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Abstract Moment-anglemanifolds provide awide class of examples of non-Kähler compact
complex manifolds. A complex moment-angle manifold Z is constructed via certain combi-
natorial data, called a complete simplicial fan. In the case of rational fans, the manifold Z is
the total space of a holomorphic bundle over a toric variety with fibres compact complex tori.
In general, a complex moment-angle manifold Z is equipped with a canonical holomorphic
foliation F which is equivariant with respect to the (C×)m-action. Examples of moment-
angle manifolds include Hopf manifolds of Vaisman type, Calabi–Eckmann manifolds, and
their deformations. We construct transversely Kähler metrics on moment-angle manifolds,
under some restriction on the combinatorial data. We prove that any Kähler submanifold (or,
more generally, a Fujiki class C subvariety) in such a moment-angle manifold is contained in

The first and the second authors were supported by the Russian Science Foundation, RSCF Grant
14-11-00414 at the Steklov Institute of Mathematics. The third author was partially supported by the RSCF
Grant 14-21-00053 within the AG Laboratory NRU-HSE.

B Taras Panov
tpanov@mech.math.msu.su

Yury Ustinovskiy
yura.ust@gmail.com

Misha Verbitsky
verbit@mccme.ru

1 Department of Mathematics and Mechanics, Moscow State University, Leninskie Gory, Moscow,
Russia 119991

2 Institute for Theoretical and Experimental Physics, Moscow, Russia

3 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia

4 Steklov Institute of Mathematics, 8 Gubkina Str., Moscow, Russia 119991

5 Department of Mathematics, Princeton University, Princeton, NJ, USA

6 Laboratory of Algebraic Geometry, Department of Mathematics, National Research University
“Higher School of Economics”, 7 Vavilova Str., Moscow, Russia

7 Université Libre de Bruxelles, CP 218, Bd du Triomphe, 1050 Brussels, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-016-1658-1&domain=pdf


T. Panov et al.

a leaf of the foliation F . For a generic moment-angle manifold Z in its combinatorial class,
we prove that all subvarieties are moment-angle manifolds of smaller dimension and there
are only finitely many of them. This implies, in particular, that the algebraic dimension of Z
is zero.

Keywords Moment-angle manifold · Simplicial fan · Non-Kähler complex structure ·
Holomorphic foliation · Transversely Kähler metric

Mathematics Subject Classification 32J18 · 32L05 · 32M05 · 32Q55 · 37F75 · 57R19 ·
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1 Introduction

1.1 Non-Kähler geometry

The class of non-Kähler complexmanifolds is by several orders ofmagnitude bigger than that
of Kähler ones. For instance, any finitely presented group can be realized as a fundamental
group of a compact complex 3-manifold.1 However, fundamental groups of compact Kähler
manifolds are restricted by many different constraints, and apparently belong to a minuscule
subclass of the class of all finitely presented groups [1].

Despite the abundance of non-Kähler complex manifolds, there are only few explicit
constructions of them. Historically the first example was the Hopf surface, obtained as the
quotient of C

2 \{0} by the action of Z generated by the transformation z �→ 2z. This con-
struction can be generalised by considering quotients of C

n \{0}, n � 2, by the action of
Z generated by a linear operator with all eigenvalues αi satisfying |αi | > 1. The resulting
quotients are called (generalised) Hopf manifolds. Every Hopf manifold is diffeomorphic to
S1 × S2n−1. It is clearly non-Kähler, as its second cohomology group is zero. A particular
class of generalised Hopf manifolds also features in the work of Vaisman [41], where he

1 By a result of C. Taubes. See [37] for a simpler proof and references to earlier works.
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proved that any compact locally conformally Kähler manifold is non-Kähler. We discuss
these in more detail in Sect. 1.3.

Another generalisation of the Hopf construction is due to Calabi and Eckmann. A Calabi–
Eckmannmanifold is diffeomorphic to a product of even number of odd-dimensional spheres:
E = S2n1+1 × S2n2+1 × · · · × S2n2k+1. It is the total space of a principal T 2k-bundle over
CPn1 × CPn2 × · · · × CPn2k .

Any principal T l -bundle E over a base B is determined topologically by the Chern classes
νi ∈ H2(B, Z), i = 1, . . . , l. These Chern classes can be obtained as the cohomology classes
of the curvature components of a connection on E . Now, suppose that B is complex and these
curvature components are forms of type (1, 1). In this case, for each complex structure on
the fibre T l with even l, the total space becomes a complex manifold, which is easy to see if
one expresses the commutators of vector fields tangent to E through the connection.

For the Calabi–Eckmann fibration,

E = S2n1+1 × S2n2+1 × · · · × S2n2k+1 T 2k−→ B = CPn1 × CPn2 × · · · × CPn2k ,

the natural connection on fibres has the respective Fubini-Study forms as its curvatures. This
makes E into a complex manifold, holomorphically fibred over B.

Applying this to a T 2-fibration S1 × S2l−1 → CPl−1, we obtain the classical Hopf mani-
fold, which is also the quotient of C

n\{0} by an action of Z given by z → λz, λ ∈ C, |λ| > 1.
By deforming this action we obtain a manifold which does not admit elliptic fibrations. How-
ever, there is still a holomorphic foliation, and its differential-geometric properties remain
qualitatively the same (Sect. 1.3).

In the present paper, we study complex manifolds which arise in a similar fashion.
Consider a projective (or Moishezon) toric manifold B, that is, a complex manifold

equipped with an action of (C×)n which has an open orbit. Fixing an even number of coho-
mology classes η1, . . . , η2k ∈ H2(B; Z), one obtains a T 2k-fibration E → B with the Chern
classes ηi . Since the classes ηi are represented by (1, 1)-forms, the corresponding connec-
tion makes E into a complex manifold, similar to the Calabi–Eckmann example. Complex
moment-anglemanifoldsZ, which are themain objects of study in this paper, may be thought
of as deformations of E , using a combinatorial procedure explained in detail in Sect. 3.

The topology of Z depends only on a simplicial complex K on m elements, which is
reflected in the notation Z = ZK, while the complex structure comes from a realisation of
ZK as the quotient of an open subset U (K) in C

m by a holomorphic action of a group C
isomorphic to C

�. In order that the action of C be free and proper one needs to assume that
K is the underlying complex of a complete simplicial fan �.

1.2 Positive (1, 1)-forms and currents on non-Kähler manifolds

Let M be a compact complex manifold. A differential (1, 1)-form β on M is called positive
if it is real and β(V, J V ) � 0 for any real tangent vector V ∈ T M , where J is the operator
of the complex structure. Equivalently, a (1, 1)-form β = i

∑
j,k f jkdz j ∧ dzk is positive if

∑
j,k f jkξ jξ k is a Hermitian positive semidefinite form.

A (1, 1)-current is a linear functional 
 on the space �
1,1
c (M) of forms with compact

support which is continuous in one of the Ck-topologies defined by the Ck-norm |ϕ|Ck =
supm∈M

∑k
i=0 |∇ iϕ|. A (1, 1)-current 
 is called positive if 〈
,β〉 � 0 for any positive

(1, 1)-form β. See [25] and [15] formore details on the notions of positive forms and currents.
The main result of Harvey and Lawson’s work [25] states that M does not admit a Kähler

metric if and only if M has a nonzero positive (1, 1)-current
which is the (1, 1)-component
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of an exact current. Any complex surface (2-dimensional manifold) M admits a closed
positive (1, 1)-current [9,29], and sometimes a closed positive (1, 1)-form. The maximal
rank of such form is called the Kähler rank of M . In [8] and [12], complex surfaces were
classified according to their Kähler rank; it was shown that the Kähler rank is equal to 1 for
all elliptic, Hopf and Inoue minimal surfaces, and 0 for the rest of class VII surfaces.

One of the most striking advances in complex geometry of the 2000s was the discov-
ery of Oeljeklaus–Toma manifolds [34]. These are complex solvmanifolds associated with
all number fields admitting complex and real embeddings. When the number field has the
lowest possible degree (that is, cubic), the corresponding Oeljeklaus–Toma manifold is an
Inoue surface of type S0, hence Oeljeklaus–Toma manifolds can be considered as gener-
alisations of Inoue surfaces. In [36], a positive exact (1, 1)-form ω0 was constructed on
any Oeljeklaus–Toma manifold. Using this form, it was proved that an Oeljeklaus–Toma
manifold has no curves (see [42]), and that an Oeljeklaus–Toma manifold has no positive
dimensional subvarieties when the number field has precisely 1 complex embedding, up to
complex conjugation (see [36]). The argument, in both cases, is similar to that used in the
present paper: a complex subvariety Z ⊂ M cannot be transverse to the zero foliation F of
ω0, as otherwise

∫
Z ω

dimC Z
0 > 0, which is impossible by the exactness of ω0. The rank of F

is equal to the number of real embeddings. For the case considered in [36] it is 1, hence any
subvariety Z ⊂ M must contain a leaf of F . The argument of [36] is finished by applying
the “strong approximation theorem” (a result of number theory) to prove that the closure of
a leaf of F cannot be contained in a subvariety of dimension less than dim M .

