LOG TERMINAL SINGULARITIES, PLATONIC TUPLES AND ITERATION OF COX RINGS

IVAN ARZHANTSEV, LUKAS BRAUN, JÜRGEN HAUSEN AND MILENA WROBEL

Abstract

Looking at the well understood case of log terminal surface singularities, one observes that each of them is the quotient of a factorial one by a finite solvable group. The derived series of this group reflects an iteration of Cox rings of surface singularities. We extend this picture to log terminal singularities in any dimension coming with a torus action of complexity one. In this setting, the previously finite groups become solvable torus extensions. As explicit examples, we investigate compound du Val threefold singularities. We give a complete classification and exhibit all the possible chains of iterated Cox rings.

1. Introduction

We begin with a brief discussion of the well known surface case [1, 6, 11]. The two-dimensional \log terminal singularities are exactly the quotient singularities \mathbb{C}^{2} / G, where G is a finite subgroup of the general linear group GL(2). The particular case that G is a subgroup of $\operatorname{SL}(2)$ leads to the du Val singularities A_{n}, D_{n}, E_{6}, E_{7} and E_{8}, named according to their resolution graphs. They are precisely the rational double points, and are also characterized by being the canonical surface singularities. The du Val singularities fill the middle row of the following commutative diagram involving all two-dimensional log terminal singularities:

Here, all arrows indicate quotients by finite groups. The label "CR" tells us that this quotient represents a Cox ring; recall that the Cox rings of (the resolutions of) the du Val singularities \mathbb{C}^{2} / G have been computed in 10, 13, see also the example given below. So, E_{6} is the spectrum of the Cox ring of E_{7} etc.. In fact, the chain of Cox rings reflects the derived series of the binary octahedral group $\widetilde{S}_{4} \subseteq \operatorname{SL}(2)$, producing the E_{7} singularity:

$$
\widetilde{S}_{4} \supseteq \widetilde{A}_{4} \supseteq \widetilde{D}_{4} \supseteq\left\{ \pm I_{2}\right\} \supseteq\left\{I_{2}\right\},
$$

where \widetilde{A}_{4} is the binary tetrahedral group, \widetilde{D}_{4} the binary dihedral group, and I_{2} stands for the 2×2 unit matrix. The respective CR labelled arrows stand for quotients by the factors of this derived series. The arrows passing from the middle to the lower row indicate index-one covers: the upper surface is Gorenstein, one divides

[^0]by a cyclic group of order \imath and the lower surface is of Gorenstein index \imath. Finally, the superscripts 2 in $D_{(n+3) / 2}^{2, \imath}$ and 3 in $E_{6}^{3,2}$ denote the "canonical multiplicity" of the singularity, generalizing the "exponent" discussed in 9, 12]; see 4.2, For a discussion of the surface case based on the methods provided in this article, see Example 4.8.

Another feature of the \log terminal surface singularities is that, as quotients \mathbb{C}^{2} / G by a finite subgroup $G \subseteq \mathrm{GL}(2)$, they all come with a non-trivial \mathbb{C}^{*}-action, induced by scalar multiplication on \mathbb{C}^{2}. The higher dimensional analogue of \mathbb{C}^{*} surfaces are T-varieties X of complexity one, that means varieties X with an effective action of an algebraic torus T which is of dimension one less than X. The notion of \log terminality is defined in general via discrepancies in the ramification formula; see Section 3 for a brief reminder. In higher dimensions, log terminal singularities form a larger class than the quotient singularities \mathbb{C}^{n} / G with G a finite subgroup of $\mathrm{GL}(n)$. Our aim is, however, to extend the picture drawn at the beginning for the surface case to log terminal singularities with a torus action of complexity one in any dimension.

We use the Cox ring based approach developed in [17, 18, 19]. Recall that the Cox ring of a normal variety X with finitely generated divisor class group $\mathrm{Cl}(X)$ and only constant globally invertible functions is

$$
\mathcal{R}(X):=\bigoplus_{\mathrm{Cl}(X)} \Gamma\left(X, \mathcal{O}_{X}(D)\right)
$$

where we refer to [2] for the necessary background. If X comes with a torus action of complexity one, then the Cox ring $\mathcal{R}(X)$ admits an explicit description in terms of generators and very specific trinomial relations. Vice versa, one can abstractly write down all rings that arise as the Cox ring of some T-variety X of complexity one. Let us briefly summarize the procedure; see Section 2 and [17, 19] for the details.

Construction 1. Fix integers $m \geq 0, \iota \in\{0,1\}$ and $r, n>0$ and a partition $n=n_{\iota}+\cdots+n_{r}$. For every $i=\iota, \ldots, r$ let $l_{i}:=\left(l_{i 1}, \ldots, l_{i n_{i}}\right) \in \mathbb{Z}_{>0}^{n_{i}}$ with $l_{i 1} \geq \ldots \geq l_{i n_{i}}$ and $l_{\iota 1} \geq \ldots \geq l_{r 1}$ and define a monomial

$$
T_{i}^{l_{i}}:=T_{i 1}^{l_{i 1}} \cdots T_{i n_{i}}^{l_{i n_{i}}}
$$

Denote the polynomial ring $\mathbb{C}\left[T_{i j}, S_{k} ; i=\iota, \ldots, r, j=1, \ldots, n_{i}, k=1, \ldots, m\right]$ for short by $\mathbb{C}\left[T_{i j}, S_{k}\right]$. We distinguish two types of rings:

Type 1. Take $\iota=1$ and pairwise different scalars $\theta_{1}=1, \theta_{2}, \ldots, \theta_{r-1} \in \mathbb{C}^{*}$ and define for each $i=1, \ldots, r-1$ a trinomial

$$
g_{i}:=T_{i}^{l_{i}}-T_{i+1}^{l_{i+1}}-\theta_{i} .
$$

Then we obtain a factor ring

$$
R=\mathbb{C}\left[T_{i j}, S_{k}\right] /\left\langle g_{1}, \ldots, g_{r-1}\right\rangle
$$

Type 2. Take $\iota=0$ and pairwise different scalars $\theta_{0}=1, \theta_{1}, \ldots, \theta_{r-2} \in \mathbb{C}^{*}$ and define for each $i=0, \ldots, r-2$ a trinomial

$$
g_{i}:=\theta_{i} T_{i}^{l_{i}}+T_{i+1}^{l_{i+1}}+T_{i+2}^{l_{i+2}}
$$

Then we obtain a factor ring

$$
R=\mathbb{C}\left[T_{i j}, S_{k}\right] /\left\langle g_{0}, \ldots, g_{r-2}\right\rangle
$$

As we explain later, the rings R come with a natural grading by a finitely generated abelian group K_{0} and suitable downgradings $K_{0} \rightarrow K$ give us Cox rings of rational, normal, varieties X with $\mathrm{Cl}(X)=K$ that come with a torus action of complexity one. More geometrically, X arises as a quotient of an open set $\widehat{X} \subseteq \bar{X}$ of the total coordinate space $\bar{X}=\operatorname{Spec} R$ by the quasitorus H having K as its character group. Conversely, basically every rational, normal variety X with a torus action of complexity one can be presented this way.

Geometrically speaking, Type 1 leads to the T-varieties of complexity one that admit non-constant global invariant functions and Type 2 to those having only constant global invariant functions. The varieties of Type 1 turn out to be locally isomorphic to toric varieties. In particular, they are all log terminal and the study of their singularities is essentially toric geometry, see Corollary 3.5 for a precise formulation. We therefore mainly concentrate on Type 2. There, the true non-toric phenomena occur, as for instance the singularities D_{n}, E_{6}, E_{7} and E_{8} in the surface case.

Characterizing log terminality for a T-variety of complexity one of Type 2 involves platonic triples, that means, triples of the form

$$
(5,3,2), \quad(4,3,2), \quad(3,3,2), \quad(x, 2,2), \quad(x, y, 1),
$$

where $x \geq y \in \mathbb{Z}_{\geq 1}$. We say that positive integers a_{0}, \ldots, a_{r} form a platonic tuple if, after reordering decreasingly, the first three numbers are a platonic triple and all others equal one. Moreover, in the setting of Construction 1, we say that a ring R of Type 2 is platonic if every $\left(l_{0 j_{0}}, \ldots, l_{r j_{r}}\right)$ is a platonic tuple.

Example 1. The platonic rings of Type 2 in dimension two are the polynomial ring $\mathbb{C}\left[T_{1}, T_{2}\right]$ and the factor rings $\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right] /\langle f\rangle$, where f is one of

$$
T_{1}^{y}+T_{2}^{2}+T_{3}^{2}, y \in \mathbb{Z}_{>1}, \quad T_{1}^{3}+T_{2}^{3}+T_{3}^{2}, \quad T_{1}^{4}+T_{2}^{3}+T_{3}^{2}, \quad T_{1}^{5}+T_{2}^{3}+T_{3}^{2}
$$

Endowed with a suitable grading, $\mathbb{C}\left[T_{1}, T_{2}\right]$ is the Cox ring of A_{n}, and the other rings, according to the above order of listing, of D_{y-2}, E_{6}, E_{7} and E_{8}.

Our first result says that a rational, normal variety X with a torus action of complexity one of Type 2 has at most log terminal singularities if and only if there occur enough platonic tuples $\left(l_{0 j_{0}}, \ldots, l_{r n_{r}}\right)$ in the Cox ring R; see Theorem 3.13 for the precise meaning of "enough". In the affine case, the result specializes to the following; compare also [14, Ex. 2.20] for an earlier result in a particular case and [22, Cor. 5.8] for a related characterization.

Theorem 1. An affine, normal, \mathbb{Q}-Gorenstein, rational variety X with torus action of complexity one of Type 2 has at most log terminal singularities if and only if its Cox ring R is a platonic ring.

Set for the moment $\mathfrak{l}_{i}:=\operatorname{gcd}\left(l_{i 1}, \ldots, l_{i n_{i}}\right)$. Then, by [19], a ring R of Type 1 is factorial if and only if $\mathfrak{l}_{i}=1$ holds for all $i=1, \ldots, r$. Moreover, a ring R of Type 2 is factorial if and only if the \mathfrak{l}_{i} are pairwise coprime for $i=0, \ldots, r$, see [17, Thm. 1.1].

Example 2. In dimension two, the factorial platonic rings R of Type 2 are the polynomial ring $\mathbb{C}\left[T_{1}, T_{2}\right]$ and the ring $\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right] /\left\langle T_{1}^{5}+T_{2}^{3}+T_{3}^{2}\right\rangle$.

To extend the iteration of Cox rings $\mathbb{C}^{2} \rightarrow A_{1} \rightarrow D_{4} \rightarrow E_{6} \rightarrow E_{7}$ observed in the surface case to higher dimensions, we have to allow instead of only finite abelian groups also non-finite abelian groups in the respective quotients.

Theorem 2. Let X_{1} be a rational, normal, affine variety with a torus action of complexity one of Type 2 and at most log terminal singularities. Then there is a unique chain of quotients

$$
X_{p} \xrightarrow{/ / H_{p-1}} X_{p-1} \xrightarrow{/ / H_{p-2}} \quad \ldots \quad \xrightarrow{/ / H_{3}} X_{3} \xrightarrow{/ / H_{2}} X_{2} \xrightarrow{/ / H_{1}} X_{1}
$$

where $X_{i}=\operatorname{Spec}\left(R_{i}\right)$ holds with a platonic ring R_{i} for $i \geq 2$, the ring R_{p} is factorial and each $X_{i} \rightarrow X_{i-1}$ is the total coordinate space.

Note that iteration of Cox rings requires in each step finite generation of the divisor class group $\mathrm{Cl}(\bar{X})$ of the total coordinate space of X. The latter merely means that the curve Y with function field $\mathbb{C}(\bar{X})^{H_{0}^{0}}$ is of genus zero, where $H_{0}^{0} \subseteq$ H_{0} is the unit component of the quasitorus H_{0} with character group $\mathrm{Cl}(X)$. In Theorem 5.3, we establish a formula for the genus of Y in terms of the entries $l_{i j}$ of the defining matrix P of $R=\mathcal{R}(X)$, generalizing the case of \mathbb{C}^{*}-surfaces settled in [25, Prop. 3, p. 64]. This allows us to conclude that for \log terminal affine X, the total coordinate space is always rational. Together with the fact that the total coordinate space of a log terminal affine X is canonical, see Proposition [5.1] we obtain that Cox ring iteration is possible in the log terminal case; see Remark 5.12 for a discussion of a non log terminal example with rational Cox ring. The final step in proving Theorem 2 is to show that the Cox ring iteration even stops after finitely many steps. For this, we compute explicitly in Proposition 6.6 the equations of the iterated Cox ring.

The next result shows that, in a large sense, the log terminal singularities with torus action of complexity one still can be regarded as quotient singularities: the affine plane \mathbb{C}^{2} and the finite group $G \subseteq G \mathrm{GL}(2)$ of the surface case have to be replaced with a factorial affine T-variety of complexity one and a solvable reductive group.

Theorem 3. Let X be a rational, normal, affine variety of Type 2 with a torus action of complexity one and at most log terminal singularities.
(i) X is a quotient $X=X^{\prime} / / G$ of a factorial affine variety $X^{\prime}:=\operatorname{Spec}\left(R^{\prime}\right)$ by a solvable reductive group G, where R^{\prime} is a factorial platonic ring.
(ii) The presentation of Theorem is regained by $H_{i}:=G^{(i-1)} / G^{(i)}$ and $X_{i}:=$ $X^{\prime} / G^{(i-1)}$, where $G^{(i)}$ is the i-th derived subgroup of G.

Example 3. Every \log terminal affine \mathbb{C}^{*}-surface is a quotient of \mathbb{C}^{2} or the $E_{8^{-}}$ singular surface $V\left(T_{1}^{5}+T_{2}^{3}+T_{3}^{2}\right) \subseteq \mathbb{C}^{3}$ by a finite solvable group.

A natural three-dimensional generalization of du Val singularities are the compound du Val singularities, introduced in [26]: these are normal, canonical Gorenstein threefold singularities $x \in X$ such that a general hypersurface section through x has a du Val (surface) singularity at x. The isolated compound du Val singularities are precisely the terminal Gorenstein singularities. If a threefold X admits at most compound du Val singularities, then, for a given singular point $x \in X$, we have possible one-dimensional irreducible components C_{1}, \ldots, C_{r} of the singular locus that contain x. The compound du Val singularity type (cDV-type) of x is denoted by $S\left(x_{1}\right), \ldots, S\left(x_{r}\right) \rightarrow c S(x)$, where $S\left(x_{i}\right)$ stands for the type of the du Val surface singularity obtained by a general hypersurface section through a general point of $x_{i} \in C_{i}$ and $S(x)$ for that through x; the c just indicates compound du Val. The following result goes one step beyond the known [8] case of toric compound du Val singularities.
Theorem 4. The following table provides the equations for the affine threefolds with at most compound du Val singularities which are toric (nos. 1-3) or nontoric with a torus action of complexity one of Type 2 (nos. 4-18).

No.	cDV-type	equation in \mathbb{C}^{4}
1	$A_{l} \times \mathbb{C}$	$T_{1} T_{2}+T_{3}^{l+1}$
2	$A_{l_{1}-1}, A_{l_{2}-1} \rightarrow c A_{l_{1}+l_{2}-1}$	$T_{1} T_{2}+T_{3}^{l_{1}} T_{4}^{l_{2}}$
3	$A_{1}, A_{1}, A_{1} \rightarrow c D_{4}$	$T_{1}^{2}+T_{2} T_{3} T_{4}$
4	$D_{l+3} \times \mathbb{C}$	$T_{1}^{2}+T_{2}^{2} T_{3}+T_{3}^{l+2}$
5	$A_{1}, A_{l-1} \rightarrow c D_{l+4}$	$T_{1}^{2}+T_{2}^{2} T_{3}+T_{3} T_{4}^{l+2}$
6	$E_{6} \times \mathbb{C}$	$T_{1}^{2}+T_{2}^{3}+T_{3}^{4}$
7	$E_{7} \times \mathbb{C}$	$T_{1}^{2}+T_{2}^{3}+T_{2} T_{3}^{3}$
8	$E_{8} \times \mathbb{C}$	$T_{1}^{2}+T_{2}^{3}+T_{3}^{5}$
$9 a$	$A_{l-1} \rightarrow c A_{L}$	$\begin{aligned} & T_{1} T_{2}+\left(T_{3}^{L_{1}+1}+T_{4}^{L_{2}+1}\right)^{l}, \\ & L=\min \left(L_{1}+1, L_{2}+1\right) l-1 \\ & \hline \end{aligned}$
$9 b$	$A_{l_{j}-1} \rightarrow c A_{L}$	$\begin{aligned} & T_{1} T_{2}+\prod_{j=1}^{r-1}\left(j T_{3}^{L_{1}+1}+(2 j-1) T_{4}^{L_{2}+1}\right)^{l_{j}}, \\ & L=\min \left(L_{i}+1\right) \sum l_{j}-1 \end{aligned}$
$9 c$	$A_{L_{3}-1}, A_{l_{j}-1} \rightarrow c A_{L}$	$\begin{aligned} & T_{1} T_{2}+T_{3}^{L_{3}} \prod_{j=1}^{r-1}\left(j T_{3}^{L_{1}}+(2 j-1) T_{4}^{L_{2}+1}\right)^{l_{j}} \\ & L=\min \left(L_{3}+L_{1} \sum l_{j}-1, L_{2} \sum l_{j}-1\right) \\ & \hline \end{aligned}$
9d	$A_{L_{3}-1}, A_{L_{4}-1}, A_{l_{j}-1} \rightarrow c A_{L}$	$\begin{aligned} & T_{1} T_{2}+T_{3}^{L_{3}} T_{4}^{L_{4}} \prod_{j=1}^{r-1}\left(j T_{3}^{L_{1}}+(2 j-1) T_{4}^{L_{2}}\right)^{l_{j}}, \\ & L=\min _{k=3,4}\left(L_{k}+l_{k-2} \sum l_{j}-1\right) \\ & \hline \end{aligned}$
10	$A_{l+1} \rightarrow c D_{l+3}$	$T_{1}^{2}+T_{2}^{2} T_{3}+T_{4}^{l+2}$
11	$A_{2 l+1} \rightarrow c D_{2 l+2}$	$T_{1}^{2}+T_{2}^{2} T_{3}+T_{2} T_{4}^{l+1}$
12	$A_{l_{2}-1}, D_{l_{1}+2} \rightarrow c D_{l_{1}+l_{2}+2}$	$T_{1}^{2}+T_{2}^{2} T_{3}+T_{3}^{l_{1}+1} T_{4}^{l_{2}}$
13	$A_{1}, A_{1} \rightarrow c D_{l+3}$	$T_{1}^{2}+T_{2} T_{3} T_{4}+T_{4}^{l+2}$
14	$A_{1}, A_{1}, A_{2} \rightarrow c E_{6}$	$T_{1}^{2}+T_{2}^{3}+T_{3}^{2} T_{4}^{2}$
15	$D_{4} \rightarrow c E_{6}, c E_{7}$	$T_{1}^{2}+T_{2}^{3}+T_{3}^{3} T_{4}$
16	$A_{1}, D_{4} \rightarrow c E_{7}$	$T_{1}^{2}+T_{2}^{3}+T_{2} T_{3} T_{4}^{2}$
17	$A_{2}, D_{4} \rightarrow c E_{8}$	$T_{1}^{2}+T_{2}^{3}+T_{3}^{2} T_{4}^{3}$
18	$E_{6} \rightarrow c E_{8}$	$T_{1}^{2}+T_{2}^{3}+T_{3} T_{4}^{4}$

Here, parameters are integers greater than zero with the exponents containing L_{1}, L_{2} in nos. $9 a$ to $9 d$ being coprime, A_{0} means that there is no singularity and $D_{l} \cong A_{l}$ for $l \leq 3$.

The defining data as toric or T-varieties of complexity one for the varieties listed in Theorem 4 are provided in Section 7. Finally, we study the possible Cox ring iterations of the compound du Val singularities.

Theorem 5. For the singularities from Theorem 4, one has the following Cox ring iterations; the respective total coordinate spaces are indicated by the downward arrows:

Here $10-e$ (10-o) denotes the singularity 10 with even (odd) parameter; similarly in the other cases. Moreover with the respective parameters from Theorem 母:

$$
\begin{aligned}
X_{1} & =V\left(T_{1}^{2} T_{2}+T_{3}^{2} T_{4}+T_{5}^{\frac{l+2}{2}}\right), \quad X_{2}=V\left(T_{1} T_{2}+T_{3} T_{4}+T_{5}^{l-1}\right) \\
X_{5} & =V\left(T_{1}^{L_{1}} T_{2}^{L_{1}}+T_{3}^{L_{2}} T_{4}^{L_{2}}+T_{5} T_{6}, T_{3}^{L_{2}} T_{4}^{L_{2}}+2 T_{5} T_{6}+T_{7} T_{8}, \ldots\right)
\end{aligned}
$$

To obtain X_{4}, set $T_{4}=1$ and for X_{3} in addition $T_{2}=1$ in the equations of X_{5}. The singularities 8, 15, 17 and 18 are factorial.

The varieties X_{1}, \ldots, X_{5} in Theorem 5 are of dimension four or higher. They enjoy a generalized compound du Val property in the sense that the hyperplane section $X_{i} \cap V\left(T_{4}-T_{3}\right)$ has at most canonical singularities. For instance, for X_{2}, the hyperplane section gives a compound du Val singularity of Type 9a. The composition $\mathbb{C}^{3} \rightarrow(1) \rightarrow(5)$ is a quotient by the dihedral group $D_{2 l+4}$, which is not a subgroup of $\operatorname{SL}(2)$.

Contents

. Introduction
2. Rational varieties with torus action of complexity one
3. The anticanonical complex and singularities
. Gorentin .
4. Gorenstein index and canonical multiplicity 16
5. Geometry of the total coordinate space 21

6.	Proof of Theorems 2 and 3

7.	Compound du Val singularities
8.	30

8. Proof of Theorems 4 and 5 5

References

2. Rational varieties with torus action of complexity one

We recall the basic concepts and facts on normal rational T-varieties X of complexity one, i.e., the variety X is endowed with an effective action $T \times X \rightarrow X$ of an algebraic torus T such that $\operatorname{dim}(T)=\operatorname{dim}(X)-1$ holds. We work over the field \mathbb{C} of complex numbers. For the proofs and full details, we refer to [2, 17, 18, 19 .

The approach follows the general philosophy behind [2, Chap. 3]: one starts with a Cox ring $R=\mathcal{R}(X)$ and then obtains X as a quotient $X=\widehat{X} / / H$ of an open subset $\widehat{X} \subseteq \bar{X}$ of the total coordinate space $\bar{X}=\operatorname{Spec} R$ by the action of the characteristic quasitorus $H=\operatorname{Spec} \mathbb{C}[K]$, where $K \cong \mathrm{Cl}(X)$ is the divisor class group of X. The quotient map $\widehat{X} \rightarrow X$ is called the characteristic space over X. In
our concrete case of T-varieties of complexity one, the total coordinate space \bar{X} will be acted on by a larger quasitorus $H_{0}=\operatorname{Spec} \mathbb{C}\left[K_{0}\right]$ containing the characteristic quasitorus H as a closed subgroup and the torus action on $X=\widehat{X} / / H$ will be the induced action of $T=H_{0} / H$.

Our first step provides K_{0}-graded rings R, which after suitable downgrading become prospective Cox rings of our T-varieties. The construction depends on continuous data A and discrete data P_{0} introduced below. There are two types of input data $\left(A, P_{0}\right)$: for Type 1, we will have the affine line as a generic quotient of the action of H_{0} on \bar{X} and Type 2 will lead to the projective line.
Construction 2.1. Fix integers $r, n>0, m \geq 0$ and a partition $n=n_{\iota}+\ldots+n_{r}$ starting at $\iota \in\{0,1\}$. For each $\iota \leq i \leq r$, fix a tuple $l_{i} \in \mathbb{Z}_{>0}^{n_{i}}$ and define a monomial

$$
T_{i}^{l_{i}}:=T_{i 1}^{l_{i 1}} \cdots T_{i n_{i}}^{l_{i n_{i}}} \in \mathbb{C}\left[T_{i j}, S_{k} ; \iota \leq i \leq r, 1 \leq j \leq n_{i}, 1 \leq k \leq m\right]
$$

We will also write $\mathbb{C}\left[T_{i j}, S_{k}\right]$ for the above polynomial ring. We distinguish two settings for the input data A and P_{0} of the graded \mathbb{C}-algebra $R\left(A, P_{0}\right)$.
Type 1. Take $\iota=1$. Let $A:=\left(a_{1}, \ldots, a_{r}\right)$ be a list of pairwise different elements of \mathbb{C}. Set $I:=\{1, \ldots, r-1\}$ and define for every $i \in I$ a polynomial

$$
g_{i}:=T_{i}^{l_{i}}-T_{i+1}^{l_{i+1}}-\left(a_{i+1}-a_{i}\right) \in \mathbb{C}\left[T_{i j}, S_{k}\right]
$$

We build up an $r \times(n+m)$ matrix from the exponent vectors l_{1}, \ldots, l_{r} of these polynomials:

$$
P_{0}:=\left[\begin{array}{cccccc}
l_{1} & & 0 & 0 & \ldots & 0 \\
\vdots & \ddots & \vdots & \vdots & & \vdots \\
0 & & l_{r} & 0 & \ldots & 0
\end{array}\right] .
$$

Type 2. Take $\iota=0$. Let $A:=\left(a_{0}, \ldots, a_{r}\right)$ be a $2 \times(r+1)$-matrix with pairwise linearly independent columns $a_{i} \in \mathbb{C}^{2}$. Set $I:=\{0, \ldots, r-2\}$ and for every $i \in I$ define

$$
g_{i}:=\operatorname{det}\left[\begin{array}{ccc}
T_{i}^{l_{i}} & T_{i+1}^{l_{i+1}} & T_{i+2}^{l_{i+2}} \\
a_{i} & a_{i+1} & a_{i+2}
\end{array}\right] \in \mathbb{C}\left[T_{i j}, S_{k}\right] .
$$

We build up an $r \times(n+m)$ matrix from the exponent vectors l_{0}, \ldots, l_{r} of these polynomials:

$$
P_{0}:=\left[\begin{array}{ccccccc}
-l_{0} & l_{1} & & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & & \vdots \\
-l_{0} & 0 & & l_{r} & 0 & \ldots & 0
\end{array}\right]
$$

We now define the ring $R\left(A, P_{0}\right)$ simultaneously for both types in terms of the data A and P_{0}. Denote by P_{0}^{*} the transpose of P_{0} and consider the projection

$$
Q: \mathbb{Z}^{n+m} \rightarrow K_{0}:=\mathbb{Z}^{n+m} / \operatorname{im}\left(P_{0}^{*}\right)
$$

Denote by $e_{i j}, e_{k} \in \mathbb{Z}^{n+m}$ the canonical basis vectors corresponding to the variables $T_{i j}, S_{k}$. Define a K_{0}-grading on $\mathbb{C}\left[T_{i j}, S_{k}\right]$ by setting

$$
\operatorname{deg}\left(T_{i j}\right):=Q\left(e_{i j}\right) \in K_{0}, \quad \operatorname{deg}\left(S_{k}\right):=Q\left(e_{k}\right) \in K_{0}
$$

This is the coarsest possible grading of $\mathbb{C}\left[T_{i j}, S_{k}\right]$ leaving the variables and the g_{i} homogeneous. In particular, we have a K_{0}-graded factor algebra

$$
R\left(A, P_{0}\right):=\mathbb{C}\left[T_{i j}, S_{k}\right] /\left\langle g_{i} ; i \in I\right\rangle .
$$

The \mathbb{C}-algebra $R\left(A, P_{0}\right)$ just constructed is an integral normal complete intersection of dimension $n+m+1-r$ admitting only constant invertible homogeneous elements. Moreover, $R\left(A, P_{0}\right)$ is K_{0}-factorial in the sense that every non-zero homogeneous non-unit is a product of K_{0}-primes. The latter merely means that on $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$ every H_{0}-invariant divisor is the divisor of an H_{0}-homogeneous
rational function. Moreover, every affine variety with a quasitorus action of complexity one having this property and admitting only constant invertible homogeneous functions arises from Construction [2.1] see [2, Sec. 4.4.2].

In the second construction step, we introduce the downgradings $K_{0} \rightarrow K$ that will turn $R\left(A, P_{0}\right)$ into a Cox ring. More geometrically speaking, we figure out the possible characteristic quasitori $H \subseteq H_{0}$. This is achieved by suitably enhancing the matrix P_{0}.

Construction 2.2. Let integers $r, n=n_{\iota}+\ldots+n_{r}, m$ and data A and P_{0} of Type 1 or Type 2 as in Construction [2.1] Fix $1 \leq s \leq n+m-r$, choose an integral $s \times(n+m)$ matrix d and build the $(r+s) \times(n+m)$ stack matrix

$$
P:=\left[\begin{array}{c}
P_{0} \\
d
\end{array}\right] .
$$

We require the columns of P to be pairwise different primitive vectors generating \mathbb{Q}^{r+s} as a vector space. Let P^{*} denote the transpose of P and consider the projection

$$
Q: \mathbb{Z}^{n+m} \rightarrow K:=\mathbb{Z}^{n+m} / \operatorname{im}\left(P^{*}\right)
$$

Denoting as before by $e_{i j}, e_{k} \in \mathbb{Z}^{n+m}$ the canonical basis vectors corresponding to the variables $T_{i j}$ and S_{k}, we obtain a K-grading on $\mathbb{C}\left[T_{i j}, S_{k}\right]$ by setting

$$
\operatorname{deg}\left(T_{i j}\right):=Q\left(e_{i j}\right) \in K, \quad \operatorname{deg}\left(S_{k}\right):=Q\left(e_{k}\right) \in K
$$

This K-grading coarsens the K_{0}-grading of $\mathbb{C}\left[T_{i j}, S_{k}\right]$ given in Construction 2.1. In particular, we have the K-graded factor algebra

$$
R(A, P):=\mathbb{C}\left[T_{i j}, S_{k}\right] /\left\langle g_{i} ; i \in I\right\rangle
$$

So, as algebras $R\left(A, P_{0}\right)$ and $R(A, P)$ coincide, but the latter comes with the coarser K-grading. Again, $R(A, P)$ is K-factorial, i.e., for the action of $H=\operatorname{Spec} \mathbb{C}[K]$ on $\bar{X}=\operatorname{Spec} R(A, P)$, every H-invariant divisor is the divisor of an H-homogeneous function.
Remark 2.3. Consider the defining matrix P of a K-graded ring $R(A, P)$ as in Construction [2.2, Write $v_{i j}=P\left(e_{i j}\right)$ and $v_{k}=P\left(e_{k}\right)$ for the columns of P. The i-th column block of P is $\left(v_{i 1}, \ldots, v_{i n_{i}}\right)$ and by the data of this block we mean l_{i} and the $s \times n_{i}$ block d_{i} of d. We introduce admissible operations on P :
(i) swap two columns inside a block $v_{i 1}, \ldots, v_{i n_{i}}$,
(ii) exchange the data $l_{i_{1}}, d_{i_{1}}$ and $l_{i_{2}}, d_{i_{2}}$ of two column blocks,
(iii) add multiples of the upper r rows to one of the last s rows,
(iv) any elementary row operation among the last s rows,
(v) swapping among the last m columns.

