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On the simplest system with retarding
switching and a 2-point critical set

D. A. Filimonov *

Abstract

The system considered in this paper consists of two equations
(k=1,2) &(t) = (1) 10 < t < 00), k(0) = 1, 2(0) = 0, z(t) ¢
{0,1}(—1 <t < 0), that change mutually in every instant ¢ for which
x(t — 1) € {0,1}, where 7 = const > 0 is given. In this paper the
behavior of the solutions is characterized for every 7 € (%, %), i. e. in
case not covered in [4]; as it was noted there, this behavior turned out
to be more complex then when 7 € (3/2,00). Thus the behavior of the
solutions of this system with critical set K = {0, 1} is characterized

for every 7 > 0.
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In [1] the systems with retarding switching were introduced as a natural
generalization of the "raging systems” of T. Vogel [2]. The Vogel’s system is
defined with two autonomous systems in R™ ("base systems”) which replace
each other when the phase point z(t) reaches the given fixed ”critical set”
K. General systems with retarding switching were defined in [3]. Here the
change of the base systems occurs in every instant ¢ when the point x(t — 7)
gets into K, where 7 = const > 0 is given, and the values of the solution are
given on some time interval of the length 7 as the initial condition, as well
as the number of the initial base system.

In [4] the considered system has the form

o(t)= (- (k=1,2; 0<t<o0), (1)

whereas the critical set is K = {0,1}. We set the continuous initial function
x = p(t), for —1 <t <0, where p(0) =0, p(t) € {0,1}(—1 <t < 0), and
start with the first base equation (k = 1).

In [4] the behavior of the solution of the system (1) is fully characterized
for 7 € [0,3] U [3,00). When 7 € [, 2] there are some calculations for

4 31 '3 23 302
TE[5 5]
But one critical value - 7 = % - in interval (%, %) was lost. That’s
why coordinates z for turning points mentioned in [4] are correct only for
16 63
T e 43>'63 b - 63 20 60 14 48 _ 10 23
If. T = 3 after switching in points 33, 5,5, 53130 — 130 0s —1, — 33 the
solution goes to —oo;
if 7 e (%, %) it is periodic with sequential turning points 7,7 — 1,37 —

3,07 — 7,117 — 15,217 — 31,437 — 63,437 — 64,7 — 2, =857 + 124.

Probably this oversight hindered the author of [4] from finding the general
rule of behavior of the solutions of the system (1) when 7 € [4/3,3/2).

In this paper the behavior of the solutions of the system (1) is charac-
terized for every 7 € (3, %), i. e. in case not covered in [4]; as it was noted
there, this behavior turned out to be more complex then when 7 € (3/2, 00).
Thus the behavior of the solution of this system with critical set K = {0, 1}
is characterized for every 7 > 0.

Let us introduce the designations 7, := 3 -4%/(2-4%* +1) (k € N); 0, :=
3-(4F1 —1)/(2-481 +1) (ke N)and ¢ :=3-(2-4"-1)/(4*1 1) (k€
N). This are the increasing sequences, with 7 = %,Tk — 3/2 as k — oo
0, = %,Gk — 3/2as k — oo and (4 = %,Ck — 3/2 as k — oo. More than
T < O < Ck < Tk+1 (Vk € N)

Theorem 1. For all k € N:
the solution of the problem is periodic and has 4k + 2 switchings on the
least period, if T = T;
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the solution of the problem is periodic and has 2k + 4 switchings on the
least period, if T, < T < Oy;

the solution of the problem goes to —oo after 2k +5 switchings, if T = O;

the solution of the problem s periodic and has 2k + 6 switchings on the
least period, if O < T < (i

the solution of the problem goes to —oco after 4k + 5 switchings, if T = (i;

the solution of the problem is periodic and has 2k + 4 switchings on the
least period, if (, < T < Tgi1.

Proof. Let consider, that 7 € [4/3,3/2) is given. Let (a1, b)(= (0,0)),
(ag,b2), ..., ((a1, 1), (a2, Ba),...) be the sequence of the values of (z,t) in
the instants of the hit of the solution on the critical set (in instants of the
switching, respectively).

_ _ 4 . . . . . . . .
lIf T N 71 = 3 the solution is periodic with sequential turning points
354y T3
,0 and it corresponds with the formulation of the Theorem 1.

Let us prove that Theorem 1 is valid for all 7 € (4/3,3/2). Denote by J
the maximal natural number for which o; > 1 at all odd j < J and a; < 1
at all even j < J; J = oo if «; satisfy these conditions for all natural j. It is

obvious that J > 4.
Lemma 1. Let 7 € (4/3,3/2), 2k +1 < J; then ag > 0.

