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1. Introduction

Many economic and political interactions can be modelled
as contests. A contest arises when several players claim the
ownership of some resource, and when the probability of one
player obtaining the resource (or her share of the resource) is an
increasing function of her irrecoverable effort (and a decreasing
function of the effort of other players). A canonical example of
a contest is a rent-seeking contest (Tullock 1968,1980, Posner
1975, Nitzan 1994), when firms make lobbying outlays in order
to obtain a monopoly status, either as a producer, or as an
importer of some good. Other examples of contests include
resource allocation problems (Burkov and Kondratyev, 1981),
sports (Szymanski, 2003), advertisement (Schmalensee, 1972),
wars (Garfinkel and Skaperdas, 2006), litigation (Warneryd,
2000, Baye, Kovenock and de Vries, 2005, Osborne, 2002),
economic growth (Polterovich, 2001), R&D contests, electoral
competition, and marketing, among others (Konrad, 2007).
Redistribution through contests consumes a significant fraction
of income worldwide: estimates in the range of 7-15% of GDP
have been obtained (Krueger, 1974, Posner, 1975, Cowling and
Mueller, 1978, Laband and Sophocleus, 1988).

Modeling rent-seeking contests involves defining the contest
success function that translates the effort of the players into
the probabilities that each player will obtain the resource!.
Skaperdas (1996) provides an axiomatization of such functions.
Several axioms that he considered were monotonicity of one’s
probability of success in one’s own effort, independence of
irrelevant alterantives (that the ratio of probabilities for two

'An alterantive approach is to model a contest through an all-pay
auction, where the valuations of players are private information (Baye,
Kovenock and de Vries, 1996, Hillman and Riley, 1989).
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players should not depend on the efforts of other players),
anonymity (that probabilities of players should not depend on
their identity) and zero-degree homogeneity (that multiplying
the effort of every player by a constant will not change the
outcome). It was shown that the only function that satisfies these
four axioms was the following:
1 i 0

i = < a0 L
(1 P @A
where p; is the success probability of player ¢, and x; is the effort
of player 7 = 1,...,n. For convenience we extend the contest
success function as p; = % when all ; = 0. The parameter «
specifies the returns to rent-seeking technology. As « increases,
larger effort than one’s opponents produces a bigger advantage;
for a = 0, all players share the prize equally regardless of their
efforts; for a = oo, the player with the highest x receives the
prize with probability one. This functional form was widely used
in literature since Tullock (1980). The rent-seeking game itself
involves payoffs

(2) Ui = Ripi — x;

to each player, where R; is that player’s idyosyncratic valuation
of the resource. This setting is background to most other work in
contest theory; it has been extended to include non-simultaneous
order of moves (Baye and Shin 1999), group benefits (Nitzan
1991, Baik and Lee, 1997), budget and other constraints (Che
and Gail, 1997, Schoonbeek and Kooperman, 1997), endogenous
or stochastic number of players (Epstein and Nitzan, 2002, Lim
and Matros, 2009), endogenous size of the prize (Leitzel and
Alexeev, 1995). The central question in analyzing a rent-seeking
contest is that of rent dissipation: are the combined efforts of



players less than or equal to the value of the prize that is being
contested? In games with payoffs (2) dissipation is usually less
than complete if an equilibrium exists.

The existence of a pure-strategy equilibrium in this game is,
however, not guaranteed for a > 1. For instance, in a symmetric
case (with R; = R) a pure-strategy equilibrium exists if and only
if a < % Indeed, the utility function is concave in x; for all
effort levels of other players only if a@ < 1.

For a symmetric, two-player contest Baye, Kovenock and de
Vries (1994) showed that for @ > 2, rent dissipation in a mixed
strategy equilibrium is complete; however, the equilibrium
was not characterized analytically. For asymmetric contests or
contests with more than two players, as far as we know there
are no works that attempt to solve for the mixed-strategy
equilibrium.

2. Equilibria in secure strategies

We now proceed to define the solution concept that we
are going to use to analyze the rent-seeking game defined by
(2). We are going to use the concept of an equilibrium in
secure strategies, first proposed in Iskakov (2005). This is a
generalization of Nash equilibria which introduces an additional
criteria of security. The classic equilibrium concept is stable
against individual deviations of every player. We require an
equilibrium profile to be stable only against those individual
deviations that cannot be subsequently exploited by other
players. Below we provide definitions of Equilibrium in Secure
Strategies (EinSS) from Iskakov and Iskakov (2012).

Consider n-person non-cooperative game in the normal form
G = (I,S,u). The concept of equilibria is based on the notion
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of threat and on the notion of secure strategy.

Definition 1. A threat of player j to player i at strategy
profile s is a pair of strategy profiles {s,(s},s_;)} such that
uj (s}, s-5) > uj(s) and u;(s}, s_;) < ui(s). The strategy profile s
is said to pose a threat from player j to player i.

Definition 2. A strategy s; of player i is a secure strategy
for player i at given strategies s_; of all other players if profile
s poses no threats to player i. A strategqy profile s is a secure
profile if all strategies are secure.

A threat is when a player can deviate, making herself better
off and some other player worse off. A secure profile is when no
player can improve her payoff by making another player worse

off.

Definition 3. A secure deviation of player i with respect
to s is a strategy s, such that w;(s,s—;) > w(s) and
ui(s}, 85, 5-45) = wui(s) for any threat {(s;,s—), (s}, s},si)}

of player j # 1 to player 1.

A secure deviation of a player must satisfy two conditions.
First, it must make the player better off. Second, any subsequent
threat by another player must not make the player’s payoff less
than he had in his original position. Note that a secure deviation
does not necessarily mean a deviation into a secure profile. After
a secure deviation the profile (s}, s_;) can pose threats to player i.
However these threats can not make his or her profit less than in
the initial profile s. We assume that the player with incentive to
maximize his or her profit securely will look for secure deviations.