1.3 Hopf manifolds and Vaisman manifolds

Positive exact (1, 1)-forms are also very useful in the study of Vaisman manifolds. The latter
form a special class of locally conformally Kähler manifold (LCK manifolds for short). An
LCK manifold is a manifold M whose universal covering M̃ has a Kähler metric with the
monodromy of the covering acting on M̃ by non-isometric homotheties. An LCK manifold
is called Vaisman if its Kähler covering M̃ admits a monodromy-equivariant action of C

× by
non-isometric holomorphic homotheties.

The original definition of Vaisman manifolds (see [17] for more details, history and refer-
ences) builds upon an explicit differential-geometric construction, and their description given
above is a result of Kamishima–Ornea [27]. The existence of positive exact (1, 1)-forms of
Vaisman manifolds is shown in [43].

Vaisman called his manifolds “generalised Hopf manifolds”; however, his construction
does not give all generalised Hopf manifolds in the sense of Sect. 1.1. Indeed, it is proved
in [35, Theorem 3.6] that a Hopf manifold C

n \ {0}/{z ∼ Az} corresponding to a linear
operator A with all eigenvalues >1 is Vaisman if and only if A is diagonalisable (the “if”
part follows from [22]).

Hopf manifolds of Vaisman type are particular cases of moment-angle manifolds (see
Example 4.14). Therefore, our description of complex submanifolds in moment-angle man-
ifolds generalises the results obtained for Hopf manifolds by Kato [28].

1.4 Moment-angle manifolds and their geometry

A moment-angle complex ZK is a cellular subcomplex in the unit polydisc D
m ⊂ C

m com-
posed of products of discs and circles [10]. These products are parametrised by a finite
simplicial complex K on a set of m elements. Each moment-angle complex ZK carries a
natural action of the m-torus T m . Moment-angle complexes have many interesting homo-
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topical and geometric properties, and have been studied intensively over the last ten years
(see [4,10,23,24,38]). When K is the boundary of a simplicial polytope or, more gener-
ally, a triangulated sphere, the moment-angle complex ZK is a manifold, referred to as a
moment-angle manifold.

Moment-angle manifolds arising from polytopes can be realised by nondegenerate inter-
sections of Hermitian quadrics in C

m . These intersections of quadratic surfaces feature
in holomorphic dynamics as transverse spaces for complex foliations (see [7] for a his-
toric account of these developments), and in symplectic toric topology as level sets for the
moment maps of Hamiltonian torus actions on C

m (see [3]). As was discovered by Bosio and
Meersseman [7], moment-angle manifolds arising from polytopes admit complex structures
asLVM-manifolds. This led to establishing a fruitful link between the theory ofmoment-angle
manifolds and complex geometry.

An alternative construction of complex structures on moment-angle manifolds was given
in [39]; it works not only for manifolds ZK arising from polytopes, but also when K is the
underlying complex of a complete simplicial fan �. The complex structure on ZK comes
from its realisation as the quotient of an open subset U (K) ⊂ C

m (the complement to a set
of coordinate subspaces determined by K) by an action of C

� embedded as a holomorphic
subgroup in theC

×-torus (C×)m . As in toric geometry, the simplicial fan condition guarantees
that the quotient is Hausdorff [38].

The complex moment-angle manifold ZK is non-Kähler, except for the case when K is
an empty simplicial complex and ZK is a compact complex torus. When the simplicial fan
� is rational, the manifold ZK is the total space of a holomorphic principal (Seifert) bundle
with fibre a complex torus and base the toric variety V� . (The polytopal case was studied
by Meersseman and Verjovsky [32]; the situation is similar in general, although the base
need not to be projective.) We therefore obtain a generalisation of the classical families of
Hopf and Calabi–Eckmann manifolds (which are the total spaces of fibrations with fibre
an elliptic curve over CPn and CPk × CPl , respectively). In this case, although ZK is
not Kähler, its complex geometry is quite rich, and meromorphic functions, divisors and
Dolbeault cohomology can be described explicitly [32,39].

The situation is completely different when the data defining the complex structure on ZK
is generic (in particular, the fan � is not rational). In this case, the moment-angle manifold
ZK does not admit global meromorphic functions and divisors, and behaves similarly to the
complex torus obtained as the quotient ofC

m by a generic lattice of full rank. Furthermore,ZK
has only finitelymany complex submanifolds of a very special type: they are all “coordinate”,
i. e. obtained as quotients of coordinates subspaces in C

m .
Our study of the complex geometry of moment-angle manifoldsZK builds upon two basic

constructions: a holomorphic foliation F on ZK (which may be thought of as the result of
deformation of the holomorphic fibration E → B described in Sect. 1.1), and a positive
closed (1, 1)-form ω whose zero spaces define the foliation F over a dense open subset
of ZK. Forms with these properties are called transverse Kähler for F . The precise result is
as follows:

Theorem 4.6 Assume that � is a weakly normal fan defined by {K; a1, . . . , am}. Then there
exists an exact (1, 1)-form ωF on ZK = U (K)/C which is transverse Kähler for the folia-
tion F on the dense open subset (C×)m/C ⊂ U (K)/C.

Transverse Kähler forms are often used to study the complex geometry (subvarieties,
stable bundles) of non-Kähler manifolds [36,44–46]. In our case, Fujiki class C subvarieties
(in particular, Kähler submanifolds) of moment-angle manifolds are described as follows:
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Theorem 4.11 Under the assumptions of Theorem 4.6, any Fujiki class C subvariety of ZK
is contained in a leaf of the �-dimensional foliation F .

An important consequence is that under generic assumption on the complex structure
(when a generic leaf of F is biholomorphic to C

�) there are actually no Fujiki class C
subvarieties of ZK through a generic point (Corollary 4.12).

We proceed by studying general subvarieties of ZK (not necessarily of Fujiki class C).
In the case of codimension one (divisors), generically there are only finitely many of them
(Theorem 4.15). The proof does not use a transverse Kähler form (and therefore no geometric
restrictions on the fan need to be imposed); instead we reduce the statement to the case of
Hopf manifolds, where it is proved by analysing one-dimensional foliations. A corollary
is that a generic ZK does not have non-constant meromorphic functions, so its algebraic
dimension is zero.

The foliation F comes from a group action (Construction 4.1), so its tangent bundle
TF ⊂ TZK is trivial. Given an irreducible subvariety Y ⊂ ZK, consider the number
k = dim TyY ∩ TyF for y a generic point in Y . Since TF is a trivial bundle, there is a
rational map ψ from Y to the corresponding Grassmann manifold of k-planes in TyF . Using
the absence of Fujiki class C submanifolds in ZK, we deduce by induction on dim Y that
ψ is constant (see the details in Sect. 4.7). Generically this cannot happen when Y contains
a point from an open subset (C×)m/C ⊂ ZK, whose complement consists of “coordinate”
submanifolds. We therefore prove

Theorem 4.18 Let ZK be a complex moment-angle manifold, with linear maps A : R
m →

NR and Ψ : C
� → C

m described in Construction 3.1. Assume that

(a) no rational linear function on R
m vanishes on KerA;

(b) KerA does not contain rational vectors of R
m;

(c) the map Ψ satisfies the generic condition of Lemma 4.17;
(d) the fan � is weakly normal.

Then any irreducible analytic subset Y � ZK of positive dimension is contained in a coor-
dinate submanifold ZKJ � ZK.

Under further assumption on the complex structure of ZK we prove that all irreducible
analytic subsets are actually coordinate submanifolds (Corollary 4.19).

A similar idea was used by Dumitrescu to classify holomorphic geometries on non-Kähler
manifolds [18,19], and also much earlier by Bogomolov in his work [6] on holomorphic
tensors and stability.

It has been recently shown by Ishida [26] that complex moment-angle manifolds ZK
have the following universal property: any compact complex manifold with a holomorphic
maximal action of a torus is biholomorphic to the quotient of a moment-angle manifold by a
freely acting closed subgroup of the torus. (An effective action of T k on an m-dimensional
manifold M is maximal if there exists a point x ∈ M whose stabiliser has dimension m − k;
the two extreme cases are the free action of a torus on itself and the half-dimensional torus
action on a toric manifold.)

In Sect. 2 we review the definition of moment-angle manifolds ZK and their realisation
by nondegenerate intersections of Hermitian quadrics in the polytopal case. In Sect. 3 we
describe complex structures onmoment-anglemanifolds. Section 4 contains themain results.
We start with defining a holomorphic foliation F which replaces the holomorphic fibration
ZK → V� over a toric variety. Theorem 4.6 is the main technical result, which may be of
independent interest. It provides an exact (1, 1)-form ωF which is transverse Kähler for the
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foliationF on a dense open subset. In Theorem4.11we show that, under a generic assumption
on the data defining the complex structure, any Kähler submanifold (more generally, a Fujiki
class C subvariety) of ZK is contained in a leaf of F . In Theorem 4.15 we show that a
generic moment-angle manifold ZK has only coordinate divisors. This result is independent
of the existence of a transverse Kähler form. Consequently, a genericZK does not admit non-
constant globalmeromorphic functions (Corollary 4.16). In Theorem 4.18 andCorollary 4.19
we prove that any irreducible analytic subset of positive dimension in a genericmoment-angle
manifold is a coordinate submanifold.

