iϕ/2

(

y0 −
1
2

∂

∂y0

)

.

Lemma 1. The family {χt | t ∈ Z
3
+} forms an orthonormal basis in L2(R3).

This is an eigenbasis for the operators S− and S+ + S0:

S−χt = �t0χt, (S+ + S0)χt = �(t+ + t−)χt,

because S− and S+ + S0 are related to b0, b±, b∗0, and b∗± as

S− = b0b
∗
0, S+ + S0 =

1
2
(b+b∗+ + b−b∗−).

Therefore, {χt} is also an eigenbasis for the Casimir element C given by (2.11):

Cχt = �(2t+ + 2t− − t0)χt.

Lemma 2. The eigensubspace of the Hamiltonian ̂H0 given by (2.5), where the element C takes the

value n�, is spanned by the vectors

{χ2(t++t−)−n,t+,t− | 2(t+ + t−) − n ≥ 0}. (A.3)

The formulas
A0 = b0b

∗
0, A± = b±b∗±

for generators (3.6) and (3.7) similarly imply

A0χt = �t0χt, A±χt = 2�t±χt,

and hence {χt} is also an eigenbasis for the Casimir element M given by (3.10):

M = �(2t+ − 2t− + t0)χt.

We then obtain
Mχt = �(4t+ − n)χt

on eigensubspace (A.3) of the Hamiltonian ̂H0, where C takes the value n�.
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Theorem 4. The common eigensubspace of the Casimir elements C and M in realization (2.7) is

spanned by the vectors

{χ2(m+t−)−n,m,t− | 2(m + t−) − n ≥ 0} = {χ2(m+m−)−n+2j,m,m−+j | j ≥ 0}, (A.4)

where m− is defined in (4.7).

We note that the operator B given by (3.8) can be represented as

B = b2
0b−

in realization (2.7).

Corollary 3. Eigenbasis (A.4) satisfies the formula

χ2(m+m−)−n+2j,m,m−+j =
γ2(m+m−)−n+2j,m,m−+j

γ2(m+m−)−n,m,m−

Bjχ2(m+m−)−n,m,m− ,

where γt are coefficients (A.2). The vector χ2(m+m−)−n,m,m− is here annihilated by the operator B∗.

Appendix B

We introduce the operators

B+
def=

2√
3
eiϕ/2Aσ −

√
2√
3
e−iϕ/2Aθ,

F
def=

2
3
(√

2(S+ − S0) + 2eiϕAρ − e−iϕA∗
ρ

)

.

(B.1)

Lemma 3. Generators (2.7) and the adjoint generators can be expressed in terms of generators (3.6)–
(3.8), and (B.1) and in terms of the adjoint operators by the formulas

S− = A0, S+ + S0 =
1
2
(A+ + A−),

S+ − S0 =
1
6
[

(A+ − A−) + 2
√

2(F + F ∗)
]

,

eiϕAρ + e−iϕA∗
ρ =

1
6
[

(F + F ∗) − 2
√

2(A+ − A−)
]

,

eiϕAρ − e−iϕA∗
ρ =

1
2
(F − F ∗),

Aσ =
1√
6
e−iϕ/2(

√
2B+ + B), Aθ =

1√
6
eiϕ/2(

√
2B − B+).

Lemma 4. The commutation relations

[M, A0] = [M, A±] = [M, B] = 0,

MF = F (M + 4�), MB+ = B+(M + 4�)

hold.
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We use Lemma 3 to write the Hamiltonian ̂H20 as a linear combination of the operators A0, A±, B,
B∗, B+, B∗

+, F , and F ∗. Further using Lemma 4 allows easily “commuting” the group of the operator M

with the Hamiltonian ̂H20 and calculating “azimuthal” Hamiltonian (3.11) and the averaging operator V1.

Proposition 2. The operator V1 transforming (3.1) into (3.5) is given by

V1 = exp
{

ε

�
(ρF ∗ + σB∗

+ − ρ̄F − σ̄B+)
}

,

where

ρ =
√

2
12ξ

(√
2(f+ − f0) − e−iϕgρ + 2eiϕḡρ

)

,

σ =
√

3
6ξ

(√
2eiϕ/2ḡσ − e−iϕ/2ḡθ

)

,

the numbers f+, f0, gρ, gσ, and gθ are defined in (2.16), and η = 1/3.
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