The operations of type (iii) and (iv) do not change the associated ring $R(A, P)$, whereas the types (i), (ii), (v) correspond to certain renumberings of the variables of $R(A, P)$ keeping the (graded) isomorphy type.

Remark 2.4. If $R(A, P)$ is not a polynomial ring, then we can always assume that P is irredundant in the sense that $l_{i 1}+\ldots+l_{i n_{i}}>1$ holds for $i=0, \ldots, r$. Indeed, if P is redundant, then we have $n_{i}=1$ and $l_{i 1}=1$ for some i. After an admissible operation of type (ii), we may assume $i=r$. Now, erasing $v_{r 1}$ and the r-th row of P and the last column from A produces new data defining a ring $R(A, P)$ isomorphic to the previous one. Iterating this procedure leads to an $R(A, P)$ isomorphic to the initial one but with irredundant P.
Remark 2.5. Construction 2.2 allows more flexibility than the simpler version presented in the introduction. However, given any $R(A, P)$ as in Construction 2.2, we can achieve $l_{i 1} \geq \ldots \geq l_{i n_{i}}$ for all i and $l_{\iota 1} \geq \ldots \geq l_{r 1}$ by means of admissible
operations of type (i) and (ii). Moreover, via suitable scalings of the variables $T_{i j}$, we can turn the coefficients of the relations g_{i} into those presented in the introduction.

The algebras $R(A, P)$ will be our prospective Cox rings. The remaining task is to determine the open H-invariant sets $\widehat{X} \subseteq \bar{X}=\operatorname{Spec} R(A, P)$ that give rise to suitable quotients $X=\widehat{X} / / H$. This is done via geometric invariant theory: the respective open sets $\widehat{X} \subseteq \bar{X}$ are in correspondence with "bunches of cones", certain collections Φ of convex polyhedral cones in $K_{\mathbb{Q}}:=K \otimes_{\mathbb{Z}} \mathbb{Q}$; we refer to [2, Sec. 3.2.1] for a detailed introduction.

Construction 2.6. Let $R(A, P)$ be a K-graded ring as provided by Construction 2.2 and $\mathfrak{F}=\left(T_{i j}, S_{k}\right)$ the canonical system of generators. Consider

$$
H:=\operatorname{Spec} \mathbb{C}[K], \quad \bar{X}(A, P):=\operatorname{Spec} R(A, P)
$$

Then H is a quasitorus and the K-grading of $R(A, P)$ defines an action of H on \bar{X}. Any true \mathfrak{F}-bunch Φ defines an H-invariant open set and a good quotient

$$
\widehat{X}(A, P, \Phi) \subseteq \bar{X}(A, P), \quad X(A, P, \Phi):=\widehat{X}(A, P, \Phi) / / H
$$

The action of $H_{0}=\operatorname{Spec} \mathbb{C}\left[K_{0}\right]$ leaves $\widehat{X}(A, P, \Phi)$ invariant and induces an action of the torus $T=\operatorname{Spec} \mathbb{C}\left[\mathbb{Z}^{s}\right]$ on $X(A, P, \Phi)$.

Recall from [2, Thm. 3.4.3.7] that the resulting variety $X=X(A, P, \Phi)$ is rational, normal, admits only constant invertible functions and is of dimension $n+m+1-r-\operatorname{dim}\left(K_{\mathbb{Q}}\right)=s+1$. Moreover, the divisor class group of X is isomorphic to K and the Cox ring to $R(A, P)$. Conversely, the basic result of the theory says that if X is a rational, normal variety with a torus action of complexity one having only constant globally invertible functions and satisfies a certain maximality property with respect to embeddability into toric varieties, then X is equivariantly isomorphic to some $X(A, P, \Phi)$, see [19, Thm. 1.8].

Toric embeddability is important in our subsequent considerations. More specifically, there is even a canonical embedding $X \rightarrow Z$ into a toric variety such that X inherits many geometric properties from Z. The construction makes use of the tropical variety of X.

Construction 2.7. Let $X=X(A, P, \Phi)$ be obtained from Construction 2.6, The tropical variety of X is the fan $\operatorname{trop}(X)$ in \mathbb{Q}^{r+s} consisting of the cones

$$
\lambda_{i}:=\operatorname{cone}\left(v_{i 1}\right)+\operatorname{lin}\left(e_{r+1}, \ldots, e_{r+s}\right) \text { for } i=\iota, \ldots, r, \quad \lambda:=\lambda_{\iota} \cap \ldots \cap \lambda_{r}
$$

where $v_{i j} \in \mathbb{Z}^{r+s}$ denote the first n columns of P and $e_{k} \in \mathbb{Z}^{r+s}$ the k-th canonical basis vector; we call λ_{i} a leaf and λ the lineality part of $\operatorname{trop}(X)$.

Type 1

Construction 2.8. Let $X=X(A, P, \Phi)$ be obtained from Construction [2.6, For a face $\delta_{0} \preceq \delta$ of the orthant $\delta \subseteq \mathbb{Q}^{n+m}$, let $\delta_{0}^{*} \preceq \delta$ denote the complementary face and call δ_{0} relevant if

- the relative interior of $P\left(\delta_{0}\right)$ intersects trop (X),
- the image $Q\left(\delta_{0}^{*}\right)$ comprises a cone of Φ,
where $Q: \mathbb{Z}^{n+m} \rightarrow K=\mathbb{Z}^{n+m} / P^{*}\left(\mathbb{Z}^{r+s}\right)$ is the projection. Then we obtain fans $\widehat{\Sigma}$ in \mathbb{Z}^{n+m} and Σ in \mathbb{Z}^{r+s} of pointed cones by setting

$$
\widehat{\Sigma}:=\left\{\delta_{1} \preceq \delta_{0} ; \delta_{0} \preceq \delta \text { relevant }\right\}, \quad \Sigma:=\left\{\sigma \preceq P\left(\delta_{0}\right) ; \delta_{0} \preceq \delta \text { relevant }\right\}
$$

The toric varieties \widehat{Z} and Z associated with $\widehat{\Sigma}$ and Σ, respectively, and $\bar{Z}=\mathbb{C}^{n+m}$ fit into a commutative diagramm of characteristic spaces and total coordinate spaces

The horizontal inclusions are T-equivariant closed embeddings, where T acts on Z as the subtorus of the $(r+s)$-torus corresponding to $0 \times \mathbb{Z}^{s} \subseteq \mathbb{Z}^{r+s}$. Moreover, $X(A, P, \Phi)$ intersects every closed toric orbit of Z.

We call Z from Construction 2.8 the minimal toric ambient variety of $X=$ $X(A, P, \Phi)$. Observe that the rays of the fan Σ of Z have precisely the columns of the matrix P as its primitive generators. In particular, every ray of Σ lies on the tropical variety $\operatorname{trop}(X)$. The minimal toric ambient variety is crucial for the resolution of singularities. The following recipe for resolving singularities directly generalizes [2, Thm. 3.4.4.9]; a related approach using polyhedral divisors is presented in [22].

Construction 2.9. Let $X=X(A, P, \Phi)$ be obtained from Construction 2.6 and consider the canonical toric embedding $X \subseteq Z$ and the defining fan Σ of Z.

- Let $\Sigma^{\prime}=\Sigma \sqcap \operatorname{trop}(X)$ be the coarsest common refinement.
- Let $\Sigma^{\prime \prime}$ be any regular subdivision of the fan Σ^{\prime}.

Then $\Sigma^{\prime \prime} \rightarrow \Sigma$ defines a proper toric morphism $Z^{\prime \prime} \rightarrow Z$ and with the proper transform $X^{\prime \prime} \subseteq Z^{\prime \prime}$ of $X \subseteq Z$, the morphism $X^{\prime \prime} \rightarrow X$ is a resolution of singularities.

Remark 2.10. In the setting of Construction[2.9] the variety $X^{\prime \prime}$ has again a torus action of complexity one and thus is of the form $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}, \Phi^{\prime \prime}\right)$. We have $A^{\prime \prime}=A$ and $P^{\prime \prime}$ is obtained from P by inserting the primitive generators of $\Sigma^{\prime \prime}$ as new columns. Moreover, $\Phi^{\prime \prime}$ is the Gale dual of $\Sigma^{\prime \prime}$, that means that with the corresponding projection $Q^{\prime \prime}$ and orthant $\delta^{\prime \prime}$ we have

$$
\Phi^{\prime \prime}=\left\{Q^{\prime \prime}\left(\delta_{0}^{*}\right) ; \delta_{0} \preceq \delta^{\prime \prime} ; P^{\prime \prime}\left(\delta_{0}\right) \in \Sigma^{\prime \prime}\right\} .
$$

Proposition 2.11. Consider a variety $X=X(A, P, \Phi)$ of Type 2 as provided by Construction 2.6. Then the following statements are equivalent.
(i) One has $\widehat{X}=\bar{X}$
(ii) The variety X is affine.
(iii) The minimal toric ambient variety Z of X is affine.
(iv) One has $\widehat{Z}=\bar{Z}=\mathbb{C}^{n+m}$.

If one of these statements holds, then the columns of P generate the extremal rays of a full-dimensional cone $\sigma \subseteq \mathbb{Q}^{r+s}$ and we have $Z=\operatorname{Spec} \mathbb{C}\left[\sigma^{\vee} \cap \mathbb{Z}^{r+s}\right]$.
Proof. Only for the implication "(ii) \Rightarrow (iii)" there is something to show. As X is of Type 2, we have $0 \in \bar{X} \subseteq \bar{Z}=\mathbb{C}^{n+m}$. Since X is affine, we have $\bar{X}=\widehat{X}$ and thus $0 \in \widehat{Z}$. We conclude $\widehat{Z}=\bar{Z}$ and thus $Z=\bar{Z} / / H$ is affine.

The characterization 2.11 (i) allows us to omit the bunch of cones Φ in the affine case: we may just speak of the affine variety $X=X(A, P):=\bar{X} / / H$.

Corollary 2.12. Let $X=X(A, P)$ be affine of Type 2. Then the following statements are equivalent.
(i) The variety X is \mathbb{Q}-factorial.
(ii) The variety Z is \mathbb{Q}-factorial.
(iii) The columns of P are linearly independent.

Proof. The equivalence of (i) and (ii) is [2, Cor. 3.3.1.7], The equivalence of (ii) and (iii) is [7, Thm. 3.1.19 (b)].

Corollary 2.13. Let $X=X(A, P)$ be affine of Type 2. Then the Picard group of X is trivial.

Proof. Proposition 2.11 says that the minimal toric ambient variety Z is affine. Thus, Z has trivial Picard group; see [7, Prop. 4.2.2]. According to [2, Cor. 3.3.1.12], the Picard group of X equals that of Z.

3. The anticanonical complex and singularities

First recall the basic singularity types arising in the minimal model programme. Let X be a \mathbb{Q}-Gorenstein variety, i.e., some non-zero multiple of a canonical divisor D_{X} on X is an integral Cartier divisor. Then, for any resolution of singularities $\varphi: X^{\prime} \rightarrow X$, one has the ramification formula

$$
D_{X^{\prime}}-\varphi^{*}\left(D_{X}\right)=\sum a_{i} E_{i}
$$

where the E_{i} are the prime components of the exceptional divisors and the coefficients $a_{i} \in \mathbb{Q}$ are the discrepancies of the resolution. The variety X is said to have at most log terminal (canonical, terminal) singularities, if for every resolution of singularities the discrepancies a_{i} satisfy $a_{i}>-1\left(a_{i} \geq 0, a_{i}>0\right)$.

In [5], the "anticanonical complex" has been introduced for Fano varieties $X(A, P, \Phi)$ and served as a tool to study singularities of the above type. The purpose of this section is to extend this approach and to generalize results from 5 to the non-complete and non- \mathbb{Q}-factorial cases. As an application, we characterize log terminality in Theorem 3.13 via platonic triples occuring in the Cox ring. For the affine case, the result specializes to Theorem [1.

Now, let $X=X(A, P, \Phi)$ be a rational T-variety of complexity one arising from Construction 2.6. Consider the embedding $X \subseteq Z$ into the minimal toric ambient variety. Then X and Z share the same divisor class group

$$
K=\mathrm{Cl}(X)=\mathrm{Cl}(Z)
$$

and the same degree map $Q: \mathbb{Z}^{n+m} \rightarrow K$ for their Cox rings. Let $e_{Z} \in \mathbb{Z}^{n+m}$ denote the sum over the canonical basis vectors $e_{i j}$ and e_{k} of \mathbb{Z}^{n+m}. Then, with the defining relations $g_{\iota}, \ldots, g_{r-2}$ of the Cox ring $R(A, P)$, the canonical divisor classes of Z and X are given as

$$
\mathcal{K}_{Z}=-Q\left(e_{Z}\right) \in K, \quad \mathcal{K}_{X}=\sum_{i=\iota}^{r-2+\iota} \operatorname{deg}\left(g_{i}\right)+\mathcal{K}_{Z} \in K
$$

Observe that if X is of Type 1, then its canonical divisor class equals that of the minimal toric ambient variety Z. Define a (rational) polyhedron

$$
B\left(-\mathcal{K}_{X}\right):=Q^{-1}\left(-\mathcal{K}_{X}\right) \cap \mathbb{Q}_{\geq 0}^{n+m} \subseteq \mathbb{Q}^{n+m}
$$

and let $B:=B\left(g_{\iota}\right)+\ldots+B\left(g_{r-2+\iota}\right) \subseteq \mathbb{Q}^{n+m}$ denote the Minkowski sum of the Newton polytopes $B\left(g_{i}\right)$ of the relations $g_{\iota}, \ldots, g_{r-2+\iota}$ of $R(A, P)$.
Definition 3.1. Let $X=X(A, P, \Phi)$ such that $-\mathcal{K}_{X}$ is ample and denote by Σ the fan of the minimal toric ambient variety Z of X.
(i) The anticanonical polyhedron of X is the dual polyhedron $A_{X} \subseteq \mathbb{Q}^{r+s}$ of the polyhedron

$$
B_{X}:=\left(P^{*}\right)^{-1}\left(B\left(-\mathcal{K}_{X}\right)+B-e_{\Sigma}\right) \subseteq \mathbb{Q}^{r+s}
$$

(ii) The anticanonical complex of X is the coarsest common refinement of polyhedral complexes

$$
A_{X}^{c}:=\operatorname{faces}\left(A_{X}\right) \sqcap \Sigma \sqcap \operatorname{trop}(X)
$$

(iii) The relative interior of A_{X}^{c} is the interior of its support with respect to the intersection $\operatorname{Supp}(\Sigma) \cap \operatorname{trop}(X)$.
(iv) The relative boundary ∂A_{X}^{c} is the complement of the relative interior of A_{X}^{c} in A_{X}^{c}.

A first statement expresses the discrepancies of a given resolution of singularities via the anticanonical complex; the proof is a straightforward generalization of the one given in [5] for the Fano case and will be made available elsewhere.

Proposition 3.2. Let $X=X(A, P, \Phi)$ such that $-\mathcal{K}_{X}$ is ample and $X^{\prime \prime} \rightarrow X$ a resolution of singularities as in Construction 2.9. For any ray $\varrho \in \Sigma^{\prime \prime}$, let v_{ϱ} be its primitive generator, v_{ϱ}^{\prime} its leaving point of A_{X}^{c} provided $\varrho \nsubseteq A_{X}^{c}$ and D_{ϱ} the corresponding prime divisor on $X^{\prime \prime}$. Then the discrepancy a_{ϱ} along D_{ϱ} satisfies

$$
a_{\varrho}=-1+\frac{\left\|v_{\varrho}\right\|}{\left\|v_{\varrho}^{\prime}\right\|} \quad \text { if } \varrho \nsubseteq A_{X}^{c}, \quad a_{\varrho} \leq-1 \quad \text { if } \varrho \subseteq A_{X}^{c}
$$

The next result characterizes the existence of at most log terminal (canonical, terminal) singularities in terms of the anticanonical complex; again, this generalizes a result from [5] and the proof will be made available elswhere.

Theorem 3.3. Let $X=X(A, P, \Phi)$ be such that $-\mathcal{K}_{X}$ is ample. Then the following statements hold.
(i) A_{X}^{c} contains the origin in its relative interior and all primitive generators of the fan Σ are vertices of A_{X}^{c}.
(ii) X has at most log terminal singularities if and only if the anticanonical complex A_{X}^{c} is bounded.
(iii) X has at most canonical singularities if and only if 0 is the only lattice point in the relative interior of A_{X}^{c}.
(iv) X has at most terminal singularities if and only if 0 and the primitive generators v_{ϱ} for $\varrho \in \Sigma^{(1)}$ are the only lattice points of A_{X}^{c}.
We describe the structure of the anticanonical complex in more detail, which generalizes in particular statements on the \mathbb{Q}-factorial Fano case obtained in [5]. For Type 1, the situation turns out to be simple, whereas Type 2 is more involved.

Proposition 3.4. Let $X=X(A, P, \Phi)$ be of Type 1 such that $-\mathcal{K}_{X}$ is ample. Let Σ be the fan of the minimal toric ambient variety of X and denote by $\lambda_{0}, \ldots, \lambda_{r}$ the leaves of $\operatorname{trop}(X)$.
(i) Every cone $\sigma \in \Sigma$ is contained in a leaf $\lambda_{i} \subseteq \operatorname{trop}(X)$. In particular, $\Sigma \sqcap \operatorname{trop}(X)$ equals Σ.
(ii) The boundary of A_{X}^{c} is the union of all faces of A_{X} that are contained in $\operatorname{Supp}(\Sigma)$.
(iii) The non-zero vertices of A_{X}^{c} are the primitive generators of Σ, i.e. the columns of P.
Corollary 3.5. Let $X=X(A, P, \Phi)$ be a T-variety of Type 1. Then X has at most log-terminal singularities. Moreover, it has at most canonical (terminal) singularities if and only if its minimal toric ambient variety Z does so.

Construction 3.6. Let $X=X(A, P, \Phi)$ be of Type 2 and Σ the fan of the minimal toric ambient variety of Z. Write $v_{i j}:=P\left(e_{i j}\right)$ and $v_{k}:=P\left(e_{k}\right)$ for the columns of P. Consider a pointed cone of the form

$$
\tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{r j_{r}}\right) \subseteq \mathbb{Q}^{r+s}
$$

that means that τ contains exactly one $v_{i j}$ for every $i=0, \ldots, r$. We call such τ a P-elementary cone and associate the following numbers with τ :

$$
\ell_{\tau, i}:=\frac{l_{0 j_{0}} \cdots l_{r j_{r}}}{l_{i j_{i}}} \text { for } i=0, \ldots, r, \quad \ell_{\tau}:=(1-r) l_{0 j_{0}} \cdots l_{r j_{r}}+\sum_{i=0}^{r} l_{\tau, i} .
$$

Moreover, we set

$$
v_{\tau}:=\ell_{\tau, 0} v_{0 j_{0}}+\ldots+\ell_{\tau, r} v_{r j_{r}} \in \mathbb{Z}^{r+s}, \quad \varrho_{\tau}:=\mathbb{Q} \geq 0 \cdot v_{\tau} \in \mathbb{Q}^{r+s} .
$$

We denote by $\mathrm{T}(A, P, \Phi)$ the set of all P-elementary cones $\tau \in \Sigma$. For a given $\sigma \in \Sigma$, we denote by $\mathrm{T}(\sigma)$ the set of all P-elementary faces of σ.

Remark 3.7. Let $X=X(A, P, \Phi)$ be of Type 2. Let Σ be the fan of the minimal toric ambient variety of X and $\lambda_{0}, \ldots, \lambda_{r} \subseteq \operatorname{trop}(X)$ the leaves of the tropical variety of X. As in [5, Def. 4.1], we say that
(i) a cone $\sigma \in \Sigma$ is a leaf cone if $\sigma \subseteq \lambda_{i}$ holds for some $i=0, \ldots, r$,
(ii) a cone $\sigma \in \Sigma$ is called big if $\sigma \cap \lambda_{i}^{\circ} \neq \emptyset$ holds for all $i=0, \ldots, r$.

Observe that a given cone $\sigma \in \Sigma$ is big if and only if σ contains some P-elementary cone as a subset.

Proposition 3.8. Let $X=X(A, P, \Phi)$ be of Type 2 such that $-\mathcal{K}_{X}$ is ample. Let Σ be the fan of the minimal toric ambient variety of X, denote by $\lambda_{0}, \ldots, \lambda_{r}$ the leaves of $\operatorname{trop}(X)$ and by $\lambda=\lambda_{0} \cap \ldots \cap \lambda_{r}$ its lineality part.
(i) The fan $\Sigma \sqcap \operatorname{trop}(X)$ consists of the cones $\sigma \cap \lambda$ and $\sigma \cap \lambda_{i}$, where $\sigma \in \Sigma$ and $i=0, \ldots, r$. Here, one always has $\sigma \cap \lambda \preceq \sigma \cap \lambda_{i}$.
(ii) The fan $\Sigma \sqcap \operatorname{trop}(X)$ is a subfan of the normal fan of the polyhedron B_{X}. In particular, for every cone $\sigma \cap \lambda_{i}$, there is a vertex $u_{\sigma, i} \in B_{X}$ with

$$
\partial A_{X}^{c} \cap \sigma \cap \lambda_{i}=\left\{v \in \sigma \cap \lambda_{i} ;\left\langle u_{\sigma, i}, v\right\rangle=-1\right\} .
$$

(iii) If a P-elementary cone τ is contained in some $\sigma \in \Sigma$, then τ is simplicial, $v_{\tau} \in \tau^{\circ}$ holds, ϱ_{τ} is a ray, $\varrho_{\tau}=\tau \cap \lambda$ holds as well as $\mathbb{Q} \varrho_{\tau}=\mathbb{Q} \tau \cap \lambda$.
(iv) Let $\sigma \in \Sigma$ be any cone. Then, for every $i=0, \ldots, r$, the set of extremal rays of $\sigma \cap \lambda_{i} \in \Sigma \sqcap \operatorname{trop}(X)$ is given by

$$
\left(\sigma \cap \lambda_{i}\right)^{(1)}=\left\{\varrho\left(\sigma_{0}\right) ; \sigma_{0} \in \mathrm{~T}(\sigma)\right\} \cup\left\{\varrho \in \sigma^{(1)} ; \varrho \subseteq \lambda_{i}\right\} .
$$

(v) The set of rays of $\Sigma \sqcap \operatorname{trop}(X)$ consists of the rays of Σ and the rays $\varrho\left(\sigma_{0}\right)$, where $\sigma_{0} \in \mathrm{~T}(A, P, \Phi)$.
(vi) If a P-elementary cone τ is contained in some $\sigma \in \Sigma$, then the minimum value among all $\left\langle u, v_{\tau}\right\rangle$, where $u \in B_{X}$, equals $-\ell_{\tau}$.
(vii) Let the P-elementary cone τ be contained in $\sigma \in \Sigma$. Then $\varrho_{\tau} \nsubseteq A_{X}^{c}$ holds if and only if $\ell_{\tau}>0$ holds; in this case, ϱ_{τ} leaves A_{X}^{c} at $v_{\tau}^{\prime}=\ell_{\tau}^{-1} v_{\tau}$.
(viii) The vertices of A_{X}^{c} are the primitive generators of Σ, i.e. the columns of P, and the points $v\left(\sigma_{0}\right)^{\prime}=\ell_{\sigma_{0}}^{-1} v\left(\sigma_{0}\right)$, where $\sigma_{0} \in \mathrm{~T}(A, P, \Phi)$ and $\ell_{\sigma_{0}}>0$.
Proof. Assertion (i) holds more generally. Indeed, the coarsest common refinement $\Sigma_{1} \sqcap \Sigma_{2}$ of any two quasifans Σ_{i} in a common vector space consists of the intersections $\sigma_{1} \cap \sigma_{2}$, where $\sigma_{i} \in \Sigma_{i}$. Moreover, the faces of a given cone $\sigma_{1} \cap \sigma_{2}$ of $\Sigma_{1} \sqcap \Sigma_{2}$ are precisely the cones $\sigma_{1}^{\prime} \cap \sigma_{2}^{\prime}$, where $\sigma_{i}^{\prime} \preceq \sigma_{i}$.

We show (ii). Let Σ^{\prime} be the complete fan in \mathbb{Q}^{r+s} defined by the class $-\mathcal{K}_{X} \in K$. Since $-\mathcal{K}_{X}$ is ample, the fan Σ is a subfan of Σ^{\prime}. The preimage $P^{-1}\left(\Sigma^{\prime}\right)$ consists the cones $P^{-1}\left(\sigma^{\prime}\right)$, where $\sigma^{\prime} \in \Sigma^{\prime}$, and is the normal fan of $B\left(-\mathcal{K}_{X}\right) \subseteq \mathbb{Q}^{n+m}$.

Moreover, $P^{-1}(\operatorname{trop}(X))$ turns out to be a subfan of the normal fan of $B \subseteq \mathbb{Q}^{n+m}$. It follows that $P^{-1}\left(\Sigma^{\prime}\right) \sqcap P^{-1}(\operatorname{trop}(X))$ is a subfan of the normal fan of $B\left(-\mathcal{K}_{X}\right)+B$. Projecting the involved fans via P to \mathbb{Q}^{r+s} gives the assertion.

To obtain (iii), consider first any P-elememtary $\tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{r j_{r}}\right)$. Then $v_{0 j_{0}}, \ldots, v_{r j_{r}}$ is linearly dependent if and only if $v_{\tau}=0$ holds. The latter is equivalent to 0 being an inner point of τ. Thus, if τ is contained in some $\sigma \in \Sigma$, then τ is pointed an thus must be simplicial. The remaining part is then obvious; recall that the lineality part of $\operatorname{trop}(X)$ equals the vector subspace $0 \times \mathbb{Q}^{s} \subseteq \mathbb{Q}^{r+s}$.

We turn to (iv). First, we claim that if $\sigma_{0} \in \Sigma$ is big and $\varrho_{\tau}=\varrho_{\tau^{\prime}}$ holds for any two P-elementary cones $\tau, \tau^{\prime} \subseteq \sigma$, then σ_{0} is P-elementary. Assume that σ_{0} is not P-elementary. Then we find some $1 \leq t \leq r$ and cones

$$
\begin{aligned}
& \tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{t j_{t-1}}, v_{t j_{t}}, v_{t j_{t+1}}, \ldots, v_{r j_{r}}\right) \subseteq \sigma_{0} \\
& \tau^{\prime}=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{t j_{t-1}}, v_{t j_{t}^{\prime}}, v_{t j_{t+1}}, \ldots, v_{r j_{r}}\right) \subseteq \sigma_{0}
\end{aligned}
$$

with $j_{t} \neq j_{t}^{\prime}$ and thus $\tau \neq \tau^{\prime}$. Here, we may assume that $c_{\tau}^{-1} l_{t j_{t}} \geq c_{\tau^{\prime}}^{-1} l_{t j_{t}^{\prime}}$ holds with the greatest common divisors c_{τ} and $c_{\tau^{\prime}}$ of the entries of v_{τ} and $v_{\tau^{\prime}}$ respectively. Then even $c_{\tau}^{-1} \ell_{\tau, i} \geq c_{\tau^{\prime}}^{-1} \ell_{\tau^{\prime}, i}$ must hold for all $1 \leq i \leq r$. Since, the rays ϱ_{τ} and $\varrho_{\tau^{\prime}}$ coincide, also their primitive generators $c_{\tau^{\prime}}^{-1} v_{\tau^{\prime}}$ and $c_{\tau}^{-1} v_{\tau}$ coincide. By the definition of v_{τ} and $v_{\tau^{\prime}}$, this implies

$$
c_{\tau^{\prime}}^{-1} \ell_{\tau^{\prime}, t} v_{t j_{t}^{\prime}}=c_{\tau}^{-1} \ell_{\tau, k} v_{t j_{t}}+\sum_{i \neq t}\left(c_{\tau}^{-1} \ell_{\tau, i}-c_{\tau^{\prime}}^{-1} \ell_{\tau^{\prime}, i}\right) v_{i j_{i}}
$$

We conclude $v_{t j_{t}^{\prime}} \in \tau$. Since $v_{t j_{t}^{\prime}}$ is an extremal ray of σ_{0} and $\tau^{\prime} \subseteq \sigma_{0}$ holds, $v_{t j_{t}^{\prime}}$ generates an extremal ray of τ. This contradicts to the choice of j_{t}^{\prime} and the claim is verified.