2 Basic constructions

Let K be an abstract simplicial complex on the set [m] = {1, . . . , m}, that is, a collection
of subsets I = {i1, . . . , ik} ⊂ [m] closed under inclusion. We refer to I ∈ K as (abstract)
simplices and always assume that ∅ ∈ K. We do not assume that K contains all singletons
{i} ⊂ [m], and refer to {i} /∈ K as a ghost vertex.

Consider the closed unit polydisc in C
m ,

D
m = {

(z1, . . . , zm) ∈ C
m : |zi | � 1

}
.

Given I ⊂ [m], define
BI = {

(z1, . . . , zm) ∈ D
m : |z j | = 1 for j /∈ I

}
,

Following [10], define the moment-angle complex ZK as

ZK =
⋃

I∈K
BI = {

(z1, . . . , zm) ∈ D
m : {i : |zi | < 1} ∈ K}

. (2.1)

This is a particular case of the following general construction.

Construction 2.1 (Polyhedral product) Let X be a topological space, and A a subspace of X .
Given I ⊂ [m], set

(X, A)I = {
(x1, . . . , xm) ∈ Xm : x j ∈ A for j /∈ I

} ∼=
∏

i∈I

X ×
∏

i /∈I

A, (2.2)

and define the polyhedral product of (X, A) as

(X, A)K =
⋃

I∈K
(X, A)I ⊂ Xm .

Obviously, if K has k ghost vertices, then (X, A)K ∼= (X, A)K
′ × Ak , where K′ does not

have ghost vertices.
We have ZK = ZK(D, T), where T is the unit circle. Another important particular case

is the complement of a complex coordinate subspace arrangement:

U (K) = (C, C
×)K = C

m∖ ⋃

{i1,...,ik }/∈K
{z ∈ C

m : zi1 = · · · = zik = 0}, (2.3)

where C
× = C\{0}. We obviously haveZK ⊂ U (K). Moreover, ZK is a deformation retract

of U (K) for every K [11, Theorem 4.7.5].
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According to [11, Theorem 4.1.4], ZK is a (closed) topological manifold of dimension
m + n whenever K defines a simplicial subdivision of a sphere Sn−1; in this case we refer to
ZK as a moment-angle manifold.

An important geometric class of simplicial subdivisions of spheres is provided by star-
shaped spheres, or underlying complexes of complete simplicial fans.

Let NR
∼= R

n be an n-dimensional space. A polyhedral cone σ is the set of nonnegative
linear combinations of a finite collection of vectors a1, . . . , ak in NR:

σ = {μ1a1 + · · · + μkak : μi � 0}.
A polyhedral cone is strongly convex if it contains no line. A strongly convex polyhedral
cone is simplicial if it is generated by a subset of a basis of NR.

A fan is a finite collection � = {σ1, . . . , σs} of strongly convex polyhedral cones in NR

such that every face of a cone in� belongs to� and the intersection of any two cones in� is
a face of each. A fan � is simplicial if every cone in � is simplicial. A fan � = {σ1, . . . , σs}
is called complete if σ1 ∪ · · · ∪ σs = NR.

A simplicial fan � in NR is therefore determined by two pieces of data:

– a simplicial complex K on [m];
– a configuration of vectors a1, . . . , am in NR such that the subset {ai : i ∈ I } is linearly

independent for any simplex I ∈ K.

Then for each I ∈ K we can define the simplicial cone σI spanned by ai with i ∈ I .
The “bunch of cones” {σI : I ∈ K} patches into a fan � whenever any two cones σI and σJ

intersect in a common face (which has to be σI∩J ). Equivalently, the relative interiors of cones
σI are pairwise non-intersecting. Under this condition, we say that the data {K; a1, . . . , am}
define a fan �, andK is the underlying simplicial complex of the fan�. Note that a simplicial
fan � is complete if and only if its underlying simplicial complex K defines a simplicial
subdivision of Sn−1; this simplicial subdivision is obtained by intersecting � with a unit
sphere in NR.

Here is an important point in which our approach to fans differs from the standard one
adopted in toric geometry: since we allow ghost vertices in K, we do not require that each
vector ai spans a one-dimensional cone of �. The vector ai corresponding to a ghost vertex
{i} ∈ [m] may be zero.

In the case when {K; a1, . . . , am} define a complete fan �, the topological manifold ZK
can be smoothed by means of the following procedure [39]:

Construction 2.2 Let a1, . . . , am be a set of vectors. We consider the linear map

A : R
m → NR, ei �→ ai , (2.4)

where e1, . . . , em is the standard basis of R
m . Let

R
m
> = {(y1, . . . , ym) ∈ R

m : yi > 0}
be the multiplicative group of m-tuples of positive real numbers, and define

R = exp(KerA) = {(
ey1 , . . . , eym

) : (y1, . . . , ym) ∈ KerA
}

=
{

(t1, . . . , tm) ∈ R
m
> :

m∏

i=1

t 〈ai ,u〉
i = 1 for all u ∈ N∗

R

}

.
(2.5)

We let R
m
> act on C

m by coordinatewise multiplications. The subspace U (K) (2.3) is
R

m
>-invariant for any K, and there is an action of R ⊂ R

m
> on U (K) by restriction.
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Theorem 2.3 [39, Theorem 2.2] Assume that data {K; a1, . . . , am} define a complete fan �

in NR
∼= R

n. Then

(a) the group R ∼= R
m−n acts on U (K) freely and properly, so the quotient U (K)/R is a

smooth (m + n)-dimensional manifold;
(b) U (K)/R is homeomorphic to ZK.

Remark The group R depends on a1, . . . , am . However, we expect that the smooth struc-
ture on ZK as the quotient U (K)/R does not depend on this choice, i.e. smooth manifolds
corresponding to different R are diffeomorphic.

An important class of complete fans arises from convex polytopes:

Construction 2.4 (Normal fan) Let P be a convex polytope in the dual space N∗
R

∼= R
n . It

can be written as a bounded intersection of m halfspaces:

P = {
u ∈ N∗

R
: 〈ai ,u〉 + bi � 0 for i = 1, . . . , m

}
, (2.6)

where ai ∈ NR and bi ∈ R.
We assume that the intersection P ∩ {〈ai ,u〉 + bi = 0} with the i th hyperplane is either

empty or (n − 1)-dimensional. In the latter case, Fi = P ∩ {〈ai ,u〉+ bi = 0} is a facet of P .
We allow P ∩ {〈ai ,u〉 + bi = 0} to be empty for technical reasons explained below, in this
case the i th inequality 〈ai ,u〉+ bi � 0 is redundant. Our assumption also implies that P has
full dimension n.

A face of P is a nonempty intersection of facets. Given a face Q ⊂ P , define

σQ = {x ∈ NR : 〈x,u′〉 � 〈x,u〉 for all u′ ∈ Q and u ∈ P}.
Each σQ is a strongly convex cone, and the collection {σQ : Q is a face of P} ∪ {0} is a
complete fan in NR, called the normal fan of P and denoted by �P .

An n-dimensional polytope P is called simple if exactly n facets meet at each vertex of P .
In a simple polytope, any face Q of codimension k is uniquely written as an intersection of
k facets Q = Fi1 ∩ · · · ∩ Fik . Furthermore, the cone σQ is simplicial and is generated by the
k normal vectors ai1 , . . . , aik to the corresponding facets.

Define the nerve complex of a polytope P with m facets by

KP =
{

I ⊂ [m] :
⋂

i∈I

Fi �= ∅

}

. (2.7)

If P is simple then �P is the simplicial fan defined by the data {KP ; a1, . . . , am}.
Remark Not every complete fan is a normal fan of a polytope (see [21, §3.4] for an example).
Even the weaker form of this statement fails: there are complete simplicial fans � whose
underlying complexes K are not combinatorially equivalent to the boundary of a convex
polytope. The Barnette sphere (a non-polytopal triangulation of S3 with 8 vertices) provides
a counterexample [20, §III.5].

In the case when K = KP for a simple polytope P , there is an alternative way to give ZK
a smooth structure, by writing it as a nondegenerate intersection of Hermitian quadrics:

Construction 2.5 Let P be a simple convex polytope given by (2.6). We consider the affine
map

iP : N∗
R

→ R
m, u �→ (〈a1,u〉 + b1, . . . , 〈am,u〉 + bm

)
,
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or iP (u) = A∗u + b, where A∗ is the dual map of (2.4) and b ∈ R
m is the vector with

coordinates bi . The image iP (N∗
R
) is an affine n-plane in R

m , which can be written by m − n
linear equations:

iP (N∗
R
) = {y ∈ R

m : y = A∗u + b for some u ∈ N∗
R
}

= {y ∈ R
m : Γ y = Γ b}, (2.8)

where Γ = (γ jk) is an (m − n) × m-matrix whose rows form a basis of linear relations
between the vectors ai . That is, Γ is of full rank and satisfies the identity Γ A∗ = 0.

The map iP embeds P ⊂ R
n into the positive orthant R

m
�. We define the space ZP from

the commutative diagram

ZP
iZ−−−−→ C

m

⏐
⏐
�

⏐
⏐
�μ

P
iP−−−−→ R

m
�

(2.9)

where μ(z1, . . . , zm) = (|z1|2, . . . , |zm |2). The torus T
m acts on ZP with quotient P , and

iZ is a T
m-equivariant embedding.

