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KINK WAVES IN AN EXTENDED NONLINEAR SCHRÖDINGER EQUATION
WITH ALLOWANCE FOR STIMULATED SCATTERING
AND NONLINEAR DISPERSION

E.M.Gromov ∗ and V.V.Tyutin UDC 537.86

We study the stationary wave solutions of an extended nonlinear Schrödinger equation with
nonlinear dispersion and stimulated scattering. New classes of the kink waves with nonlinear
phase modulation, the existence of which is stipulated by the balance of nonlinear dispersion and
stimulated scattering, have been found.

1. INTRODUCTION

Interest in the high-frequency stationary waves is stipulated by their possibility of propagating over
long distances with the shape preservation and transmitting energy/information without significant losses.
Such waves appear in many models of propagation of the intense wave fields in nonlinear dispersive media,
e.g., optical pulses in the fiber communication lines, electromagnetic and Langmuir waves in plasmas, surface
waves in deep water, etc. [1–7]. Propagation of the sufficiently long high-frequency pulses is well described
by the nonlinear Schrödinger equation [8–10], which allows for the second-order linear dispersion and cubic
nonlinearity. Within the framework of this equation, the stationary waves result from the balance of the
dispersion expansion of the wave packet, on the one hand, and the nonlinear compression, on the other
hand.

A decrease in the high-frequency wave-pulse length leads to the necessity of allowance for the higher
(third) order infinitesimal terms in the nonlinear Schrödinger equation. These terms correspond to the
nonlinear effects of steepening [11] and stimulated scattering [12], and to the linear effect of an aberrational
distortion corresponding to the third-order linear dispersion. The equation resulting from this allowance is
conventionally called the extended nonlinear Schrödinger equation earlier, the stationary waves were studied
in [13, 14] within the framework of this equation with allowance only for stimulated scattering, disregarding
nonlinear dispersion and the third-order linear dispersion. As a result, the solutions in the form of the
stationary shock waves stipulated by the balance of stimulated scattering and the second-order linear dis-
persion were found. The stationary waves with allowance for nonlinear dispersion and the third-order linear
dispersion were studied in [15–17] within the framework of an extended nonlinear Schrödinger equation for
nonlinear and linear phase modulation in [15] and [16, 17], respectively, disregarding the stimulated scatter-
ing. In this case, the stationary waves result from the balance of nonlinear dispersion and the third-order
linear dispersion. In [18], the stationary waves are considered within the framework of an extended nonlinear
Schrödinger equation with allowance for the nonlinear dispersion but disregarding stimulated scattering and
the third-order linear dispersion. In [19], the stationary kink (shock) wave is described within the framework
of an extended nonlinear Schrödinger equation with allowance for the stimulated scattering, nonlinear dis-
persion, and nonlinearity. However, only one kink-wave type (monotonic, oscillationless transition from zero
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amplitude to the finite one) is considered in [19] for a particular relationship among the equation parame-
ters. The shock-wave existence conditions for an arbitrary relationship among the parameters of stimulated
scattering and nonlinear dispersion are not determined in [19].

The dynamics of nonstationary waves of the envelope is numerically considered in [20] within the
framework of an extended nonlinear Schrödinger equation with allowance for the stimulated scattering,
nonlinear dispersion, and nonlinearity up to the fifth order inclusively. It is shown that nonstationary shock
waves of the envelope (both limited and unlimited in space) propagate with varying velocity and amplitude.

It should be noted that the currently widely used notion “shock waves” was initially used only for
describing low-frequency waves with an infinite derivative in the presence of dissipation [21]. Such waves
are nonstationary and result from the dynamic balance of nonlinearity and dissipation. The features of such
waves are the nonuniqueness of the exact solution of the model equation (which is interpreted as the wave-
front tilting and the appearance of an infinite derivative of the wave field) and their spatial boundedness,
i.e., their energy finiteness. At present, the notion “shock waves” for the envelope waves means smallness of
the characteristic length of the wave front compared with the wavelength of the wave-packet filling, rather
than the wave-front tilting, i.e., the infinite derivative of the wave field is not assumed. On the other hand,
the nonzero wave field at infinity, i.e., its energy unboundedness is permitted. In the classical meaning, such
envelope waves should be called “kink waves.” However, in many recent papers [13, 14, 18, 19], the “kink
waves” are called “shock waves.” The existence of such kink waves can be determined by the balance (of,
e.g., the second-order linear dispersion and nonlinear dispersion) leading to appearance of the stationary
kink waves, rather than by the presence of dissipation. The stationary kink waves propagate with constant
velocity.