Now, consider the equation of (iv). To verify " \subseteq ", let ϱ be an extremal ray of $\sigma \cap \lambda_{i}$. We have to show that $\varrho=\varrho\left(\sigma_{0}\right)$ holds for some $\sigma_{0} \in \mathrm{~T}(\sigma)$ or that ϱ is a ray of σ with $\varrho \subseteq \lambda_{i}$. According to (ii), there is a face $\sigma_{\varrho} \preceq \sigma$ such that $\varrho=\sigma_{\varrho} \cap \lambda$ or $\varrho=\sigma_{\varrho} \cap \lambda_{i}$ holds. We choose σ_{ϱ} minimal with respect to this property, that means that we have $\varrho^{\circ} \subseteq \sigma_{\varrho}^{\circ}$. We distinguish the following cases.
Case 1. We have $\varrho=\sigma_{\varrho} \cap \lambda$. If $\sigma_{\varrho} \subseteq \lambda$ holds, then we obtain $\varrho=\sigma_{\varrho}$ and thus $\varrho \subseteq \lambda_{i}$ is an extremal ray of σ. So, assume that σ_{ϱ} is not contained in λ. Then, because of $\sigma_{\varrho}^{\circ} \cap \lambda \neq \emptyset$, there is a P-elementary cone $\tau \subseteq \sigma_{\varrho}$. Using (i), we obtain

$$
\varrho_{\tau}=\tau \cap \lambda \subseteq \sigma_{\varrho} \cap \lambda=\varrho
$$

and thus $\varrho=\varrho_{\tau}$. As this does not depend on the particular choice of the P elementary cone $\tau \subseteq \sigma_{\varrho}$, the above claim yields $\sigma_{0}:=\sigma_{\varrho} \in \mathrm{T}(\sigma)$ and $\varrho=\varrho\left(\sigma_{0}\right)$.
Case 2. We don't have $\varrho=\sigma_{\varrho} \cap \lambda$. Then $\varrho=\sigma_{\varrho} \cap \lambda_{i}$ and $\varrho^{\circ} \subseteq \lambda_{i}^{\circ}$ hold. If $\sigma_{\varrho} \subseteq \lambda_{i}$ holds, then we obtain $\varrho=\sigma_{\varrho}$ and thus $\varrho \subseteq \lambda_{i}$ is an extremal ray of σ. So, assume that σ_{ϱ} is not contained in λ_{i}. Then $\sigma_{\varrho} \cap \lambda_{j}^{\circ}$ is non-empty for all $j=0, \ldots, r$. Thus, there is a P-elementary cone $\tau \subseteq \sigma_{\varrho}$. Using (i), we obtain

$$
\varrho_{\tau}=\tau \cap \lambda \subseteq \sigma_{\varrho} \cap \lambda=\varrho
$$

and thus $\varrho=\varrho_{\tau}$. As this does not depend on the particular choice of the P elementary cone $\tau \subseteq \sigma_{\varrho}$, the above claim yields $\sigma_{0}:=\sigma_{\varrho} \in \mathrm{T}(\sigma)$ and $\varrho=\varrho\left(\sigma_{0}\right)$.

We verify the inclusion " \supseteq ". Consider a face $\sigma_{0} \in \mathrm{~T}(\sigma)$. As seen just before, the extremal rays of $\sigma_{0} \cap \lambda_{i}$ are $\varrho\left(\sigma_{0}\right)$ and the rays of σ_{0} that lie in λ_{i}. Since $\sigma_{0} \cap \lambda_{i}$ is a face of $\sigma \cap \lambda_{i}$, the ray $\varrho\left(\sigma_{0}\right)$ is an extremal ray of $\sigma \cap \lambda_{i}$. Finally, consider an extremal ray $\varrho \preceq \sigma$ with $\varrho \subseteq \lambda_{i}$. Then $\varrho=\varrho \cap \lambda_{i}$ is a face of $\sigma \cap \lambda_{i}$.

The proof of Assertion (iv) is complete now. Assertion (v) is a direct consequence of (iv).

We turn to Assertions (vi), (vii) and (viii). Let $\widehat{\tau} \preceq \widehat{\sigma} \preceq \mathbb{Q}^{n+m}$ be the faces with $P(\widehat{\tau})=\tau$ and $P(\widehat{\sigma})=\sigma$. Moreover, let $e_{\tau} \in \widehat{\tau}$ be the (unique) point with $P\left(e_{\tau}\right)=v_{\tau}$. The minimum value $\left\langle u, v_{\tau}\right\rangle$ is attained at some vertex $u \in B_{X}$. For this u, we find vertices $e_{\sigma} \in B\left(-\mathcal{K}_{X}\right)$ and $e_{B} \in B$ with

$$
u=\left(P^{*}\right)^{-1}\left(e_{\sigma}+e_{B}-e_{Z}\right)
$$

Here, e_{σ} is any vertex of $B\left(-\mathcal{K}_{X}\right)$ such that $\widehat{\sigma}$ is contained in the cone of the normal fan of $B\left(-\mathcal{K}_{X}\right)$ associated with e_{σ}; such e_{σ} exists due to ampleness of $-\mathcal{K}_{X}$ and e_{σ} vanishes along $\widehat{\sigma}$. Together we have

$$
e_{\tau}=\sum_{i=0}^{r} l_{i j_{i}} e_{i j_{i}}, \quad\left\langle u, v_{\tau}\right\rangle=\left\langle e_{\sigma}+e_{B}-e_{Z}, e_{\tau}\right\rangle
$$

As mentioned, $\left\langle e_{\sigma}, e_{\tau}\right\rangle=0$ holds. Moreover, $\left\langle e, e_{\tau}\right\rangle=(r-1) l_{0 j_{0}} \cdots l_{r j_{r}}$ holds for every $e \in B$. We conclude $\left\langle u, v_{\tau}\right\rangle=-\ell_{\tau}$ and Assertion (vi). Moreover, Assertions (vii) and (viii) are direct consequences of (vi) and (ii).

Example 3.9. Consider the E_{6}-singular affine surface $X=V\left(z_{1}^{4}+z_{2}^{3}+z_{3}^{2}\right) \subseteq \mathbb{C}^{3}$. It inherits a \mathbb{C}^{*}-action from the action

$$
t \cdot\left(z_{1}, z_{2}, z_{3}\right)=\left(t^{3} z_{1}, t^{4} z_{2}, t^{6} z_{3}\right)
$$

on \mathbb{C}^{3}. The divisor class group and the Cox ring of the surface X are explicitly given by

$$
\mathrm{Cl}(X)=\mathbb{Z} / 3 \mathbb{Z}, \quad \mathcal{R}(X)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right] /\left\langle T_{1}^{3}+T_{2}^{3}+T_{3}^{2}\right\rangle
$$

where the $\mathrm{Cl}(X)$-degrees of T_{1}, T_{2}, and T_{3} are $\overline{1}, \overline{2}$ and $\overline{0}$. The minimal toric ambient variety is affine and corresponds to the cone

$$
\sigma=\operatorname{cone}((-3,-3,-2),(3,0,1),(0,2,1))
$$

Denoting by $e_{i} \in \mathbb{Q}^{3}$ the i-th canonical basis vector, the tropical variety $\operatorname{trop}(X)$ in \mathbb{Q}^{3} is given as

$$
\operatorname{trop}(X)=\operatorname{cone}\left(e_{1}, \pm e_{3}\right) \cup \operatorname{cone}\left(e_{2}, \pm e_{3}\right) \cup \operatorname{cone}\left(-e_{1}-e_{2}, \pm e_{3}\right)
$$

The anticanonical polyhedron $A_{X} \subseteq \mathbb{Q}^{3}$ is non bounded with recession cone generated by $(-1,-1,-1),(1,0,0),(0,1,0)$. The vertices of A_{X} are

$$
(-3,-3,-2),(3,0,1),(0,2,1),(0,0,1) .
$$

The anticanonical complex $A_{X}^{c}=A_{X} \sqcap \Sigma \sqcap \operatorname{trop}(X)$ lives inside $\operatorname{trop}(X)$ and looks as follows.

Corollary 3.10. Let $X=X(A, P, \Phi)$ be of Type 2 such that $-\mathcal{K}_{X}$ is ample. Let τ be a P-elementary cone contained in some $\sigma \in \Sigma$. Assume $\varrho_{\tau} \nsubseteq A_{X}^{c}$ and denote by c_{τ} the greatest common divisor of the entries of v_{τ}. Then, for any resolution of singularities $\varphi: X^{\prime \prime} \rightarrow X$ provided by [2.9, the discrepancy along the prime divisor of $X^{\prime \prime}$ corresponding to ϱ_{τ} equals $c_{\tau}^{-1} \ell_{\tau}-1$.

Corollary 3.11. Let $X=X(A, P, \Phi)$ be of Type 2 such that $-\mathcal{K}_{X}$ is ample and let $\tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{r j_{r}}\right)$ be contained in some $\sigma \in \Sigma$.
(i) If X has at most log terminal singularities, then $l_{0 j_{0}}^{-1}+\ldots+l_{r j_{r}}^{-1}>r-1$ holds.
(ii) If X has at most canonical singularities, then $l_{0 j_{0}}^{-1}+\ldots+l_{r j_{r}}^{-1} \geq r-1+$ $c_{\tau} l_{0 j_{0}}^{-1} \cdots l_{r j_{r}}^{-1} h o l d s$.
(iii) If X has at most terminal singularities, then $l_{0 j_{0}}^{-1}+\ldots+l_{r j_{r}}^{-1}>r-1+$ $c_{\tau} l_{0 j_{0}}^{-1} \cdots l_{r j_{r}}^{-1}$ holds.
Remark 3.12. Let a_{0}, \ldots, a_{r} be positive integers. Then $a_{0}^{-1}+\ldots+a_{r}^{-1}>r-1$ holds if and only if $\left(a_{0}, \ldots, a_{r}\right)$ is a platonic tuple.

Theorem 3.13. Let $X=X(A, P, \Phi)$ be of Type 2 such that $-\mathcal{K}_{X}$ is ample and let Σ be the fan of the minimal toric ambient variety of X. Then the following statements are equivalent.
(i) The variety X has at most log terminal singularities.
(ii) For every P-elementary $\tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{r j_{r}}\right)$ contained in a cone of Σ, the exponents $l_{0 j_{0}}, \ldots, l_{r j_{r}}$ form a platonic tuple.

Proof. Assume that $X=X(A, P, \Phi)$ is log terminal. Then Corollary 3.11(i) tells us that for every P-elementary $\tau=\operatorname{cone}\left(v_{0 j_{0}}, \ldots, v_{r j_{r}}\right)$ contained in a cone of Σ, the corresponding exponents $l_{0 j_{0}}, \ldots, l_{r j_{r}}$ form a platonic tuple.

Now assume that (ii) holds. Then every $\left(l_{0 j_{0}}, \ldots, l_{r j_{r}}\right)$ is a platonic tuple. Consequently, we have $\ell_{\tau}>0$ for every P-elementary cone τ. Proposition 3.8 shows that A_{X}^{c} is bounded for $X=X(A, P, \Phi)$. Theorem 3.3 (ii) tells us that X is \log terminal.
Remark 3.14. Let $X=X(A, P, \Phi)$ be affine of Type 2 such that \mathcal{K}_{X} is \mathbb{Q}-Cartier. Then $-\mathcal{K}_{X}$ is ample. The fan Σ of the minimal toric ambient variety Z of X consists of all the faces of the cone σ generated by the columns of P. In particular, every P-elementary cone is contained in σ. Thus, Theorem 1 follows from Theorem 3.13 , Moreover, the rays $\varrho\left(\sigma_{0}\right)$, where $\sigma_{0} \in \mathrm{~T}(A, P, \Phi)$, are precisely the extremal rays of the intersection of σ and the lineality part of $\operatorname{trop}(X)$.

4. GORENSTEIN INDEX AND CANONICAL MULTIPLICITY

If a normal variety X is \mathbb{Q}-Gorenstein, then, by definition, some multiple of its canonical class \mathcal{K}_{X} is Cartier. The Gorenstein index of X is the smallest positive integer \imath_{X} such that $\imath_{X} \mathcal{K}_{X}$ is Cartier. We attach another invariant to the canonical divisor of X.
Remark 4.1. Let $X=X(A, P)$ be a \mathbb{Q}-Gorenstein, affine T-variety of Type 2 . We consider canonical divisors D_{X} on X that are of the following form:

$$
\begin{equation*}
-\sum_{i, j} D_{i j}-\sum_{k} E_{k}+\sum_{\alpha=1}^{r-1} \sum_{j=0}^{n_{i_{\alpha}}} l_{i_{\alpha} j} D_{i_{\alpha} j}, \quad 0 \leq i_{\alpha} \leq r \tag{4.1.1}
\end{equation*}
$$

Corollary 2.13 says that $\imath_{X} D_{X}$ is the divisor of a T-homogeneous rational function. Any two $\imath_{X} D_{X}$ with D_{X} of shape (4.1.1) differ by the divisor of a T-invariant rational function, and thus, all the functions with divsors $\imath_{X} D_{X}$, where D_{X} as in (4.1.1), are homogeneous with respect to the same weight $\eta_{X} \in \mathbb{X}(T)$.
Definition 4.2. Let $X=X(A, P)$ be a \mathbb{Q}-Gorenstein, affine T-variety of Type 2 . We call $\eta_{X} \in \mathbb{X}(T)$ of Remark 4.1 the canonical weight of X. The canonical multiplicity of X is the minimal non-negative integer ζ_{X} such that $\eta_{X}=\zeta_{X} \cdot \eta_{X}^{\prime}$ holds with a primitive element $\eta_{X}^{\prime} \in \mathbb{X}(T)$.
Proposition 4.3. Let $X=X(A, P)$ be a \mathbb{Q}-Gorenstein, affine T-variety of Type 2 with at most log terminal singularities. Then $\zeta_{X}>0$ holds. Moreover, for any positive integer \imath, the following statements are equivalent.
(i) The variety X is of Gorenstein index \imath.
(ii) There exist integers μ_{1}, \ldots, μ_{r} with $\operatorname{gcd}\left(\mu_{1}, \ldots, \mu_{r}, \zeta_{X}, \imath\right)=1$ such that with $\mu_{0}:=\imath(r-1)-\mu_{1}-\ldots-\mu_{r}$ we obtain integral vectors

$$
\begin{gathered}
\nu_{i}:=\left(\nu_{i 1}, \ldots, \nu_{i n_{i}}\right) \text { with } \nu_{i j}:=\frac{\imath-\mu_{i} l_{i j}}{\zeta_{X}} \\
\nu^{\prime}:=\left(\nu_{1}^{\prime}, \ldots, \nu_{m}^{\prime}\right) \text { with } \nu_{k}^{\prime}:=\frac{\imath}{\zeta_{X}}
\end{gathered}
$$

and by suitable elementary row operations on the $\left(d, d^{\prime}\right)$-block, the matrix P gains $\left(\nu_{0}, \ldots, \nu_{r}, \nu^{\prime}\right)$ as its last row, i.e., turns into the shape

$$
\tilde{P}=\left(\begin{array}{ccccc}
-l_{0} & l_{1} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-l_{0} & 0 & \ldots & l_{r} & 0 \\
* & * & \ldots & * & * \\
\nu_{0} & \nu_{1} & \ldots & \nu_{r} & \nu^{\prime}
\end{array}\right)
$$

Proof. We work with an anticanonical divisor D_{X} on X such that $-D_{X}$ is of the form (4.1.1):

$$
D_{X}:=\sum_{i, j} D_{i j}+\sum_{k} E_{k}-(r-1) \sum_{j=1}^{n_{0}} l_{0 j} D_{0 j}
$$

According to Corollary 2.13, the Picard group of X is trivial. Thus, $\imath_{X} D_{X}$ is the divisor of some toric character χ^{u}, where

$$
u=\left(\mu_{1}, \ldots, \mu_{r}, \eta_{1}, \ldots, \eta_{s}\right) \in \mathbb{Z}^{r+s}
$$

Note that $-\left(\eta_{1}, \ldots, \eta_{s}\right) \in \mathbb{Z}^{s}=\mathbb{X}(T)$ is the canonical weight η_{X} of X. Moreover, the divisor $\imath_{X} D_{X}=\operatorname{div}\left(\chi^{u}\right)$ corresponds to the vector $P^{*} \cdot u \in \mathbb{Z}^{m+n}$ under the identification of toric divisors with lattice points via $D_{i j} \mapsto e_{i j}$ and $E_{k} \mapsto e_{k}$.

We claim that η_{X} is non-trivial. Otherwise, $\eta_{1}=\ldots=\eta_{s}=0$ holds. As noted, the $i j$-th and k-th components of the vector $P^{*} \cdot u$ are the multiplicities of $D_{i j}$ and D_{k} in $\imath_{X} D_{X}$, respectively. More explicitly, this leads to the conditions

$$
m=0, \quad \imath_{X}\left((r-1) l_{0 j}-1\right)=\left(\mu_{1}+\ldots+\mu_{r}\right) l_{0 j}, \quad \imath_{X}=\mu_{i} l_{i j}
$$

for all i and j. Plugging the third into the second one, we obtain that $l_{0 j_{0}}^{-1}+\ldots+l_{r j_{r}}^{-1}$ equals $r-1$ for any choice of $1 \leq j_{i} \leq n_{i}$. According to Corollary 3.11 (i), this contradicts to \log terminality of X. Knowing that η_{X} is non-zero, we obtain that ζ_{X} is non-zero.

Now, assume that (i) holds, i.e., we have $\imath=\imath_{X}$. Let $u \in \mathbb{Z}^{r+s}$ as above. Then we have $\zeta_{X}=\operatorname{gcd}\left(\eta_{1}, \ldots, \eta_{s}\right)$ and $\operatorname{div}\left(\chi^{u}\right)=\imath D_{X}$ implies $\operatorname{gcd}\left(\mu_{1}, \ldots, \mu_{r}, \zeta_{X}, \imath\right)=1$. Next, choose a unimodular $s \times s$ matrix \mathcal{B} with $\mathcal{B}^{-1} \cdot\left(\eta_{1}, \ldots, \eta_{s}\right)=\left(0, \ldots, 0, \zeta_{X}\right)$. Consider $\tilde{P}:=\operatorname{diag}\left(E_{r}, \mathcal{B}^{*}\right) \cdot P$ and

$$
\tilde{u}=\left(\mu_{1}, \ldots, \mu_{r}, 0, \ldots, 0, \zeta_{X}\right) \in \mathbb{Z}^{r+s}
$$

Observe that we have $P^{*} \cdot u=\tilde{P}^{*} \cdot \tilde{u}$. Comparing the entries of $\tilde{P}^{*} \cdot \tilde{u}$ with the multiplicities of the prime divisors $D_{i j}$ and D_{k} in $\imath D_{X}$ shows that the last row of \tilde{P} is as claimed.

Conversely, if (ii) holds, consider $u:=\left(\mu_{1}, \ldots, \mu_{r}, 0, \ldots, 0, \zeta_{X}\right)$. Then we obtain $\imath D_{X}=\operatorname{div}\left(\chi^{u}\right)$. Using $\operatorname{gcd}\left(\mu_{1}, \ldots, \mu_{r}, \zeta_{X}, \imath\right)=1$, we conclude that \imath is the Gorenstein index of X.

Remark 4.4. Let $X=X(A, P)$ be a \mathbb{Q}-Gorenstein, affine T-variety of Type 2 and D_{X} a canonical divisor on X as in 4.1.1). Then $\imath_{X} D_{X}$ is the divisor of some toric character χ^{u}, where

$$
u=\left(\mu_{1}, \ldots, \mu_{r}, \eta_{1}, \ldots, \eta_{s}\right) \in \mathbb{Z}^{r+s}
$$

In this situation, we have $\eta_{X}=\left(\eta_{1}, \ldots, \eta_{s}\right) \in \mathbb{X}(T)$ for the canonical weight of X and the canonical multiplicity of X is given by $\zeta_{X}=\operatorname{gcd}\left(\eta_{1}, \ldots, \eta_{s}\right)$. If P is in the shape of Proposition 4.3, then $\eta_{X}=\left(0, \ldots, 0, \zeta_{X}\right)$ holds and $-\mu_{1}, \ldots,-\mu_{r}$ satisfy the conditions of 4.3 (ii).

Remark 4.5. The defining matrix P of a given \mathbb{Q}-Gorenstein, affine T-variety $X=X(A, P)$ is in the shape of Proposition4.3 if and only if for every $i=0, \ldots, r$, the numbers $\mu_{i}:=\left(\imath_{X}-\zeta_{X} \nu_{i 1}\right) l_{i 1}^{-1}$ satisfy
(i) $\zeta_{X} \nu_{i j}+\mu_{i} l_{i j}=\imath_{X}$ for $i=1, \ldots, r$ and $j=1, \ldots, n_{i}$,
(ii) $\zeta_{X} \nu_{0 j}+\mu_{0} l_{0 j}=\imath_{X}$, for $\mu_{0}:=\imath_{X}(r-1)-\mu_{1}-\ldots-\mu_{r}$ and $j=1, \ldots, n_{0}$,
(iii) $\operatorname{gcd}\left(\mu_{1}, \ldots, \mu_{r}, \zeta_{X}, \imath_{X}\right)=1$,
(iv) $\zeta_{X} \nu_{k}^{\prime}=\imath_{X}$ for $k=1, \ldots, m$.

Corollary 4.6. Let $X=X(A, P)$ be $a \mathbb{Q}$-Gorenstein, affine T-variety of Type 2 with at most log terminal singularities. Then, for every $\imath \in \mathbb{Z}_{\geq 1}$, the following statements are equivalent.
(i) The variety X is of Gorenstein index \imath and of canonical multiplicity one.
(ii) One can choose the defining matrix P to be of the shape

$$
\left(\begin{array}{ccccc}
-l_{0} & l_{1} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
-l_{0} & 0 & \ldots & l_{r} & 0 \\
* & * & \ldots & * & * \\
\imath-\imath(r-1) l_{0} & \imath & \ldots & \imath & \imath
\end{array}\right),
$$

where \imath stands for a vector (\imath, \ldots, \imath) of suitable length.
Proof. If (i) holds, then we may assume P to be as \tilde{P} in Proposition 4.3. Adding the μ_{i}-fold of the i-th row of to the last row brings P into the desired form. If (ii) holds, take $u=(0, \ldots, 0,-\imath) \in \mathbb{Z}^{r+s}$. Then $P^{*} \cdot u \in \mathbb{Z}^{n+m}$ defines a divisor $\imath D_{X}$ with D_{X} a canonical divisor of shape (4.1.1) and we see $\zeta_{X}=1$.

Proposition 4.7. Let $X=X(A, P)$ be $a \mathbb{Q}$-Gorenstein affine T-variety of Type 2 with at most log terminal singularities and canonical multiplicity $\zeta_{X}>1$. Then we can choose P of shape 4.3 (ii) such that $l_{i j}=1$ and $\nu_{i j}=0$ holds for $i=3, \ldots, r$ and $j=1, \ldots, n_{i}$ and, moreover, P satisfies one of the following cases:

Case	$\left(l_{01}, l_{11}, l_{21}\right)$	$\left(\nu_{0}, \nu_{1}, \nu_{2}\right)$	ζ_{X}	\imath_{X}
(i)	$(4,3,2)$	$\frac{1}{2}\left(\imath_{\boldsymbol{X}}+l_{0}, \boldsymbol{\imath}_{\boldsymbol{X}}-\imath_{X} l_{1}, \boldsymbol{\imath}_{\boldsymbol{X}}-l_{2}\right)$	2	$0 \bmod 2$
$(i i)$	$(3,3,2)$	$\frac{1}{3}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-l_{0}, \imath_{\boldsymbol{X}}+l_{1}, \boldsymbol{\imath}_{\boldsymbol{X}}-\imath_{X} l_{2}\right)$	3	$0 \bmod 3$
$(i i i)$	$(2 k+1,2,2)$	$\frac{1}{4}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-\imath_{X} l_{0}, \imath_{\boldsymbol{X}}-l_{1}, \imath_{\boldsymbol{X}}+l_{2}\right)$	4	$2 \bmod 4$
$(i v)$	$(2 k, 2,2)$	$\frac{1}{2}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-l_{0}, \imath_{\boldsymbol{X}}+l_{1}, \imath_{\boldsymbol{X}}-\imath_{X} l_{2}\right)$	2	$0 \bmod 2$
(v)	$(k, 2,2)$	$\frac{1}{2}\left(\imath_{\boldsymbol{X}}-\imath_{X} l_{0}, \imath_{\boldsymbol{X}}-l_{1}, \imath_{\boldsymbol{X}}+l_{2}\right)$	2	$0 \bmod 2$
$(v i)$	$\left(k_{0}, k_{1}, 1\right)$	$\left(\nu_{0}, \nu_{1}, \zeta_{X}^{-1}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-\imath_{X} l_{2}\right)\right)$		

where $\imath_{\boldsymbol{X}}$ stands for a vector $\left(\imath_{X}, \ldots, \imath_{X}\right)$ of suitable length, and in Case (vi), all the numbers $\left(\imath_{X}-\nu_{0 j_{0}} \zeta_{X}\right) / l_{0 j_{0}}$ and $\left(\nu_{1 j_{1}} \zeta_{X}-\imath_{X}\right) / l_{1 j_{1}}$ are integral and coincide.
Proof. Since $X=X(A, P)$ has at most log terminal singularities, Theorem 1 guarantees that the Cox ring $\mathcal{R}(X)=R(A, P)$ is platonic. Thus, suitably exchanging
data column blocks, we achieve $l_{i j}=1$ for all $i \geq 3$. Next, we bring P in to the form of Proposition 4.3 (ii). Finally, subtracting the $\nu_{i j}$-fold of the i-th row from the last one, we achieve $\nu_{i j}=0$ for $i=3, \ldots, r$.

Observe that our new matrix P still satisfies the conditions of Remark 4.5, For the integers μ_{i} defined there, we have

$$
\begin{equation*}
\mu_{0}+\mu_{1}+\mu_{2}=\mu_{3}=\ldots=\mu_{r}=\imath_{X} . \tag{4.7.1}
\end{equation*}
$$

Moreover, for $i=0,1,2$ set $\ell_{i}:=l_{01} l_{11} l_{21} / l_{i 1}$. Then, because of $\imath_{X}+\mu_{i} l_{i j}=\nu_{i j} \zeta_{X}$, we obtain

$$
\begin{equation*}
\operatorname{gcd}\left(\ell_{0}, \ell_{1}, \ell_{2}\right)^{-1} \sum_{i=0}^{2} \ell_{i}\left(\imath_{X}-\mu_{i} l_{i j}\right)=\alpha \zeta_{X} \quad \text { for some } \alpha \in \mathbb{Z} \tag{4.7.2}
\end{equation*}
$$

Finally, Remark 4.5 ensures

$$
\begin{equation*}
1=\operatorname{gcd}\left(\mu_{1}, \ldots, \mu_{r}, \zeta_{X}, \imath_{X}\right)=\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}, \imath_{X}\right) . \tag{4.7.3}
\end{equation*}
$$

We will now apply these conditions to establish the table of the assertion. Since $\left(l_{01}, l_{11}, l_{21}\right)$ is a platonic triple, we have to discuss the following cases.

Case 1: $\left(l_{01}, l_{11}, l_{21}\right)$ equals $(5,3,2)$. Our task is to rule out this case. Using (4.7.1) and (4.7.2), we see that ζ_{X} divides

$$
\imath_{X}=31 \imath_{X}-30\left(\mu_{0}+\mu_{1}+\mu_{2}\right)=6\left(\imath_{X}-5 \mu_{0}\right)+10\left(\imath_{X}-3 \mu_{1}\right)+15\left(\imath_{X}-2 \mu_{2}\right) .
$$

Consequently, (4.7.3) becomes $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$ and from $\imath_{X}-\mu_{i} l_{i j}=\nu_{i j} \zeta_{X}$ we infer that ζ_{X} divides $5 \mu_{0}, 3 \mu_{1}$ and $2 \mu_{2}$. This leaves us with the three possibilities $\zeta_{X}=2,3,6$.

If $\zeta_{X}=2$ holds, then ζ_{X} divides μ_{0} and μ_{1} but not μ_{2}; if $\zeta_{X}=3$ holds, then ζ_{X} divides μ_{0} and μ_{2} but not μ_{1}. Both contradicts to the fact that ζ_{X} divides $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$. Thus, only $\zeta_{X}=6$ is left. In that case, ζ_{X} must divide μ_{0}. Since ζ_{X} divides $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$, we see that ζ_{X} divides $\mu_{1}+\mu_{2}$. Moreover, $\zeta_{X} \mid 3 \mu_{1}$ gives $\mu_{1}=2 \mu_{1}^{\prime}$ and $\zeta_{X} \mid 2 \mu_{2}$ gives $\mu_{2}=3 \mu_{2}^{\prime}$ with integers $\mu_{1}^{\prime}, \mu_{2}^{\prime}$. Now, as $\zeta_{X}=6$ divides $2 \mu_{1}^{\prime}+3 \mu_{2}^{\prime}$, we obtain that μ_{2}^{\prime} and hence μ_{2} are even. This contradicts $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$.

Case 2: $\left(l_{01}, l_{11}, l_{21}\right)$ equals $(4,3,2)$. Similarly as in the preceding case, we apply (4.7.1) and (4.7.2) to see that ζ_{X} divides
$\imath_{X}=13 \imath_{X}-12\left(\mu_{0}+\mu_{1}+\mu_{2}\right)=\frac{1}{2}\left(6\left(\imath_{X}-4 \mu_{0}\right)+8\left(\imath_{X}-3 \mu_{1}\right)+12\left(\imath_{X}-2 \mu_{2}\right)\right)$.
As before, we conclude $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$ and obtain that ζ_{X} divides $4 \mu_{0}, 3 \mu_{1}$ and $2 \mu_{2}$. This reduces to $\zeta_{X}=2,3,6$.

If $\zeta_{X}=3$ holds, then ζ_{X} divides μ_{0} and μ_{2} but not μ_{1}, contradicting the fact that ζ_{X} divides $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$. If $\zeta_{X}=6$ holds, then we obtain $\mu_{0}=3 \mu_{0}^{\prime}, \mu_{1}=2 \mu_{1}^{\prime}$ and $\mu_{2}=3 \mu_{2}^{\prime}$ with suitable integers μ_{i}^{\prime}. Since ζ_{X} divides $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$, we obtain that μ_{2} is divisible by 3 , contradicting $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$.

Thus, the only possibility left is $\zeta_{X}=2$. We show that this leads to Case (i) of the assertion. Observe that μ_{1} is even, μ_{2} is odd because of $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$ and μ_{2} is odd because $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$ is even. Recall that the vectors ν_{i} in the last row of P are given as

$$
\nu_{i}=\frac{1}{\zeta_{X}}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-\mu_{i} l_{i}\right)=\frac{1}{2} \boldsymbol{\imath}_{\boldsymbol{X}}-\frac{\mu_{i}}{2} l_{i} .
$$

Thus, adding the $\left(-\mu_{0}-\mu_{2}\right) / 2$-fold of the first row and the $\left(\mu_{2}-1\right) / 2$-fold of the second row to the last row brings P into the shape of Case (i).

Case 3: $\left(l_{01}, l_{11}, l_{21}\right)$ equals $(3,3,2)$. As in the two preceding cases, we infer from (4.7.1) and (4.7.2) that ζ_{X} divides

$$
\imath_{X}=7 \imath_{X}-6\left(\mu_{0}+\mu_{1}+\mu_{2}\right)=\frac{1}{3}\left(6\left(\imath_{X}-3 \mu_{0}\right)+6\left(\imath_{X}-3 \mu_{1}\right)+9\left(\imath_{X}-2 \mu_{2}\right)\right)
$$

Since $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$ and ζ_{X} divides $3 \mu_{0}, 3 \mu_{1}, 2 \mu_{2}$, we are left with $\zeta_{X}=2,3,6$. If $\zeta_{X}=2$ or $\zeta_{X}=6$ holds, then μ_{0}, μ_{1} and $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$ must be even. Thus also μ_{2} must be even, contradicting $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$.