Definition 4. A secure strategy profile is an Equilibrium in
Secure Strategies (EinSS) if no player has a secure deviation.

There are two conditions in the definition of EinSS. There
are no threats in the profile and there are no profitable secure
deviations. Any Nash equilibrium poses no threats so it is a
secure profile. And no player in Nash equilibrium can improve
his or her profit using whatever deviation. Both conditions of
the EinSS are fulfilled. Therefore we get:

Property 1. Any Nash equilibrium is an Equilibrium in Secure
Strategies.

Consider the following two-player game:

L C R
Ul00 04 03
Cl40 22 -1-1
D|30 -1-1 -2-2

The only Nash equilibrium in this game is (C,C) when
players get equal payoffs (2,2). However, there are also two other
equilibria in secure strategies — namely, (D, L) and (U, R) in
which one player gains 3 and the other player has to be content
with zero payoff to avoid losses. Take the first of these profiles. If
the row player deviates and chooses strategy C, then the column
player can also choose strategy C. That will improve the column
player’s utility relative to (C, L) and reduce the row player’s
utility relative to (D, L). Hence, C' is not a secure deviation for
the row player. Similarly, U is not a secure deviation, as it does
not increase the row player’s utility. As for the column player,
choosing either C' or R will reduce her utility relative to (D, L).



There are no other secure strategy equilibria. If we take
(C, L), then strategy C' is a secure deviation by the column
player, as (C, C) poses no threats for either player. Similarly, for
(U, L), strategy D is a secure deviation for the row player (and
R is such a deviation for the column player as well). Strategy
profiles (D, C') and (D, R) are, obviously, not equilibria as well.

This example shows that even if there is a unique Nash
equilibrium (which seems to complete the study of the game)
there may be additional equilibria in secure strategies which
significantly alter the overall picture. In the given case there
are three stable profiles which have different values for players.
Which of them will be realized in the game is not predetermined
and each player is interested in the profile favorable to him (like
in the game of battle of the sexes).

The Nash equilibrium is the profile in which the strategy of
each player is the best response to strategies of other players.
In a similar way, the strategy of each player in the EinSS turns
out to be the best secure response.

Definition 5. A startegy s; of player i is a best secure
response to strategies s_; of all other players if player © has
no more profitable secure strateqy at s_;. A profile s* is the
Best Secure Response profile (BSR-profile) if strategies of
all players are best secure responses.

Denote by BS;(s_;) the set of all best secure responses of
player ¢ to s_;. Customarily, we will call BS;(-) the best secure
response function of player ¢ and BS(s) = {s*|sf € BS;(s_;)}
the best secure response function for all players.

The EinSS is a secure profile by definition. And it must be
the best secure response for each player since otherwise there



is a player who can increase the payoff by secure deviation.
Therefore we get:

Property 2. Any Equilibrium in Secure Strategies is a BSR-
profile.

This property provides a practical method for finding EinSS.
First, all BSR-profiles are to be found. Then those BSR-profiles
which are not satisfy the definition of EinSS are to be excluded.

3. The rent-seeking game

In this section we will first characterize the Nash equilibrium
in the rent-seeking game, and analyze its existence. Consider a
game of n players with the same valuation of the resource (i.e.
R; = 1). Then the utility function of player i takes the form:

(3) Us=ai/ Y a5 =i (2 #0)

Without loss of generality we assume below that the strategy
space of each player is 0 < x; < 1. We also assume that if the
strategies of all players are zero, all get the same prize 1/n.

When 0 < a < 1 we have %Ul

concave and single-peaked. Best response of player ¢ is defined
by the first order condition 6UZ = 0. In order to resolve it let us
introduce the following 1nvert1ble functions:

< 0. The payoff functions are
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a—1 1/«
T(x;) = i o — 2x; + dax; ,
2
a?—1
(4) max{O, 1 } <z, <a/d
a—1 1/a
£ (xy) = (%’2 <a—2:cl-— \/042—404567;)) , 0< 2, <a/d

Then the position of the maximum z; of the payoff function
U; is defined by the equation _; = ¢%,(#;) or

(5) i = f_l(ff_i) — {(f+)_1 (f_zi), 57_1:

IN{[oRN[o}

1/a
where T_; = (Zx?‘) .
J#
When o > 1 there are three cases of behavior of payoff
function U; shown in Fig.l1 depending on the value of

(Zx?‘) l/a. In general case the payoff functions U;
can be dojuﬁ;le peak in xz;. Left peak arises at x; = 0 and the
right peak is defined by the conditions: gg@ =0, %U; < 0. The
position of the rlght peak z; is defined by the equatlon (5). When
iy < ta-1)% the right peak is higher (see Fig.1a). When
T = 1(04 — 1) the payoff function reaches its max1mum

U; = 0 at both peaks (see Fig.1b). When #_; > 1(a — 1)« " the
best response of player i is z; = 0. (see Fig.1c)
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Fig. 1. Three cases of behavior of playoff function U; when o > 1
depending on Z_;. Z = (o — 1)
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Using notation (4-5) the best response function of player ¢ in
the rent-seeking game (3) can be written as:

—
Q
|
—

Q= Q=

oS

S Q
[
—_ =
[ ol
ol o

R 1/«
where 7_; = (Zx?‘) )
J#

When o < -5 this system has a symmetric Nash equilibrium
solution 7 = a5t obtained by Tullock (1980). It is not difficult
to show that there are no other Nash equilibria. When a > 5
the symmetric Nash equilibrium no longer exists.