In this work, we analyze the stationary waves of the envelope within the framework of an extended
nonlinear Schrödinger equation with allowance for stimulated scattering and nonlinear dispersion. New
classes of the stationary kink waves both on the pedestal (i.e., having nonzero values for the coordinate
tending to positive and negative infinity) and with oscillations on the “tails” (i.e., with oscillations either
in front of or after the main kink front) have been found. One part of the obtained stationary kink waves
results from the balance of the effects of stimulated scattering and nonlinear dispersion, while the other part
results from the balance of the stimulated scattering, on the one hand, and nonlinearity and the second-order
linear dispersion, on the other hand. All the obtained solutions are unbounded in space. The relationship
among the parameters of stimulated scattering and nonlinearity dispersion for which the existence of the
shock waves is possible has been determined.

2. INITIAL EQUATION

Let us consider the dynamics of the envelope U(ξ, t) of the wave field U(ξ, t) exp(iωt − ikξ) within
the framework of an extended nonlinear Schrödinger equation with allowance for nonlinear dispersion and
stimulated scattering:

2i
∂U

∂t
+ q

∂2U

∂ξ2
+ 2αU |U |2 + 2iβ

∂(U |U |2)
∂ξ

+ μU
∂(|U |2)

∂ξ
= 0, (1)

where q is the second-order linear-dispersion coefficient, α is the cubic-nonlinearity coefficient, β is the
nonlinear-dispersion coefficient, and μ is the stimulated-scattering coefficient. To solve Eq. (1), we use
the reference frame moving with velocity V , i.e., introduce new independent variables η = ξ − V t and
t′ = t. The solution of the new obtained equation is represented in the form of the stationary wave
U(η, t) = A(η) exp[iΩt + iϕ(η)]. To determine the amplitude A(η) and the phase ϕ(η), we obtain the
following system of equations:

q
dK

dη
A+ 2qK

dA

dη
+ 2 (3βA2 − V )

dA

dη
= 0, (2)
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q
d2A

dη2
+ (α − 2βK)A3 − 2μA2dA

dη
+ (2V K − qK2 − 2Ω)A = 0, (3)

whereK ≡ dϕ/dη is the additional wave number. Integrating Eq. (2), we obtain (qK−V +3βA2/2)A2 = C,
where C is the integration constant which is determined by the stationary-wave parameters for η → −∞.
Assuming C = 0 in what follows, we obtain the following expression for the additional wave number:
K = (V − 3βA2/2)/q. With allowance for this expression, the equation for the packet envelope takes the
form

q2
d2A

dη2
+ 2μqA2dA

dη
+ (V 2 − 2qΩ)A+ (qα− 2V β)A3 +

3

4
β2A5 = 0. (4)

Note that in the simplified versions, the equations in the form of Eq. (4) for the stationary waves of the
extended Schrödinger equation were more than once obtained, analyzed, and solved in some cases. For
example, an analog of Eq. (4) was developed in [22] for β = 0 and μ = 0 (i.e., for the classical Schrödinger
equation) and different types of its solutions were indicated, namely, periodic waves of the envelope and
envelope solitons. The process of appearance of the nonstationary shock wave of the envelope is also
described in [22]. In [18], the equation of the type of Eq. (4) is obtained for μ = 0 and its solutions are
represented.

However, the presence of stimulated scattering (i.e., the nonzero coefficient μ) essentially complicates
the structure of Eq. (4). As a result, it is impossible to integrate it and obtain its explicit solution in the
general case. It is also impossible to obtain the spatially-bounded stationary solutions within the framework
of such an equation. Therefore, we qualitatively analyze Eq. (4) and its solutions for different signs of the
differences V 2 − 2qΩ and qα− 2V β by considering the phase space of this equation.