Let $\zeta_{X}=3$. We show that this leads to Case (ii) of the assertion. First, 3 divides μ_{2} and $\imath_{X}=\mu_{0}+\mu_{1}+\mu_{2}$, hence also $\mu_{0}+\mu_{1}$. Moreover, 3 divides neither μ_{0} nor μ_{1} because of $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$. Interchanging, if necessary, the data of the column blocks no. 0 and 1 , we achieve that 3 divides $\mu_{0}-1$ and $\mu_{1}+1$. So, at the moment, the ν_{i} in the last row of P are of the form

$$
\nu_{i}=\frac{1}{\zeta_{X}}\left(\boldsymbol{\imath}_{\boldsymbol{X}}-\mu_{i} l_{i}\right)=\frac{1}{3} \boldsymbol{\imath}_{\boldsymbol{X}}-\frac{\mu_{i}}{3} l_{i} .
$$

Adding the $\left(\mu_{1}+1\right) / 3$-fold of the first and the $\left(-\mu_{0}-\mu_{1}\right) / 3$-fold of the second to the last row of P, we arrive at Case (ii).
Case 4: $\left(l_{01}, l_{11}, l_{21}\right)$ equals $(k, 2,2)$ with $k \geq 3$ odd. Then (4.7.1) and (4.7.2) show that ζ_{X} divides
$2 \imath_{X}=(2+2 k) \imath_{X}-2 k\left(\mu_{0}+\mu_{1}+\mu_{2}\right)=\frac{1}{2}\left(4\left(\imath_{X}-k \mu_{0}\right)+2 k\left(\imath_{X}-2 \mu_{1}\right)+2 k\left(\imath_{X}-2 \mu_{2}\right)\right)$.
Case 4.1: ζ_{X} doesn't divide \imath_{X}. Then we have $2 \imath_{X}=\alpha \zeta_{X}$ with $\alpha \in \mathbb{Z}$ odd. Thus, ζ_{X} is even and $2 \mu_{i}=\imath_{X}-\nu_{i j} \zeta_{X}$ implies that $4 \mu_{i}$ is an odd multiple of ζ_{X} for $i=1,2$. In particular, 4 divides ζ_{X}. Moreover, (4.7.3) implies $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X} / 2\right)=1$ and we obtain $\zeta_{X}=4$. That means $\imath_{X} \equiv 2 \bmod 4$. Since $\zeta_{X}=4$ divides $\imath_{X}-k \mu_{0}$ and k is odd, we conclude $\mu_{0} \equiv 2 \bmod 4$. Then $\mu_{0}+\mu_{1}+\mu_{2}=\imath_{X} \equiv 2 \bmod 4$ implies that 4 divides $\mu_{1}+\mu_{2}$. Interchanging, if necessary, the data of the column blocks no. 1 and 2 , we can assume $\mu_{1} \equiv-\mu_{2} \equiv 1 \bmod 4$. Then, adding the $\left(\mu_{1}-1\right) / 4$-fold of the first and the $\left(\mu_{2}+1\right) / 4$-fold of the second to the last row of P, we arrive at Case (iii) of the assertion.

Case 4.2: ζ_{X} divides \imath_{X}. Then (4.7.3) becomes $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, \zeta_{X}\right)=1$. Since ζ_{X} divides $2 \mu_{1}$ and $2 \mu_{2}$, we see that $\zeta=2$ holds and μ_{1}, μ_{2} are odd. Adding the ($\mu_{1}-1$)/2-fold of the first and the $\left(\mu_{2}+1\right) / 2$-fold of the second to the last row of P leads to Case (v) of the assertion.

Case 5: $\left(l_{01}, l_{11}, l_{21}\right)$ equals $(k, 2,2)$ with $k \geq 2$ even. Then (4.7.1) and (4.7.2) show that ζ_{X} divides
$\imath_{X}=(k+1) \imath_{X}-k\left(\mu_{0}+\mu_{1}+\mu_{2}\right)=\frac{1}{4}\left(4\left(\imath_{X}-k \mu_{0}\right)+2 k\left(\imath_{X}-2 \mu_{1}\right)+2 k\left(\imath_{X}-2 \mu_{2}\right)\right)$.
As earlier, we conclude that $\zeta_{X} \mid 2 \mu_{i}$ for $i=1,2$ and $\zeta_{X}=2$. Since $\operatorname{gcd}\left(\mu_{1}, \mu_{2}, 2\right)=1$ holds and $\mu_{0}+\mu_{1}+\mu_{2}=\imath_{X}$ is even, two of the μ_{i} are be odd and one is even. If μ_{1} and μ_{2} are odd, then adding the $\left(\mu_{1}-1\right) / 2$-fold of the first and the $\left(\mu_{2}+1\right) / 2$-fold of the second to the last row of P leads to Case (v). Now, let μ_{0} be odd. Interchanging, if necessary, the data of the column blocks no. 1 and 2 , we achieve that μ_{1} is odd. Then we add the $\left(\mu_{1}+1\right) / 2$-fold of the first and the $\left(-\mu_{0}-\mu_{1}\right) / 2$-fold of the second to the last row of P and arrive at Case (iv) of the assertion.
Case 6. $\left(l_{01}, l_{11}, l_{21}\right)$ equals $\left(k_{0}, k_{1}, 1\right)$, where $k_{0}, k_{1} \in \mathbb{Z}_{>0}$. We subtract the ν_{21}-fold of the second row of P from the last one. Since $\nu_{21}=\left(\imath_{X}-\mu_{2}\right) / \zeta_{X}$ holds, we obtain $\nu_{2}=\zeta_{X}^{-1}\left(\imath_{\boldsymbol{X}}-\imath_{X} l_{2}\right)$. Moreover, (4.7.1) becomes $\mu_{0}+\mu_{1}=0$. We arrive at Case (vi) of the assertion by observing

$$
\left(\imath_{X}-\nu_{0 j_{0}} \zeta_{X}\right) / l_{0 j_{0}}=\mu_{0}=-\mu_{1}=\left(\nu_{1 j_{1}} \zeta_{X}-\imath_{X}\right) / l_{1 j_{1}} .
$$

Example 4.8. We discuss the rational affine \mathbb{C}^{*}-surfaces X with at most log terminal singularities. First, the affine toric surfaces $X=\mathbb{C}^{2} / C_{k}$ show up here, where C_{k} is the cyclic group of order k acting diagonally. In terms of toric geometry, these surfaces are given as

$$
X=\operatorname{Spec} \mathbb{C}\left[\sigma^{\vee} \cap \mathbb{Z}^{2}\right], \quad \sigma=\operatorname{cone}((k, \imath),(\imath, k+m))
$$

where $k, m \in \mathbb{Z}_{>0}$ with $\operatorname{gcd}(k, \imath)=\operatorname{gcd}(k+m, \imath)=1$ and \imath is the Gorenstein index of X; see [7, Chap. 10] for more background. Now consider a non-toric \mathbb{C}^{*}-surface $X=X(A, P)$ of Type 2 . As a quotient of \mathbb{C}^{2} by a finite group, X has finite divisor class group and thus P is a 3×3 matrix of the shape

$$
P=\left[\begin{array}{rrr}
-l_{01} & l_{11} & 0 \\
-l_{01} & 0 & l_{21} \\
d_{01} & d_{11} & d_{21}
\end{array}\right]
$$

Theorem 1 says that $\left(l_{01}, l_{11}, l_{21}\right)$ is a platonic triple. Moreover, Corollary 4.6 and Proposition 4.7 provide us with constraints on the $d_{i 1}$. Having in mind that P is of rank three with primitive columns, one directly arrives at the following possibilities, where $\zeta=\zeta_{X}$ is the canonical multiplicity and $\imath=\imath_{X}$ the Gorenstein index:

Type	P	ζ	\imath
$D_{n}^{1, \imath}$	$\left[\begin{array}{rrr}-n+2 & 2 & 0 \\ -n+2 & 0 & 2 \\ -n \imath+3 \imath & \imath & \imath\end{array}\right]$	1	$\operatorname{gcd}(\imath, 2 n)=1$
$D_{2 n+1}^{2, r}$	$\left[\begin{array}{rrr}-2 n+1 & 2 & 0 \\ -2 n+1 & 0 & 2 \\ (1-n) \imath & \imath / 2+1 & \imath / 2-1\end{array}\right]$	2	$\operatorname{gcd}(\imath, 8 n-4)=4$
$E_{6}^{1, \imath}$	$\left[\begin{array}{rrr}-3 & 3 & 0 \\ -3 & 0 & 2 \\ -2 \imath & \imath & \imath\end{array}\right]$	1	$\operatorname{gcd}(\imath, 6)=1$
$E_{6}^{3, \imath}$	$\left[\begin{array}{rrr}-3 & 3 & 0 \\ -3 & 0 & 2 \\ -1 & \imath / 3+1 & -\imath / 3\end{array}\right]$	3	$\operatorname{gcd}(\imath, 18)=9$
$E_{7}^{1, \iota}$	$\left[\begin{array}{rrr}-4 & 3 & 0 \\ -4 & 0 & 2 \\ -3 \imath & \imath & 2\end{array}\right]$	1	$\operatorname{gcd}(\imath, 6)=1$
$E_{8}^{1, \imath}$	$\left[\begin{array}{rrr}-5 & 3 & 0 \\ -5 & 0 & 2 \\ -4 \imath & \imath & \imath\end{array}\right]$	1	$\operatorname{gcd}(\imath, 30)=1$

For geometric details on these surfaces, we refer to the work of Brieskorn [6, and, in the context of the McKay Correspondence, Wunram 30] and Wemyss [29.

5. Geometry of the total coordinate space

We take a closer look at the geometry of the total coordinate space \bar{X} of a T variety X of complexity one. The first result says in particular that \bar{X} is Gorenstein and canonical provided that X is \log terminal and affine.
Proposition 5.1. Let $R\left(A, P_{0}\right)$ be a platonic ring of Type 2. Then the affine variety $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$ is Gorenstein and has at most canonical singularities.

Proof. Adding suitable rows, we complement the matrix P_{0} to a square matrix P of full rank with last row $\left(\mathbf{1}-(r-1) l_{0}, \mathbf{1}, \ldots, \mathbf{1}\right)$, where $\mathbf{1}$ indicates vectors of length n_{i} with all entries equal to one; this is possible, because the last row is not in the row space of P_{0}. Then $X=X(A, P)$ is a \mathbb{Q}-factorial affine T-variety. Theorem tells us that X has at most log terminal singularities and Corollary 4.6 ensures that X is Gorenstein. Thus, X has at most canonical singularities. Since $\bar{X} \rightarrow X$ is finite
with ramification locus of codimension at least two, we can use [20, Thm. 6.2.9] to see that \bar{X} is Gorenstein with at most canonical singularities.

Now we investigate the generic quotient Y of \bar{X} by the action of the unit component $H_{0}^{0} \subseteq H_{0}$, in other words, the smooth projective curve Y with function field $\mathbb{C}(Y)=\mathbb{C}(\bar{X})^{H_{0}^{0}}$.
Definition 5.2. Consider the defining matrix P_{0} of a ring $R\left(A, P_{0}\right)$ of Type 2 and the vectors $l_{i}=\left(l_{i 1}, \ldots, l_{i n_{i}}\right)$ occuring in the rows of P_{0}. Set

$$
\begin{gathered}
\mathfrak{l}_{i}:=\operatorname{gcd}\left(l_{i 1}, \ldots, l_{i n_{i}}\right), \quad \mathfrak{l}:=\operatorname{gcd}\left(\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{r}\right), \quad \mathfrak{l}_{i j}:=\operatorname{gcd}\left(\mathfrak{l}^{-1} \mathfrak{l}_{i}, \mathfrak{l}^{-1} \mathfrak{l}_{j}\right), \\
\overline{\mathfrak{l}}:=\operatorname{lcm}\left(\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{r}\right), \quad b_{i}:=\mathfrak{l}_{i}^{-1} \overline{\mathfrak{l}}, \quad b(i):=\operatorname{gcd}\left(b_{j} ; j \neq i\right) .
\end{gathered}
$$

Theorem 5.3. Let $R\left(A, P_{0}\right)$ be of Type 2 and consider the action of the unit component $H_{0}^{0} \subseteq H_{0}$ of the quasitorus $H_{0}=\operatorname{Spec} \mathbb{C}\left[K_{0}\right]$ on $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$. Then the smooth projective curve Y with function field $\mathbb{C}(Y)=\mathbb{C}(\bar{X})^{H_{0}^{0}}$ is of genus

$$
g(Y)=\frac{\mathfrak{l}_{0} \cdots \mathfrak{l}_{r}}{2 \overline{\mathfrak{l}}}\left((r-1)-\sum_{i=0}^{r} \frac{b(i)}{\mathfrak{l}_{i}}\right)+1
$$

Lemma 5.4. Let $R\left(A, P_{0}\right)$ be of Type 2, consider the degree $u:=\operatorname{deg}\left(g_{0}\right) \in K_{0}$ of the defining relations and the subgroup

$$
K_{0}(u):=\left\{w \in K_{0} ; \alpha w \in \mathbb{Z} u \text { for some } \alpha \in \mathbb{Z}_{>0}\right\} \subseteq K_{0}
$$

Then the Veronese subalgebra $R\left(A, P_{0}\right)(u)$ of $R\left(A, P_{0}\right)$ associated with $K_{0}(u)$ of K_{0} is generated by the monomials $T_{0}^{l_{0} / \mathrm{l}_{0}}, \ldots, T_{r}^{l_{r} / \mathfrak{l}_{r}}$.

Proof. First, observe that every element of $R\left(A, P_{0}\right)(u)$ is a polynomial in the variables $T_{i j}$. Now consider a monomial T^{l} in the $T_{i j}$ of degree $w \in K_{0}(u)$, where $l \in \mathbb{Z}^{n+m}$. Then $\alpha w \in \beta_{0} u$ holds for some $\alpha \in \mathbb{Z}_{>0}$ and $\beta_{0} \in \mathbb{Z}$. Moreover, there are $\beta_{1}, \ldots, \beta_{r} \in \mathbb{Z}$ with

$$
\alpha l=\beta_{0} l_{0}^{\prime}+\beta_{1}\left(l_{0}^{\prime}-l_{1}^{\prime}\right)+\ldots+\beta_{r}\left(l_{0}^{\prime}-l_{r}^{\prime}\right), \text { where } l_{i}^{\prime}:=l_{i 1} e_{i 1}+\ldots+l_{i n_{i}} e_{i n_{i}}
$$

reflecting the fact that $\alpha l-\beta_{0} l_{0}^{\prime}$ lies in the row space of P_{0}. Consequently, we obtain $l=\beta_{0}^{\prime} l_{0}^{\prime}+\ldots+\beta_{r}^{\prime} l_{r}^{\prime}$ for suitable $\beta_{i}^{\prime} \in \mathbb{Q}$. Since l has only non-negative integer entries, we conclude that every β_{i}^{\prime} is a non-negative integral multiple of \mathfrak{l}_{i}^{-1}. Thus, T^{l} is a monomial in the $T_{i}^{l_{i} / \mathfrak{l}_{i}}$. The assertion follows.

Proof of Theorem 5.3. The curve Y occurs as a GIT-quotient: $Y=\bar{X}^{s s}\left(u^{0}\right) / H_{0}^{0}$, where $u^{0} \in \mathbb{X}\left(H_{0}^{0}\right)$ represents the character induced by $u=\operatorname{deg}\left(g_{0}\right) \in K_{0}=\mathbb{X}\left(H_{0}\right)$. In other words, we have $Y=\operatorname{Proj} R\left(A, P_{0}\right)\left(u^{0}\right)$ with the Veronese subalgebra defined by u^{0}. We may replace u^{0} with

$$
w^{0}:=\frac{1}{\overline{\mathfrak{l}}} u^{0} \in \mathbb{X}\left(H_{0}^{0}\right)
$$

Then $R\left(A, P_{0}\right)\left(u^{0}\right)$ is replaced with $R\left(A, P_{0}\right)\left(w^{0}\right)$ which in turn equals the Veronese subalgebra treated in Lemma 5.4. Moreover, the generators $T_{i}^{l_{i} / \mathfrak{l}_{i}} \in R\left(A, P_{0}\right)\left(w^{0}\right)$ are of degree $b_{i} w^{0} \in \mathbb{X}\left(H_{0}^{0}\right)$, respectively. We obtain a closed embedding into a weighted projective space

$$
Y=V\left(h_{0}, \ldots, h_{r-2}\right) \subseteq \mathbb{P}\left(b_{0}, \ldots, b_{r}\right), \quad h_{i}:=\operatorname{det}\left[\begin{array}{ccc}
T_{i}^{\mathfrak{l}_{i}} & T_{i+1}^{\mathfrak{l}_{i+1}} & T_{i+2}^{\mathfrak{l}_{i+2}} \\
a_{i} & a_{i+1} & a_{i+2}
\end{array}\right]
$$

where the h_{i} generate the ideal of relations among the generators of the Veronese subalgebra $R\left(A, P_{0}\right)\left(w^{0}\right)$. The idea is now to construct a ramified covering $Y^{\prime} \rightarrow Y$
with a suitable curve Y^{\prime} and then to compute the genus of Y via the Hurwitz formula. Consider

$$
Y^{\prime}=V\left(h_{0}^{\prime}, \ldots, h_{r-2}^{\prime}\right) \subseteq \mathbb{P}_{r}, \quad h_{i}^{\prime}:=\operatorname{det}\left[\begin{array}{ccc}
T_{i}^{\bar{\imath}} & T_{i+1}^{\bar{\imath}} & T_{i+2}^{\bar{i}} \\
a_{i} & a_{i+1} & a_{i+2}
\end{array}\right]
$$

The $Y^{\prime} \subseteq \mathbb{P}_{r}$ is a smooth complete intersection curve. Computing the genus of Y^{\prime} according to 15, we obtain

$$
g\left(Y^{\prime}\right)=\frac{1}{2}\left((r-1) \overline{\mathfrak{l}}^{r}-(r+1) \overline{\mathfrak{l}}^{r-1}\right)+1
$$

The morphism $\mathbb{P}_{r} \rightarrow \mathbb{P}\left(b_{0}, \ldots, b_{r}\right)$ sending $\left[z_{0}, \ldots, z_{r}\right]$ to $\left[z_{0}^{b_{0}}, \ldots, z_{r}^{b_{r}}\right]$ restricts to a morphism $Y^{\prime} \rightarrow Y$ of degree $b_{0} \cdots b_{r}$. The intersection $Y \cap U_{i}$ with the i-th coordinate hyperplane $U_{i} \subseteq \mathbb{P}_{r}$ contains precisely $\overline{\mathfrak{l}}^{r-1}$ points and each of these points has ramification order $b_{i} \cdot b(i)-1$. Outside the U_{i}, the morphism $Y^{\prime} \rightarrow Y$ is unramified. The Hurwitz formula then gives $g(Y)$.

We now use Theorem 5.3 to characterize rationality of $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$. For the special case of Pham-Brieskorn surfaces, the following statement has been obtained in [4].

Proposition 5.5. Let $R\left(A, P_{0}\right)$ be of Type 2 with $r=2$, that means that $\bar{X}=$ Spec $R\left(A, P_{0}\right)$ is given as

$$
\bar{X} \cong V\left(T_{01}^{l_{01}} \cdots T_{0 n_{0}}^{l_{0 n_{0}}}+T_{11}^{l_{11}} \cdots T_{1 n_{1}}^{l_{1 n_{1}}}+T_{21}^{l_{21}} \cdots T_{2 n_{2}}^{l_{2 n_{2}}}\right) \subseteq \mathbb{C}^{n}
$$

Then the hypersurface \bar{X} is rational if and only if one of the following conditions holds:
(i) there are pairwise coprime positive integers c_{0}, c_{1}, c_{2} and a positive integer s such that, after suitable renumbering, one has

$$
\operatorname{gcd}\left(c_{2}, s\right)=1, \quad \mathfrak{l}_{0}=s c_{0}, \quad \mathfrak{l}_{1}=s c_{1}, \quad \mathfrak{l}_{2}=c_{2}
$$

(ii) there are pairwise coprime positive integers c_{0}, c_{1}, c_{2} such that

$$
\mathfrak{l}_{0}=2 c_{0}, \quad \mathfrak{l}_{1}=2 c_{1}, \quad \mathfrak{l}_{2}=2 c_{2} .
$$

Lemma 5.6. For $i=0,1,2$, let $l_{i}=\left(l_{i 1}, \ldots, l_{\text {ini }_{i}}\right)$ be tuples of positive integers. Define $\mathfrak{l}, \mathfrak{l}_{i}$ and $\mathfrak{l}_{i j}$ as in Definition5.2 for $r=2$. Then the following statements are equivalent.
(i) We have $\mathfrak{l}\left(\mathfrak{l l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}-\left(\mathfrak{l}_{01}+\mathfrak{l}_{02}+\mathfrak{l}_{12}\right)\right)=-2$.
(ii) One of the following two conditions holds:
(a) there are pairwise coprime positive integers c_{0}, c_{1}, c_{2} and a positive integer s such that, after suitable renumbering, one has

$$
\operatorname{gcd}\left(c_{2}, s\right)=1, \quad \mathfrak{l}_{0}=s c_{0}, \quad \mathfrak{l}_{1}=s c_{1}, \quad \mathfrak{l}_{2}=c_{2}
$$

(b) there are pairwise coprime positive integers c_{0}, c_{1}, c_{2} such that

$$
\mathfrak{l}_{0}=2 c_{0}, \quad \mathfrak{l}_{1}=2 c_{1}, \quad \mathfrak{l}_{2}=2 c_{2}
$$

Proof. If (ii) holds, then a simple computation shows that (i) is valid. Now, assume that (i) holds. Then the following cases have to be considered.
Case 1. We have $\mathfrak{l}=1$. Then $\mathfrak{l}_{01}\left(\mathfrak{l}_{02} \mathfrak{l}_{12}-1\right)=\mathfrak{l}_{02}+\mathfrak{l}_{12}-2$ holds. From this we deduce

$$
\begin{aligned}
\mathfrak{l}_{01}\left(\mathfrak{l}_{02} \mathfrak{l}_{12}-1\right) & =\left(\mathfrak{l}_{01}-1\right)\left(\mathfrak{l}_{02} \mathfrak{l}_{12}-1\right)+\left(\mathfrak{l}_{02}-1\right)\left(\mathfrak{l}_{12}-1\right)+\mathfrak{l}_{02}+\mathfrak{l}_{12}-2 \\
& \geq \mathfrak{l}_{02}+\mathfrak{l}_{12}-2,
\end{aligned}
$$

where equality holds if and only if at least two of $\mathfrak{l}_{01}, \mathfrak{l}_{02}, \mathfrak{l}_{12}$ equal one. So, we arrive at Condition (a).

Case 2. We have $\mathfrak{l}=2$. Then we have $\mathfrak{l}_{01}\left(2 \mathfrak{l}_{02} \mathfrak{l}_{12}-1\right)+1=\mathfrak{l}_{02}+\mathfrak{l}_{12}$. In this situation, we conclude

$$
\begin{aligned}
\mathfrak{l}_{01}\left(2 \mathfrak{l}_{02} \mathfrak{l}_{12}-1\right)+1= & \left(\mathfrak{l}_{01}-1\right)\left(2 \mathfrak{l}_{02} \mathfrak{l}_{12}-1\right)+\mathfrak{l}_{02} \mathfrak{l}_{12} \\
& \quad+\left(\mathfrak{l}_{02}-1\right)\left(\mathfrak{l}_{12}-1\right)+\mathfrak{l}_{02}+\mathfrak{l}_{12}-1 \\
\geq & \mathfrak{l}_{02}+\mathfrak{l}_{12},
\end{aligned}
$$

where equality holds if and only if we have $\mathfrak{l}_{01}=\mathfrak{l}_{02}=\mathfrak{l}_{12}=1$. Thus, we arrive at Condition (b).

Proof of Proposition 5.5. First, observe that \bar{X} is rational if and only if Y is rational or, in other words, of genus zero. For $r=2$, Theorem 5.3 gives

$$
g(Y)=\frac{\mathfrak{l}}{2}\left(\mathfrak{l l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}-\mathfrak{l}_{01}-\mathfrak{l}_{02}-\mathfrak{l}_{12}\right)+1
$$

Thus, according to Lemma [5.6, condition $g(Y)=0$ holds if and only if (i) or (ii) of the proposition holds.

Remark 5.7. If the defining polynomial in Proposition 5.5 is classically homogeneous, then it defines a projective hypersurface $X^{\prime} \subseteq \mathbb{P}^{n-1}$ and the following statements are equivalent.
(i) X^{\prime} is rational.
(ii) $\mathrm{Cl}\left(X^{\prime}\right)$ is finitely generated.
(iii) Condition 5.5 (i) or (ii) holds.

Corollary 5.8. Let $R\left(A, P_{0}\right)$ be of Type 2. Then $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$ is rational if and only if one of the following conditions holds:
(i) We have $\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{j}\right)=1$ for all $0 \leq i<j \leq r$, in other words, $R\left(A, P_{0}\right)$ is factorial.
(ii) There are $0 \leq i<j \leq r$ with $\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{j}\right)>1$ and $\operatorname{gcd}\left(\mathfrak{l}_{u}, \mathfrak{l}_{v}\right)=1$ whenever $v \notin\{i, j\}$.
(iii) There are $0 \leq i<j<k \leq r$ with $\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{j}\right)=\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{k}\right)=\operatorname{gcd}\left(\mathfrak{l}_{j}, \mathfrak{l}_{k}\right)=2$ and $\operatorname{gcd}\left(\mathfrak{l}_{u}, \mathfrak{l}_{v}\right)=1$ whenever $v \notin\{i, j, k\}$.

Lemma 5.9. Let A, P_{0} be defining data of Type 2, enhance A to A^{\prime} by attaching a further column and P_{0} to P_{0}^{\prime} by attaching l_{r+1} to l_{0}, \ldots, l_{r}. If $\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{r+1}\right)=1$ holds for $i=0, \ldots, r$, then we have $g(Y)=g\left(Y^{\prime}\right)$ for the curves associated with $R(A, P)$ and $R\left(A^{\prime}, P_{0}^{\prime}\right)$ respectively.

Proof. Denote the numbers arising from P^{\prime} in the sense of Definition 5.2 by $\mathfrak{l}_{i}^{\prime}, \mathfrak{l}^{\prime}$ etc. Then we have

$$
\begin{gathered}
\overline{\mathfrak{l}}^{\prime}=\overline{\mathfrak{l}}_{r+1}, \quad b^{\prime}(i)=\operatorname{gcd}\left(\overline{\mathfrak{l}}, \overline{\mathfrak{l}}^{\prime} / \overline{\mathfrak{l}}_{j} ; j \neq i\right)=b(i), \quad i=0, \ldots, r, \\
b(r+1)=\operatorname{gcd}\left(\overline{\mathfrak{l}}^{\prime} / \overline{\mathfrak{l}}_{0}, \ldots, \overline{\mathfrak{l}}^{\prime} / \overline{\mathfrak{l}}_{r}\right)=\mathfrak{l}_{r+1} .
\end{gathered}
$$

Plugging these identities into the genus formula of Theorem 5.3, we directly obtain $g\left(Y^{\prime}\right)=g(Y)$.

Lemma 5.10. Let $R\left(A, P_{0}\right)$ be of Type 2 and assume that the curve Y associated with $R(A, P)$ is of genus zero. Then there are $0 \leq i \leq j \leq k \leq r$ with $\operatorname{gcd}\left(\mathfrak{l}_{u}, \mathfrak{l}_{v}\right)=1$ whenever $v \notin\{i, j, k\}$.
Proof. According to Theorem 5.3, the fact that the curve Y associated with $R(A, P)$ is of genus zero implies

$$
\sum_{i=0}^{r} \frac{b(i)}{\mathfrak{l}_{i}}=(r-1)+\frac{2 \overline{\mathfrak{l}}}{\mathfrak{l}_{0} \cdots \mathfrak{l}_{r}}>r-1
$$

As $b(i)$ divides \mathfrak{l}_{i}, we see that $b(i) \neq \mathfrak{l}_{i}$ can happen at most three times. Moreover, $b(i)=\mathfrak{l}_{i}$ is equivalent to $\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{j}\right)=1$ for all $j \neq i$.

Proof of Corollary 5.8. We may assume that the indices i, j and k of Lemma 5.10 are 0,1 and 2 . Then Lemma 5.9 says that \bar{X} is rational if and only if the trinomial hypersurface defined by the exponent vectors l_{0}, l_{1}, l_{2} is rational. Thus, Proposition 5.5 gives the assertion.

Corollary 5.11. Let $R\left(A, P_{0}\right)$ be a platonic ring of Type 2 . Then $\bar{X}=$ Spec $R\left(A, P_{0}\right)$ is rational.