0.25 -

02
a=0.75
0.15 -

[ a=0.5
0.1

a=0.25

Fig. 2. Best response of player i as a function of z_; and «a.

The left part of the Fig.2 shows the best response of player
i (along axis Y) as a function of Z_; (along axis X) for a =
0.25,0.5,0.75,1.0. The right part of the Fig.2 shows the best
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secure response for a = 1.0, 1.25,1.5,2.0,2.5,3.0. In case of n = 2
one can see that the best response functions of players no longer
intersect in the point with x; = x5 for a > 2 and the symmetric
Nash equilibrium no longer exists.

4. EinSS in the game of two equal players

In this section we will characterize the equilibrium in secure
strategies in the rent-seeking game of two equal players. The
general algorithm of finding solution in secure strategies is
following. First the set of secure profiles will be found in
the Theorem 1. Then for all profiles on the boundary of this
set the conditions of the EinSS will be checked in the Theorem 2.

Theorem 1. When 0 < a < 1 the set of secure profiles (x1,x2)
in the rent seeking game (3) of two equal players is given by:

(7) {& (w2) < w1, €M (1) < 2}

When o > 1 it is given by:

{¢ N (x) <1< e, &) Saa <} U
U {max(zy,x2) = c} U
(8) U{0<a < l(ag), b<ay <} U
U0 <o <), b<an <ef,

where 7 (x) is defined by (4-5), b = (o — )%, c= =(a+
1)%1(04 — 1)QT_1 and an auxiliary invertible function n is defined

for a > 1 on the interval 0 < x < & as

21
4o

(9) n(x) = g : Uy(x,20) = Uy (€' (22), 22)
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Fig. 3. Secure profiles (gray area) and insecure profiles (vertical
and horizontal bars) for two players in the Tullock Contest
depend upon a: a < 1 (top) and a > 1 (bottom).

B=1(a- 1)(17_1, C= ﬁ(a—i—l)%l(a— 1),
15



In Fig.3 the sets of secure profiles in the rent seeking game
of two equal players are shaded by gray color in the plane of
strategies (z1, x5) for a < 1 (top picture) and for o > 1 (bottom
picture).

Proof. We will use the following criteria. A pair of strategies
is secure in the rent-seeking contest if and only if no player can
be made better off by increasing his or her effort (which would
always reduce the payoff of another player).

Let us first consider the case of 0 < «a < 1. The payoff
functions of players U; are concave and single peaked in their
strategies x;. Therefore no one can increase his profit by
increasing his effort if and only if x; > BR;(x2),x2 > BRs(x1).
According to (6) at 0 < o < 1 this condition can be written as
Ty = &N (29), 9 = E7(xy). Therefore the set of secure strategies
in the game can be written as {(z1,72) @ 11 = £ 1 (2a), 20 >
& 1(xy)}. Tt is shaded by gray in the plane of strategies (1, z2)
in the top part of Fig.3. The profiles which pose threat to player
2 are shaded by horizontal bars and profiles which pose a threat
to player 1 are shaded by vertical bars.

Let us now consider the case of a > 1. Consider for example
the set of profiles which pose a threat to player 2. The profile
with 1 = 29 = 0 always poses a threat for player 2 since his
competitor can arbitrarily increase his strategy and decrease
the payoff of player 2 from 1/2 to 0. Other profiles pose a threat
to player 2 if and only if player 1 can increase his payoff U,
by increasing his effort z;. As we know the payoff function
Ui(z1,72) can be two peak in z; depending on x5 (see Fig.4).
The left peak arises at x; = 0 and the right one at z; = £~ !(zy).

16



When 0 < 25 < b the right peak is higher than the left one and
profile poses a threat to player 2 when z; < £~ !(z2) (upper plot
on Fig.4). When b < x5 < c¢ the left peak is higher than the
right one and non-secure profiles for player 2 lie in the interval
nHzy) < 1y < E1(x) (lower plot on Fig.4). Finally when
Ty > c the function U; decrease monotonically in x; and all
profiles are secure for player 2.

AUi(x1,x2)
- non-secure for player 2
0.06
[ x2=0.45<b
0.02 B
P Az X
, LG RED S
-1
£ (x»)
-0.02 = b<X2=0.57<c
-0.04 L
3 non-secure for player 2
-0.06 ——
L L L L I L L L L I 1 L L L I L L L L I L L L
0 0.1 0.2 0.3 0.4

Fig. 4. The strategies of player 1 which pose a threat to player
2 at @ > 1 when x5 < b (upper plot) and when b < 3 < ¢
(lower plot) (o = 1.5, b ~ 0.529, ¢ ~ 0.609, 5 = 0.45 > b u
b < Ty =0.57<c).
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The set of profiles which pose a threat to player 2 are shaded
by horizontal bars in the bottom part of Fig.3. Those profiles
which pose a threat to player 1 are shaded by vertical bars
respectively. The set of profiles (z1,x2) secure for player 2 can
be formally written as:

{1'2 < b, T = 571(952)} U
U{b<ay<c,a < Hag)or oy =& a)} U {as > ¢}

Consequently the set of profiles secure for player 1 can be written
symmetrically:

{1 < b,y > & Hx)} U
U{b<a <c,oo < Hxy) or zg =6 o)} U {27 > ¢}

The intersection of these sets is the set of secure profiles in the
game. It is shaded by gray in the right part of Fig.3. One can
easily verify that it can be written as (4). O

Now we are ready to formulate the basic result.

Theorem 2. If 0 < o < 1 the Tullock Contest (3) of
two players reaches the following unique equilibrium in secure
strategies (which is also Nash equilibrium):

(10) {(a/4,a/4)}.