—_

Proof. Let proof this statement by contradiction. Let assume that there
exists £ € N, so that 2k + 1 < J but ag, < 0; from all such &k choose
the smallest. From the definition of J and from our assumption follows,
that for all n € N (1 < n < 2k — 2) in every segment with ends «,, ;11
there is only one point from our critical set : {1}. Taking into account
formulas ay = 1, [ < by < (2, we conclude, that a, = 1(1 < n < 2k)
and §,9 < b, < B,-1 (3 <n <2k+1). From ag_; > 0 and ag, < 0 we
obtain, that aggy 1 = 1, aggsro = 0. According to the definition of solution
we have 3, — 3, = 7(Vn € N); in particular, for41 — bogr1 = 7 < 3/2. But
Bok+1—bokr1 = (Bor1— Bor) (Bor —bart1 = |Qops1 — aor| + | o —age| > 2. This
contradiction shows us falseness of our assumption. Lemma 1 is proved. [

Let j € [2, J—1]. It follows from Lemma 1, that a; > O for all j € [2, J—2].
Then it follows from the definition of the solution that

bjt1 — Bj—1 = Bj—1 — b;. (2)

But 3; = b; + 7 for all values of j such that b; is defined - in particular,
for j = J < o0, as by < By_1. Therefore from (2) we obtain the recurrence
relation

Bjt1=—0; +28;-1+21, 2<j5;<J—-1. (3)
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Moreover the definition of the solution directly implies the expression for «
in terms of (:

aj=1+(=1[r=2(8; - B;-1)], 2<j<J (4)

The formula
67 +1— (—2)7 (—2)3'_1 —1
B =

— 1<5<J
9 T 3 ) —_ J —_ )

follows from the relation (3) and the initial data 8, = 7, fo = 7+ 1. This
formula together with (4) and the equality a; = 7 yields that

2 (—1)
B 3

One can see that both sequences {o;}(j € [1,J] even) and (5 € [1, J] odd)
are decreasing. Hence J is the smallest even number for which the value «;
calculated according to the formula (5), becomes < 1. The values 74,k € N
for which agry1 =1, i.e.

; =27 1 1< (5)

22k+1 + 1
3

are the critical ones. We find from here that 7, = 3-4%/(2-4F +1). Now
let’s consider possible cases.

If 7 = 73, then g1 = 1, that’s why because in [agy, agry1] there are
no other points from critical set, the solution continues with the same time
intervals but symmetrically relatively {z = 1/2}, i. e. the solution is peri-
odical and has 2k + 1 + 2k + 1 = 4k + 2 switchings on the least period (Fig.

T —2%4+1=1.

xT
A2k 41
1 +
0 -
2k Q4f42 t
Fig. 1.

Let then 7, < 7 < 7441. Therefore ag, 1 > 1 and awg,3 < 1. The further
behavior of the solution depends on that, if a3 is greater than zero or no.
So we have another set of critical points, for which

22k+3 + 1
3

LAll figures were rendered for k = 3

ek _22k+2+ 1 :O7
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wherefrom we receive ), = 3+ (4571 — 1) /(2 - 4k+1 1+ 1).

If 7. <7 <0, i e gz <0, then after switchings in points aggyo and
Qiar13 there is one another switching in point ag,.4 < 0 and the solution gets
to the beginning of it’s period after 2k + 4 switchings (Fig. 2).

.T‘
Qok41
1
Q243
0 I
Qo
Qof42
Qok+44
Fig. 2.

If 7 =0k i. e. aggrz = 0, then we can verify by direct calculating, that
aoprqa = —1. Therefore agris5 < 0 after which nothing does not prevent the
solution to go to —oo. It has performed 2k + 5 switchings (Fig. 3).

I‘A
Qok41
1
Q243
0 -
Qo Qok+5 t
Q242
Qok 44
Fig. 3.

If 6, < 7 < Tpy1, the result depends on the sign of aggio. From this we
receive the last set of critical points

22k+2 -1

G2 =0,

or G =3-(2-4F —1)/(4k+1 — 1),

If 6, < 7 < (k, then we can verify by direct calculating, that agr s =
7 — 2 < 0. So the solution after switching in points awg 4, Qo5 and aogig
gets to the beginning of it’s period after 2k 4+ 6 switchings (Fig. 4).
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Fig. 4.

If 7 = (4. Then we can observe, that ag,,3 = 7 — 1. It means, that

the solution further behave as if t € [, Bax13], and after that, having in all
2k + 2 + 2k + 2+ 1 = 4k + 5 switchings, goes to —oo (Fig. 5).

Qok41

QK43
Q445
0 >

Qo QK42

~

Fig. 5.

And finally if {, < 7 < 741, then because in this case ag,o > 0 and
aiop13 < 1, there is only one another switching, after which the solution gets

to the beginning of it’s period after 2k + 4 switchings (Fig. 6). This ends
proof of Theorem 1.

4 Q2k+1
Qok+3

1
0 -

Qo Qigpqo t

. Qof44
Fig. 6.
O
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