3. STATIONARY WAVES

If the inequality V 2 − 2qΩ > 0 is fulfilled, then, after the change of the variable ρ = η
√

V 2 − 2qΩ/q,
Eq. (4) takes the form

d2A

dρ2
− 2μ

√
V 2 − 2qΩ

A2dA

dρ
+A+

qα− 2V β

V 2 − 2qΩ
A3 +

3

4

β2

V 2 − 2qΩ
A5 = 0. (5)

If qα − 2V β < 0, after the substitution of the amplitude A = B
√

(V 2 − 2qΩ)/(2V β − qα), Eq. (5)
is reduced to

d2B

dρ2
+ pB2dB

dρ
+B −B3 + rB5 = 0, (6)

where p = 2μ
√

V 2 − 2qΩ/(2V β − qα) and r = (3/4)β2 (V 2 − 2qΩ)/(2V β − qα)2 are the parameters.
The parameters p ∝ ∝ μ and r ∝ β2 characterize the stimulated scattering and the nonlinear dispersion,
respectively. If r > 1/4, Eq. (6) has only one equilibrium state B = 0 (focus), i.e., the stationary waves
with limited amplitudes do not exist in this case. In the opposite case where r ≤ 1/4, Eq. (6) has five
equilibrium states, namely, B = 0 (stable focus), B = ±B+ (stable foci or nodes), and B = ±B− (saddles),
where B2± = (1±√

1− 4r)/(2r). Figures 1a and 1 b show the phase planes of Eq. (6) for r ≤ 1/4 and various
relationships between the parameters p and r. The separatrices going from the saddles (trajectories 1–4)
correspond to the stationary kink waves with limited amplitude. Figures 1c and 1d show the plots of some
solutions of Eq. (6), namely, the stationary kink waves corresponding to trajectories 1 and 3 depicted in

Figs. 1a and 1b. Figures 1a and 1c correspond to the condition p < p1 = 4
√

r
√
1− 4r/(1 +

√
1− 4r) (weak

stimulated scattering), while Figs. 1b and 1d correspond to p ≥ p1 (strong stimulated scattering).

For a sufficiently weak stimulated scattering (Figs. 1a and 1c), only the shock waves with the damping
spatial oscillations, both with the pedestal (trajectories 3 and 4) and without it (trajectories 1 and 2), are
realized. It should be noted that as the nonlinear dispersion disappears(r → 0), the equilibrium states ±B+
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Fig. 1. Phase planes of Eq. (6) (panels a and b), and the corresponding kink waves for different values of p
(panels c and d). Panels a and c correspond to the inequality p < p1 and panels b and d to p ≥ p1.

of Eq. (6) go to infinity, while the equilibrium states ±B− tend to 1 in magnitude. Therefore, the shock
waves without the pedestal (trajectories 1 and 2) are preserved if the linear dispersion disappears, and their
existence is stipulated by the balance of the stimulated-scattering effects, on the one hand, and nonlinearity
and the second-order linear dispersion, on the other hand [13, 14]. On the contrary, the shock waves on the
pedestal (trajectories 3 and 4) disappear if the linear dispersion disappears, i.e., their existence is stipulated
by the balance of linear dispersion and stimulated scattering.

For a sufficiently strong stimulated scattering (Figs. 1b and 1d), the shock waves on the pedestals
without oscillations are realized (trajectories 3 and 4).

If the inequality qα − 2V β > 0 is fulfilled, then Eq. (6) has no solutions in the form of stationary
waves with finite amplitude.

In the case V 2 − 2qΩ < 0, Eq. (5) is reduced to

d2A

dρ2
+

2μA2

√
2qΩ− V 2

dA

dρ
−A+

qα− 2V β

2qΩ− V 2
A3 +

3

4

β2

2qΩ− V 2
A5 = 0 (7)

by using the substitution of the variable ρ = η
√

2qΩ − V 2/q. In the case qα − 2V β < 0, using the
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substitution of the amplitude A = B
√

(2qΩ − V 2)/(2V β − qα), Eq. (7) yields the equation

d2B

dρ2
+ pB2dB

dρ
−B −B3 + rB5 = 0, (8)

where p = 2μ
√

2qΩ− V 2/(2V β − qα) and r = (3/4)β2 (2qΩ − V 2)/(qα − 2V β)2 are the parameters.
Equation (8) has three equilibrium states, i.e., B = 0 (saddle) and B = ±B0 (stable foci or nodes), where
B2

0 = (1 +
√
1 + 4r)/(2r). Figures 2a and 2b show the phase planes of system (8) for different relationships

between the parameters p and r. The outgoing separatrices of the saddle (trajectories 1 and 2) correspond
to the amplitude-limited stationary kink waves without pedestal. Figures 2c and 2d show the plots of some
solutions of Eq. (8), i.e., the stationary kink waves corresponding to the trajectories 1 in Figs. 2a and 2b.