If 1 < a < 2 there are following equilibria in secure strategies in

the Tullock Contest (3):
(11) {(a/4,a/4)} and



and all other equilibria in secure strategies lie on the curve:

(12) {(:Ul, EH(xy)) : a;l <1 < %} U

a—1 a

o, e T m <Gl

—1

a 1/
where &1 (x;) = (wlé (a —2z; +Va? — 40420,-)) ,

maX{O, Lo_ll} < x; < a/4.

1
If a > 2 the Tullock Contest (3) reaches only two equilibria in
secure strategies:

(13) {(0,2), (z,0)}.

Remark. Our numerical computations showed that all points on
the curve (12) are in fact multiple equilibria in secure strategies.
The detailed description of this verification is provided in the
Appendix A.

Secure profiles and EinSS in the Tullock contest of two
players are shown in the plane of strategies (z1,x2) in Fig.5.
The shaded (gray) area corresponds to secure profiles. The solid
points and curves represent EinSS.

Proof. (1). We will need the following estimations for the payoff
functions U; of players given by (3) and functions £ given by
(4) (i =1,2)
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Xz

0.8

0.4

P77 I

0.2

-(0-1 )a

(a-1)/a
0 02 a/4 o4

Xi

Fig. 5. Secure profiles (gray area) and EinSS (solid points and
curves) in the Tullock contest of two players depending on the
parameter a: o < 1 (left), 1 < av < 2 (right) and « > 2 (center).
‘Eé(a—l)aT_l,a>1.
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(14) When a <1; 0<z; <afd:
U—z($z7€_(xz>> > U—i(xivg—i_(xi))a 1= 1a2

-1
(15) When o > 1; S <z <ald:
(0%
U_i(2s, € (25)) < U_i(wy, €5 (x)), i=1,2

The proof is given in the Appendix B.

(2). The profile (a/4,a/4) is an EinSS at a < 2 according
to Property 1 because it is a Nash equilibrium in the game
(Tullock,1980).

(3). Let us prove that profiles (0, z) and (z, 0) are EinSS
at @ > 1. Consider for example the first one. Player 1 can
not increase his payoff in it by whatever deviation. Therefore
the profile (0, z) satisfies the definition of EinSS for player 1.
Consider player 2. Any deviation into xo > ¥ is not profitable
for him. Deviation into x5 = 0 is not secure for player 2 since
player 1 can in response decrease his payoff to zero by arbitrarily
small deviation. Let us prove that deviation of player 2 into
To: 0< 29 <ZT=121(— 1)%1 < 1 is not a secure deviation
either. Indeed, player 1 in response can deviate into the position
arbitrarily close to z; > QT_I . Uy(xy,79) = 0. Expressing z,

through z; one gets xy = xl(%)l/a, T, > O‘T’l Let us prove

that in this case Us(z1,x2) — Us(0,2) = T — 21 — 29 < 0 for all

21



x9 € (0,Z), or in terms of x;:

C(a- 1) < <1 + (1 ‘)/> = f(x1)

for all

< <1
o L1 (*)

One can easily check that f”(z;) = —2) (1_“”1)1/& <0

a2z (1-z1)2 \ x1
at a > 1. Therefore min flz1) = min{f(o‘;l),f(l)} =
%<I1<1
a—1
min{®t + L (o —1) = | 1} and estimation (*) is true. The
deviation of player 2 into 0 < x5 < Z is not a secure deviation.
Thus no player can make secure deviation in the profile

<0 Lia— 1)a7_1) if @ > 1 and it is an EinSS by definition. By

)«

symmetry the profile (é (v — 1)%1 , 0) is either an EinSS.

(4). If @ < 1 all EinSS profiles must lie on the boundary
of the set of secure profiles (7) found in Theorem 1 (otherwise
any player can securely increase his payoff by arbitrarily small
deviation). Let us choose any profile on this boundary other
than (a/4,a/4). According to Theorem 1 it must be either
(671 (22), 22), 22 > /4 or (x1,671(xy)), 21 > /4. Consider for
example the first case. Since x3 > /4 then x5 according to (5)
can be expressed as 3 = 1 (x;). The profile (§71(x3), z9) can be
written in the form (z1,£"(x1)). Then there is a secure deviation
of player 1 into the profile (z1,£™ (x1)). Indeed according to (14)
we have Up(x1,& (21)) > Up(z1,£7(21)) at @ < 1 and profile
(21, (x1)) is secure for player 1 (since player 2 get in this
profile his maximum payoff and pose no threat to player 1).
Therefore the profile (£7!(x3),79), T > a/4 is not an EinSS.
By symmetry the profile (z1,§7'(z1)), 1 > «/4 is not an
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EinSS either. There are no EinSS profiles at o < 1 other than

(a/4,/4).

(5). If @ > 1 all EinSS profiles must lie on the boundary
of the set of secure profiles (4) found in Theorem 1 (otherwise
any player can securely increase his payoff by arbitrarily small
deviation). From the other hand all EinSS must lie in the set
{(z1,72) : max(zy,x2) < T} (otherwise at least one player
gets negative payoff and can make a secure deviation into zero
strategy). From these two conditions it follows that at a@ > 1
all EinSS other than (0, ) and (Z, 0) must lie on the curve
(12). In particular it implies that there are no EinSS other than
(0, z) and (z, 0) at a > 2. O

Like Nash equilibria, equilibria in secure strategies can be
Pareto-ranked. By calculating and comparing payoffs of players
in the EinSS found in the Theorem 2 one can establish the
corresponding result.