Remark 5.12. It may happen that for a rational T-variety X of complexity one, the total coordinate space \bar{X} is rational, but the total coordinate space of \bar{X} not any more. For instance consider

$$
X_{3}:=V\left(T_{1}^{4}+T_{2}^{4}+T_{3}^{4}\right) \subseteq \mathbb{C}^{3}
$$

Then, according to Proposition 5.5, the surface X_{3} is not rational. Moreover, X_{3} is the total coordinate space of an affine rational \mathbb{C}^{*}-surface X_{2} with defining matrix

$$
P_{2}=\left[\begin{array}{lll}
-4 & 4 & 0 \\
-4 & 0 & 4 \\
-3 & 1 & 1
\end{array}\right] .
$$

The divisor class group of X_{2} is $\mathrm{Cl}\left(X_{2}\right)=\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$ and the $\mathrm{Cl}\left(X_{2}\right)$-grading of the Cox ring $\mathcal{R}\left(X_{2}\right)=\mathbb{C}\left[T_{1}, T_{2}, T_{3}\right] /\left\langle T_{1}^{4}+T_{2}^{4}+T_{3}^{4}\right\rangle$ is given by

$$
\operatorname{deg}\left(T_{1}\right)=(\overline{1}, \overline{1}), \quad \operatorname{deg}\left(T_{2}\right)=(\overline{1}, \overline{2}), \quad \operatorname{deg}\left(T_{3}\right)=(\overline{2}, \overline{1})
$$

For an equation for X_{2}, compute the degree zero subalgebra of $\mathcal{R}\left(X_{2}\right)$: it has three generators S_{1}, S_{2}, S_{3} and $S_{1}^{3}+S_{2}^{3}+S_{3}^{4}$ as defining relation. Thus,

$$
X_{2} \cong V\left(S_{1}^{3}+S_{2}^{3}+S_{3}^{4}\right) \subseteq \mathbb{C}^{3}
$$

To obtain a rational affine \mathbb{C}^{*}-surface having X_{2} as its total coordinate space, we take X_{1}, defined by

$$
P_{1}:=\left[\begin{array}{lll}
-3 & 3 & 0 \\
-3 & 0 & 4 \\
-2 & 1 & 1
\end{array}\right] .
$$

The divisor class group of X_{1} is $\mathrm{Cl}\left(X_{1}\right)=\mathbb{Z} / 3 \mathbb{Z}$ and the $\mathrm{Cl}\left(X_{1}\right)$-grading of the Cox ring $\mathcal{R}\left(X_{1}\right)=\mathbb{C}\left[S_{1}, S_{2}, S_{3}\right] /\left\langle S_{1}^{3}+S_{2}^{3}+S_{3}^{4}\right\rangle$ is given by

$$
\operatorname{deg}\left(T_{1}\right)=\overline{1}, \quad \operatorname{deg}\left(T_{2}\right)=\overline{2}, \quad \operatorname{deg}\left(T_{3}\right)=\overline{0}
$$

We have constructed a chain of total coordinate spaces $X_{3} \rightarrow X_{2} \rightarrow X_{1}$, where X_{1} is a rational affine \mathbb{C}^{*}-surface, X_{2} is rational and X_{3} not.

Finally, we determine the factor group of the maximal quasitorus by its unit component acting on a given trinomial hypersurface; the proof is a direct consequence of the subsequent lemma.

Proposition 5.13. Let $R(A, P)$ be any ring of Type 2, where $r=2$. Then, for the quasitorus H_{0} acting on the corresponding trinomial hypersurface

$$
\bar{X} \cong V\left(T_{01}^{l_{01}} \cdots T_{0 n_{0}}^{l_{0 n_{0}}}+T_{11}^{l_{11}} \cdots T_{1 n_{1}}^{l_{1 n_{1}}}+T_{21}^{l_{21}} \cdots T_{2 n_{2}}^{l_{2 n_{2}}}\right) \subseteq \mathbb{C}^{n}
$$

the factor group H_{0} / H_{0}^{0} by the unit component $H_{0}^{0} \subseteq H_{0}$ is isomorphic to the product of cyclic groups $C(\mathfrak{l}) \times C\left(\mathfrak{l l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}\right)$.

Lemma 5.14. Consider a matrix P_{0} with $m=0$ and $r=2$ as in Type 2 of Construction 2.2:

$$
P_{0}=\left[\begin{array}{rrr}
-l_{0} & l_{1} & 0 \\
-l_{0} & 0 & l_{2}
\end{array}\right]
$$

As earlier, set $\mathfrak{l}_{i}=\operatorname{gcd}\left(l_{i 1}, \ldots, l_{n_{i}}\right)$. Then, with $\mathfrak{l}_{i j}=\operatorname{gcd}\left(\mathfrak{l}_{i}, \mathfrak{l}_{j}\right)$ and $\mathfrak{l}=$ $\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}, \mathfrak{l}_{2}\right)$, we obtain

$$
K_{0}^{\text {tors }}=\left(\mathbb{Z}^{n} / \operatorname{im}\left(P_{0}^{*}\right)\right)^{\text {tors }} \cong C(\mathfrak{l}) \times C\left(\mathfrak{l l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}\right)
$$

Proof. Suitable elementary column operations to P_{0} transform the entries l_{i} to $\left(\mathfrak{l}_{i}, 0, \ldots, 0\right)$. Thus, $K_{0}^{\text {tors }} \cong\left(\mathbb{Z}^{3} / \operatorname{im}\left(P_{1}^{*}\right)\right)^{\text {tors }}$ holds with the 2×3 matrix

$$
P_{1}:=\left[\begin{array}{ccc}
-\mathfrak{l}_{0} & \mathfrak{l}_{1} & 0 \\
-\mathfrak{l}_{0} & 0 & \mathfrak{l}_{2}
\end{array}\right] .
$$

The determinantal divisors of P_{0} are $\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}, \mathfrak{l}_{2}\right)$ and $\operatorname{gcd}\left(\mathfrak{l}_{0} \mathfrak{l}_{1}, \mathfrak{l}_{0} \mathfrak{l}_{2}, \mathfrak{l}_{1} \mathfrak{l}_{2}\right)$. Thus, the invariant factors of P_{0} are \mathfrak{l} and $\mathfrak{l l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}$; see 24].

6. Proof of Theorems 2 and 3

We are ready to prove our first main results. The proof of Theorem 2 will be in fact constructive in the sense that it allows to compute the defining equations of the Cox ring in every iteration step; see Proposition 6.6.
Remark 6.1. Let $R(A, P)$ be a ring of Type 2. Applying suitable admissible operations, one achieves that P is ordered in the sense that $l_{i 1} \geq \ldots \geq l_{i n_{i}}$ for all $i=0, \ldots, r$ and $l_{01} \geq \ldots \geq l_{r 1}$ hold. For an ordered P, the $\operatorname{ring} R(A, P)$ is platonic if and only if $\left(l_{01}, l_{11}, l_{21}\right)$ is a platonic triple and $l_{i 1}=1$ holds for $i \geq 3$.
Definition 6.2. The leading platonic triple of a ring $R(A, P)$ of Type 2 is the triple $\left(l_{01}, l_{11}, l_{21}\right)$ obtained after ordering P.

Lemma 6.3. Let $R\left(A, P_{0}\right)$ be of Type 2 and platonic such that $l_{i 1} \geq \ldots \geq l_{\text {in }}$ holds for all i and $l_{i 1}=1$ for $i \geq 3$. Moreover, assume $\operatorname{gcd}\left(\mathfrak{l}_{1}, \mathfrak{l}_{2}\right)=\mathfrak{l}$. Then, with $K_{0}=\mathbb{Z}^{n+m} / \operatorname{im}\left(P_{0}^{*}\right)$, the kernel of $\mathbb{Z}^{n+m} \rightarrow K_{0} / K_{0}^{\text {tors }}$ is generated by the rows of the matrix

$$
P_{1}:=\left[\begin{array}{cccccccc}
\frac{-1}{\operatorname{gcd}\left(l_{0}, l_{1}\right)} l_{0} & \frac{1}{\operatorname{gcd}\left(l_{0}, l_{1}\right)} l_{1} & 0 & \ldots & 0 & 0 & \ldots & 0 \\
\frac{-1}{\operatorname{gcd}\left(l_{0}, l_{2}\right)} l_{0} & 0 & \frac{1}{\operatorname{gcd}\left(l_{0},,_{2}\right)} l_{2} & 0 & & 0 & & \\
-l_{0} & 0 & & \mathbf{1} & & 0 & \vdots & \\
\vdots & & & \vdots & \ddots & \vdots & & \\
-l_{0} & 0 & \ldots & 0 & & \mathbf{1} & 0 & \ldots
\end{array}\right],
$$

where, as before, the symbols $\mathbf{1}$ indicate vectors of length n_{i} with all entries equal to one.
Proof. Observe that the rows of P_{0} generate a sublattice of finite index in the row lattice P_{1}. Thus, we have a commutative diagram

It suffices to show, that $\mathbb{Z}^{n+m} / \operatorname{im}\left(P_{1}^{*}\right)$ is torsion free. Applying suitable elementary column operations to P_{1}, reduces the problem to showing that for the 2×3 matrix

$$
\left[\begin{array}{ccc}
\frac{\mathfrak{l}_{0}}{\operatorname{gcd}\left(\mathrm{I}_{0}, \mathfrak{l}_{1}\right)} & \frac{\mathfrak{l}_{1}}{\operatorname{gcd}\left(\mathrm{l}_{0}, \mathrm{I}_{1}\right)} & 0 \\
\frac{\mathrm{l}_{0}}{\operatorname{gcd}\left(\mathrm{l}_{0}, \mathrm{I}_{2}\right)} & 0 & \frac{\mathfrak{l}_{2}}{\operatorname{gcd}\left(\mathrm{l}_{0}, \mathfrak{l}_{1}\right)}
\end{array}\right],
$$

all determinantal divisors equal one. The entries of the above matrix are coprime and its 2×2 minors are

$$
\frac{\mathfrak{l}_{0} \mathfrak{l}_{2}}{\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right) \operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{2}\right)}, \quad \frac{\mathfrak{l}_{1} \mathfrak{l}_{2}}{\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right) \operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{2}\right)}, \quad \frac{\mathfrak{l}_{0} \mathfrak{l}_{1}}{\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right) \operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{2}\right)} .
$$

up to sign. By assumption, we have $\operatorname{gcd}\left(\mathfrak{l}_{1}, \mathfrak{l}_{2}\right)=\mathfrak{l}$. Consequently, we obtain

$$
\operatorname{gcd}\left(\mathfrak{l}_{0} \mathfrak{l}_{2}, \mathfrak{l}_{0} \mathfrak{l}_{1}, \mathfrak{l}_{1} \mathfrak{l}_{2}\right)=\operatorname{gcd}\left(\mathfrak{l}_{0} \mathfrak{l}, \mathfrak{l}_{1} \mathfrak{l}_{2}\right)=\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right) \operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{2}\right)
$$

and therefore the second determinantal divisor equals one. As remarked, the first one equals one as well and the assertion follows.

Lemma 6.4. Let $R\left(A, P_{0}\right)$ be of Type 2 and $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$. Then, for any generator T_{01} of $R\left(A, P_{0}\right)$, we have

$$
V\left(\bar{X}, T_{01}\right) \cong V\left(T_{01}\right) \cap V\left(T_{1}^{l_{1}}-T_{i}^{l_{i}} ; i=2, \ldots, r\right) \subseteq \mathbb{C}^{n+m}
$$

In particular, the number of irreducible components of $V\left(\bar{X}, T_{01}\right)$ equals the product of the invariant factors of the matrix

$$
\left[\begin{array}{cccc}
-\mathfrak{l}_{1} & \mathfrak{l}_{2} & & 0 \\
\vdots & & \ddots & \\
-\mathfrak{l}_{1} & 0 & & \mathfrak{l}_{r}
\end{array}\right] .
$$

Proof. First observe that the ideal $\left\langle T_{01}, g_{0}, \ldots, g_{r-2}\right\rangle \subseteq \mathbb{C}\left[T_{i j}, S_{k}\right]$ is generated by binomials which can be brought into the above form by scaling the variables appropriately. Now consider the homomorphism of tori

$$
\pi: \mathbb{T}^{n_{1}+\ldots+n_{r}} \rightarrow \mathbb{T}^{r-1}, \quad\left(t_{1}, \ldots, t_{r}\right) \mapsto\left(\frac{t_{2}^{l_{2}}}{t_{1}^{l_{1}}}, \ldots, \frac{t_{r}^{l_{r}}}{t_{1}^{l_{1}}}\right)
$$

Then the number of connected components of $\operatorname{ker}(\pi)$ equals the product of the invariant factors of the above matrix. Moreover, $\mathbb{T}^{n_{0}-1} \times \operatorname{ker}(\pi) \times \mathbb{T}^{m}$ is isomorphic to $V\left(\bar{X}, T_{01}\right) \cap \mathbb{T}^{n+m}$. Finally, one directly checks that $V\left(\bar{X}, T_{01}\right)$ has no further irreducible components outside \mathbb{T}^{n+m}.

Lemma 6.5. Let $R\left(A, P_{0}\right)$ be of Type 2 and platonic. Assume that P_{0} is ordered. Then the number $c(i)$ of irreducible components of $V\left(\bar{X}, T_{i j}\right)$ is given as

i	0	1	2	≥ 3
$c(i)$	$\operatorname{gcd}\left(\mathfrak{l}_{1}, \mathfrak{l}_{2}\right)$	$\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{2}\right)$	$\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right)$	$\mathfrak{l}^{2} \mathfrak{l}_{01} \mathfrak{l}_{02} \mathfrak{l}_{12}$

Proof. Suitable admissible operations turn $T_{i j}$ to T_{01}. Then the number of components is computed via Lemma 6.4.

Proposition 6.6. Let $R\left(A, P_{0}\right)$ be of Type 2, platonic and non-factorial. Assume that P_{0} is ordered and let P_{1} be as in Lemma 6.3. Set

$$
n_{i, 1}, \ldots, n_{i, c(i)}:=n_{i}, \quad l_{i j, 1}, \ldots, l_{i j, c(i)}:=\operatorname{gcd}\left(\left(P_{1}\right)_{1, i j}, \ldots,\left(P_{1}\right)_{r, i j}\right)
$$

The $l_{i, \alpha}:=\left(l_{i 1, \alpha}, \ldots, l_{i n_{i}, \alpha}\right) \in \mathbb{Z}^{n_{i, \alpha}}$ build up an $\left(n^{\prime}+m\right) \times\left(r^{\prime}+s\right)$ matrix P_{0}^{\prime}, where $n^{\prime}:=c(0) n_{0}+\ldots+c(r) n_{r}$. With a suitable matrix A^{\prime}, the following holds.
(i) The affine variety $\operatorname{Spec} R\left(A^{\prime}, P_{0}^{\prime}\right)$ is the total coordinate space of the affine variety $\operatorname{Spec} R\left(A, P_{0}\right)$,
(ii) The leading platonic triple (l.p.t.) of $R\left(A^{\prime}, P^{\prime}\right)$ can be expressed in terms of that of $R(A, P)$ as

l.p.t. of $R(A, P)$	l.p.t. of $R\left(A^{\prime}, P^{\prime}\right)$
$(4,3,2)$	$(3,3,2)$
$(3,3,2)$	$(2,2,2)$
$(y, 2,2)$	$(z, z, 1)$ or $\left(\frac{y}{2}, 2,2\right)$
$(x, y, 1)$	$\left(\frac{x}{\operatorname{gcd}\left(\mathrm{I}_{0}, \mathrm{I}_{1}\right)}, \frac{y}{\operatorname{gcd}\left(\mathrm{I}_{0}, \mathrm{I}_{1}\right)}, 1\right)$

Proof. We compute the Cox ring of $\bar{X}=\operatorname{Spec} R\left(A, P_{0}\right)$ according to [2, Thm. 4.4.1.6]; use Corollary 1.9 [19] to obtain the statement given there also in the affine case. That means that we have to figure out which invariant divisors are identified under the rational map onto the curve Y with function field $\mathbb{C}(\bar{X})^{H_{0}^{0}}$ and we have to determine the orders of isotropy groups of invariant divisors.

Let P_{1} be as in Lemma 6.3. Then the torus H_{0}^{0} acts diagonally on \mathbb{C}^{n+m} with weights provided by the projection $Q_{1}: \mathbb{Z}^{n+m} \rightarrow K_{0}^{0}$, where $K_{0}^{0}=\mathbb{Z}^{n+m} / \operatorname{im}\left(P_{1}^{*}\right)$ equals the character group of H_{0}^{0}. Consider the commutative diagram

where $\bar{X}_{0} \subseteq \bar{X}$ and $\mathbb{C}_{0}^{n+m} \subseteq \mathbb{C}^{n+m}$ denote the open H_{0}^{0}-invariant subsets obtained by removing all coordinate hyperplanes $V\left(S_{k}\right)$ and all intersections $V\left(T_{i_{1} j_{1}}, T_{i_{2} j_{2}}\right)$ with $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$ from \mathbb{C}^{n+m}. Moreover, the geometric quotient spaces in the middle row are possibly non-separated and the maps to the lower row are separation morphisms.

We determine the orders of isotropy groups. Every point in \mathbb{T}^{n+m} has trivial H_{0}^{0}-isotropy. Thus, we only have to look what happens on the sets $V\left(T_{i j}\right) \cap \mathbb{C}_{0}^{n+m}$. According to [2, Prop. 2.1.4.2], the order of isotropy group of H_{0}^{0} at any point $x \in V\left(T_{i j}\right) \cap \mathbb{C}_{0}^{n+m}$ equals the greatest common divisor of the entries of the $i j$-th column of P_{1} :

$$
\left|H_{0, x}^{0}\right|=l_{i j}^{\prime}:=\operatorname{gcd}\left(\left(P_{1}\right)_{1, i j}, \ldots,\left(P_{1}\right)_{r, i j}\right) \quad \text { for all } x \in V\left(T_{i j}\right) \cap \mathbb{C}_{0}^{n+m}
$$

Now we figure out which H_{0}^{0}-invariant divisors of \bar{X}_{0} are identified under the $\operatorname{map} \bar{X}_{0} \rightarrow Y$. Lemma 6.5 provides us explicit numbers $c(0), \ldots, c(r)$ such that for fixed i and $j=1, \ldots, n_{i}$, we have the decomposition into prime divisors

$$
V\left(\bar{X}, T_{i j}\right)=D_{i j, 1} \cup \ldots \cup D_{i j, c(i)},
$$

in particular, the number $c(i)$ does not depend on the choice of j. The components $D_{i j, 1}, \ldots, D_{i j, c(i)}$ lie in the common affine chart $W_{0} \subseteq \bar{X}_{0}$ obtained by localizing at all $T_{i^{\prime} j^{\prime}}$ different from $T_{i j}$. Their images thus lie in the affine chart $W_{0} / H_{0}^{0} \subseteq$ \bar{X}_{0} / H_{0}^{0}. Consequently, the $D_{i j, 1}, \ldots, D_{i j, c(i)}$ have pairwise disjoint images under the composition $\bar{X}_{0} \rightarrow \bar{X}_{0} / H_{0}^{0} \rightarrow Y$.

On the other hand, $V\left(\bar{X}, T_{i j}\right)$ and $V\left(\bar{X}, T_{i j^{\prime}}\right)$ are identified isomorphically under the separation map $\bar{X}_{0} / H_{0}^{0} \rightarrow Y$ Thus, suitably numbering, we obtain for every i, and $\alpha=1, \ldots, c(i)$ a chain

$$
D_{i 1, \alpha}, \ldots, D_{i n_{i}, \alpha}
$$

of divisors identified under the morphism $\bar{X}_{0} / H_{0}^{0} \rightarrow Y$. The order of isotropy for any $x \in D_{i j, \alpha}$ equals $l_{i j}^{\prime}$. Now, using [2, Thm. 4.4.1.6], we can compute the defining relations of the Cox ring of \bar{X}, which establishes the two assertions.

Remark 6.7. Let $R\left(A, P_{0}\right)$ be a non factorial platonic ring with ordered P_{0} and leading platonic triple $\left(l_{01}, l_{11}, l_{21}\right)$. Denote by $R\left(A^{\prime}, P_{0}^{\prime}\right)$ the Cox ring of Spec $R\left(A, P_{0}\right)$. Then the exponents of the defining relations of $R\left(A^{\prime}, P_{0}^{\prime}\right)$ are listed in the following table, where $\mathbf{1}_{n_{1}}$ denotes the vector of length n_{i} with all entries equal to one.

leading plat. triple	exponents in $R\left(A^{\prime}, P^{\prime}\right)$
$(4,3,2)$	$l_{1}, l_{1}, l_{0} / 2, \mathbf{1}_{n_{2}}$ and $2 \times \mathbf{1}_{n_{i}}$ for $i \geq 3$.
$(3,3,2)$	$l_{2}, l_{2}, l_{2}, \mathbf{1}_{n_{0}}, \mathbf{1}_{n_{1}}$ and $3 \times \mathbf{1}_{n_{i}}$ for $i \geq 3$.
$(x, 2,2)$ and $\mathfrak{l}=2$	$l_{0} / 2, l_{0} / 2,2 \times \mathbf{1}_{n_{1}}$ and $\mathbf{1}_{n_{2}}$, and $4 \times \mathbf{1}_{n_{i}}$ for $i \geq 3$.
$(x, 2,2)$ and $2 \nmid \mathfrak{l}_{0}$	$l_{0}, l_{0}, \mathbf{1}_{n_{1}}, \mathbf{1}_{n_{2}}$ and $2 \times \mathbf{1}_{n_{i}}$ for $i \geq 3$.
$(x, 2,2)$ and $\mathfrak{l}_{2}=1$	$l_{0} / 2, l_{2}, l_{2}, \mathbf{1}_{n_{1}}$ and $2 \times \mathbf{1}_{n_{i}}$ for $i \geq 3$.
$(x, y, 1)$	$\frac{l_{0}}{\operatorname{gcd}\left(\mathfrak{l}_{0}, \mathfrak{l}_{1}\right)}, \frac{l_{1}}{\operatorname{gcd}\left(l_{0}, \mathfrak{l}_{1}\right)}, \operatorname{gcd}\left(\mathfrak{l}_{0}, l_{1}\right) \times \mathbf{1}_{n_{i}}$ for $i \geq 2$.

Proof of Theorem 圆, We start with a rational, normal, affine, log terminal X_{1} of complexity one. According to Theorem [1] the Cox ring R_{2} of X_{1} is a platonic ring. If the greatest common divisors of pairs $\mathfrak{l}_{i}, \mathfrak{l}_{j}$ of R_{2} all equal one, then R_{2} is factorial by [17, Thm. 1.1] and we are done. If not, then we pass to the Cox $\operatorname{ring} R_{3}$ of $X_{2}:=\operatorname{Spec} R_{2}$ and so on. Proposition 6.6 ensures that this procedure terminates with a factorial platonic ring R_{p}.

Proof of Theorem 3. Let X_{1} be any rational, normal, affine variety with a torus action of complexity one of Type 2 and at most log terminal singularities. Then Theorem 2 provides us with a chain of quotients

$$
X_{p} \xrightarrow{/ / H_{p-1}} X_{p-1} \xrightarrow{/ / H_{p-2}} \quad \ldots \quad \xrightarrow{/ / H_{3}} X_{3} \xrightarrow{/ / H_{2}} X_{2} \xrightarrow{/ / H_{1}} X_{1}
$$

such that $X_{i}=\operatorname{Spec}\left(R_{i}\right)$ holds with a platonic ring R_{i} when $i \geq 2$, the ring R_{p} is factorial and each $X_{i+1} \rightarrow X_{i}$ is the total coordinate space. The idea is to construct stepwise solvable linear algebraic groups $G_{i} \subseteq \operatorname{Aut}\left(X_{i+1}\right)$ acting algebraically on X_{i+1} such that the unit component $G_{i}^{0} \subseteq G_{i}$ is a torus, G_{i} contains H_{i} as a normal subgroup, $G_{i-1}=G_{i} / H_{i}$ holds and we have $G_{1}=H_{1}$.

Start with $G_{1}:=H_{1}$, acting on X_{2}. According to [2, Thm. 2.4.3.2], there exists an (effective) action of a torus \mathcal{G}_{1} on X_{3} lifting the action of G_{1}^{0} on X_{2} and commuting with the action of H_{2} on X_{3}. Moreover, 3, Thm. 5.1] provides us with an exact sequence of groups

$$
1 \longrightarrow H_{2} \longrightarrow \operatorname{Aut}\left(X_{3}, H_{2}\right) \xrightarrow{\pi} \operatorname{Aut}\left(X_{2}\right) \longrightarrow 1
$$

where $\operatorname{Aut}\left(X_{3}, H_{2}\right)$ denotes the group of automorphisms of X_{3} normalizing the quasitorus H_{2}. Set $G_{2}:=\pi^{-1}\left(G_{1}\right)$. Then $H_{2}^{0} \mathcal{G}_{1}$, as a factor group of the torus $H_{2}^{0} \times \mathcal{G}_{1}$ by a closed subgroup, is an algebraic torus and it is of finite index in G_{2}. Thus, G_{2} is an affine algebraic group with $G_{2}^{0}=H_{2}^{0} \mathcal{G}_{1}$ being a torus. By construction, $H_{2} \subseteq G_{2}$ is the kernel of $\alpha_{1}:=\left.\pi\right|_{G_{2}}$ and hence a normal subgroup. Moreover, G_{2} is solvable and acts algebraically on X_{3}. Iterating this procedure gives a sequence

$$
G_{p-1} \xrightarrow{\alpha_{p-2}} G_{p-2} \xrightarrow{\alpha_{p-3}} \quad \ldots \quad \xrightarrow{\alpha_{2}} G_{2} \xrightarrow{\alpha_{1}} G_{1} \xrightarrow{\alpha_{0}} 1
$$

of group epimorphisms, where, as wanted, G_{i} is a solvable reductive group acting algebraically on X_{i+1} such that $H_{i}=\operatorname{ker}\left(\alpha_{i-1}\right)$ is the characteristic quasitorus of X_{i}. In particular, the group $G:=G_{p-1} \subseteq \operatorname{Aut}\left(X_{p}\right)$ satisfies the first assertion of the theorem.

We turn to the second assertion. From [2, Prop. 1.6.1.6], we infer that $G_{1}=H_{1}$ acts freely on the preimage $U_{2} \subseteq X_{2}$ of the set of smooth points $U_{1} \subseteq X_{1}$ and moreover, the complement $X_{2} \backslash U_{2}$ is of codimension at least two in X_{2}. Let $U_{3} \subseteq X_{3}$ be the preimage of $U_{2} \subseteq X_{2}$. Again, the complement of U_{3} is of codimension at least two in X_{3} and, as U_{2} consists of smooth points of X_{2}, the quasitorus H_{2} acts freely on U_{3}. Because of $G_{2} / H_{2}=G_{1}$, we conclude that U_{3} is G_{2}-invariant and G_{2} acts freely on U_{2}. Repeating this procedure, we end up with an open set $U_{p} \subseteq X_{p}$ having complement of codimension at least two such that G acts freely on U_{p}. Thus, G acts strongly stably on X_{p}. Now consider

$$
G=\mathcal{D}_{0} \supseteq \mathcal{D}_{1} \supseteq \ldots \supseteq \mathcal{D}_{p-2} \supseteq \mathcal{D}_{p-1}=1, \quad \mathcal{D}_{i}:=\operatorname{ker}\left(\alpha_{i} \circ \ldots \circ \alpha_{p-2}\right)
$$

Then we have $X_{i}=X_{p} / / \mathcal{D}_{i-1}$ and $H_{i}=\mathcal{D}_{i-1} / \mathcal{D}_{i}$. Moreover for each \mathcal{D}_{i}, its action on X_{p} is strongly stable, as remarked before, and X_{p} is G-factorial because it is factorial. Using [3, Prop. 3.5], we obtain a commutative diagram

where the left downward map is a total coordinate space. As $\mathcal{D}_{i} / \mathcal{D}_{i+1}=H_{i+1}$ is abelian, $\left[\mathcal{D}_{i}, \mathcal{D}_{i}\right]$ is contained in \mathcal{D}_{i+1} and we have the horizontal morphism β. Since the right hand side is a total coordinate space as well, we infer from [2, Sec. 1.6.4] that β is an isomorphism. This implies $\mathcal{D}_{i+1}=\left[\mathcal{D}_{i}, \mathcal{D}_{i}\right]$, proving the second assertion.

7. Compound du Val singularities

Between the Gorenstein terminal and canonical threefold singularities lie the compound du Val singularities, introduced by Miles Reid in [26, see also [27, 23, 21, We discuss compound du Val singularities in the context of T-varieties of complexity one and provide first constraints on the defining data for affine threefolds, preparing the proof of our classification results.

Definition 7.1. [26, Def. 2.1], [21, Thm. 5.34, Cor. 2.3.2]. A normal, canonical, Gorenstein threefold singularity $x \in X$ is called compound $d u$ Val, if one of the following equivalent criteria is satisfied:
(i) For a general hypersurface $Y \subseteq X$ with $x \in Y$, the point x is a du Val surface singularity of Y.
(ii) Near x, the threefold X is analytically isomorphic to a hypersurface of the following shape

$$
V\left(f\left(T_{1}, T_{2}, T_{3}\right)+g\left(T_{1}, T_{2}, T_{3}, T_{4}\right) T_{4}\right) \subseteq \mathbb{C}^{4}
$$

where f is a defining polynomial for a du Val surface singularity in \mathbb{C}^{3} and g is any polynomial in $T_{1}, T_{2}, T_{3}, T_{4}$.
(iii) For every resolution $\varphi: X^{\prime} \rightarrow X$ of singularities and every irreducible exceptional divisor $E \subseteq \varphi^{-1}(x)$, the discrepancy of E is greater than zero.
(iv) There is a resolution $\varphi: X^{\prime} \rightarrow X$ of singularities such that every irreducible exceptional divisor $E \subseteq \varphi^{-1}(x)$ is of discrepancy greater than zero.

For an affine toric threefold X, Condition 7.1 (iv) means the following: X is defined by the cone over $\triangle \times\{1\}$ with a hollow lattice polytope $\triangle \subseteq \mathbb{Q}^{2}$, where hollow means that \triangle has no lattice points in its interior. Based on this characterization, one obtains the list of toric compound du Val singularities provided in [8]:

Proposition 7.2. Let X be an affine toric variety with a compound du Val singularity. Then $X \cong X(\sigma)$ holds with a cone $\sigma \subseteq \mathbb{Q}^{3}$ generated by the columns of one of the following matrices
(1) $\left[\begin{array}{lll}0 & 0 & k \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], k \in \mathbb{Z}_{\geq 2}$,
(2) $\left[\begin{array}{cccc}0 & 0 & k_{1} & k_{2} \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1\end{array}\right], k_{1}, k_{2} \in \mathbb{Z}_{\geq 1}$,
(3) $\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 1 & 1\end{array}\right]$.

Proof. After removing the third row from the matrices, we find in their columns the vertices of the hollow polytopes $\triangle \subseteq \mathbb{Q}^{2}$; see [28].

We turn to affine T-varieties X of complexity one. As the toric case is settled, we can concentrate on the varieties $X=X(A, P)$ of Type 2. The basic tool is the anticanonical complex A_{X}^{c}, described in Proposition 3.8. The following statement specifies a bit more.