Figures 2a and 2c correspond to the condition p < p2 = 4
√

r
√
1 + 4r/(1 +

√
1 + 4r) (weak stimulated

scattering). In this case, the kink waves have oscillations on the “tails.” Figures 2b and 2d correspond to
the inequality p ≥ p2 (strong stimulated scattering). In this case, the kink waves without oscillations are
realized.

In the special case where r = (p−1) (p+3)/16, Eq. (8) has an explicit solution in the form of a shock
wave B = ±√

2 (p − 1) (1 − tanh ρ), which coincides with that obtained in [19].
It should be noted that as nonlinear dispersion disappears (r → 0), the equilibrium states ±B0 of

Eq. (8) go to infinity, which leads to disappearance of the stationary kink waves. Therefore, the existence
of the shock waves (trajectories 1 and 2 in Fig. 2) is stipulated by the balance of nonlinear dispersion and
stimulated scattering.

If the inequality qα− 2V β > 0 is fulfilled, then Eq. (7) yields the following equation by substituting
the amplitude A = B

√
(2qΩ− V 2)/(2V β − qα):

d2B

dρ2
+ pB2dB

dρ
−B +B3 + rB5 = 0, (9)

where p = 2μ
√

2qΩ− V 2/(qα − 2V β) and r = (3/4)β2 (2qΩ − V 2)/(qα − 2V β)2 are the parameters.
Equation (9) has three equilibrium states, namely, B = 0 (saddle) and B = ±B1 (stable foci or nodes),
where B2

1 = (
√
1 + 4r − 1)/(2r). Figures 3a and 3b demonstrate the phase planes of Eq. (9) for various

relationships between the parameters p and r. The separatrices going from the saddle correspond to the
amplitude-limited stationary kink waves without pedestal (trajectories 1 and 2). Figures 3c and 3d show
the plots of some solutions of Eqs. (9), which correspond to the trajectories 1 in Figs. 3a and 3b. Figures 3a

and 3c correspond to the condition p < p3 = 4
√

r
√
1 + 4r/(

√
1 + 4r − 1) (weak stimulated scattering), and

Figs. 3b, and 3d to p ≥ p3 (strong stimulated scattering).
For a sufficiently weak stimulated scattering (p < p3; Figs. 3a and 3c), shock waves with the damping

spatial oscillations exist (trajectories 1 and 2). In the limiting case corresponding to the stimulated-scattering
disappearance (p → 0), the ingoing and outgoing separatrices of the saddle close each other and the equi-
librium states at the foci B = ±B1 become the centers. In this case, Eq. (9) has the well-known soliton
solution [13] B2 = 4/[1 +

√
1− 16r/3cosh(2ρ)].

For a sufficiently strong stimulated scattering (p ≥ p3; Figs. 3b and 3d), shock waves without oscilla-
tions exist (trajectories 1 and 2). In the special case where the condition r = (1 + p) (p − 3)/16 is fulfilled,
Eq. (9) has the explicit analytical solution B = ±√

2 (p + 1) (1 − tanh ρ).
It should be noted that on disappearance of nonlinear dispersion (r → 0), the phase-plane structure

of Eq. (9) is preserved, i.e., in this case, the kink waves result from the balance of the stimulated-scattering
effects, on the one hand, and nonlinearity and the second-order linear dispersion, on the other hand.
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Fig. 2. Phase planes of Eq. (8) (panels a and b) and the corresponding kink waves (panels c and d). Panels
a and c correspond to the inequality p < p2, and panels b and d, to p ≥ p2.

4. CONCLUSIONS

In this work, the stationary waves with nonlinear phase modulation were analytically studied within
the framework of the nonlinear Schrödinger equation allowing for nonlinear dispersion and stimulated scat-
tering. The kink (shock) waves existing due to the balance of nonlinear dispersion and stimulated scattering
were found. The kink waves resulting from the balance of the stimulated-scattering effects, on the one hand,
and nonlinearity and the second-order linear dispersion, on the other hand, were also found. The found
kink waves include the waves with and without pedestal and, as well as the kink waves with and without
oscillations on one “tail.” The equation-parameter relationships for which the obtained kink waves exist are
indicated. The role of the third-order linear dispersion during the shock-wave formation will be studied in
the forthcoming works.

This work was supported by the program on the “Scientific Foundation of the National Research
University Higher School of Economics” for 2014–2015 (project No. 14–01–0023).
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Fig. 3. Phase planes of Eq. (9) (panels a and b) and the corresponding kink waves (panels c and d). Panels
a and c correspond to the inequality p < p2 and panels b and d, to p ≥ p3.
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