Corollary.

e For 1l < a < o all EinSS are Pareto dominated by the
Nash equilibrium (a/4,a/4), where o ~ 1.08 is found
from the condition Uy (Z(a*),0) = Uy(a*/4, a* /4).

o Fora* < a < a™ all EinSS on the curve (12) are Pareto
dominated by the Nash equilibrium (a/4, a/4), where o™ ~
1.22 is found from the condition Uy(Z(a™), L) =
Uy (o /4, a** /4).

o [or o™ < a < o™ EinSS lying on some interval of the
curve (12) are Pareto dominated by the Nash equilibrium
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(/4,0 /4), where o = /2 ~ 1.41 is found from the

OU (z,61 (x
Oz

condition ) | z=a=+ja—0 = 0.

e For 1 < a < 2 there are two EnSS (z,(¢7)71(z)) and
(7)Y (), ) Pareto dominated by the monopolistic EinSS
(z,0) and (0, %) respectively.

o For a = 2 there is only one equilibrium (0.5,0.5) Pareto-
dominated by the ” monopolistic” EinSS.

e For « < 1 and a« > 2 there are no Pareto-dominated
equilibria.

When a < 1.08 all other EinSS are Pareto dominated by
the Nash equilibrium (o/4, «/4). When 1.08 $ a < 2 the two
"monopolistic” EinSS (0, z) and (z, 0) coexist with (but are
not dominated by) the symmetric Nash equilibrium in a similar
way as they coexist in the matrix game example considered
earlier:

| L C R
Uloo 04 03
Cl40 22 -1-1
D |30 -1-1 -2:-2

There is Nash equilibrium (C,C') which corresponds to the
symmetric Nash Equilibrium found by Tullock (1980). The other
two EinSS (U, R) and (D, L) correspond to the monopolistic
EinSS in the rent-seeking game. In these equilibria the winning
monopolist fixes high enough payment for the rent to create the
entrance barrier for the other player making him unprofitable to
participate in the competition. The difference however with the
matrix game is the intermediate EinSS lying on the curve (12).
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When a g 1.22 all these equilibria are Pareto dominated by the
Nash equilibrium («/4, a/4). However when 1.22 $ a < 2 they
can be interpreted as an intermediate type of solutions when
players participate in the contest non-symmetricaly. One (the
”stronger”) player with larger level of effort chooses his strategy
x and another (the "weaker”) player adjust his strategy by
choosing his best response (£7)7!(z) at a given x. The weaker
player always gains less than the stronger player and less than
he would gain in the symmetric Nash equilibrium. The payoff
of weaker player monotonically decrease from his payoff in
the Nash equilibrium to zero with the increase of the effort of
stronger player. One can show that if @ > v/2 ~ 1.41 the payoff
of stronger player monotonically increases along the curve (12)
with the increase of his effort. Therefore the intermediate EinSS
lying on the curve (12) can be considered as positions which
in terms of profitability are in between the Nash equilibrium
and the monopolistic EinSS. The stronger player continuously
increases his payoff and weak player continuously decreases his
payoff up to the point (21,1 (a — 1)(*~1/*) in which the weak
player leaves the contest and the strong player settles himself in
the monopolistic EinSS.

What is the degree of rent dissipation in EinSS? Rent
dissipation is equal to the ratio of total effort of both players
to the value of the prize, which in our case is equal to one.
The higher is the degree of rent dissipation, the lower is the
efficiency of the equilibrium.

For the symmetric Nash equilibrium rent dissipation x1+zy =
a/2 increases linearly with o and reaches unity at o = 2 (see
Fig.6, solid line). For 1 < a < 2 there are multiple EinSS (12)
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L X1t X2

0.8

0.6 [~

0.4 -

0.2

Fig. 6. Minimum and maximum rent dissipation in EinSS
depending on «.

with the rent dissipation in the interval § < z1 + x3 < E +

(a - 1) * shaded in Fig.6 by gray Color One can see that all
these EinSS are less efficient than the Nash equilibrium. The rent
dissipation for two monopolistic EinSS is the same and is given
by x1+x9 = (a 1) . It is shown in Fig.6 by dashed line. One
can see that for @ < a < 2 (here, @ ~ 1.23 is the solution to § =

la-1)% &) the monopolistic EinSS is more efficient than Nash
equilibrium. For a > 2, no pure-strategy Nash equilibria exist,
and rent dissipation in mixed-startegy equilibria is equal to one,
so the rent is completely dissipated. However there are still two
monopolistic EinSS with the rent dissipation significantly less
than one. Hence for a > 2, the concept of EinSS provides more
efficient solution than the mixed-strategy Nash equilibrium.
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5. Multiple players

In this section we generalize the result of Theorem 2 for the
case of several equal players. In this case however we can fully
characterize the set of EinSS in the rent-seeking game only for
certain values of a.

Theorem 3. Consider the rent seeking game of n players with
payoff functions (3).

1) If a < 5 there is a symmetric EinSS (which is also Nash
equilibrium):

—1
(16) g

; o— Jorall i=1,...n
n

2) If % <a< k—fl for some 2 < k < n there are symmetric
EinSS of k players (which are also Nash equilibria):

L2
x; =0 for all other players

1
(17) T, =« for k players and

3) If a > 1 there are monopolistic EinSS:

(v — 1)0%1 for some i and

x; =0 for j #1i.

(18) T, =T=

Q|+

4) If a > 2 there are no EinSS other than monopolistic ones

(18).
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5) Any other EinSS z* at o < 2 for all i = 1,...,n satisfies
the following conditions:

1) et #= ()"

JFi

where £71(+) is given by (5) and at least for one i the
inequality (19) is binding.

Proof. (1). The symmetric Nash equilibrium (16) was found
by Tullock (1980). It always exists at a < -5 and according to
Property 1 it is also an EinSS.