Proposition 7.3. Let $X=X(A, P)$ be an affine Gorenstein, log-terminal threefold of Type 2 such that P is in the form of Proposition 4.3. Consider the intersections

$$
\partial A_{X}^{c}(\lambda):=\partial A_{X}^{c} \cap \lambda, \quad \partial A_{X}^{c}\left(\lambda_{i}\right):=\partial A_{X}^{c} \cap \lambda_{i}, \quad \partial A_{X}^{c}\left(\lambda_{i}, \tau\right):=\partial A_{X}^{c}\left(\lambda_{i}\right) \cap \tau,
$$

where ∂A_{X}^{c} is the relative boundary of the anticanonical complex, $\lambda \subseteq \operatorname{trop}(X)$ the lineality part, $\lambda_{0}, \ldots, \lambda_{r} \subseteq \operatorname{trop}(X)$ are the leaves and τ is any P-elementary cone.
(i) Let x_{1}, \ldots, x_{r+2} be the standard coordinates on the column space \mathbb{Q}^{r+2} of P and set $x_{0}:=-x_{1}-\ldots-x_{r}$. Then x_{i}, x_{r+1}, x_{r+2} are linear coordinates on the three-dimensional vector space $\operatorname{Lin}_{\mathbb{Q}}\left(\lambda_{i}\right)$ and we have

$$
\partial A_{X}^{c}\left(\lambda_{i}\right)=A_{X}^{c} \cap \lambda_{i} \cap \mathcal{H}_{i} \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(\lambda_{i}\right)
$$

with the plane $\mathcal{H}_{i}:=V\left(\zeta_{X} x_{r+2}+\mu_{i} x_{i}-\imath_{X}\right) \subseteq \operatorname{Lin}_{\mathbb{Q}}\left(\lambda_{i}\right)$, where μ_{i} is the integer defined in Remark 4.5. In particular, for fixed i, the columns $v_{i j}$ of P lie on the half plane $\lambda_{i} \cap \mathcal{H}_{i}$.
(ii) The set $A_{X}^{c} \cap \tau$ is a two-dimensional and $\partial A_{X}^{c} \cap \tau$ a one-dimensional polyhedral complex. Furthermore, $\partial A_{X}^{c}\left(\lambda_{i}, \tau\right)$ is a line segment.

Proof. We show (i). Let $\sigma \subseteq \mathbb{Q}^{r+2}$ be the cone over the columns of P. Then the set $\partial A_{X}^{c}\left(\lambda_{i}\right)$ equals $\partial A_{X}^{c} \cap \sigma \cap \lambda_{i}$. By the assumption on P, the equation from Proposition 3.8 (ii) gives the assertion.

For (iii), write $\tau=\operatorname{cone}\left(w_{0}, \ldots, w_{r}\right)$ with $w_{i} \in \lambda_{i}$. Observe that $A_{X}^{c} \cap \tau \cap \lambda_{i}$ has the vertices $0, w_{i}, v(\tau)^{\prime}$ and is thus two-dimensional. Only w_{i} and $v(\tau)^{\prime}$ satisfy the equation $\zeta_{X} x_{r+2}+\mu_{i} x_{i}=\imath_{X}$. Thus $A_{X}^{c} \cap \tau$ is two-dimensional and $\partial A_{X}^{c} \cap \tau$ as well as $\partial A_{X}^{c}\left(\lambda_{i}, \tau\right)$ are one-dimensional.

The following figures visualize the situation of Proposition 7.3 for the case $r=2$. The first one shows the leaves λ_{i}, the second one the half planes $\lambda_{i} \cap \mathcal{H}_{i}$, the third one all $A_{X}^{c}\left(\lambda_{i}\right)$ and the last one all $A_{X}^{c}\left(\lambda_{i}, \tau\right)$ for a given P-elementary cone τ.

The following statement shows that the relative boundary ∂A_{X}^{c} of the anticanonical complex replaces the lattice polytope \triangle from the toric setting discussed before.

Proposition 7.4. Let $X=X(A, P)$ be an affine Gorenstein, log-terminal threefold of Type 2. Then X has at most compound du Val singularities if and only if there are no integral points in the relative interior of ∂A_{X}^{c}.
Lemma 7.5. Let $X=X(A, P, \Phi)$, denote by Σ the fan of the minimal toric ambient variety Z of X and let $\sigma \in \Sigma$ be a big cone.
(i) The toric orbit $T_{Z} \cdot z_{\sigma} \subseteq Z$ corresponding to the cone $\sigma \in \Sigma$ is contained in $X \subseteq Z$.
(ii) If $T_{Z} \cdot z_{\sigma} \subseteq X$ contains a singular point of X, then every point of $T_{Z} \cdot z_{\sigma}$ is singular in X.

Proof. We show (i). By the structure of the defining relations g_{i}, the corresponding statement holds for $\bar{X} \subseteq \bar{Z}=\mathbb{C}^{n+m}$. Passing to the quotient by the characteristic quasitorus H gives the assertion.

We turn to (ii). Let $z \in \widehat{X}$ be a point mapping to $T_{Z} \cdot z_{\sigma}$. Using once more the specific shape of the defining relations g_{i}, we see that if the point $z \in \widehat{X}$ is singular in \bar{X}, then every point of $\mathbb{T}^{n+m} \cdot z$ is singular in \bar{X}. Thus, the assertion follows from [2, Cor. 3.3.1.12].

Proof of Proposition 7.4. Since X is Gorenstein and \log terminal, it is canonical. Let Z be the minimal toric ambient variety of X. Recall that Z is the affine toric variety defined by the cone σ over the columns of P and that the toric fixed point $x \in Z$ belongs to X. For any point $x^{\prime} \in X$ different from x, we infer from Lemma 7.5 and [2, 3.4.4.6] that, if x^{\prime} is singular in X, then it belongs to a curve consisting of singular points of X. According to [21, Cor. 5.4], the point x^{\prime} is at most a compund du Val singularity. Thus, X has at most compound du Val singularities if and only if every prime divisor $E \subseteq \varphi^{-1}(x)$ has positive discrepancy; use Condition 7.1(iv). By Proposition 3.2, the latter holds if and only if there are no integral points in $\partial A_{X}^{c} \cap \sigma^{\circ}$, which in turn is the relative interior of ∂A_{X}^{c}.
Definition 7.6. Let the matrix P be of Type 2 and ordered in the sense of Remark 6.1] By the leading block of P, we mean the matrix $\left[v_{01}, \ldots, v_{r 1}\right]$.

Lemma 7.7. Let $X=X(A, P)$ be an affine, Gorenstein, log-terminal threefold of canonical multiplicity one of Type 2.
(i) By admissible operations one achieves that P is ordered in the sense of Remark 6.1, in the form of Corollary [4.6] and the entry \mathfrak{d}_{i} sitting in column $v_{i 1}$ and row number $r+1$ of P satisfies $\mathfrak{d}_{i}=0$ whenever $i \geq 3$.
(ii) In the situation of (i), the leading block of the matrix P is fully determined by the data $\left(l_{01}, l_{11}, l_{21} ; \mathfrak{d}_{0}, \mathfrak{d}_{1}, \mathfrak{d}_{2}\right)$.

Proof. The leading block contains the leading platonic triple $\left(l_{01}, l_{11}, l_{21}\right)$. All other $l_{i 1}$ must be equal to one. Due to Corollary 4.6, the last row of P is determined by these data. Subtracting the \mathfrak{d}_{i}-fold of the i-th from the $r+1$-th row, we obtain $\mathfrak{d}_{i}=0$ for $i \geq 3$. Thus apart from l_{01}, l_{11}, l_{21}, the only free parameters in the leading block are $\mathfrak{d}_{0}, \mathfrak{d}_{1}, \mathfrak{d}_{2}$.

Definition 7.8. In the situation of Lemma 7.7 (i), we call $\left(l_{01}, l_{11}, l_{21} ; \mathfrak{d}_{0}, \mathfrak{d}_{1}, \mathfrak{d}_{2}\right)$ the leading block data of P.

Proposition 7.9. Let $X=X(A, P)$ be an affine Gorenstein log-terminal threefold of Type 2 and canonical multiplicity one in the form of Lemma 7.7. By admissible operations, keeping the form of Lemma [7.7, we achieve that the leading block has one of the following data:
(i) $(5,3,2 ; 0,0,0)$
(ii) $(4,3,2 ; 0,0,0)$
(iii) $(4,3,2 ; 1,0,0)$
(iv) $(3,3,2 ; 0,0,0)$
(v) $(3,3,2 ; 1,0,0)$
(vi) $\left(l_{01}, 2,2 ; 0,0,0\right)$
(vii) $\left(l_{01}, 2,2 ; 1,0,0\right)$
(viii) $\left(l_{01}, 2,2 ; 0,1,0\right)$
(ix) $\left(l_{01}, l_{11}, 1 ; \mathfrak{d}_{0}, 0,0\right)$

Proof. We go through all possible leading platonic triples and explicitly list the admissible operations on P that produce the desired leading block data. First, we modify P by subtracting the i-th row from the last for $i \geq 3$. Then we have

$$
\nu_{01}=1-l_{01}, \quad \nu_{11}=\nu_{21}=1, \quad \nu_{i 1}=\mathfrak{d}_{i}=0, i=3, \ldots, r
$$

In the sequel, by "applying $a=\left(a_{1}, a_{2}, a_{3}\right)$ " we mean performing the following sequence of admissible operations on P : add the a_{1}-fold of the first, the a_{2}-fold of the second and the a_{3}-fold of the last to the penultimate row of P.
Case 1: The leading platonic triple is $(5,3,2)$. We arrive at Case (i) by applying

$$
a=\left(2 \mathfrak{d}_{0}+3 \mathfrak{d}_{1}+5 \mathfrak{d}_{2}, 3 \mathfrak{d}_{0}+5 \mathfrak{d}_{1}+7 \mathfrak{d}_{2},-6 \mathfrak{d}_{0}-10 \mathfrak{d}_{1}-15 \mathfrak{d}_{2}\right) .
$$

Case 2: The leading platonic triple is $(4,3,2)$. If $\mathfrak{d}_{0} \equiv \mathfrak{d}_{2} \bmod 2$ holds, then we arrive at Case (ii) by applying

$$
a=\left(\mathfrak{d}_{0}+\mathfrak{d}_{1}+2 \mathfrak{d}_{2}, \frac{3}{2} \mathfrak{d}_{0}+2 \mathfrak{d}_{1}+\frac{5}{2} \mathfrak{d}_{2},-3 \mathfrak{d}_{0}-4 \mathfrak{d}_{1}-6 \mathfrak{d}_{2}\right) .
$$

If $\mathfrak{d}_{0} \equiv \mathfrak{d}_{2}+1 \bmod 2$ holds, then we arrive at Case (iii) by applying

$$
a=\left(\mathfrak{d}_{0}+\mathfrak{d}_{1}+2 \mathfrak{d}_{2}-1, \frac{3}{2} \mathfrak{d}_{0}+2 \mathfrak{d}_{1}+\frac{5}{2} \mathfrak{d}_{2}-\frac{3}{2},-3 \mathfrak{d}_{0}-4 \mathfrak{d}_{1}-6 \mathfrak{d}_{2}+3\right)
$$

Case 3: The leading platonic triple is $(3,3,2)$. We distinguish the cases $\mathfrak{d}_{0} \equiv \mathfrak{d}_{1}$ $\bmod 3$ and $\mathfrak{d}_{0} \equiv \mathfrak{d}_{1}+1 \bmod 3\left(\right.$ if $\mathfrak{d}_{0} \equiv \mathfrak{d}_{1}-1 \bmod 3$, then exchange the data of the blocks 0 and 1 of P). We arrive at Cases (iv) and (v) by applying respectively

$$
\begin{gathered}
a=\left(\frac{2}{3} \mathfrak{d}_{0}+\frac{1}{3} \mathfrak{d}_{1}+\mathfrak{d}_{2}, \mathfrak{d}_{0}+\mathfrak{d}_{1}+\mathfrak{d}_{2},-2 \mathfrak{d}_{0}-2 \mathfrak{d}_{1}-3 \mathfrak{d}_{2}\right), \\
a=\left(\frac{2}{3} \mathfrak{d}_{0}+\frac{1}{3} \mathfrak{d}_{1}+\mathfrak{d}_{2}-\frac{2}{3}, \mathfrak{d}_{0}+\mathfrak{d}_{1}+\mathfrak{d}_{2}-1,-2 \mathfrak{d}_{0}-2 \mathfrak{d}_{1}-3 \mathfrak{d}_{2}+2\right) .
\end{gathered}
$$

Case 4: The leading platonic triple is $\left(l_{01}, 2,2\right)$. We distinguish several subcases and will work with

$$
a=\left(\frac{1}{2} \mathfrak{d}_{0}+\frac{l_{01}-2}{4} \mathfrak{d}_{1}+\frac{l_{0 j_{0}}}{4} \mathfrak{d}_{2}, \frac{1}{2} \mathfrak{d}_{0}+\frac{l_{01}}{4} \mathfrak{d}_{1}+\frac{l_{01}-2}{4} \mathfrak{d}_{2},-\mathfrak{d}_{0}-\frac{l_{01}}{2}\left(\mathfrak{d}_{1}+\mathfrak{d}_{2}\right)\right) .
$$

4.1: We have $l_{01} \equiv 1 \bmod 4$.
4.1.1: $\mathfrak{d}_{1} \equiv \mathfrak{d}_{2} \bmod 4$. If \mathfrak{d}_{0} is even, then applying a, we arrive at Case (vi). If \mathfrak{d}_{0} is odd, then applying $a+(-1 / 2,-1 / 2,1)$, we arrive at Case (vii).
4.1.2: $\mathfrak{d}_{1} \equiv \mathfrak{d}_{2}+1 \bmod 4$. If \mathfrak{d}_{0} is even, then applying $a+(1 / 4,-1 / 4,1 / 2)$ leads to Case (viii). If \mathfrak{d}_{0} is odd, then applying $a+(-1 / 4,1 / 4,1 / 2)$ and exchanging the data of column blocks 1 and 2 leads to Case (viii).
4.1.3: $\mathfrak{d}_{1} \equiv \mathfrak{d}_{2}-1 \bmod 4$. Exchanging the data of column blocks 1 and 2, we are in 4.1.2 and thus arrive at Case (viii).
4.1.4: $\mathfrak{d}_{1} \equiv \mathfrak{d}_{2}+2 \bmod 4$. If \mathfrak{d}_{0} is odd, then applying a, we arrive at Case (vi). If \mathfrak{d}_{0} is even, then applying $a+(-1 / 2,-1 / 2,1)$ leads to Case (vii).
4.2: We have $l_{01} \equiv 2 \bmod 4$.
4.2.1: $\mathfrak{d}_{0} \equiv \mathfrak{d}_{1} \equiv \mathfrak{d}_{2} \bmod 2$. Applying a, we arrive at Case (vi).
4.2.2: $\mathfrak{d}_{0} \equiv \mathfrak{d}_{1} \not \equiv \mathfrak{d}_{2} \bmod 2$. Applying $a+(0,-1 / 2,1)$, we arrive at Case (viii).
4.2.3: $\mathfrak{d}_{0} \equiv \mathfrak{d}_{2} \not \equiv \mathfrak{d}_{1} \bmod 2$. Exchanging the data of column blocks 1 and 2, we are in 4.2.2 and thus arrive at Case (viii).
4.2.4: $\mathfrak{d}_{0} \not \equiv \mathfrak{d}_{1} \equiv \mathfrak{d}_{2} \bmod 2$. Applying $a+(-1 / 2,-1 / 2,1)$, we arrive at Case (vii).
4.3 and 4.4: $l_{01} \equiv 3 \bmod 4$ or $l_{01} \equiv 3 \bmod 4$, respectively. These cases are settled by similar arguments as 4.1 and 4.2. That means that the same admissible operations are applied after, if necessary exchanging the data of column blocks 1 and 2.

Case 5: The leading platonic triple is $\left(l_{01}, l_{11}, 1\right)$. Applying $\left(0, \mathfrak{o}_{1}-\mathfrak{d}_{2},-\mathfrak{d}_{1}\right)$, we arrive at Case (ix).

Finally, in each of the cases (i) to (ix), we modify the matrix P obtained so far by adding the i-th row to the last one for $i=3, \ldots, r$. This brings P again into the form of Lemma 7.7 (i).

8. Proof of Theorems 4 and 5

In Propositions 8.1, 8.3 and 8.4, we classify the compound du Val singularities admitting a torus action of complexity one and list their defining matrices P, numerated according to their appearance in Theorem 4. We begin with the case of \mathbb{Q}-factorial non-toric threefolds of canonical multiplicity one.

Proposition 8.1. Let X be a non-toric affine threefold of Type 2. Assume that X is \mathbb{Q}-factorial, of canonical multiplicity one and has at most compound du Val singularities. Then X, for suitable A, is isomorphic to $X(A, P)$, where P is one of the following matrices:
(8) $\left[\begin{array}{cccc}-5 & 3 & 0 & 0 \\ -5 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 1 & 1 & 1\end{array}\right]$
(7) $\left[\begin{array}{cccc}-4 & 3 & 0 & 0 \\ -4 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 1 & 1 & 1\end{array}\right]$
(18) $\left[\begin{array}{cccc}-4 & -1 & 3 & 0 \\ -4 & -1 & 0 & 2 \\ 1 & 3 & 0 & 0 \\ -3 & 0 & 1 & 1\end{array}\right]$
(6) $\left[\begin{array}{cccc}-3 & 3 & 0 & 0 \\ -3 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 1 & 1 & 1\end{array}\right]$
(15) $\left[\begin{array}{cccc}-3 & -1 & 3 & 0 \\ -3 & -1 & 0 & 2 \\ 1 & 2 & 0 & 0 \\ -2 & 0 & 1 & 1\end{array}\right]$
(17) $\left[\begin{array}{cccc}-3 & -2 & 3 & 0 \\ -3 & -2 & 0 & 2 \\ 1 & 1 & 0 & 0 \\ -2 & -1 & 1 & 1\end{array}\right]$
(4) $\left[\begin{array}{cccc}-k & 2 & 0 & 0 \\ -k & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 1-k & 1 & 1 & 1\end{array}\right]$
(12-e-e) $\left[\begin{array}{cccc}-k_{1} & -k_{2} & 2 & 0 \\ -k_{1} & -k_{2} & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 1-k_{1} & 1-k_{2} & 1 & 1\end{array}\right]$
(5-o) $\left[\begin{array}{cccc}-k & 2 & 0 & 0 \\ -k & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 \\ 1-k & 1 & 1 & 1\end{array}\right]$
(11) $\left[\begin{array}{cccc}-k & 2 & 1 & 0 \\ -k & 0 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 1-k & 1 & 1 & 1\end{array}\right]$
(12-O-e/o) $\left[\begin{array}{cccc}-2 k_{1} & -2 k_{2}-1 & 2 & 0 \\ -2 k_{1} & -2 k_{2}-1 & 0 \\ 0 & k_{1} k_{2}+1 & 0 & 2 \\ 1-2 k_{1} & -2 k_{2} & 1 & 1\end{array}\right]$
(16) $\left[\begin{array}{cccc}-4 & 2 & 1 & 0 \\ -4 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 \\ -3 & 1 & 1 & 1\end{array}\right]$
(5-e) $\left[\begin{array}{cccc}-2 k-1 & 2 & 0 & 0 \\ -2 k-1 & 0 & 2 & 0 \\ 0 & 1 & 0 & k+1 \\ -2 k & 1 & 1 & 1\end{array}\right] \quad$ (10-o) $\left[\begin{array}{ccccc}-2 k-1 & 2 & 1 & 0 \\ -2 k-1 & 0 & 0 & 2 \\ 0 & 1 & \left\lceil\frac{2 k+1}{4}\right\rceil & 0 \\ -2 k & 1 & 1 & 1\end{array}\right]$
where the parameters k, k_{1}, k_{2} are positive integers and in (4), (5-o) and (11), we have $k \geq 2$. Moreover, (12-e-e) indicates that the two exponents in the defining equation of Theorem 4 (12) are even, in (5-o) the exponent is odd etc..

Proof. We may assume that P is irredundant and in the form of Proposition [7.9, As X is \mathbb{Q}-factorial, the matrix P has precisely $r+2$ columns. Since we assume P to be irredundant and $l_{i j}=1$ holds for $i \geq 3$, we must have $n_{i} \geq 2$ for $i \geq 3$. This forces $r \leq 3$. The strategy is now to compute suitable parts of ∂A_{X}^{c} explicitly according to Proposition 3.8 and to use the fact that they don't contain interior lattice points, as guaranteed by Proposition 7.4.

Consider the case $r=3$. Here, we have $n_{0}=n_{1}=n_{2}=1$ and $n_{3}=2$. Moreover, $\left(l_{01}, l_{11}, l_{21}\right)$ is a platonic triple with $l_{21}>1$ and $l_{3}=(1,1)$ holds. The column apart from the leading block of P is $v_{32}=(0,0,1, t, 0)$, where we may assume that t is a positive integer. The vertices of $\partial A_{X}^{c}(\lambda)$ thus are

$$
\left(0,0,0, \frac{\alpha}{\beta}, 1\right), \quad\left(0,0,0, \frac{\alpha+t l_{01} l_{11} l_{21}}{\beta}, 1\right)
$$

where

$$
\alpha:=\mathfrak{d}_{0} l_{11} l_{21}+\mathfrak{d}_{1} l_{01} l_{21}+\mathfrak{d}_{2} l_{01} l_{11}, \quad \beta:=l_{11} l_{21}+l_{01} l_{21}+l_{01} l_{11}-l_{01} l_{11} l_{21}
$$

Since l_{01}, l_{11}, l_{21} all differ from one, $t l_{01} l_{11} l_{21} / \beta \geq 2$ holds and thus $\partial A_{X}^{c}(\lambda)$ contains an integral point in its relative interior. Consequently $r=3$ is impossible.

We are left with the case $r=2$. Here, P is a 4×4 matrix, the leading block columns are v_{01}, v_{11}, v_{21} and the column v of P apart from these three is one of

$$
v_{02}=(-k,-k, t, 1-k), \quad v_{12}=(k, 0,0, t, 1), \quad v_{22}=(0, k, t, 1), \quad v_{1}=(0,0, t, 1) .
$$

We now go through the list of all possible leading block data provided by Proposition 7.9. We will often compute the line segment $\partial A_{X}^{c}(\lambda) \subseteq \mathbb{Q}^{4}$ from Proposition 7.3 explicitly. According to Proposition 3.8, the P-elementary cone spanned by the columns of the leading block produces the first vertex w_{1} of $\partial A_{X}^{c}(\lambda)$ and the second vertex w_{2} either arises from a (unique) second P-elementary cone or one has $w_{2}=v=v_{1}$.

Let P have the leading block data ($5,3,2 ; 0,0,0$). Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=(0,0,0,1)$. Consider the case that the additional column v lies in the relative interior $\lambda_{0}^{\circ} \subseteq \lambda_{0}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq k \leq 5$, where we may assume $t>0$. We compute $w_{2}=(0,0,6 t /(6-k), 1)$. The following figures show $\partial A_{X}^{c}\left(\lambda_{0}\right) \subseteq \mathcal{H}_{0}$ with the lower edge being $\partial A_{X}^{c}(\lambda)$:

where the last figure indicates the case of the additional column lying in λ, treated below. Now, because of $6 t /(6-k) \geq 6 / 5$, we find the point $(0,0,1,1)$ in the relative interior of $\partial A_{X}^{c}(\lambda)$ and hence in the relative interior of ∂A_{X}^{c}. According to Proposition 7.4, we leave the compound du Val case here.

We proceed in a more condensed way. Assume $v \in \lambda_{1}^{\circ}$. Then $v=v_{12}=(k, 0, t, 1)$ with $1 \leq k \leq 3$ and we can assume $t>1$. We obtain $w_{2}=(0,0,10 t /(10-3 k), 1)$. We find again $(0,0,1,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$ and thus leave the compound du Val case. Assume $v \in \lambda_{2}^{\circ}$. Then $v=v_{22}=(0, k, t, 1)$ with $1 \leq k \leq 2$ and we can assume $t>1$. We obtain $w_{2}=\left(0,0,15 t /(15-7 k, 1)\right.$. Once more, $(0,0,1,1)$ shows up in $\partial A_{X}^{c}(\lambda)^{\circ}$ and we leave the compound du Val case. Finally, assume $v=v_{1}=(0,0, t, 1)$. We may assume $t>0$. Only for $t=1$ there are no lattice points in $\partial A_{X}^{c}(\lambda)^{\circ}$. Moreover, if $t=1$, then all $\partial A_{X}^{c}\left(\lambda_{i}\right)$ are hollow polytopes of the first type of Proposition 7.2 and we arrive at matrix (8) from the assertion defining the compund du Val singularity $E_{8} \times \mathbb{C}$.

Let P have the leading block data $(4,3,2 ; 0,0,0)$. Also here, the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=(0,0,0,1)$. Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq k \leq 4$, where we may assume $t>0$. We obtain $w_{2}=(0,0,6 t /(6-k), 1)$. Thus, $(0,0,1,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$ and we leave the compound du Val case. Assume $v \in \lambda_{1}^{\circ}$. Then $v=v_{12}=(k, 0, t, 1)$, where $1 \leq k \leq 3$ and we can assume $t>0$. We obtain $w_{2}=(0,0,4 t /(4-k), 1)$ and find $(0,0,1,1)$ in the relative interior of $\partial A_{X}^{c}(\lambda)$ and thus leave the compound du Val case. Assume $v \in \lambda_{2}^{\circ}$. Then $v=v_{22}=(0, k, t, 1)$ with $k=1,2$ and we can assume $t>0$. We obtain $w_{2}=(0,0,12 t /(12-5 k), 1)$ and see that $(0,0,1,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$. Thus, we leave the compound du Val case. Finally, assume $v=v_{1}=(0,0, t, 1)$. For $t>1$, we find $(0,0,1,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. The case $t=1$ gives matrix (7), defining the compound du Val singularity $E_{7} \times \mathbb{C}$.

Let P have the leading block data $(4,3,2 ; 1,0,0)$. Here, the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=(0,0,3,1)$. To visualize the setting, consider the P-elementary cone $\tau \subseteq \mathbb{Q}^{4}$ generated by the columns v_{01}, v_{11}, v_{21} of the leading block and the line segments $\partial A_{X}^{c}\left(\lambda_{i}, \tau\right) \subseteq \mathcal{H}_{i}$, where $i=0,1,2$, from Proposition 7.3

Note that the additional column v is represented in the above figures by a lattice point not contained in $\partial A_{X}^{c}\left(\lambda_{i}, \tau\right)$, indicated by the black line. Going through the cases, we will also have to look at the polytopes $\partial A_{X}^{c}\left(\lambda_{i}, \tau\right)$ and will encounter the following situations:

Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq k \leq 4$. The second vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{2}=(0,0,6 t /(6-k), 1)$. We find one of the points $(0,0,4,1)$ or $(0,0,2,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$ for $k=2,4$. Moreover, for $k=3$, we find $(-1,-1,3,0)$ in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$. Thus, we end up with non compound du Val singularities for $k=2,3,4$. In the case $k=1$, we may assume $t>2$. Only for $t=3$, no lattice points are inside $\partial A_{X}^{c}{ }^{\circ}$. For $t>3$, the point $(-1,-1,3,0)$ lies in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$. So with $t=3$, we obtain matrix (18), defining a compound du Val singularity.

We show that the remaining possible locations of v all lead to non compound du Val singularities. Assume $v \in \lambda_{1}^{\circ}$. Then $v=v_{12}=(k, 0, t, 1) \in \lambda_{1}^{\circ}$ with $1 \leq k \leq 3$. The second vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{2}=(0,0,(k+4 t) /(4-k), 1)$. Thus, either $(0,0,2,1)$ or $(0,0,4,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$. Assume $v \in \lambda_{2}^{\circ}$. Then $v=v_{22}=(0, k, t, 1)$ with $k=1,2$, where we can assume $t>1$ or $t>0$ accordingly. The second vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{2}=(0,0,(3 k+12 t) /(12-5 k), 1)$. For $k=2$, we find $(0,0,4,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. For $k=1$, the segment $\partial A_{X}^{c}(\lambda)$ is of length $(12 t-18) / 7$. Thus, for $t \geq 3$, we find a lattice point in $\partial A_{X}^{c}(\lambda)^{\circ}$. For $t=2$, we look at $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$ and see that it contains $(-1,-1,3,0)$; see the figure above. Finally, if $v=v_{1} \in \lambda$, one finds $(-1,-1,3,0)$ in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$.

Let P have the leading block data $(3,3,2 ; 0,0,0)$. Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=(0,0,0,1)$. Assume $v=(-k,-k, t, 1-k) \in \lambda_{0}^{\circ}$ or $v=(k, 0, t, 1) \in \lambda_{1}^{\circ}$ with $k=1,2,3$. Then we can assume $t>0$. We obtain $w_{2}=(0,0,6 t /(6-k), 1)$, find $(0,0,1,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$ and thus leave the compound du Val case. If $v=(0, k, t, 1) \in$ λ_{2}°, with $k=1,2$, we can assume $t>0$. We obtain $w_{2}=(0,0,3 t /(3-k), 1)$ and find $(0,0,1,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. Thus also here, we leave the compound du Val case. Finally, if $v=(0,0, t, 1) \in \lambda$, then we end up with $t=1$ and the matrix (6), defining the compound du Val singularity $E_{6} \times \mathbb{C}$.

Let P have the leading block data $(3,3,2 ; 1,0,0)$. Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=(0,0,2,1)$. We will take a look at the leaves:

$\partial A_{X}^{c}\left(\lambda_{0}, \tau\right)$

$\partial A_{X}^{c}\left(\lambda_{1}, \tau\right)$

Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{01}=(-k,-k, t, 1-k)$ with $k=1,2,3$. We obtain $w_{2}=(0,0,6 t /(6-k), 1)$. In the case $k=3$ as well as in the case $k=2$ with $t \neq 1$, we find one of $(0,0,1,1)$ and $(0,0,3,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$ and leave the compound du Val case. For $k=2$ and $t=1$, there are no lattice points in ∂A_{X}^{c} and the resulting matrix is (15), defining a compound du Val singularity. If $k=1$ and $t \neq 2$, we find $(0,0,1,1)$ or $(0,0,3,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. The case $t=2$ leads to the matrix (7), defining a compound du Val singularity. The case of $v \in \lambda_{1}^{\circ}$ can be reduced by means of admissible operations to the previous case. We show that for the remaining possible locations of v, we leave the compound du Val case. If $v=(0, k, t, 1) \in \lambda_{2}^{\circ}$, then $w_{2}=(0,0,(3 t+k) /(3-k), 1)$ and we find $(0,0,1,1)$ or $(0,0,3,1)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. If $v=(0,0, t, 1) \in \lambda$, then $(-1,-1,2,0)$ or $(1,0,1,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$.