By replacing yk by |zk |2 in the Eq. (2.8) defining the affine plane iP (N∗
R
) we obtain that

ZP embeds into C
m as the set of common zeros of m −n real quadratic equations (Hermitian

quadrics):

iZ (ZP ) =
{

z ∈ C
m :

m∑

k=1

γ jk |zk |2 =
m∑

k=1

γ jkbk for 1 � j � m − n

}

. (2.10)

We identify ZP with its image iZ (ZP ) and consider ZP as a subset of C
m .

Theorem 2.6 [10,39] Let P be a simple polytope given by (2.6) and let K = KP be its nerve
simplicial complex (2.7). Then

(a) ZP ⊂ U (K);
(b) ZP is a smooth submanifold in C

m of dimension m + n;
(c) there is a T

m-equivariant homeomorphism ZK ∼= ZP .

Sketch of proof (a) By (2.9), if a point z = (z1, . . . , zm) ∈ ZP has its coordinates zi1 , . . . , zik

vanishing, then Fi1 ∩ · · · ∩ Fik �= ∅. Hence the claim follows from the definition of U (K)

and K, see (2.3) and (2.7).
(b) One needs to check that the condition of P being simple translates into the condition

of (2.10) being nondegenerate.
(c) We have the quotient projection U (K) → U (K)/R by the action of R (2.5), and both

compact subsets ZK ⊂ U (K), ZP ⊂ U (K) intersect each R-orbit at a single point. For
ZK this is proved in [39, Theorem 2.2], and for ZP in [3, Chapter VI,Proposition 3.1.1].
Furthermore, ZP is transverse to each orbit. ��

3 Complex structures

Bosio andMeersseman [7] showed that somemoment-angle manifolds admit complex struc-
tures. They only considered moment-angle manifolds corresponding to convex polytopes,
and identified them with LVM-manifolds [31,32] (a class of non-Kähler complex manifolds
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whose underlying smooth manifolds are intersections of Hermitian quadrics in a complex
projective space). A modification of this construction was considered in [39], where a com-
plex structure was defined on any moment-angle manifold ZK corresponding to a complete
simplicial fan. Similar results were obtained by Tambour [40].

In this section we assume that m − n is even. We can always achieve this by adding a
ghost vertex with any corresponding vector to our data {K; a1, . . . , am}; topologically this
results in multiplying ZK by a circle. We set � = m−n

2 .
We identify C

m (as a real vector space) with R
2m using the map

(z1, . . . , zm) �→ (x1, y1, . . . , xm, ym),

where zk = xk + iyk , and consider the R-linear map

Re : C
m → R

m, (z1, . . . , zm) �→ (x1, . . . , xm).

In order to define a complex structure on the quotient ZK ∼= U (K)/R we replace the
action of R by the action of a holomorphic subgroup C ⊂ (C×)m by means of the following
construction.

Construction 3.1 Let a1, . . . , am be a configuration of vectors that span NR
∼= R

n . Assume
further that m − n = 2� is even. Some of the ai ’s may be zero. Consider the map

A : R
m → NR, ei �→ ai .

We choose a complex �-dimensional subspace in C
m which projects isomorphically onto

the real (m − n)-dimensional subspace KerA ⊂ R
m . More precisely, choose a C-linear map

Ψ : C
� → C

m satisfying the two conditions:

(a) the composite map C
� Ψ−→ C

m Re−→ R
m is a monomorphism;

(b) the composite map C
� Ψ−→ C

m Re−→ R
m A−→ NR is zero.

Set c = Ψ (Cl). Then the two conditions above are equivalent to the following:

(a′) c ∩ c = {0};
(b′) c ⊂ Ker(AC : C

m → NC),

where c is the complex conjugate space and AC : C
m → NC is the complexification of the

real map A : R
m → NR. Consider the following commutative diagram:

C
� Ψ−−−−→ C

m Re−−−−→ R
m A−−−−→ NR

⏐
⏐
�exp

⏐
⏐
�exp

(C×)m | ·|−−−−→ R
m
>

(3.1)

where the vertical arrows are the componentwise exponential maps, and | · | denotes the map
(z1, . . . , zm) �→ (|z1|, . . . , |zm |). Now set

C = exp c =
{
(ew1 , . . . , ewm ) ∈ (C×)m : w = (w1, . . . , wm) ∈ Ψ (C�)

}
. (3.2)

Then C ∼= C
� is a complex (but not algebraic) subgroup in (C×)m , and c is its Lie algebra.

There is a holomorphic action of C on C
m and U (K) by restriction. Furthermore, condi-

tion (a′) above implies that C is closed in (C×)m .
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Example 3.2 Let a1, . . . , am be the configuration of m = 2� zero vectors. We supple-
ment it by the empty simplicial complex K on [m] (with m ghost vertices), so that the
data {K; a1, . . . , am} define a complete fan in 0-dimensional space. Then A : R

m → R
0

is a zero map, and condition (b) of Construction 3.1 is void. Condition (a) means that

C
� Ψ−→ C

2� Re−→ R
2� is an isomorphism of real spaces.

Consider the quotient (C×)m/C (note that (C×)m = U (K) in our case). The exponen-
tial map C

m → (C×)m identifies (C×)m with the quotient of C
m by the imaginary lattice

� = Z〈2π ie1, . . . , 2π iem〉. Condition (a) implies that the projection p : C
m → C

m/c is
nondegenerate on the imaginary subspace of C

m . In particular, p (�) is a lattice of rank
m = 2� in C

m/c ∼= C
�. Therefore,

(C×)m/C ∼= (
C

m/�
)
/c = (

C
m/c

)/
p (�) ∼= C

�/Z
2�

is a complex compact �-dimensional torus.
Any complex torus can be obtained in this way. Indeed, let Ψ : C

� → C
m be given

by an 2� × �-matrix
(−B

I

)
where I is the unit matrix and B is a square matrix of size �.

Then p : C
m → C

m/c is given by the matrix (I B) in appropriate bases, and (C×)m/C is
isomorphic to the quotient of C

� by the lattice Z〈e1, . . . , e�, b1, . . . , b�〉, where bk is the kth
column of B. (Condition (b) implies that the imaginary part of B is nondegenerate.)

For example, if � = 1, then Ψ : C → C
2 is given by w �→ (βw,w) for some β ∈ C, so

that the subgroup (3.2) is

C = {(eβw, ew)} ⊂ (C×)2.

Condition (a) implies that β /∈ R. Then expΨ : C → (C×)2 is an embedding, and

(C×)2/C ∼= C/(Z ⊕ βZ)

is a complex 1-dimensional torus with the lattice parameter β ∈ C.

Theorem 3.3 [39, Theorem 3.3] Assume that data {K; a1, . . . , am} define a complete fan �

in NR
∼= R

n, and m − n = 2�. Let C ∼= C
� be the group defined by (3.2). Then

(a) the holomorphic action of C on U (K) is free and proper, and the quotient U (K)/C has
the structure of a compact complex manifold;

(b) U (K)/C is diffeomorphic to ZK.

Therefore, ZK has a complex structure, in which each element of T
m acts by a holomorphic

transformation.

Besides compact complex tori described in Example 3.2, other examples of ZK include
Hopf and Calabi–Eckmann manifolds (see [39] and Example 4.14 below).

Remark The subgroup C ⊂ (C×)m depends on the vectors a1, . . . , am and the choice of Ψ

in Construction 3.1. Unlike the smooth case, the complex structure on ZK depends in an
essential way on all these pieces of data.

As in the real situation of Theorem 2.6, in the case of normal fans we can view ZK as the
intersection of quadrics ZP given by (2.10):

Theorem 3.4 Let P be a simple polytope given by (2.6) with even m − n, and let K = KP

be the corresponding simplicial complex (2.7). Then the composition

ZP
iZ−→ U (K) → U (K)/C
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is a T
m-equivariant diffeomorphism. It endows the intersection of quadrics ZP with the

structure of a complex manifold.

Proof We need to show that the C-orbit Cz of any z ∈ U (K) intersects ZP ⊂ U (K)

transversely at a single point. First we show that the C-orbit of any y ∈ U (K)/T
m intersects

ZP/T
m = iP (P) at a single point; this follows fromTheorem2.6 and the fact that the induced

actions of C and R onU (K)/T
m coincide. Then we show that Cz intersects the full preimage

ZP = μ−1(iP (P)) at a single point using the fact that C and T
m have trivial intersection

in (C×)m . The transversality of the intersection Cz ∩ ZP follows from the transversality for
R-orbits, because Tz(Rz) ⊕ TzZP = Tz(Cz) ⊕ TzZP .

Remark The embedding iZ : ZP → U (K) is not holomorphic. In the polytopal case, the
complex structure on ZP coming from Theorem 3.4 is equivalent to the structure of an
LVM-manifold described in [7].

4 Submanifolds, analytic subsets and meromorphic functions

In this sectionwe considermoment-anglemanifoldsZK corresponding to complete simplicial
n-dimensional fans� defined by data {K; a1, . . . , am}with m −n = 2�. The manifoldZK is
diffeomorphic to the quotient U (K)/C , as described in the previous section. This is used to
equipZK with a complex structure. The complex structure depends on the vectors a1, . . . , am

and the choice of a map Ψ in Construction 3.1, but we shall not reflect this in the notation.