(2). The EinSS (17) correspond to the symmetric Nash

equilibria in the game of k players. The condition o < ﬁ

ensures the existence of Nash equilibrium in the game of k
players. The condition o > % ensures that entering is not
profitable for other (n — k) players. One can easily check that
(17) are Nash equilibria (and consequently EinSS) in the game

of n players.

(3). The definition of EinSS for the profile (18) can be
verified straightforwardly in the same way as in the proof of
Theorem 2.

(4). Let us prove that there are no EinSS other than
monopolistic ones (18) if & > 2. Let z* be an EinSS. According
to Property 2 x* is also a BSR-profile. Assume that

di, j#F: 2; >0, 23>0 (%)

If 2*, > & then it would be zf = 0 (since all other strategies

provide negative payoff for player ¢ and therefore z* could
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not be BSR-profile). Consequently z7 < 7*; < z. And by
symmetry arguments z; < z. If @ < 2 we have Z < «/4 and
therefore zf < # < «a/4 and 7*;, < T < «a/4. Under such
inequalities the security condition of player j against threats
of player i takes the form: zf > &7 1(z*,) or & (zf) > *,.
Using definition (4) of £ we can write this condition as:

(7,) + (29)* < %(1 /1 4ff>. Since 1 — VI ¢ < ¢
at 0 <t < 1, then it follows that (T*5,)* + (z7)* < 2(x))*, ie.
(z5)* < (7%,)* < (#7)*. By symmetry arguments (z7)* < (7).
This is a contradiction and an assumption () was wrong.
Therefore Vj # i : zj = 0. If zj < T there is always a threat
of other players to choose non-zero strategy and get a positive
payoff with simultaneous decreasing the payoff of player 7. If
xf > T player ¢ can always securely increase his payoff by
reducing his strategy to z. Therefore the only possible EinSS is

given by (18).

(5). The inequalities (19) are conditions of security of all
players j # ¢ against the threats of player ¢. Therefore according
to Definition 4 they must be satisfied for any EinSS. If all
these inequalities are strict then an arbitrary player can slightly
decrease his strategy without violation any of them. This is a
secure deviation and initial profile is not an EinSS. Therefore at
least for one player inequality (19) must be binding. [J

In any Nash equilibrium (17) there are two types of players:
those who exert a zero level of effort, and those who exert
some other level of effort that is the same for all such players.
The monopoly equilibrium (18) is identical to the monopoly
equilibrium in the two-player game: one player has a nonzero
level of effort, such that other players cannot improve their
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utility by entering the contest by choosing a nonzero effort level.
When a < 1 all players are interested to participate in the game
(i.e. Vi : zf > 0). When o > 2 only monopolistic equilibria can
exist. When « € [1,2] there is an intermediate situation. Like
in the two-player case monopoly equilibria can coexist with the
equilibria for which all players select nonzero effort.

6. Unfair contest of two players

Clark and Riis (1996) extended the axiomatic
characterization of the contest success function by Scaperdas
(1996) to an unfair contest by relaxing the axiom of anonymity.
They showed that the success function which satisfies
monotonicity in one’s own effort, independence of irrelevant
alternatives and zero-degree homogeneity can be uniquely
defined. The corresponding payoff function for two players can
be written in a similar way to (3):

a ¢ Ty

(20) U=—Ff——7F—u, U=—f——2—1

a1 xf + ary a1y + axy

where «,aj,as > 0. Denote 74 = al/a2, v = a2/al and
introduce notation similar to (4) and (5) (i € {1,2}):

1

2o 1/a
£ (xy) = (% d (a —2x; + Va2 — 404951-)) ,

2
21
(21) max{(],%} <z < afd
x(‘:vfl 1/a
& () = (%. 12 (a—Qwi—\/a2_4axi)> , 0< 2 <a/d
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) @), T >73/%
() (@), w <l

Then the best response function of player ¢ takes the form similar
to (6):

(22) &= o) = {

571(55,2-), 0<a<l

(23) BRi(xz_;) = §;}(x_z), a>1, r; <~y

< 1/(11( _1>
0, a>1, x_i>721/a1( -1)

a—1

ofi e

One can easily find the corresponding symmetric Nash
equilibrium similar to (10) and the condition of its existence:

Q0o al + a2

24 T =Tg=——-, < ———
(24) ! 2 (aq + az)? max{ay, as}

Therefore in an unfair contest the Nash equilibrium strategies of
players are still the same but their payoffs are different.
Monopolistic solutions in secure strategies can be found in the
form similar to (13):

ol a-1 — 1)@=
{0, L a-5) asn B cae,
aa

(25)

al 1 -1 (a—1)
{orrl@-p= o as ©2 coa

In comparison with (13) however there are additional conditions.
The "weak” player has to keep monopolistic barrier higher and
receive less payoff. Besides, his possibility to settle monopoly
occurs at greater a.

The basic result can be formulated by the following Theorem:
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Theorem 4. Consider rent-seeking unfair contest of 2 players
with payoff functions (20).

There is a symmetric EinSS (which coincides with Nash
equilibrium):

aa1Gs aj + as

26 XT1 = Xo = S EEE— {—
(26) P (0 4 ap)? max{ai, as}

There are two monopolistic EinSS:

1 a1 (a — 1)@~
0. AV (o — 1) -1 =2
{002 a1} a1 020

a]- a1 -1 (a—1)
{(721/ —(a—1) 0)}, a>1, & < aj/as.

o o

< ag/ay
(27)

Any other EinSS x* must satisfy the following conditions:

(28) Vie{1,2}: zf>¢&Ma",) >0

)

and at least for one player this inequality is binding.
If a > % there are no EinSS other than monopolistic

ones (27).