Let P have the leading block data $\left(l_{01}, 2,2 ; 0,0,0\right)$. Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $(0,0,0,1)$. Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq k \leq l_{01}$, where we can assume $t>0$. We have $w_{2}=(0,0, t, 1)$. For $t>1$, we obtain $(0,0,1,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$ and thus leave the compound du Val case. For $t=1$, the resulting singularity is compound du Val for every k and has defining matrix (12-e-e) with $k_{1} \geq k_{2}$. Assume $v \in \lambda_{1}^{\circ}$. Then $v=v_{12}=(k, 0, t, 1)$ with $k=1,2$. We can assume $l_{01}>2$ and $t>0$. For $k=1$ we have $w_{2}=\left(0,0,2 t l_{01} /\left(2+l_{01}\right), 1\right)$ and for $k=2$, we have $w_{2}=\left(0,0, t l_{01} / 2,1\right)$. In both cases, $\partial A_{X}^{c}(\lambda)^{\circ}$ contains $(0,0,1,1)$ and we obtain a non compound du Val singularity. The case of $v \in \lambda_{2}^{\circ}$
can be transformed via exchanging the data of blocks 1 and 2 into the previous one. Finally, if $v=(0,0, t, 1) \in \lambda$, then we must have $t=1$ and this gives the compound du Val singularity $D_{l_{01}+2} \times \mathbb{C}$, defined by the matrix (4).

Let P have the leading block data $\left(l_{01}, 2,2 ; 1,0,0\right)$. Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $(0,0,1,1)$. Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq$ $k \leq l_{01}$. We can assume $t<1$. For $t<0$, we have $(0,0,0,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$. For $t=0$, we obtain a matrix (12-e-e) as in the case of leading block data ($l_{01}, 2,2 ; 0,0,0$), now with $k_{1} \leq k_{2}$. Assume $v \in \lambda_{1}^{\circ}$. The case $l_{01}=2$ can be transformed via admissible operations into the case of leading block data ($l_{01}, 2,2 ; 0,1,0$) and an additional column in λ_{0}°, which is discussed below. So, let $l_{01}>2$. Then $v=(k, 0, t, 1)$, where $k=1,2$. For $k=2$, we can assume $t>0$. We obtain $w_{2}=\left(0,0,1+t l_{01} / 2,1\right)$ and $(0,0,2,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$ and thus leave the compound du Val case. Now let $k=1$. Here, t may be any integer and we obtain $w_{2}=\left(0,0,2\left(1+l_{01} t\right) /\left(2+l_{01}\right), 1\right)$. Only for $t=0,1$ there are no lattice points in $\partial A_{X}^{c}(\lambda)^{\circ}$. Both cases lead by admissible operations to the compound du Val singularity with defining matrix (11). The case of $v \in \lambda_{2}^{\circ}$ can be transformed to the previous one by exchanging the data of column blocks 1 and 2. Finally, if $v \in \lambda$, then it equals either $(0,0,0,1)$ or $(0,0,2,1)$. Both cases lead to the compound du Val singularity with defining matrix (50).

Let P have leading block data $\left(l_{01}, 2,2 ; 0,1,0\right)$. Then the first vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{1}=\left(0,0, l_{01} / 2,1\right)$.
Case 1: The exponent l_{01} is even. Assume $v \in \lambda$. Then $v=v_{1}=w_{2}=(0,0, t, 1)$. Exchanging the data of blocks 0 and 1 transforms the case $l_{01}=2$ into the corresponding case with leading block data $\left(l_{01}, 2,2 ; 1,0,0\right)$ treated before. So, let $l_{01}>2$. Having no lattice points in $\partial A_{X}^{c}(\lambda)^{\circ}$ implies $t=l_{01} / 2 \pm 1$. But then, there are integer points in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$: for $t=l_{01} / 2+1$ we find

$$
\left(-1,-1, \frac{l_{01}}{2}, 0\right)=\frac{1}{l_{01}} v_{01}+\frac{1}{2} w_{1}+\left(\frac{1}{2}-\frac{1}{l_{01}}\right) w_{2}
$$

and for $t=l_{01} / 2-1$ we find

$$
\left(-1,-1, \frac{l_{01}}{2}-1,0\right)=\frac{1}{l_{01}} v_{01}+\left(\frac{1}{2}-\frac{2}{l_{01}}\right) w_{1}+\left(\frac{1}{l_{01}}+\frac{1}{2}\right) w_{2} .
$$

Assume $v \in \lambda_{0}^{\circ}$. Then $v=v_{02}=(-k,-k, t, 1-k)$ with $1 \leq k \leq l_{01}$. The second vertex of $\partial A_{X}^{c}(\lambda)$ is $w_{2}=(0,0, t+k / 2,1)$. If k is even, then having no lattice points in $\partial A_{X}^{c}(\lambda)^{\circ}$ implies $t=\left(l_{01}-k\right) / 2 \pm 1$. Again there are integer points in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$: for $t=\left(l_{01}-k\right) / 2+1$ we find

$$
\left(-1,-1, \frac{l_{01}}{2}, 0\right)=\frac{1}{k} v_{02}+\frac{1}{2} w_{1}+\left(\frac{1}{2}-\frac{1}{k}\right) w_{2}
$$

and for $t=\left(l_{01}-k\right) / 2-1$ we find

$$
\left(-1,-1, \frac{l_{01}}{2}-1,0\right)=\frac{1}{k} v_{02}+\frac{1}{2} w_{1}+\left(\frac{1}{2}-\frac{1}{k}\right) w_{2} .
$$

If k is odd, then having no lattice points in $\partial A_{X}^{c}(\lambda)^{\circ}$ implies $t=\left(l_{01}-k \pm 1\right) / 2$. For both choices of t, this setting produces a compound du Val singularity with matrix (12-o-e/o) and parameters $k_{1} \geq k_{2}$.

Before entering the discussion of the cases $v \in \lambda_{i}^{\circ}$ with $i=1,2$, the parameter k occurring in v might be $k=1,2$ and the vertex w_{2} is given by

$$
w_{2}= \begin{cases}\left(0,0, \frac{2 t l_{01}}{2 l_{01}+2 k-k l_{01}}, 1\right), & v=(k, 0, t, 1) \in \lambda_{1}^{\circ} \\ \left(0,0, \frac{2 t l_{01}+k l_{01}}{2 l_{01}+2 k-k l_{01}}, 1\right), & v=(0, k, t, 1) \in \lambda_{2}^{\circ}\end{cases}
$$

Case 1.1: We have $l_{01} \equiv 0 \bmod 4$. If $v \in \lambda_{2}^{\circ}$ or $v=(2,0, t, 1) \in \lambda_{1}^{\circ}$, then we find one of $\left(0,0, l_{01} / 2 \pm 1,1\right)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. Thus, we are left with $v \in \lambda_{1}^{\circ}$ and $k=1$. For any $t \neq l_{01} / 4+1$, we find the lattice point $\left(1,0, l_{01} / 4+1,1\right)$ in $\partial A_{X}^{c}\left(\lambda_{1}\right)^{\circ}$. Thus, we end up with

$$
v=(k, 0, t, 1)=\left(1,0, l_{01} / 4+1,1\right), \quad w_{2}=\left(0,0, l_{01}\left(l_{01}+4\right) /\left(2 l_{01}+4\right), 1\right) .
$$

Note that the segment $\partial A_{X}^{c}(\lambda)$ contains no lattice points, because its length equals $l_{01} /\left(l_{01}+2\right)<1$. Taking a look at λ_{0}, we observe

$$
\left(-1,-1, l_{01} / 2,0\right) \in \partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ} \Longleftrightarrow \frac{l_{01}}{l_{01}+2}>\frac{l_{01}}{2\left(l_{01}-1\right)} \Longleftrightarrow l_{01}>4
$$

Thus, to obtain compound du Val singularities, we must have $l_{01} \leq 4$. As $l_{01} \equiv 0$ $\bmod 4$ holds, only $l_{01}=4$ is left and, indeed, this leads to the compound du Val singularity with defining matrix (16).

Case 1.2: We have $l_{01} \equiv 2 \bmod 4$. If $v \in \lambda_{1}^{\circ}$ or $v=(0,2, t, 1) \in \lambda_{2}^{\circ}$, then we find one of $\left(0,0, l_{01} / 2 \pm 1,1\right)$ in $\partial A_{X}^{c}(\lambda)^{\circ}$. Thus, we are left with $v \in \lambda_{2}^{\circ}$ and $k=1$. For any $t \neq l_{01} / 4+1 / 2$, we find the lattice point $\left(0,1, l_{01} / 4+1 / 2,1\right)$ in $\partial A_{X}^{c}\left(\lambda_{2}\right)^{\circ}$. We end up with

$$
v=(0, k, t, 1)=\left(0,1, l_{01} / 4+1 / 2,1\right) \in \lambda_{2}^{\circ}
$$

Similar to Case 1.1, we obtain that $\left(-1,-1, l_{01} / 2,0\right) \in \partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$ as soon as $l_{01}>4$. Thus, only $l_{01}=2$ might lead to a compound du Val singularity. In this case, we exchange the data of blocks 0 and 2 and land in case of leading block data $\left(l_{01}, 2,2 ; 0,1,0\right)$ and an additional column in λ_{0}°.
Case 2: The exponent l_{01} is odd. If $v \in \lambda$, then $v=v_{1}=w_{2}=\left(0,0,\left(l_{01}+1\right) / 2,1\right)$ holds and we arrive at the compound du Val singularity with defining matrix (5e). If $v \in \lambda_{0}^{\circ}$ holds, then the arguing runs similar as in Case 1. Only for k odd and $v=v_{02}=\left(-k,-k,\left(l_{01}-k+1\right) / 2,1-k\right)$, there are no lattice points in the relative interior of $\partial A_{X}^{c}(\lambda)^{\circ}$ and we end up with the matrix (12-o-e/o) as in Case 1, but now with parameters $k_{1} \leq k_{2}$.

Assume $v \in \lambda_{1}^{\circ}$. Then $v=v_{12}=(k, 0, t, 1)$ with $k=1,2$. The case $k=2$ gives $w_{2}=\left(0,0, t l_{01} / 2,1\right)$, the point $\left(0,0,\left(l_{01} \pm 1\right) / 2,1\right)$ lies $\partial A_{X}^{c}(\lambda)^{\circ}$ and thus we leave the compound du Val case. So, let $k=1$. Then we have $v=(1,0, t, 1) \in \lambda_{1}^{\circ}$. Moreover, $w_{1}=\left(0,0, l_{01} / 2,1\right)$ and $w_{2}=\left(0,0,2 t l_{01} /\left(2+l_{01}\right), 1\right)$. Now, as l_{01} is odd, we see that $\partial A_{X}^{c}(\lambda)$ to have no lattice points in the relative interior means

$$
\frac{1}{2} \geq\left|\frac{2 t l_{01}}{2+l_{01}}-\frac{l_{01}}{2}\right|
$$

If $l_{01} \equiv 1 \bmod 4$, this is only fulfilled for $t=\left(l_{01}+3\right) / 4$. If $l_{01} \equiv 3 \bmod 4$, it is only fulfilled for $t=\left(l_{01}+1\right) / 4$. Altogether, it is fulfilled for $t=\left\lceil l_{01} / 4\right\rceil$. This leads to the compound du Val singularity with defining matrix (10o).

The case $v \in \lambda_{2}^{\circ}$ can be transformed by suitable admissible operations to the case $v \in \lambda_{1}^{\circ}$ just discussed.

Let P have leading block data $\left(l_{01}, l_{11}, 1 ; \mathfrak{d}_{0}, 0,0\right)$. As P is irredundant, the additional column is forced to be $(0,1, t, 1) \in \lambda_{2}^{\circ}$ and we have $l_{01}, l_{11} \geq 2$. The vertices of $\partial A_{X}^{c}(\lambda)$ turn out to be

$$
w_{1}=\left(0,0, \frac{\mathfrak{d}_{0} l_{11}}{l_{01}+l_{11}}, 1\right), \quad w_{2}=\left(0,0, \frac{\mathfrak{d}_{0} l_{11}+t l_{01} l_{11}}{l_{01}+l_{11}}, 1\right) .
$$

We have $0<t l_{01} l_{11} /\left(l_{01}+l_{11}\right) \leq 1$ only for $t=1$ and $l_{01}=l_{11}=2$. In this case, the second inequality becomes an equality and thus w_{1} is integral w_{1} which implies $\mathfrak{d}_{0}=0$. We arrive at the compound du Val singularity with matrix (12-e-e) and parameters $k_{1}=k_{2}=1$.

We turn to the non-toric non- \mathbb{Q}-factorial threefolds, still of canonical multiplicity one. The following observation provides the link to the \mathbb{Q}-factorial case. Given defining data A, P for a ring $R(A, P)$ of Type 2 , we will have to deal with quadratic submatrices P^{\prime} of P, obtained by erasing columns and rows from P. The corresponding submatrix A^{\prime} of A gathers all columns a_{i} of A such that at least one column $v_{i j}$ is not erased from P when passing to P^{\prime}.
Lemma 8.2. Let $X=X(A, P)$ be a compound du Val threefold of Type 2 and canonical multiplicity ζ_{X} with P irredundant in the form of Proposition 4.3 and ordered in the sense of Remark 6.1.
(i) Let P^{\prime} be an $(r+2) \times(r+2)$ submatrix of P such that for any $i=0, \ldots, r$ at least one $v_{i j}$ is not erased from P.
(a) $A^{\prime}=A$ and P^{\prime} are defining data of Type 2 in the sense of Construction 2.2: moreover, P^{\prime} is in the form of Proposition 4.3.
(b) $X^{\prime}=X\left(A^{\prime}, P^{\prime}\right)$ is a \mathbb{Q}-factorial threefold with at most compound du Val singularities of canonical multiplicity $\zeta_{X^{\prime}}=\zeta_{X}$.
Moreover, one always finds a submatrix P^{\prime} as above being ordered and having the same leading block as P.
(ii) Every P^{\prime} as in (i) admits a 4×4 submatrix $P^{\prime \prime}$ with the same leading block as P^{\prime} such that
(a) $A^{\prime \prime}$ and $P^{\prime \prime}$ are defining data of Type 2 in the sense of Construction 2.2, the matrix $P^{\prime \prime}$ is ordered and the form of Proposition 4.3.
(b) The varieties $X^{\prime}=X\left(A^{\prime}, P^{\prime}\right)$ and $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}\right)$ are equivariantly isomorphic to each other.
(iii) If the leading platonic triple of P is different from $(x, y, 1)$, then $r=2$ holds.
(iv) One always finds P^{\prime} and $P^{\prime \prime}$ as in (ii) with the same leading block as P such that
(a) in case of the leading platonic triple of P differing from $(x, y, 1)$, up to admissible operations, $P^{\prime \prime}$ is one of the matrices from Proposition 8.1,
(b) in case of the leading platonic triple of P equal to $(x, y, 1)$, we have $n_{2}^{\prime \prime}=2$ for $P^{\prime \prime}$.
Proof. We verify (i). Note that each column of P^{\prime} is as well a column of P. By Proposition 2.11, the columns of P generate the extremal rays of a full dimensional cone $\sigma \subseteq \mathbb{Q}^{r+2}$. Thus, also the columns of P^{\prime} generate the extremal rays of a cone $\sigma^{\prime} \subseteq \mathbb{Q}^{r+2}$. We show that σ^{\prime} is full dimensional. If P^{\prime} has a column $v_{1} \in \lambda$, then, using Proposition 3.8 (iii) we see that the remaining $r+1$ columns of P^{\prime} are linearly independent and v_{1} does not lie in their linear span. If P^{\prime} has no column inside λ, then we can form two different P-elementary cones τ_{1} and τ_{2} out of columns of P^{\prime}. The corresponding $v_{\tau_{i}} \in \tau_{i}^{\circ}$ generate the pointed two-dimensional cone $\sigma^{\prime} \cap \lambda$ and we see that the columns of P generate \mathbb{Q}^{r+2}. Thus, we can conclude that P^{\prime} satisfies the conditions of Type 2 of Construction 2.2 and, together with $A^{\prime}=A$ gives defining data. Observe that $X^{\prime}=X\left(A^{\prime}, P^{\prime}\right)$ is \mathbb{Q}-factorial by construction. Using Remark 4.4 we obtain $\zeta_{X^{\prime}}=\zeta_{X}$ and see that P^{\prime} still is in the form of Proposition 4.3, Using Remark 4.5, conclude $\imath_{X^{\prime}}=\imath_{X}=1$. Moreover, according to Proposition 3.8, the anticanonical complex $A_{X^{\prime}}^{c}$, is a subcomplex of A_{X}^{c} and the same holds for $\partial A_{X^{\prime}}^{c}$ and ∂A_{X}^{c}. Thus, Proposition 7.4 shows that X^{\prime} inherits from X the property of having at most compound du Val singularities. The supplement is obvious.

We prove (ii). For $r=2$, there is nothing to show. So, assume $r \geq 3$. If P^{\prime} has a column $v_{k} \in \lambda$, then we have $n_{i}=l_{i 1}=1$ for $i \geq 3$ and Remark 2.4, applied $r-2$ times, yields the desired 4×4 matrix $P^{\prime \prime}$. We turn to the case that P^{\prime} has no column in λ. Then $n_{k}=2$ for some $0 \leq k \leq r$ and all other n_{i} equal one. If $k \leq 2$
holds, then we have $n_{i}=l_{i 1}=1$ for $i \geq 3$ and proceed as before to obtain $P^{\prime \prime}$. We discuss $k=3$. First assume that the leading platonic triple of P^{\prime} equals ($x, y, 1$). Then, exchanging the data of column blocks 3 and 2 of P^{\prime}, we are in the case $k \leq 2$ just treated. If the leading platonic triple of P^{\prime} differs from $(x, y, 1)$ then, applying $r-3$ times Remark [2.4, we arrive at an irredundant 5×5 matrix $P^{\prime \prime}$ defining a variety $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}\right)$ isomorphic to $X^{\prime}=X\left(A^{\prime}, P^{\prime}\right)$; a contradiction to Proposition 8.1. Finally, if $k \geq 4$, then we exchange the data of column blocks k and 3 of P^{\prime} and are in the case $k=3$. This proves (ii).

We turn to (iii). Assume $r \geq 3$. Since P is irredundant and ordered in the sense of Remark 6.1] we have $n_{i} \geq 2$ and $l_{i j}=1$ for $i \geq 3$. Consider the submatrices

$$
P^{\prime}:=\left[v_{01}, v_{11}, v_{21}, v_{31}, v_{32}, v_{41}, \ldots, v_{r 1}\right], \quad P^{\sim}:=\left[v_{01}, v_{11}, v_{21}, v_{31}, v_{32}\right] .
$$

Let $P^{\prime \prime}$ be the matrix obtained by erasing from P^{\sim} erasing all but the first three and the last two rows. Then $P^{\prime \prime}$ is an irredundant 5×5 matrix and $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}\right)$ is isomorphic to $X^{\prime}=X\left(A^{\prime}, P^{\prime}\right)$; a contradiction to Proposition 8.1,

Finally, we show (iv). For (a), observe that because of $\imath_{X^{\prime \prime}}=\imath_{X}=1$, Proposition 4.7 gives $\zeta_{X^{\prime \prime}}=\zeta_{X}=1$. Thus $X^{\prime \prime}$ is \mathbb{Q}-factorial compound du Val and $P^{\prime \prime}$ must, up to admissible operations, be one of the matrices from Proposition 8.1. We turn to (b). For any $i \geq 2$, we have $n_{i} \geq 2$, because P is irredundant. Consider the submatrices

$$
P^{\prime}:=\left[v_{01}, v_{11}, v_{21}, v_{22}, v_{31}, \ldots, v_{r 1}\right], \quad P^{\sim}:=\left[v_{01}, v_{11}, v_{21}, v_{22}\right] .
$$

Then we obtain the desired $P^{\prime \prime}$ from P^{\sim} by erasing all but the first two and the last two rows.

Proposition 8.3. Let $X=X(A, P)$ be a non-toric affine threefold of Type 2. Assume that X is not \mathbb{Q}-factorial, of canonical multiplicity one and has at most compound du Val singularities. Then P can be assumed to be the matrix

$$
\text { (10-e) }\left[\begin{array}{ccccc}
-k & 2 & 1 & 0 & 0 \\
-k & 0 & 0 & 2 & 1 \\
1 & 0 & 0 & 0 & 0 \\
1-k & 1 & 1 & 1 & 1
\end{array}\right], \quad k \in \mathbb{Z}_{\geq 2}
$$

Proof. The strategy is to look first for not necessarily irredundant matrices $P^{\prime \prime}$ with $r^{\prime \prime}=2$ defining a \mathbb{Q}-factorial $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}\right)$ of canonical multiplicity one with at most compound du Val singularities. Then we obtain, up to admissible operations, all matrices P with $X(A, P)$ satisfying the assumptions of the proposition by enlarging the $P^{\prime \prime}$ in the sense of Lemma 8.2, We organize the subsequent discussion according to the possible leading block data, as listed in Proposition 7.9, and treat pairs $P^{\prime \prime}, P$ sharing the same leading block data. Note that we have $r=2$ for P whenever the leading platonic triple differs from $(x, y, 1)$.

Consider the leading block data ($5,3,2 ; 0,0,0$). Proposition 8.1 tells us that after suitable admissible operations, we have

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-5 & 3 & 0 & 0 \\
-5 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 1 & 1 & 1
\end{array}\right]
$$

After performing the corresponding admissible operations on P, we find $P^{\prime \prime}$ as a submatrix of P. Moreover, P has at least one further column and thus a submatrix

$$
P^{\prime \prime \prime}=\left[\begin{array}{cccc}
-5 & 3 & 0 & * \\
-5 & 0 & 2 & * \\
0 & 0 & 0 & * \\
-4 & 1 & 1 & *
\end{array}\right] .
$$

Lemma 8.2 (i) says that $X^{\prime \prime \prime}=X\left(A^{\prime \prime \prime}, P^{\prime \prime \prime}\right)$ is \mathbb{Q}-factorial, of canonical multiplicity one and with at most compound du Val singularities. Thus, up to admissible operations, $P^{\prime \prime \prime}$ occurs in the list of Proposition 8.1. So, the last column must be one of

$$
(0,0,1,1), \quad(0,0,-1,1)
$$

The first case is impossible, because the columns of the defining matrix P are pairwise different. For $(0,0,-1,1)$ as last column, the point $(0,0,0,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$; a contradiction to Proposition 7.4.

The case of leading block data $(4,3,2 ; 0,0,0)$ is treated by exactly the same arguments as the preceding case.

Consider the leading block data ($4,3,2 ; 1,0,0$). Again, Proposition 8.1 tells us that, up to admissible operations, we have

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-4 & -1 & 3 & 0 \\
-4 & -1 & 0 & 2 \\
1 & 3 & 0 & 0 \\
-3 & 0 & 1 & 1
\end{array}\right]
$$

Adapting P by admissible operations, it comprises $P^{\prime \prime}$ as a submatrix. As before, we obtain a matrix $P^{\prime \prime \prime}$ by enhancing the leading block with a further column of P, which this time must be one of

$$
(-1,-1,3,0), \quad(-1,-1,2,0)
$$

The first leads to two identical columns of P and this is excluded. For the second we find $(0,0,3,1)$ inside $\partial A_{X}^{c}(\lambda)^{\circ}$ and leave the compound du Val case.

The case of leading block data $(3,3,2 ; 0,0,0)$ runs exactly as the case of $(5,3,2 ; 0,0,0)$.

Consider the leading block data $(3,3,2 ; 1,0,0)$. Here Proposition 8.1 leaves us with two possibilities for the submatrix $P^{\prime \prime}$ of the accordingly adapted P. The first possibility is

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-3 & -2 & 3 & 0 \tag{8.3.1}\\
-3 & -2 & 0 & 2 \\
1 & 1 & 0 & 0 \\
-2 & -1 & 1 & 1
\end{array}\right]
$$

with columns $v_{01}, v_{02}, v_{11}, v_{21}$. Using as above Proposition 8.1 we arrive at three possibilities for submatrices $P^{\prime \prime \prime}=\left[v_{01}, v_{11}, v_{21}, *\right]$; with $\sigma=\operatorname{cone}\left(v_{01}, v_{02}, v_{11}, v_{21}\right)$, we find the following situation in the $\partial A_{X}^{c}\left(\lambda_{i}\right) \cap \sigma$:

$\partial A_{X}^{c}\left(\lambda_{0}\right) \cap \sigma$

$\partial A_{X}^{c}\left(\lambda_{1}\right) \cap \sigma$

$\partial A_{X}^{c}\left(\lambda_{2}\right) \cap \sigma$
where the circles indicate the prospective columns $*$ of $P^{\prime \prime \prime}$ leading to compound du Val singularities $X\left(A^{\prime \prime \prime}, P^{\prime \prime \prime}\right)$ of canonical multiplicity one. They are

$$
(-1,-1,2,0) \in \lambda_{0}, \quad(1,0,1,1),(2,0,1,1) \in \lambda_{1}
$$

The lower one in the middle picture is contained in σ which is not possible. The other two force $(0,0,2,1)$ to lie in $\partial A_{X}^{c}(\lambda)^{\circ}$ which is as well impossible. So, 8.3.1)
does not occur as a submatrix of P. The second possibility is

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-3 & -1 & 3 & 0 \\
-3 & -1 & 0 & 2 \\
1 & 2 & 0 & 0 \\
-2 & 0 & 1 & 1
\end{array}\right]
$$

Here we proceed analogously as with (8.3.1) and see the only possible additional column in P is $(1,0,1,1)$. In this case again $(0,0,2,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$ and we leave the compound du Val case.

Consider the leading block data $\left(l_{01}, 2,2 ; 0,0,0\right)$. Here Proposition 8.1 tells us that the submatrix $P^{\prime \prime}$ of the accordingly adapted P is

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-k_{1} & -k_{2} & 2 & 0 \\
-k_{1} & -k_{2} & 0 & 2 \\
0 & 1 & 0 & 0 \\
1-k_{1} & 1-k_{2} & 1 & 1
\end{array}\right],
$$

where we allow $k_{2}=0$ here and in this case change the second and fourth column to have a proper defining matrix. A possible further column for $P^{\prime \prime \prime}$ must have the form $\left(-k_{3},-k_{3}, t, 1-k_{3}\right)$ with $t= \pm 1$. For $t=1$, one of $\left(-k_{2},-k_{2}, 1,1-k_{2}\right)$ or ($-k_{3},-k_{3}, 1,1-k_{3}$) does not give an extremal ray of the cone spanned by the columns of P. For $t=-1$, the point $(0,0,0,1)$ lies in $\partial A_{X}^{c}(\lambda)^{\circ}$ and we leave the compound du Val case.

Consider the leading block data ($l_{01}, 2,2 ; 1,0,0$). Proposition 8.1 allows two choices for the submatrix $P^{\prime \prime}$ of the accordingly adapted P. The first one is

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-k & 2 & 0 & 0 \\
-k & 0 & 2 & 0 \\
1 & 0 & 0 & 0 \\
1-k & 1 & 1 & 1
\end{array}\right] .
$$

We check the possible further columns of P. A column in λ would lead to $(0,0,1,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$ and this is impossible. For any $P^{\prime \prime \prime}$ sharing the first three columns with $P^{\prime \prime}$, the additional column, due to Proposition 8.1, must be ($1,0, t, 1$) or $(0,1, t, 1)$, where $t=0,1$. For $t=0$, such column would not generate an extremal ray of the cone spanned by the columns of P. For $t=1$, we obtain $(0,0,1,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$ and we leave the compound du Val case. The second choice is

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-k & 2 & 1 & 0 \\
-k & 0 & 0 & 2 \\
1 & 0 & 0 & 0 \\
1-k & 1 & 1 & 1
\end{array}\right]
$$

Proposition 8.1 tells us that $(1,0, t, 1)$ or $(0,1, t, 1)$ with $t=0,1$ are the only possible further columns of P. But $(1,0,0,1)$ is impossible, since this column already exists in P and for $(1,0,1,1)$, we obtain $(0,0,1,1) \in \partial A_{X}^{c}(\lambda)^{\circ}$. The same holds for $(0,1,1,1)$. For $(0,1,0,1)$, the line segment $\partial A_{X}^{c}(\lambda)$ has, in addition to $w_{1}=(0,0,1,1)$, the vertex

$$
w_{2}=\left(0,0, \frac{1}{1+k}, 1\right) .
$$

If we have a look at the leaves, we see that we get a compound du Val singularity with defining matrix (10-e):

Consider the leading block data $\left(l_{01}, 2,2 ; 0,1,0\right)$. Proposition 8.1 allows four possible submatrices $P^{\prime \prime}$ of the suitably adapted P. We distinguish the following cases.

Case 1: The exponent l_{01} is odd. First assume P has after suitable admissible operations a submatrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-2 k_{1}-1 & -2 k_{2} & 2 & 0 \\
-2 k_{1}-1 & -2 k_{2} & 0 & 2 \\
0 & \frac{k_{1}-k_{2}+1}{2} & 1 & 0 \\
-2 k_{1} & 1-2 k_{2} & 1 & 1
\end{array}\right]
$$

Assume the matrix P has a further column $(-k,-k, t, 1-k)$ in λ_{0}. We regard the submatrix containing this further column as well as the last two columns of $P^{\prime \prime}$ and either the first (if k odd) or the second (if k even) of $P^{\prime \prime}$. This matrix does not show up in Proposition 8.1 and we leave the compound du Val case. So P can have no further column $(-k,-k, t, 1-k)$.

Also an additional column ($0,0, t, 1$) in the lineality part is impossible, because due to Proposition 8.1 the only possibilities are $t=k_{1}$ and $t=k_{1}+1$. But these would either not give an extremal ray of the cone spanned by the columns of P (for $t=k_{1}+1$) or $\left(-1,-1, k_{1}, 0\right)$ would show up in $\partial A_{X}^{c}\left(\lambda_{0}\right)^{\circ}$. Now the last possibility is an additional column $(1,0, t, 1)$ in λ_{1} or $(0,1, t, 1)$ in λ_{2}. But the possible values of t, i.e. those giving a compound du Val submatrix of type (10-o) from Proposition 8.1] either generate no extremal ray of the cone spanned by the columns of P or $\left(-1,-1, k_{1}, 0\right)$ is an interior point of $\partial A_{X}^{c}\left(\lambda_{0}\right)$. Thus assume P has, after suitable admissible operations, no submatrix of the above form and one

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-2 k-1 & 2 & 1 & 0 \\
-2 k-1 & 0 & 0 & 2 \\
0 & 1 & \left\lceil\frac{2 k+1}{4}\right\rceil & 0 \\
-2 k & 1 & 1 & 1
\end{array}\right]
$$

Now, the submatrix of P given by the first, second and third column of this submatrix and one further column must as well be of this form after suitable admissible operations. So the only possible additional column is $(0,1,\lceil(2 k+1) / 4\rceil-1,1)$ in λ_{2}, but then $\left(-1,-1, k_{1}, 0\right)$ is an inner point of $\partial A_{X}^{c}\left(\lambda_{0}\right)$ and we leave the compound du Val case.