4.1 Coordinate submanifolds

For each J ⊂ [m], we define the corresponding coordinate submanifold in ZK by

ZKJ = {(z1, . . . , zm) ∈ ZK : zi = 0 for i /∈ J }.
It is the moment-angle manifold corresponding to the full subcomplex

KJ = {I ∈ K : I ⊂ J }.
In the situation of Theorem 3.3, ZKJ is identified with the quotient of

U (KJ ) = {(z1, . . . , zm) ∈ U (K) : zi = 0 for i /∈ J }
by the group C . In particular, U (KJ )/C is a complex submanifold in U (K)/C .

Observe that the closure of any (C×)m-orbit of U (K) has the form U (KJ ) for some
J ⊂ [m] (in particular, the dense orbit corresponds to J = [m]). Similarly, the closure of
any (C×)m/C-orbit of ZK ∼= U (K)/C has the form ZKJ .

4.2 Holomorphic foliations

Construction 4.1 (Holomorphic foliation F on ZK) Consider the complexified map
AC : C

m → NC, ei �→ ai . Define the following complex (m − n)-dimensional subgroup
in (C×)m :

G = exp(KerAC) = {(
ez1 , . . . , ezm

) ∈ (C×)m : (z1, . . . , zm) ∈ KerAC

}
. (4.1)

It contains both the real subgroup R (2.5) and the complex subgroup C (3.2).
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The group G acts on U (K), and its orbits define a holomorphic foliation on U (K). Since
G ⊂ (C×)m , this action is free on the open subset (C×)m ⊂ U (K), so that a generic leaf of
the foliation has complex dimension m −n = 2� (in fact, all leaves have the same dimension,
see Proposition 4.2). The �-dimensional closed subgroup C ⊂ G acts on U (K) freely and
properly by Theorem 3.3, so thatU (K)/C carries a holomorphic action of the quotient group
D = G/C .

Recall from Construction 3.1 that c = LieC ⊂ KerAC = Lie G ⊂ C
m .

The action of the group D on ZK is holomorphic and nondegenerate, i.e., for any point
x ∈ ZK the differential Te D → TxZK of the action map g �→ g · x is injective. Therefore
the orbits of D define a smooth holomorphic foliation F on ZK.

The leaves of the foliations from Construction 4.1 are described as follows (compare
Example 3.2):

Proposition 4.2 For any subset I ⊂ [m], define the coordinate subspace C
I = C〈ek : k ∈

I 〉 ⊂ C
m and the subgroup

�I = KerAC ∩ (
Z〈2π ie1, . . . , 2π iem〉 + C

I ).

(a) �I is discrete whenever I ∈ K.
(b) We have G ∼= KerAC/�, where � = �∅. Any leaf Gz of the foliation on U (K) by the

orbits of G is biholomorphic to (C×)rk�I × C
2�−rk�I , where I ∈ K is the set of zero

coordinates of z ∈ U (K).
(c) We have D = G/C ∼= (

KerAC/c
)/

p (�), where p : KerAC → KerAC/c is the projec-
tion. Any leaf Fz of the foliation F on the moment-angle manifold ZK ∼= U (K)/C is
biholomorphic to C

�/p(�I ).

Proof (a) If I ∈ K, then the composite map C
I → C

m AC−→ NC is monomorphic by the
definition of a simplicial fan. Therefore,CI ∩KerAC = {0}, which implies that�I is discrete.

(b) Since (C×)m = exp(Cm) ∼= C
m/Z〈2π ie1, . . . , 2π iem〉, the isomorphism G ∼=

KerAC/� follows from the definition of G, see (4.1). Therefore, to describe the orbit Gz, we
can consider the orbit of the exponential action of KerAC instead. The stabiliser of z under
the action of KerAC is exactly �I , and the orbit itself is KerAC/�I ∼= (C×)rk�I × C

2�−rk�I .
(c) By the same argument, the orbit of z ∈ ZK under the action of D = G/C is

(KerAC/c)/p(�I ), and KerAC/c ∼= C
�. ��

A subset X ′ ⊂ X of a space with Lebesgue measure (X, μ) is said to contain almost all
elements of X if its complement has zero measure: μ(X\X ′) = 0; in this case points of X ′
are generic for X , and the condition specifying X ′ in X is generic.

A vector of Q
m ⊂ R

m is called rational. A linear subspace V ⊂ R
m is rational if it is

generated by rational vectors. A linear function ϕ : R
m → R is rational if it takes rational

values on rational vectors (equivalently, if it has rational coefficients when written in the
standard basis of (Rm)∗).

Here are two examples of generic conditions for linear maps A : R
m → NR (assuming

that m > dim NR, which is the case when � is a complete fan):

(g1) no rational linear function on R
m vanishes identically on KerA (equivalently, KerA is

not contained in any rational hyperplane of R
m);

(g2) KerA does not contain rational vectors of R
m .

We observe that if the configuration of vectors a1, . . . , am satisfies the generic condi-
tion (g2), then the subgroup � of Proposition 4.2 is trivial, G is biholomorphic to C

2� and
D = G/C is biholomorphic to C

�.
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On the other hand, if KerA ⊂ R
m is a rational subspace (i.e. it has a basis consisting

of vectors with integer coordinates), then rk� = 2� and the subgroup G ⊂ (C×)m is
closed and is isomorphic to (C×)2�. In this case the vectors a1, . . . , am generate a lattice
NZ = Z〈a1, . . . , am〉, and � is a rational (possibly singular) fan with respect to this lattice.
If each vector ai is primitive in NZ, then the quotient U (K)/G is the toric variety V�

corresponding to the fan � (see e.g. [13]). The foliation F gives rise to a holomorphic
principal Seifert bundle π : ZK → V� with fibres compact complex tori G/C (leaves of F),
see [32] and [39, Proposition 5.2].

Foliations similar to F were studied in [5], together with generic conditions.

4.3 Transverse Kähler forms

Definition 4.3 Let F be a holomorphic �-dimensional foliation on a complex manifold M .
A (1, 1)-form ωF on M is called transverse Kähler with respect to F if the following two
conditions are satisfied:

(a) ωF is closed, i.e. dωF = 0;
(b) ωF is positive and the zero space ofωF is the tangent space ofF . (That is,ω(V, J V ) � 0

for any real tangent vector V , and ωF (V, J V ) = 0 if and only if V is tangent to F ; here
J is the operator of complex structure.)

One way to define a transverse Kähler form onZK is to use a modification of an argument
of Loeb and Nicolau [30]; it works only for normal fans:

Proposition 4.4 Assume that � = �P is the normal fan of a simple polytope P. Then the
foliation F described in Construction 4.1 admits a transverse Kähler form ωF .

Proof Since � is a normal fan of P , we have a T
m-equivariant diffeomorphism

ϕ : U (K)/C
∼=−→ ZP between ZK = U (K)/C and the intersection of quadrics ZP ⊂ C

m

(Theorem 3.4). Let ω = i
2

∑
dzk ∧ dzk be the standard form on C

m , and ωZ = i∗Zω its
restriction to the intersection of quadricsZP . Define ωF = ϕ∗ωZ . Using the same argument
as [30, Proposition 2] one verifies that the zero foliation of the formωZ coincides with ϕ(F),
and therefore ωF is transverse Kähler. ��

The condition that � is a normal fan in Proposition 4.4 is important. Indeed, it was
shown in [14] that general LVMB-manifolds do not admit transverse Kähler forms. A similar
argument proves that there are no transverse Kähler forms on the quotients U (K)/C for
general complete simplicial fans.

We can relax the condition on the fan slightly at the cost of weakening the conditions on
the form ωF :

Definition 4.5 A complete simplicial fan � in NR
∼= R

n is called weakly normal if there
exists a (not necessarily simple) n-dimensional polytope P given by (2.6) such that � is a
simplicial subdivision of the normal fan �P .

Remark Let � be a complete simplicial fan with chosen generators a1, . . . , am of its edges.
Then � is normal if one can find constants b1, . . . , bm such the polytope P defined by (2.6)
is simple and the simplicial complex KP (2.7) coincides with the underlying complex K of
the fan. A fan � is weakly normal if one can find b1, . . . , bm so that K is contained in KP ;
equivalently, Fi1 ∩ · · · ∩ Fik �= ∅ in P if ai1 , . . . , aik span a cone of �.

In the geometry of toric varieties, a lattice polytope (2.6) (inwhich a1, . . . , am are primitive
lattice vectors, and b1, . . . , bm are integers) gives rise to an ample divisor on the toric variety
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V� corresponding to the normal fan � = �P . In particular, toric varieties corresponding to
(rational) normal fans are projective. Weakly normal rational fans � give rise to semiample
divisors on their corresponding toric varieties (see [2, §II.4.2]); such a divisor defines a map
from V� to a projective space, which is not necessarily an embedding.

Given a cone σI ∈ �, the quotient fan �/σI is defined. Its associated simplicial complex
is the link lkK I . If � is weakly normal (with the corresponding polytope P), then �/σI is
also weakly normal (with the corresponding polytope being a face of P). This fact will be
used below in the inductive arguments for Theorems 4.11 and 4.18.