Proof. 1t is similar to the proof of Theorem 2 and given in
Appendix C. [J

One can employ the different notation: a; = Rf, as =
R%, Tr1 = 531/R1, To = jQ/RQ, Ul = Ul/Rl, Ug = UQ/RQ. Then
the payoff functions of players take the form:
Riz¢ ~ Rox§

n 4o O SO nqe%
Ty + x5 Ty + x5

— T3.

The Theorem can be then reformulated in the following form:
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Corollary. Consider rent-seeking unfair contest of two players
with payoff functions (29).

There is an EinSS (which coincides with Nash equilibrium,):
aR{ RS - Ry + RS

30) /B =2/ Be = R Tpes @S R oY
B0) /B =0 o = (e R S ax{RY, By

There are two monopolistic EinSS:
1)(04 1)/« R2

Rl a—1 ( )/
U o1 1
{(O’ OzRg(a ) >},a> ’ a <R1
)/

o —
Ry a1 (a —1)@=Dle Ry
{(—(Oé—]_) ,0>},Oj>17#<§2

Any other EinSS x* must satisfy the following conditions:
(32) Vie{1,2}: /Ry =& 3,/R) >0

and at least for one player this inequality is binding.
If a > % there are no EinSS other than monopolistic
1742

ones (31).

Conclusion

The concept of equilibrium in secure strategies allows to
discover a different type of equilibria in the rent-seeking game,
those for which one player exerts a high level of effort to keep
the resource, while the other player has zero level of effort. In
these equilibria the first player prefer to fix his or her secure
monopolistic position and not reduce the effort because such
a move would be insecure and be subjected to exploitation by
the other player. Thus the first player imposes an entry barrier.
When power parameter v > 2 and there is no Nash equilibrium
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the monopolistic situation is the only stable position in the game
in terms of secure strategies. Moreover it provides more efficient
solution than the mixed-strategy Nash equilibrium in terms of
the rent dissipation. The logic of the best responses can not
reveal the possibility of such kind of "monopolistic” equilibria
since it does not take into account the security considerations
and assumes the players would choose the most profitable
but insecure and possibly eventually not-profitable for them
strategies.

The total rent dissipation in the found EinSS depends on
the quality of contest. If the contest is highly sensitive to player
effort (which corresponds to high « in the model), the one-player
equilibrium is more efficient, and rent is not fully dissipated,
while the symmetric Nash equilibrium is either less efficient,
or, for @« > 2, does not exist (for the latter case, rent is fully
dissipated in a mixed-strategy equilibrium). If « is small, then
the one-player equilibrium is less efficient. For almost all values
of «, the payoff of the monopolist in the one-player equilibrium
is higher than in the Nash equilibrium (where both players exert
effort).
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APPENDIX A

Verification of multiple EinSS in Theorem 2

0.7

01 gt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

X1
Fig. 7. Verification of multiple EinSS. Any deviation x"** — x;
of player 1 can be effectively ”punished” by the response
deviation xs — Z9(x1) + € of player 2 just slightly above the

~

indifference curve G of player 1.

According to Theorem 2 when 1 < o < 2 all
EinSS other than («/4,a/4), (0,Z) and (z,0) lie on
the curves G = {(z1, £(z1)): =L <2< ¢} and
Gy = {(€M(z2), 32): =L <2y <2}, Consider for example
profiles on the curve G,. These profiles are best responses
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for player 2 who can make no profitable deviation. Therefore
the definition of EinSS is satisfied for player 2. Consider
player 1. At each point of G5 draw the indifference curve
for player 1 (see Fig.7: G and Gy are plotted by solid

N

lines and indifference curve G by dashed line): G(xy) =
. . + (2))" o
{(957@@)) D Fi(z, 22(2)) = % — & (2g) = Fo(xz)} ) Tl <

«Q ¢
X =

T2 S 7= atast)

— x = Fy. From here we obtain an explicit

equation of the indifference curve: Zo(zq) = 21 (ﬁ — 1)1/04.
It is a strictly concave one-picked function with its maximum
on the curve G;. Let us prove that at any (profitable) deviation
x1 of player 1 player 2 can make (profitable) deviation into
the vicinity of G and effectively ”punish” player 1 (so that
in the new position F; < Fj). Formally we shall prove that
Fy(x1, 29(x1)) > Fy(x1, 29) for all z; such that Fy(z1,x9) > Fo.
Then the definition of EinSS will be satisfied for player 1 either.
For the function ®(z1) = Fy(xq,Z2(x1)) — Fo(x1,22) we have to
check the following condition:

®(x1) >0 at :1371”1" <m < §+(x2), Fl(me,xg) = Fy,
a—1

(6%
<£L’2<Z, 1<a<?2

This condition has been verified numerically for all values
of parameters (x1,z2,a) on the mesh of 500 x 500 x 500
points. For computing very small values of ® we have used
Taylor expansion. The profiles of ®(x;) for different z, at
a = 1.0001,1.01,1.1,1.2,1.4,1.9 are plotted in Fig.8. The
function ®(xy) is rather small but has no singularities in
the plain (z1,x2). It decreases sharply to zero when o — 1.
Therefore arbitrary profile on G5 is an EinSS. Symmetrically all
profiles on GGy are EinSS.
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APPENDIX B
Proof of the estimations in Theorem 2
Let us prove the following estimations for the payoff functions
U; (i € {1,2}) given by (3) and functions £* given by (4):
when 0 <a<l1l, O<uz<a/d:
Ui & (24)) > Usi(ay, € (1)), i€ {1,2}
—1
when 1< a <2, a—<xi<oz/4:
!
U_i(wi, € () < U—i@s, 5 (20)), 7 € {1,2}

Proof. Choose for example i = 1.

fe l/a
Then £+ (z;) = <m12 (o =221 £ V% — 4a931)) . Notice that

ryxy = EV(x1)¢ (z1) = 22 Therefore, for convenience we
introduce the variable y = ﬁ (a — 211 + Va2 — 4ax1). If0 <

71 < afd we get 1 <y < +oo. Then 2§ = z1y"/, x5 = zyy~ Ve,
Notice also that y +y~' = & —2or (1+y)(1+y ') = = Then:

x3) y

U*E(2——x+:——x 1/,

P () P 1y M
—\« -1

_ T ~ 1l

T Y S Y

af + (zp)* P 14y

=>Uy = Uy = (03 —a3) + =




If a = 1 the function ® = (U, — U, )/x1 = 0.