Case 2: The exponent l_{01} equals 4 . After suitable admissible operations, the matrix P has a submatrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-4 & 2 & 1 & 0 \\
-4 & 0 & 0 & 2 \\
0 & 1 & 2 & 0 \\
-3 & 1 & 1 & 1
\end{array}\right]
$$

A further column must, together with the first two and the last row of $P^{\prime \prime}$, give a compound du Val submatrix $P^{\prime \prime \prime}$ of P as well. So due to Proposition 8.1, the only possible further column is $(1,0,1,1)$. But with this, the point $(0,0,2,1)$ is an inner point of $\partial A_{X}^{c}(\lambda)$ and we leave the compound du Val case.

Consider the leading block data $\left(l_{01}, l_{11}, 1 ; \mathfrak{d}_{0}, 0,0\right)$. Note that here, we also have to take care about redundant matrices $P^{\prime \prime}$. Proposition 8.1 provides us with one irredundant matrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-2 & 2 & 0 & 0 \\
-2 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0
\end{array}\right]
$$

The only possible further columns of P are of the form $\left(-2,-2, t_{0},-1\right),\left(2,0, t_{1}, 1\right)$ or $\left(0,1, t_{2}, 0\right)$. Each of them would stretch the segment $\partial A_{X}^{c}(\lambda)$ which already has the vertices $(0,0,0,1)$ and $(0,0,1,1)$.

Now we treat the redundant $P^{\prime \prime}$, which means to deal with $l_{11}=1$. Due to Lemma 8.2 (iv) (b), after suitable admissible operations, the matrix P has a submatrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-l_{01} & 1 & 0 & 0 \\
-l_{01} & 0 & 1 & 1 \\
\mathfrak{d}_{0} & 0 & 0 & t_{2} \\
1-l_{01} & 1 & 1 & 1
\end{array}\right] .
$$

But since P is irredundant, it must have a further submatrix

$$
P^{\prime \prime \prime}=\left[\begin{array}{ccccc}
-l_{01} & 1 & 1 & 0 & 0 \\
-l_{01} & 0 & 0 & 1 & 1 \\
\mathfrak{d}_{0} & 0 & t_{1} & 0 & t_{2} \\
1-l_{01} & 1 & 1 & 1 & 1
\end{array}\right]
$$

comprising $P^{\prime \prime}$ and one further column in λ_{1}. For this matrix and the vertices of the respective $\partial A_{X^{\prime \prime \prime}}^{c}(\lambda)$, we have

$$
w_{1}=\left(0,0, \frac{\mathfrak{d}_{0}}{l_{01}+1}, 1\right), \quad w_{2}=\left(0,0, \frac{\mathfrak{d}_{0}+\left(t_{1}+t_{2}\right) l_{01}}{l_{01}+1}, 1\right)
$$

But $\left(t_{1}+t_{2}\right) l_{01} /\left(l_{01}+1\right) \leq 1$ only for $t_{1}=t_{2}=l_{01}=1$. But as P is irredunbdant, it must have a sixth column $\left(-1,-1, \mathfrak{d}_{0}+t_{0}, 0\right)$ in P. The distance between then the vertices of $\partial A_{X}^{c}(\lambda)$ becomes

$$
\frac{t_{0}+t_{1}+t_{2}}{2} \geq \frac{3}{2} .
$$

Thus, $\partial A_{X}^{c}(\lambda)^{\circ}$ contains an integral point. So we obtain no compound du Val singularity in this case.

Finally, we have to deal with the non-toric threefolds of canonical multiplicity greater than one.

Proposition 8.4. Let $X=X(A, P)$ be a non-toric affine threefold of Type 2. Assume that X is of canonical multiplicity greater than one and has at most compound $d u$ Val singularities. Then one may assume P to be one of the following matrices:

In (9), $r \geq 2$ holds, the integers $\zeta_{X} \geq 2$ and $k \geq 1$ are coprime and μ is the unique integer $1 \leq \mu<\zeta_{X}$ with $\zeta_{X} \mid(1-\mu k)$. Moreover $\mathfrak{d}_{i} \in \mathbb{Z}_{\geq 1}$ holds for $i \geq 0$ and if $k \geq 2$ ($\zeta_{X}-k \geq 2$), then one may erase the second (fourth) column of the matrix.

In (13-e), we have $\zeta_{X} \geq 2$. In (13-o), we have $\zeta_{X} \geq 3$ odd. In (14), we have $\zeta_{X}=2$.

Proof. The strategy is similar to that of the proof of Proposition 8.3. We look first for not necessarily irredundant matrices $P^{\prime \prime}$ with $r=2$ and $n_{2}^{\prime \prime}=2$ defining a \mathbb{Q}-factorial $X^{\prime \prime}=X\left(A^{\prime \prime}, P^{\prime \prime}\right)$ with at most compound du Val singularities and of canonical multiplicity bigger than one. Lemma 8.2 then ensures that for $X=$ $X(A, P)$ satisfying the assumptions of the proposition, the matrix P contains, after suitable admissible operations, one of our $P^{\prime \prime}$ as a submatrix with the same leading platonic triple as P. In other words, we can construct the possible P by suitably enlarging $P^{\prime \prime}$.

The matrix $P^{\prime \prime}$ we are looking for is 4×4. Since $\zeta_{X^{\prime \prime}}>1$ holds, we are in the setting of Proposition 4.7 and because of $\imath_{X^{\prime \prime}}=1$, we end up in Case 4.7 (vi). In addition to the leading block, we have the extra column v_{22} in $P^{\prime \prime}$. Moreover, the integer $\mu:=\left(1-\nu_{01} \zeta_{X^{\prime \prime}}\right) / l_{01}$ as well as l_{01} and l_{11} must all be coprime to $\zeta_{X^{\prime \prime}}$, since we have the integer entries $\nu_{01}=\left(1-\mu l_{01}\right) / \zeta_{X^{\prime \prime}}$ and $\nu_{11}=\left(1+\mu l_{11}\right) / \zeta_{X^{\prime \prime}}$. We also see that $\zeta_{X^{\prime \prime}}$ divides $l_{01}+l_{11}$ by subtracting ν_{01} and ν_{11} from each other. Now let

$$
k_{0}:=\left\lfloor l_{01} / \zeta_{X^{\prime \prime}}\right\rfloor, \quad k_{1}:=\left\lceil l_{11} / \zeta_{X^{\prime \prime}}\right\rceil, \quad \delta:=l_{01}-k_{0} \zeta_{X^{\prime \prime}}
$$

Furthermore, let in this proof $\mathfrak{d}_{i j}$ be the third entry of the column $v_{i j}$ of $P^{\prime \prime}$. With these definitions, our matrix has the following shape

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right) & k_{1} \zeta_{X^{\prime \prime}}-\delta & 0 & 0 \tag{8.4.1}\\
-\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right) & 0 & 1 & 1 \\
\mathfrak{d}_{01} & \mathfrak{d}_{11} & 0 & \mathfrak{d}_{22} \\
\frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}-\mu k_{0} & \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}+\mu k_{1} & 0 & 0
\end{array}\right]
$$

where we achieve $1 \leq \mu<\zeta_{X^{\prime \prime}}$ by subtracting the $\left\lfloor\mu / \zeta_{X^{\prime \prime}}\right\rfloor$-fold of the first from the last row, simultaneously. Moreover, we achieve $\mathfrak{d}_{01}=0$ by subtracting the $\mathfrak{d}_{01} \zeta_{X^{\prime \prime}}-$ fold of the last and the $\mathfrak{d}_{01} \mu$-fold of the first from the penultimate row. Exchanging, if necessary, the data of column blocks 0 and 1 , we achieve $k_{1}>k_{0} \geq 0$. We now figure out those $P^{\prime \prime}$ defining a compound du Val singularity. For this, we consider several constellations of k_{0} and k_{1}.
Case 1: We have $k_{0}=0$ and $k_{1}=1$. Here we can also achieve $\mathfrak{d}_{11}=0$ by subtracting the $\mathfrak{d}_{11}(1-\mu \delta) / \zeta_{X^{\prime \prime}}$-fold of the first and the $\mathfrak{d}_{11} \delta$-fold of the last from the penultimate row. The vertices of $\partial A_{X^{\prime \prime}}^{c}(\lambda)$ are

$$
w_{1}=\left(0,0,0, \frac{1}{\zeta_{X^{\prime \prime}}}\right), \quad w_{2}=\left(0,0, \frac{\mathfrak{d}_{22} \delta\left(\zeta_{X^{\prime \prime}}-\delta\right)}{\zeta_{X^{\prime \prime}}}, \frac{1}{\zeta_{X^{\prime \prime}}}\right)
$$

We illustrate the situation for the case $\delta=2, \zeta_{X^{\prime \prime}}=5, \mathfrak{d}_{22}=2$ below; observe that the lineality part λ contains no integer points and the union of the $\lambda_{i} \cap \mathcal{H}_{i} \cap \mathbb{Z}^{4}$ for $i=0,1$ is a sublattice

The polytope $\partial A_{X^{\prime \prime}}^{c}\left(\lambda_{0}\right)$ does not contain integer points $\left(-k,-k, t,(1-\mu k) / \zeta_{X^{\prime \prime}}\right)$ in its relative interior as for such integer points $k<\delta$ and $(1-\mu k) / \zeta_{X^{\prime \prime}}$ integral must hold, but δ is minimal with the second property. The same holds for $\partial A_{X^{\prime \prime}}^{c}\left(\lambda_{1}\right)$ and $\partial A_{X^{\prime \prime}}^{c}\left(\lambda_{2}\right)$ respectively. All points in $\partial A_{X^{\prime \prime}}^{c}(\lambda)$ have $1 / \zeta_{X^{\prime \prime}}$ as last coordinate,
thus are not integral. So, there is no integral point in the relative interior of $\partial A_{X^{\prime \prime}}^{c}$. Thus $P^{\prime \prime}$ defines a \mathbb{Q}-factorial compound du Val singularity and meanwhile looks as follows:

$$
\left[\begin{array}{cccc}
-\delta & \zeta_{X^{\prime \prime}}-\delta & 0 & 0 \tag{8.4.2}\\
-\delta & 0 & 1 & 1 \\
0 & 0 & 0 & \mathfrak{d}_{22} \\
\frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}} & \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}+\mu & 0 & 0
\end{array}\right], \quad \operatorname{gcd}\left(\delta, \zeta_{X^{\prime \prime}}\right)=1, \quad \mathfrak{d}_{22} \in \mathbb{Z}_{>0}
$$

Now we check the possibilities of enlarging $P^{\prime \prime}$ in the sense of Lemma 8.2 to a matrix P defining a non- \mathbb{Q}-factorial $X(A, P)$ as in the proposition. As further columns we can insert one or both of

$$
v_{02}=\left(-\delta,-\delta, \mathfrak{d}_{02}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}\right), \quad v_{12}=\left(\zeta_{X^{\prime \prime}}-\delta, 0, \mathfrak{d}_{12}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}+\mu\right)
$$

with $\mathfrak{d}_{i 2} \in \mathbb{Z}_{>0}$ arbitrary. We can not add other columns $\left(-k,-k, 0,(1-\mu k) / \zeta_{X^{\prime \prime}}\right)$ in λ_{0}. This is because first, $k \leq \delta$ must hold since $\left(\delta, \zeta_{X^{\prime \prime}}-\delta, 1\right)$ is the leading platonic triple. Second, $k=k^{\prime} \zeta_{X^{\prime \prime}}+\delta$ with $k^{\prime} \geq 0$ must hold. So we get $k=\delta$. But then one of the columns

$$
\left(-\delta,-\delta, \mathfrak{o}_{01}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}\right), \quad\left(-\delta,-\delta, \mathfrak{o}_{02}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}\right), \quad\left(-\delta,-\delta, \mathfrak{o}_{03}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}\right)
$$

lies in the cone spanned by the other two. It can give no extremal ray of the cone spanned by the columns of P; a contradiction. Exactly the same argument shows that no more columns can be added in λ_{1} and λ_{2}.

Moreover, we can increase r from two to arbitrary to get P from $P^{\prime \prime}$. The leaves $\lambda_{0}, \ldots, \lambda_{2}$ stay untouched, we add new columns in leaves $\lambda_{3}, \ldots, \lambda_{r}$. First we have $l_{i j}=1, n_{i} \geq 2$ for $i \geq 3$ due to log-terminality and irredundancy. Second, by the same argument as above for $\lambda_{0}, \ldots, \lambda_{2}$, we have $n_{i} \leq 2$. Thus $n_{i}=2$ holds for $i \geq 3$. So λ_{i} for $i \geq 3$ must have the same structure as λ_{2} with two columns e_{i} and $e_{i}+\mathfrak{d}_{i 2} e_{r+1}$. Here $\mathfrak{d}_{i 2} \in \mathbb{Z}_{>0}$ arbitrary and e_{j} denotes the j-th basis vector. The distances $\mathfrak{d}_{i 2}$ between $v_{i 1}$ and $v_{i 2}$ for $0 \leq i \leq r$ and in consequence between w_{1} and w_{2} may vary. Nevertheless, all polytopes $\partial A_{X}^{c}\left(\lambda_{i}\right)$ are subsets of polytopes of the second type of Proposition 7.2 as also the following exemplary picture shows:

$i \geq 2$

So for any P of this form, there are no integral points in the relative interior of ∂A_{X}^{c}. Furthermore, as we have seen above, no more columns can be added in any leaf. In total, we get the series (9) of defining matrices P of compound du Val singularities.

Case 2: We have $k_{1} \geq 2$. Recall that we have $P^{\prime \prime}$ of shape (8.4.1) with $\mathfrak{d}_{01}=0$. Let x_{1}, \ldots, x_{4} be the standard coordinates on the column space \mathbb{Q}^{4} of $P^{\prime \prime}$. Consider the line segments $\partial A_{X^{\prime \prime}}^{c}(\lambda)$ and
$L_{0, X^{\prime \prime}}:=\partial A_{X^{\prime \prime}}^{c}\left(\lambda_{0}\right) \cap\left\{x_{1}=x_{2}=-\delta\right\}, L_{1, X^{\prime \prime}}:=\partial A_{X^{\prime \prime}}^{c}\left(\lambda_{1}\right) \cap\left\{x_{1}=\zeta_{X}-\delta, x_{2}=0\right\}$,

Let w_{1}, w_{2} denote the vertices of $\partial A_{X^{\prime \prime}}^{c}(\lambda)$. Moreover, let ω_{01}, ω_{02} be the vertices of $L_{0, X^{\prime \prime}}$ and ω_{11}, ω_{12} the vertices of $L_{1, X^{\prime \prime}}$. Then we have

$$
\begin{aligned}
& w_{1}=\left(0,0, \frac{\mathfrak{d}_{11}\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right)}{\zeta_{X^{\prime \prime}}\left(k_{1}+k_{0}\right)}, \frac{1}{\zeta_{X^{\prime \prime}}}\right) \\
& w_{2}=w_{1}+\mathfrak{d}_{22} \frac{\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right)\left(k_{1} \zeta_{X^{\prime \prime}}-\delta\right)}{\zeta_{X^{\prime \prime}}\left(k_{1}+k_{0}\right)} e_{3} \\
& \omega_{01}=\left(-\delta,-\delta, \frac{\mathfrak{d}_{11} k_{0} \zeta_{X^{\prime \prime}}}{\zeta_{X^{\prime \prime}}\left(k_{1}+k_{0}\right)}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}\right) \\
& \omega_{02}=\omega_{01}+\mathfrak{d}_{22} \frac{\left(k_{1} \zeta_{X^{\prime \prime}}-\delta\right) k_{0}}{k_{1}+k_{0}} e_{3} \\
& \omega_{11}=\left(\zeta_{X^{\prime \prime}}-\delta, 0, \mathfrak{d}_{11} \frac{\zeta_{X^{\prime \prime}} k_{1}-\delta k_{0}+\zeta_{X^{\prime \prime}} k_{1} k_{0}-\delta}{\left(k_{1} \zeta_{X^{\prime \prime}}-\delta\right)\left(k_{1}+k_{0}\right)}, \frac{1-\mu \delta}{\zeta_{X^{\prime \prime}}}+\mu\right), \\
& \omega_{12}=\omega_{11}+\mathfrak{d}_{22} \frac{\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right)\left(k_{1}-1\right)}{k_{1}+k_{0}} e_{3}
\end{aligned}
$$

Since there must be no integral point in the relative interior of the line segments $L_{0, X^{\prime \prime}}$ and $L_{1, X^{\prime \prime}}$, we at least require

$$
\begin{equation*}
\mathfrak{d}_{22} \frac{\left(k_{1} \zeta_{X^{\prime \prime}}-\delta\right) k_{0}}{k_{1}+k_{0}} \leq 1, \quad \mathfrak{d}_{22} \frac{\left(k_{0} \zeta_{X^{\prime \prime}}+\delta\right)\left(k_{1}-1\right)}{k_{1}+k_{0}} \leq 1 . \tag{8.4.3}
\end{equation*}
$$

These inequalities will be observed in the following different cases.
Case 2.1: We have $k_{0}=0$. Here, the inequalities (8.4.3) ease to $\mathfrak{d}_{22} \delta\left(k_{1}-1\right) / k_{1} \leq 1$. We distinguish between $\delta=1$ and $\delta>1$.
Case 2.1.1: We have $\delta=1$. Here the matrix $P^{\prime \prime}$ is redundant. So any matrix P with such submatrix must have an additional column in λ_{0}. We move on to a matrix P also containing this additional column. Such matrix is of the form

$$
P=\left[\begin{array}{ccccc}
-1 & -1 & k_{1} \zeta_{X}-1 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 \\
0 & \mathfrak{d}_{02} & \mathfrak{d}_{11} & 0 & \mathfrak{d}_{22} \\
0 & 0 & k_{1} & 0 & 0
\end{array}\right]
$$

where we can assume $\mathfrak{d}_{02}>0$. But here the length of the line segment $L_{1, X}$ is

$$
\left(\mathfrak{d}_{2}+\mathfrak{d}_{02}\right)\left(k_{1}-1\right) / k_{1},
$$

which is less or equal to one - which must hold if it does not contain an integral point - only for $\mathfrak{d}_{02}=\mathfrak{d}_{22}=1$ and $k_{1}=2$. Thus by adding multiples of the last to the penultimate row, we can assume that \mathfrak{d}_{11} equals one or zero. If $\mathfrak{d}_{11}=1$, then the line segment $L_{1, X}$ has the vertices

$$
\left(\zeta_{X}-1,0, \frac{2 \zeta_{X}+1}{4 \zeta_{X}-2}, 1\right), \quad\left(\zeta_{X}-1,0, \frac{2 \zeta_{X}+1}{4 \zeta_{X}-2}+1,1\right)
$$

So it contains an integer point in its relative interior, since $\left(2 \zeta_{X}+1\right) /\left(4 \zeta_{X}-2\right)$ is not integral. If $\mathfrak{d}_{11}=0$, then $L_{1, X}$ has the vertices

$$
\left(\zeta_{X}-1,0,0,1\right), \quad\left(\zeta_{X}-1,0,1,1\right)
$$

and thus contains no integer points. Since $L_{1, X}^{\circ}$ is the only subset of $\partial A_{X}^{c}{ }^{\circ}$ that may contain integer points, we get the series of defining matrices (13e) with arbitrary ζ_{X} from this.

Such P cannot again be the submatrix of a non- \mathbb{Q}-factorial matrix with possibly larger r. This is because for any additional column in $\lambda_{0}, \ldots, \lambda_{2}$, the line segment $L_{1, X}$ would be stretched and then contain one its the former integral vertices $\left(\zeta_{X}-1,0,0,1\right)$ and $\left(\zeta_{X}-1,0,1,1\right)$. The same holds for additional leaves, which by
irredundancy must contain at least two columns and also would lead to a stretching of $L_{1, X}$.
Case 2.1.2: We have $\delta>1$. Here $\mathfrak{d}_{22} \delta\left(k_{1}-1\right) / k_{1} \geq 2\left(k_{1}-1\right) / k_{1}$ holds. Thus (8.4.3) is fulfilled only for $k_{1}=\delta=2$ and $\mathfrak{d}_{22}=1$. Moreover $\zeta_{X^{\prime \prime}}$ must be odd since $l_{01}=2$ is even. Also $\mu=\left(\zeta_{X^{\prime \prime}}+1\right) / 2$ holds, i.e. we have the matrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-2 & 2 \zeta_{X^{\prime \prime}}-2 & 0 & 0 \\
-2 & 0 & 1 & 1 \\
0 & \mathfrak{d}_{11} & 0 & 1 \\
-1 & \zeta_{X^{\prime \prime}} & 0 & 0
\end{array}\right]
$$

By admissible operations, again \mathfrak{d}_{11} can be assumed to be equal to zero or one. For $\mathfrak{d}_{11}=1$, the line segment $L_{1, X^{\prime \prime}}$ has the vertices

$$
\left(\zeta_{X^{\prime \prime}}-2,0, \frac{\zeta_{X^{\prime \prime}}-1}{\zeta_{X^{\prime \prime}}-2}, \frac{\zeta_{X^{\prime \prime}}-1}{2}\right), \quad\left(\zeta_{X^{\prime \prime}}-2,0, \frac{\zeta_{X^{\prime \prime}}-1}{\zeta_{X^{\prime \prime}}-2}+1, \frac{\zeta_{X^{\prime \prime}}-1}{2}\right),
$$

which have an integer point inbetween due to $\left(\zeta_{X^{\prime \prime}}-1\right) /\left(\zeta_{X^{\prime \prime}}-2\right)$ not being integral. In case \mathfrak{d}_{11} equals zero, the segment $L_{1, X^{\prime \prime}}$ has the vertices

$$
\left(\zeta_{X^{\prime \prime}}-2,0,0, \frac{\zeta_{X^{\prime \prime}}-1}{2}\right), \quad\left(\zeta_{X^{\prime \prime}}-2,0,1, \frac{\zeta_{X^{\prime \prime}}-1}{2}\right) .
$$

Since again $L_{1, X^{\prime \prime}}^{\circ}$ is the only subset of $\partial A_{X^{\prime \prime}}^{c}{ }^{\circ}$ that may contain integer points, we get a compound du Val series with defining matrices (13-o) and odd $\zeta_{X^{\prime \prime}}$. With exactly the same argument as in Case 2.1.1, these matrices cannot serve as submatrices for other compound du Val defining matrices.
Case 2.2: We have $k_{0} \geq 1$. Here, the first inequality of (8.4.3) leads to

$$
\begin{equation*}
1 \leq k_{0} \leq \frac{k_{1}}{k_{1} \zeta_{X^{\prime \prime}}-\delta-1} \Rightarrow 0 \geq k_{1}\left(\zeta_{X^{\prime \prime}}-1\right)-\delta-1 \tag{8.4.4}
\end{equation*}
$$

Case 2.2.1: We have $k_{1} \geq 3$. Remembering $\delta<\zeta_{X^{\prime \prime}}$, we in total require $\delta<\zeta_{X^{\prime \prime}} \leq$ $(\delta+4) / 3$ from the above inequality (8.4.4), leading to $1=\delta<\zeta \leq 5 / 3$. This gives a contradiction, since $\zeta_{X^{\prime \prime}}$ is integral.
Case 2.2.2: We have $k_{1}=2$. The inequality (8.4.4) gives $\delta<\zeta_{X^{\prime \prime}} \leq(\delta+3) / 2$ here, leading to $\delta<3$. While $\delta=2$ leads to $\zeta_{X^{\prime \prime}} \leq 5 / 2$, which contradicts $\delta<\zeta_{X^{\prime \prime}}$, the case $\delta=1$ allows $\zeta_{X^{\prime \prime}}=2$. The first inequality of (8.4.3) can only be fulfilled for $\mathfrak{d}_{2}=k_{0}=1$ here. Furthermore, $\mu=1$ must hold and inserting everything in (8.4.1), we get a defining matrix

$$
P^{\prime \prime}=\left[\begin{array}{cccc}
-3 & 3 & 0 & 0 \\
-3 & 0 & 1 & 1 \\
0 & \mathfrak{d}_{11} & 0 & 1 \\
-1 & 2 & 0 & 0
\end{array}\right] .
$$

Here in a first step, by admissible operations we can assume $\mathfrak{d}_{11} \in\{0,1,2\}$. In a second step, the vertices

$$
\omega_{11}=\left(1,0, \mathfrak{o}_{11} \frac{2}{3}, 1\right), \quad \omega_{12}=\left(1,0, \mathfrak{o}_{11} \frac{2}{3}+1,1\right)
$$

of the line segment $L_{1, X^{\prime \prime}}$ are integer only for $\mathfrak{d}_{11}=0$. Exactly the same holds for $L_{0, X^{\prime \prime}}$. So in this case, $P^{\prime \prime}$ itself gives the compound du Val defining matrix (14). By the same arguments as in Case 2.1.1, these matrix cannot serve as submatrix for other compound du Val defining matrices.

Proof of Theorem 4. Propositions 7.2, 8.1, 8.3, 8.4 provide us with the defining matrices P of the compound du Val threefold singularities of complexity one. The equations thereof are obtained by computing the degree zero Veronese subalgebra of $R(A, P)$ for a suitable matrix A. We used the MDS package [16 for this.

Proof of Theorem 55. Theorem 4 gives us all compound du Val singularities of complexity one. The respective Cox rings finally can be computed using Remark 6.7.

References

[1] M. Artin: On isolated rational singularities of surfaces. Amer. J. Math. 881966 129-136.
[2] I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface: Cox rings. Cambridge Studies in Advanced Mathematics, 144. Cambridge University Press, Cambridge, 2015. viii+530 pp.
[3] I. Arzhantsev, S. Gaifullin: Cox rings, semigroups, and automorphisms of affine varieties. Sb. Math. 201 (2010), no. 1-2, 1-21.
[4] G. Barthel, L. Kaup: Topologie des surfaces complexes compactes singuliéres. On the topology of compact complex surfaces, pp. 6-297, Sém. Math. Sup., 80, Presses Univ. Montréal, Montreal, Que., 1982.
[5] B. Bechtold, J. Hausen, E. Huggenberger, M. Nicolussi: On terminal Fano 3-folds with 2torus action. Int. Math. Res. Not. IMRN 2016, no. 5, 1563-1602.
[6] E. Brieskorn: Rationale Singularitäten komplexer Flächen.(German) Invent. Math. 4 1967/1968 336-358.
[7] D. Cox, J.B. Little, H.K. Schenck: Toric varieties. Graduate Studies in Mathematics, 124. American Mathematical Society, Providence, RI, 2011. xxiv+841 pp.
[8] D.I. Dais: Resolving 3-dimensional toric singularities. Geometry of toric varieties, 155-186, S'emin. Congr., 6, Soc. Math. France, Paris, 2002.
[9] I.V. Dolgachev: On the link space of a Gorenstein quasihomogeneous surface singularity. Math. Ann. 265 (1983), no. 4, 529-540.
[10] M. Donten-Bury: Cox rings of minimal resolutions of surface quotient singularities. Glasg. Math. J. 58 (2016), no. 2, 325-355.
[11] P. du Val: On isolated singularities which do not affect the conditions of adjunction. Proc. Cambridge Philos. Soc. 30 (1934), 453-465, 483-491.
[12] W. Ebeling: Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity. Manuscripta Math. 107 (2002), no. 3, 271-282.
[13] L. Facchini, V. González-Alonso and M. Lasoń: Cox rings of Du Val singularities. Matematiche (Catania) 66 (2011), no. 2, 115-136.
[14] H. Flenner, M. Zaidenberg: Log-canonical forms and log canonical singularities. Math. Nachr. 254/255 (2003), 107-125.
[15] W. Fulton: Intersection theory. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-Verlag, Berlin, 1998. xiv+470 pp.
[16] J. Hausen, S. Keicher: A software package for Mori dream spaces. LMS J. Comput. Math. 18 (2015), no. 1, 647-659.
[17] J. Hausen, E. Herppich: Factorially graded rings of complexity one. Torsors, étale homotopy and applications to rational points, 414-428, London Math. Soc. Lecture Note Ser., 405, Cambridge Univ. Press, Cambridge, 2013.
[18] J. Hausen, H. Süß: The Cox ring of an algebraic variety with torus action. Adv. Math. 225 (2010), no. 2, 977-1012.
[19] J. Hausen, M. Wrobel: Non-complete rational T-varieties of complexity one. Math. Nachr, to appear. DOI: 10.1002/mana. 201600009
[20] S. Ishii: Introduction to singularities. Springer, Tokyo, 2014. viii+223 pp.
[21] J. Kollár, S. Mori. Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998. viii+254 pp.
[22] A. Liendo, H. Süß: Normal singularities with torus actions. Tohoku Math. J. (2) 65 (2013), no. 1, 105-130.
[23] D.G. Markushevich: Canonical singularities of three-dimensional hypersurfaces. Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 2, 334-368, 462.
[24] M. Newman: Integral Matrices. Pure and Applied Mathematics, Vol. 45. Academic Press, New York-London, 1972. xvii+224 pp.
[25] P. Orlik, P. Wagreich: Algebraic surfaces with k^{*}-action. Acta Math. 138 (1977), no. 1-2, 43-81.
[26] M. Reid: Canonical 3-folds. Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273-310, Sijthoff \& Noordhoff, Alphen aan den RijnGermantown, Md., 1980.
[27] M. Reid: Minimal models of canonical 3-folds. Algebraic varieties and analytic varieties (Tokyo, 1981), 131-180, Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983.
[28] R. Stanley: A census of convex lattice polygons with at most one interior lattice point. Ars Combin. 28 (1989), 83-96.
[29] M. Wemyss: The GL(2, C) McKay correspondence. Math. Ann. 350 (2011), no. 3, 631-659.
[30] J. Wunram: Reflexive modules on quotient surface singularities. Math. Ann. 279 (1988), no. 4, 583-598.

National Research University Higher School of Economics, Faculty of Computer Science, Kochnovskiy Proezd 3, Moscow, 125319 Russia

E-mail address: arjantsev@hse.ru
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

E-mail address: juergen.hausen@uni-tuebingen.de
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

E-mail address: braun@math.uni-tuebingen.de
Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076
Tübingen, Germany
E-mail address: wrobel@math.uni-tuebingen.de

[^0]: 2010 Mathematics Subject Classification. 14L30, 13A05, 13F15.