Theorem 4.6 Assume that � is a weakly normal fan defined by {K; a1, . . . , am}. Then there
exists an exact (1, 1)-form ωF on ZK = U (K)/C which is transverse Kähler for the folia-
tion F on the dense open subset (C×)m/C ⊂ U (K)/C.

Proof The plan of the proof is as follows. We construct a smooth function f : U (K) → R

which is plurisubharmonic, so that ω = ddc f is a positive (1, 1)-form (here d = ∂ + ∂̄ and
dc = −i(∂ − ∂̄)). We check that the kernel of ω consists of tangents to the orbits of G. Then
we show that ω descends to a form ωF on U (K)/C with the required properties.

We consider the short exact sequence

0 → KerA −→ R
m A−→ NR → 0

where A is given by ei �→ ai . Since � is weakly normal, there is the corresponding poly-
tope (2.6). We think of (b1, . . . , bm) as a linear function b : R

m → R, and denote by
χb : KerA → R the restriction of b to KerA.

Let I ∈ K be a maximal simplex (i.e. the vectors ai , i ∈ I , span a maximal cone of �),
and let uI = ⋂

i∈I Fi be the vertex of P corresponding to I . Define the linear function
βI ∈ (Rm)∗ whose coordinates in the standard basis are 〈ai ,uI 〉 + bi , i = 1, . . . , m. It
follows that all coordinates of βI are nonnegative, and the coordinates corresponding to
i ∈ I are zero. (Some other coordinates of βI may also vanish, since the polytope P is not
necessarily simple and different I may give the same vertex.) Also, the restriction of βI to
KerA is χb because A∗ : N∗

R
→ (Rm)∗ is given by u �→ (〈a1,u〉, . . . , 〈am,u〉). Finally, by

multiplying all bi simultaneously by a positive factor we can obtain that all coordinates of
all βI are either zero or � 2.

We define the function f : U (K) → R as follows:

f (z ) = log

(
∑

maximal I∈K
|z |βI

)

where |z |α = |z1|α(e1) · · · |zm |α(em ) is the monomial corresponding to a linear function α ∈
(Rm)∗, and we set 00 = 1. By definition of U (K), the set of zero coordinates of any point
z ∈ U (K) is contained in a maximal simplex I ∈ K, hence |z |βI > 0. Therefore, the function
f is smooth on U (K).
Now define the real (1, 1)-form ω = ddc f onU (K). By [15, Theorem I.5.6], the function

f is plurisubharmonic, so that ω is positive.

Lemma 4.7 The kernel of ω|(C×)m consists of tangent spaces to the orbits of the action of
G, see (4.1).

Proof Let J be the operator of complex structure. Since ω is positive, its kernel coincides
with the kernel of the symmetric 2-form ω( · , J · ).
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Take z ∈ (C×)m . By writing z in polar coordinates, zk = ρkeiϕk , we decompose the real
tangent space to (C×)m at z as Tz = Tρ ⊕Tϕ , where Tρ and Tϕ consist of tangents to radial and
angular directions respectively. Since f does not depend on the ϕi ’s, the matrix of ω( · , J · )
is block-diagonal with respect to the decomposition Tz = Tρ ⊕ Tϕ . The diagonal blocks are
identical since ω is J -invariant. It follows that Kerω = (Kerω ∩ Tρ) ⊕ J (Kerω ∩ Tρ). It
remains to describe Kerω ∩ Tρ . To do this, we identify Tρ with the Lie algebra R

m of the
group R

m
> acting on (C×)m by coordinatewise multiplications.

Take a radial vector field V ∈ Tρ corresponding to a 1-parameter subgroup t �→
(eλ1t z1, . . . , eλm t zm) where λ = (λ1, . . . , λm) ∈ R

m . Then

ω(V, J V ) = (ddc f )(V, J V ) = LV 〈dc f, J V 〉 − L JV 〈dc f, V 〉
= L JV 〈d f, J V 〉 − LV 〈d f, J 2V 〉 = d2 f (eλ1t z1, . . . , eλm t zm)

dt2

∣
∣
∣
t=0

,

where LV denotes the Lie derivative along V , the second equality holds because V and J V
commute, and 〈d f, J V 〉 = 0 because f does not depend on angular coordinates. It remains
to calculate the second derivative. Note that for any linear function βI ∈ (Rm)∗, we have
|z(t)|βI = e〈βI ,λ〉t |z|βI along the curve t �→ z(t) = (eλ1t z1, . . . , eλm t zm). Therefore,

d2

dt2
f (eλ1t z1, . . . , eλm t zm)

∣
∣
∣
∣
t=0

= d

dt

(∑
I 〈βI , λ〉e〈βI ,λ〉t |z|βI

∑
I e〈βI ,λ〉t |z|βI

)∣
∣
∣
∣
t=0

= 1
(∑

I |z |βI
)2

(∑

I

〈βI , λ〉2|z |βI ·
∑

J

|z |βJ −
(∑

I

〈βI , λ〉|z |βI
)2

)

= 1
(∑

I |z |βI
)2

(∑

I,J

|z |βI |z |βJ
(
〈βI , λ〉 − 〈βJ , λ〉

)2
)

.

We claim that this vanishes precisely when λ ∈ KerA.
If λ ∈ KerA then 〈βI , λ〉 = ∑m

i=1 λi bi by the definition of βI , and this is independent
of I . Therefore, the last sum in the displayed formula above vanishes.

Conversely, if the sum above is zero for a given λ ∈ R
m , then 〈βI − βJ , λ〉 = 0 for

any pair of maximal simplices I, J ∈ K (here we use the fact that z ∈ (C×)m). We have
βI − βJ = A∗(uI − uJ ), where uI − uJ is the vector connecting the vertices uI and uJ

of P . Since P is n-dimensional, the linear span of all vectors βI − βJ is the whole A∗(N∗
R
).

Thus, λ ∈ KerA.
We have therefore identified Kerω ∩ Tρ with KerA ⊂ R

m . On the other hand, KerA is the
tangent space to the orbits of R ⊂ G, see (2.5). Since Kerω = (Kerω∩ Tρ)⊕ J (Kerω∩ Tρ),
we can identify Kerω with KerA ⊕ JKerA, which is exactly the tangent space to an orbit
of G. ��

Now we can finish the proof of Theorem 4.6. We need to show that the form ω = ddc f
descends to a form on U (K)/C . In other words, we need to show that ω is basic with respect
to the foliation defined by the orbits of C , i.e. ω(V ) = 0 and LV ω = 0 for any vector field
V tangent to C-orbits. Since C ⊂ G, the previous lemma implies that Kerω contains V , so
ω(V ) = 0. By the Cartan formula, LV ω = (diV + iV d)ω = d(iV ω) = 0, since dω = 0 and
iV ω = ω(V ) = 0.

Let ωF be the form obtained by descending ω to U (K)/C . Then ωF is positive since ω

is positive, and Lemma 4.7 implies that KerωF consists exactly of the tangents to the orbits
of G/C . Thus, ωF is transverse Kähler for F on (C×)m/C .

To see that the form ωF is exact we note that the fibres of the projection p : U (K) →
U (K)/C are contractible (as C ∼= C

�), so p is a homotopy equivalence. Hence p induces
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an isomorphism of the cohomology groups p∗ : H∗(U (K)/C; R)
∼=−→ H∗(U (K); R). Since

p∗ωF = ω and [ω] = 0 in H2(U (K); R), the form ωF is also exact. One can actually
construct a 1-form ηF satisfying dηF = ωF more explicitly as follows. Choose a smooth
section s : U (K)/C → U (K). For any x ∈ U (K)/C the restriction of ω to the fibre p−1(x)

is zero, hence dc f |p−1(x) is closed. Since p−1(x) is contractible, dc f |p−1(x) is exact. Hence,
dc f |p−1(x) = dgx for some function gx : p−1(x) → C defined up to a constant. We choose
gx such that gx (s(x)) = 0. The collection of functions {gx }x defines a smooth function
g : U (K) → C such that for any x ∈ U (K)/C we have dg|p−1(x) = dc f |p−1(x). Then the
1-form η = dc f − dg is basic with respect to the foliation generated by the fibers of p, since
LV η = (diV η + iV dη) = iV ω = 0 for any vector field V tangent to the fibre at p. Therefore
η descends to a form ηF on U (K)/C such that dηF = ωF .

4.4 Kähler and Fujiki class C subvarieties

Now we can use the transverse Kähler form ωF to describe complex submanifolds and
analytic subsets in ZK.

Definition 4.8 A compact complex variety M is said to be of Fujiki class C if it is bimero-
morphic to a Kähler manifold.

Remark Since a blow-up of a Kähler manifold is again Kähler, for each Fujiki class C variety
X there exists a birational holomorphic map X̃ → X , where X̃ is a compact Kähler manifold.

Definition 4.9 Let M be a compact complex manifold, and 
 a closed (1, 1)-current on M
(see Sect. 1.2). Assume that M admits a positive (1, 1)-form η such that the current 
 − η

is positive. Then 
 is called a Kähler current.

Theorem 4.10 [16, Theorem 0.6] A compact complex manifold admits a Kähler current if
and only if it is of Fujiki class C.