% = aiy ((y +y ) = (vt y‘l/o‘)>'

fo<a<l(l/a>1):y/*>y>1 => y/opy /e s yty !
and 42 < 0 Vy > 1.

If > 1(0<1/a<l):l<ylr <y => yogy Ve < yqqy !
and dq) >0 Vy > 1.

Smce(I)(y—l)—O Va >0, thenif 0 < a<1: U <U,, and

if « >1: U > U, . The estimations are proven. [J

APPENDIX C
Proof of Theorem 4

Proof. The proof is similar to the proof of Theorem 2. Let
us prove that monopolistic profiles (27) are EinSS. Consider for

example profile (0, ~; “L(a— 1)%1) Player 1 can not increase
his payoff in it by whatever deviation. Therefore the profile

(0, 711/ “L(a— 1)%1) satisfies the definition of EinSS for player

1. Consider player 2. Any deviation into x5 > yl/ai (. — 1)%
is not profitable for him. Deviation into x5 = 0 is not secure
for player 2 since player 1 can in response decrease his payoff to

zero by arbitrarily small deviation. Let us prove that deviation
—1

ofplayer2int00<$2<x2_fyll/ i(&—l) < 1 is not a

secure deviation either. Indeed, player 1 in response can deviate

into the position arbitrarily close to z; > ‘%1 : Up(xq,29) = 0.

Expressing xo through z; one gets z, = 'yll/axl(%)l/a, x>

=L Let us prove that in this case Us(w1,22) — Uz(0,7) =
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To—T1 — 29 <0 for all To € (O,fg), or

1/al a-1 o (=2
Wl (a1 <o (144 = f(w)

-1
<z <1
o L1 (*)

for all

1/ @
One can easily check that f”(z;) = -3 (l_a)g(l_“)l/ <0

a2x1(1—x1) 1

at o > 1. Therefore min f(z1) = min{f(%2*),f(1)} =

aT_1<x1<1

a—1 1/ 1 =l . . .
min{ 2t + 7/*L (e — 1)« | 1} and estimation (x) is true.
The dev1at10n of player 2 into 0 < z3 < T is not a secure

deviation. Thus no player can make secure deviation in the profile
a—1

(0, vll/ai (—1) @ )if o > 1 and it is an EinSS by definition. By

symmetry the profile (72/‘)‘; (o — 1)%1 , 0) is either an EinSS.

Other conditions can be verified like in the proof of Theorem 2.

O
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NckakoB, M., Fckakos, A., 3axapos, A. Cocrs3aHue 3a peHTy Ta/ioka U ero pelieHue
B Ge3omacHbIX crparerusix : npenpuHT WP7/2013/01 [Tekcr] / M. Hckakos, A. Mckakos,
A. 3axapos ; Hail. uccien. yH-T «Boiciasi mkosia 3KoHOMUKW». — M. : 311, 1om Beicnieii ikosibi
9KOHOMUKHM, 2013. — 45 c. (in English).

XopolI110 M3BECTHO, YTO B COCTSI3aHMM TalJIoKa 3a PEHTY IBYX UTPOKOB HE CYILIECTBYET PaB-
HoBecust Hallla B YMCTBIX CTpaTerusix, €CJIv rokasaTes b GYHKIMUU ycIeXa o IPeBbIIIaeT TBOM-
Ky. B pabore mpecraBiieH aHaIM3 COCTA3aHUS Ha OCHOBE KOHLIEIINN PaBHOBeCHIA B Oe301Tac-
Hbix cTpaterusix (PBC), koTopas sBnsiercst 06061ieHreM paBHoBecust Hama. PBC onpenensi-
eTcsl ABYMST YCIOBUSIMU: (1) HUKTO HE MOXET YJIy4IIUTh CBOE MOJOXEHUE OMHOCTOPOHHUM
OTKJIOHEHUEM, YXYALIUB MPU 3TOM TOJIOXKEHUE IPYTOTO UTPOKA, U (2) HUKTO HE MOXKET yIyd-
LIUTh CBOE IMOJIOXEHNE OMHOCTOPOHHUM OTKJIOHEHUEM, HE CO3[aBasi IIPU 3TOM YTPO3bI MOTe-
psITh OoJblie, YeM OoH BhiMrpbiBaeT. [TokazaHo, yto PBC B cocTsizanum Tayioka Beerma cy-
mecTByeT. boee Toro, rmpu o > 2 0HO EAMHCTBEHHO € TOYHOCTHIO JI0 TTEPECTAHOBKU UTPOKOB U
rMeeT 0oJjiee HU3KYIO AMCCUIIALIMIO PEHTHI, YeM COOTBETCTBYIOIIEE paBHOBecHe Haima B cme-
IIAHHBIX CTPATETHsIX.

Hckakoe Muxaun — UHCTUTYT TIpo6JieM yripaBiieHus uM. B.A. Tpane3nukoBa, MockBa.
Hckakoe Anexceit — UHCTUTYT npoGJiem yripasieHust uM. B.A. Tpane3HnukoBa, Mockaa.

3axapoe Anekceii — Bpiciliasi IKojla 5 KOHOMUKY, MockBa.
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