We will use a modification of this statement for Fujiki class C varieties to prove the
following:

Theorem 4.11 Under the assumptions of Theorem 4.6, any Fujiki class C subvariety of
ZK = U (K)/C is contained in a leaf of the �-dimensional foliation F .

Proof Let i : Y ↪→ U (K)/C be a Fujiki class C subvariety. We may assume that Y is
not contained in a coordinate submanifold of ZK, i. e., Y contains a point from (C×)m/C .
(Otherwise choose the smallest by inclusion coordinate submanifold ZKJ = U (KJ )/C ⊂
U (K)/C such that Y ⊂ ZKJ , and consider ZKJ instead of ZK.)

We claim that Y is contained in a D-orbit (a leaf of F). Suppose this is not the case. Then

k = min
y∈Yreg

dim(TyY ∩ TyF) < dim Y,

and the minimum is achieved at a generic point y ∈ Y .
Consider a smooth Kähler birational modification (Ỹ , ωỸ ) of Y with a birational map

p : Ỹ → Y . Let ωF be the transverse Kähler form constructed in Theorem 4.6, and let
ω̃F = p∗i∗ωF be its pullback to Ỹ . Consider the top-degree differential form

ν = ω̃dim Y−k
F ∧ ωk

Ỹ

on Ỹ . Then ν is a positive measure, since ωF , ω̃F and ωỸ are all positive (1, 1)-forms.
We claim that ν is nontrivial. Take a generic y ∈ Yreg, such that p is an isomorphism in a
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neighbourhood of p−1(y) and dim(TyY ∩ TyF) = k. We claim that ν is nonzero (strictly
positive) at p−1(y). Indeed, i∗ωF is a restriction of the transverse Kähler form ωF , so it
is strictly positive on a (dim Y − k)-dimensional subspace transverse to its k-dimensional
null space TyY ∩ TyF ⊂ TyY . Hence, ω̃F is also positive on the corresponding subspace of
Tp−1(y)Ỹ . Since ωỸ is Kähler and positive in all directions, ν is strictly positive at p−1(y).

Now recall that ω̃F = dα is exact, so by the Stokes formula,
∫

Ỹ
ω̃dim Y−k
F ∧ ωk

Ỹ
=

∫

Ỹ
d(α ∧ ω̃dim Y−k−1

F ∧ ωk
Ỹ
) = 0.

On the other hand, the measure ν is positive and nonzero at a point p−1(y), leading to a
contradiction. Hence k = dim Y and Y is contained in a leaf of F . ��
Corollary 4.12 Assume that the subspace KerA ⊂ R

m does not contain rational vectors.
Then there are no positive dimensional Fujiki class C subvarieties through a generic point
ofZK. More precisely, there are no such subvarieties intersecting nontrivially the open subset
(C×)m/C ⊂ U (K)/C = ZK.

Proof If KerA ⊂ R
m does not contain rational vectors, then, in the notation of Proposi-

tion 4.2, the group � is trivial. Therefore, any leaf in the open part (C×)m/C ⊂ U (K)/C
of the foliation F is isomorphic to C

�, and therefore cannot contain Fujiki class C
subvarieties. ��
4.5 The case of 1-dimensional foliation

This case was studied by Loeb and Nicolau [30]. Here is how their results translate into our
setting:

Theorem 4.13 Assume that the foliation F is 1-dimensional, i.e. � = 1.

(a) If KerA ⊂ R
m is a rational subspace, then any analytic subset of ZK is either a point,

or has the form π−1(X), where π : U (K)/C → V is the principal Seifert bundle over
the variety V = U (K)/G and X ⊂ V is a subvariety;

(b) If no rational linear function on R
m vanishes on KerA, then any irreducible analytic

subset of ZK is either a coordinate submanifold or a point.

Proof First observe that if m − n = 2� = 2, then the fan � is normal. (Indeed, the corre-
sponding polytope P can be obtained by truncating an n-simplex at a vertex.) Therefore, by
Proposition 4.4, there exists a transverse Kähler form ωF . Let Y be an analytic subset of pos-
itive dimension in ZK. Then Y consists of leaves of the foliation F , as otherwise the integral∫

Y ωdim Y
F of the exact form ωdim Y

F over Y is positive. In other words, Y is D-invariant.
Under assumption (a), bothG ⊂ (C×)m and D = G/C ⊂ (C×)m/C are closed subgroups

and Y has the form π−1(Y/D), where Y/D ⊂ U (K)/G = V .
When each vector ai is primitive in the lattice Z〈a1, . . . , am〉, the variety V is the toric

variety V� corresponding to the rational fan �. In general, V is a finite branched covering
over V� , see [32, Example 2.8].

Under assumption (b), we claim that the minimal closed complex subgroup D containing
D is the whole (C×)m/C . This claim is equivalent to that G = (C×)m . Indeed, since G is
closed, the intersection Lie G ∩ iRm is a rational subspace. Now if Lie G ∩ iRm �= iRm , then
there exists a rational linear function vanishing on Lie G and therefore on Lie G = KerAC,
leading to a contradiction. Hence Lie G ∩ iRm = iRm , i.e. Lie G = C

m , and the claim is
proved. It follows that the subset Y is (C×)m/C-invariant. An irreducible (C×)m/C-invariant
analytic subset of U (K)/C is a coordinate submanifold.
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Example 4.14 (Hopf manifold) Let a1, . . . , an+1 be a set of vectors which span NR
∼= R

n

and satisfy a linear relation λ1a1+· · ·+λn+1an+1 = 0with all λk > 0. Let� be the complete
simplicial fan in NR whose cones are generated by all proper subsets of a1, . . . , an+1. To
make m − n even we add one ghost vector an+2. Hence m = n + 2, � = 1, and we have one
more linear relation μ1a1 + · · · + μn+1an+1 + an+2 = 0, this time the μk’s are arbitrary
reals.

The subspace KerA ⊂ R
n+2 is spanned by (λ1, . . . , λn+1, 0) and (μ1, . . . , μn+1,1).

Then K = K� is the boundary of an n-dimensional simplex with n + 1 vertices and one
ghost vertex, ZK ∼= S2n+1 × S1, and U (K) = (Cn+1\{0}) × C

×.
Conditions (a) and (b) of Construction 3.1 imply that C is a 1-dimensional subgroup in

(C×)m given in appropriate coordinates by

C = {
(eζ1w, . . . , eζn+1w, ew) : w ∈ C

} ⊂ (C×)m,

where ζk = μk + αλk for some α ∈ C\R. By changing the basis of KerA if necessary, we
may assume that α = i . The moment-angle manifold ZK ∼= S2n+1 × S1 acquires a complex
structure as the quotient U (K)/C :

(
C

n+1\{0}) × C
×/ {

(z1, . . . , zn+1, t)∼ (eζ1wz1, . . . , eζn+1wzn+1, ewt)
}

∼= (
C

n+1\{0})/
{
(z1, . . . , zn+1)∼ (e2π iζ1 z1, . . . , e2π iζn+1 zn+1)

}
,

where z ∈ C
n+1 \{0}, t ∈ C

×. The latter is the quotient of C
n+1 \{0} by a diagonalisable

action of Z. It is known as a Hopf manifold. For n = 0 we obtain a complex 1-dimensional
torus (elliptic curve) of Example 3.2.

Suppose we are in the situation of Theorem 4.13 (a). Then all λk are commensurable (the
ratio of each pair is rational). We can assume that all λk are integer (multiplying them by a
common factor if necessary). Then � is a rational fan and V� = CPn(λ1, . . . , λn+1) is a
weighted projective space, whose orbifold structure may have singularities in codimension
one. This gives rise to a holomorphic principal Seifert bundle π : ZK → CPn(λ1, . . . , λn+1)

with fibre an elliptic curve.
Now suppose we are in the situation of Theorem 4.13 (b). For example, this is the case

when λ1, . . . , λm+1 are linearly independent over Q. Then any submanifold of ZK is a Hopf
manifold of lesser dimension (including elliptic curves and points).

4.6 Divisors and meromorphic functions

For simplicity, by a divisor on a complexmanifoldwemean an analytic subset of codimension
one. (The description of divisors in ZK obtained below can be easily modified to match the
more standard definition of divisors as linear combinations of analytic subsets of codimension
one.)

For generic initial data, there are only finitely many divisors on the complex moment-
angle manifold ZK, and they are of a very special type. This holds without any geometric
restrictions on the fan:

Theorem 4.15 Assume that the data {K; a1, . . . , am} define a complete fan � in NR
∼= R

n,
and m − n = 2�. Assume further that

(a) there is at most one ghost vertex in K;
(b) no rational linear function on R

m vanishes identically on KerA.

Then any divisor of ZK is a union of coordinate divisors.
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Proof Let D ⊂ ZK be a divisor. Consider the divisor q−1(D) in U (K), where q : U (K) →
ZK ∼= U (K)/C is the quotient projection.

First assume that there are no ghost vertices inK, so that all ak are nonzero. ThenC
m\U (K)

has codimension � 2. Hence the closure of q−1(D) in C
m is a C-invariant divisor in C

m .
Choose an elementu = (u1, . . . , um) inC such that |uk | > 1, k = 1, . . . , m. Such an element
exists since there is a relation

∑m
k=1 λkak = 0 with all λk > 0 (this follows from the fact that

� is a complete fan). Denote by L the discrete subgroup of C consisting of integral powers
of u; then L ∼= Z. Being a subgroup of C , the group L is diagonalisable and acts freely and
properly onC

m\{0}, so the quotient is a Hopfmanifold. By Example 4.14, anyHopfmanifold
is a complex moment-angle manifold with � = 1. Then if follows from Theorem 4.13 (b)
that any analytic subset of (Cm\{0})/L is a union of coordinate submanifolds. Hence the
closure of q−1(D)/L in (Cm\{0})/L is a union of coordinate divisors, and the same holds
for D ⊂ ZK.

Nowassume that there is one ghost vertex inK, say thefirst one. ThenU (K) = C
××U (K̃),

where K̃ does not have ghost vertices. Since the divisor q−1(D) ⊂ C
××U (K̃) isC-invariant,

its projection to the first factor C
× is onto. Therefore, for any z1 ∈ C

×, the intersection({z1}×U (K̃)
)∩ q−1(D) is a divisor in {z1}×U (K̃). This divisor is invariant with respect to

the subgroup C̃ = {(u1, u2, . . . , um) ∈ C : u1 = 1}. Choose an element u = (1, u2, . . . , um)

in C̃ such that |ui | > 1 for i � 2. Such an element exist since now we have a relation∑
i�2 μiai = 0 with all μi > 0, by the completeness of the fan. Now we proceed as in the

case when there are no ghost vertices, and conclude that each
({z1} × U (K̃)

) ∩ q−1(D) is a
union of coordinate divisors in {z1}×U (K̃). Since the number of coordinate divisors is finite,({z1} × U (K̃)

) ∩ q−1(D) = {z1} × E , where E ⊂ U (K̃) is a union of coordinate divisors.
Thus, q−1(D) = C

× × E , and D also has the required form. ��
Corollary 4.16 Under the assumptions of Theorem 4.15, there are no non-constant mero-
morphic functions on ZK.

Proof Let f be a non-constant meromorphic function on ZK. Choose a point z0 ∈ ZK in
the dense (C×)m/C-orbit outside of the pole set of f . Then the support of the zero divisor
of the function f (z) − f (z0) contains a point z0 in the dense (C×)m/C-orbit, so it does not
lie in the union of coordinate divisors. This contradicts Theorem 4.15. ��
4.7 General subvarieties

As we can see from Theorem 4.13, the geometry ofZK depends essentially on the geometric
data, namely on a choice of maps A and Ψ . In the situation of Theorem 4.13 (i.e. � = 1), the
case when no rational function vanishes on KerA is generic; so that ZK has only coordinate
submanifolds for generic geometric data. As we shall see, the situation is similar in the case
of higher-dimensional foliations (� > 1), although the generic condition on the initial data
will be more subtle.

Lemma 4.17 Assume that data {K; a1, . . . , am} define a complete fan � in NR
∼= R

n such
that no rational linear function on R

m vanishes on KerA. Then for almost all subspaces
c ⊂ C

m satisfying the conditions of Construction 3.1, the only complex subspace L ⊂ C
m

such that

(a) c ⊂ L,
(b) c ∩ L �= {0},
(c) L ∩ iRm is a rational subspace in iRm,
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is the whole L = C
m.

Proof The subspace c = Ψ (C�) is a point in the Grassmannian GrC(C�,KerAC), which
has complex dimension �2. The conditions of Construction 3.1 specify an open subset in
GrC(C�,KerAC); we refer to a map Ψ : C

� → C
m satisfying these conditions and the

corresponding subspace c = Ψ (C�) as admissible. We shall prove that the set of admissible c
for which there exist L � C

m satisfying properties (a)–(c) is contained in a countable union
of manifolds of dimension <�2 and therefore has zero Lebesgue measure.

Let L � C
m be a complex subspace satisfying conditions (a)–(c). Set Q = KerA ∩ L ,

and let dimR Q = q . Conditions (a) and (b) imply q > 0. Also, since no rational linear
function vanishes on KerA and L ∩ iRm is a proper rational subspace, L cannot contain the
whole KerA. Hence, 0 < q < 2�. Let πRe, πIm : c → KerA denote the projections onto the
real and imaginary parts (which are both isomorphisms of real spaces). For a given v ∈ Q
there exists a unique w ∈ KerA such that v + iw ∈ c ⊂ L . Since v, v + iw ∈ L , the vector
w lies in L . Therefore,

πIm ◦ π−1
Re (Q) = Q, (4.2)

as the operator on the left hand side sends v tow. In particular, the operatorπIm◦π−1
Re defines a

complex structure on the space Q. Hence dimC c∩(Q ⊗C) = q/2. Now, for a fixed subspace
Q � KerA, the set of complex subspaces c ⊂ KerAC satisfying condition (4.2) is identified
with an open subset in

GrC
(
C

q/2, Q ⊗ C
) × GrC

(
C

�−q/2, (KerAC)/(Q ⊗ C)
)

and has complex dimension (q/2)2 + (�− q/2)2 < �2. Since there are only countably many
rational subspaces in iRm , there are countably many Q ⊂ KerA. Hence the set of spaces c for
which there exist L � C

m satisfying properties (a)–(c) is contained in the union of countably
many manifolds of dimension <�2. Thus its Lebesgue measure is zero. ��

Our final results describe analytic subsets in a complexmoment-anglemanifoldZK, under
a generic assumption on the complex structure and a geometric assumption on the fan �:

Theorem 4.18 Let ZK be a complex moment-angle manifold, with linear maps A : R
m →

NR and Ψ : C
� → C

m described in Construction 3.1. Assume that

(a) no rational linear function on R
m vanishes on KerA;

(b) KerA does not contain rational vectors of R
m;

(c) the map Ψ satisfies the generic condition of Lemma 4.17;
(d) the fan � is weakly normal.

Then any irreducible analytic subset Y � ZK of positive dimension is contained in a coor-
dinate submanifold ZKJ � ZK.

Proof Assume that Y ⊂ ZK is an irreducible analytic subset of the smallest positive dimen-
sion. Let FY be the foliation on Y associated with F , i.e. TyFY = TyY ∩ TyF (here TyY
denotes the Zariski tangent space). Assuming that Y contains a generic point (i.e. a point from
(C×)m/C ⊂ ZK), we need to show that Y is the whole ZK. As we assume (d), Theorem 4.6
applies, giving a transverse Kähler form ωF . Since ωF is exact, the integral

∫
Y ωdim Y

F van-
ishes, hence the foliationFY is nontrivial. For any z ∈ ZK, the tangent space TyF is naturally
identified with the vector space KerAC/c. Let k be the complex dimension ofFY at a generic
point of Y , and let Ỹ ⊂ Y × GrC(Ck,KerAC/c) be the space of all k-dimensional planes
V ⊂ TyY ∩ TyF . Denote by πY and πG the projections of Ỹ to Y and GrC(Ck,KerAC/c),
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respectively. For any k-dimensional plane V ⊂ KerAC/c, the analytic subset πY (π−1
G (V )) is

identified with the closure of the set of all points y ∈ Y such that TyY = V . Since Y ⊂ ZK
is an analytic subset of the smallest dimension, πY (π−1

G (V )) either is 0-dimensional for all
V or coincides with Y .

Assume that dim πY (π−1
G (V )) = 0 for all V ⊂ KerAC/c. Then Ỹ admits a meromorphic

map to Gr(Ck,KerAC/c) which is finite at a generic point, hence Ỹ is Moishezon. The map
Ỹ → Y is surjective, so Y is also Moishezon. Then Y is of Fujiki class C by the classical
result of [33]. By the assumption (b), Corollary 4.12 applies, leading to a contradiction.

Now assume that πY (π−1
G (V )) = Y for some k-dimensional plane V ⊂ KerAC/c. In

other words, TyY ∩ TyF = V for a generic point y ∈ Y . Let H ⊂ (C×)m/C be the largest
closed complex subgroup preserving Y ⊂ U (K)/C , and let h ⊂ C

m/c be the Lie algebra
of H . Let L ⊂ C

m be the preimage of h. Then

– c ⊂ L;
– L ∩ iRm is a rational subspace, since H is closed;
– c ∩ L �= {0}, since h ⊃ V ⊂ KerAC/c.

As we assume (a) and (c), Lemma 4.17 applies, implying that L = C
m . Hence, H =

(C×)m/C and Y = ZK.

Corollary 4.19 Assume that every coordinate submanifold ZKJ ⊆ ZK either satisfies the
assumptions (a)–(d) of Theorem 4.18, or is a compact complex torus with no analytic subsets
of positive dimension. Then any irreducible analytic subset Y � ZK of positive dimension
is a coordinate submanifold ZKJ � ZK.

Proof Let Y � ZK be an irreducible analytic subset. Applying Theorem 4.18 to ZK we
conclude that Y is contained in a coordinate submanifold ZKJ � ZK. If Y = ZKJ , we
are done. Otherwise we have two options: either ZKJ itself satisfies the assumptions of
Theorem 4.18 and we can proceed by induction, or ZKJ is a compact complex torus. In the
latter case Y = ZKJ , by the assumption. ��
Acknowledgments We thank the referees for their most helpful comments and suggestions.
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