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Abstract—A new variant of the method of probability density distribution recovery for solving topical model-
ing problems is described. Disadvantages of the Gibbs sampling algorithm are considered, and a modified
variant, called the “granulated sampling method,” is proposed. Based on the results of statistical modeling,
it is shown that the proposed algorithm is characterized by higher stability as compared to other variants of
Gibbs sampling.
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The rapid advancement of computer technology is
accompanied by the development of methods of statis-
tical modeling (e.g., Markov chain Monte Carlo algo-
rithms). Bayesian approach to the estimation of hid-
den parameters of multidimensional distributions is
among the main methods of analysis in many fields
including high-energy physics [1], mass spectrometry
and bioinformatics [2], astrophysics [3], and statistical
physics [4]. One of the most widely used algorithms
for determining hidden parameters from observation
data is based on the Gibbs sampling. A remarkable
feature of this algorithm is that it does not require an
explicitly expressed general distribution and employs
only one-dimensional conditional probabilities
involved in the distribution.

In recent years, methods developed in physics are
frequently used for analysis of big data (data mining)
characterized by multidimensional distributions.
Although big data can represent a set of various
objects, such as mass spectra [2], sound tracks and
photographs [5], or news in social networks [6], the
task of recovering initial probability density distribu-
tion is generally the same despite this diversity.

The problem of recovery of the initial multidimen-
sional distribution in the form of a mixture of distribu-
tions with hidden parameters is called “topic modeling
(TM) [7, 8]. TM is based on the following assump-
tions: (i) the a posteriori distribution based on the
Bayes rule is found by estimating expected values via
sampling and (ii) distributions of topics in documents
and words (terms) in topics are multinominal, repre-
senting a priori Dirichlet distributions with parameters
 and . The approach to estimating probability den-
sity distribution in TM with allowance for the Dir-
ichlet functions is called “latent Dirichlet allocation”

(LDA) [7]. The present work describes a modified
Gibbs sampler for text data [8], which has been previ-
ously used for soft clusterization of mass spectra [2],
detection and identification of nuclear isotopes [9],
and many other applications.

In the framework of TM, observed variables in text
data are represented by documents d and words w from
a given collection. It is also assumed that there exist a
finite set of topics T and the collection of documents
is generated by discrete distribution p(d, w, t), where d,
w, and t are the document, word, and topic variables,
respectively. Hidden variable t characterizes the
countable set of topics and implies a one-dimensional
Dirichlet distribution of words. Accordingly, each
document represents a mixture of latent topic distribu-
tions and every topic is determined by its probabilistic
distribution on the set of words. To construct a topic
model of data means to find hidden word distributions
in a document with respect to topics based on
observed variables, i.e., to establish a set of one-
dimensional distributions p(t|d) ≈ (t, d) (matrix ,
distribution of documents with respect to topics) for
each document d. Final distributions of words and
documents based on the Gibbs sampling are calcu-
lated as follows [8]:
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where  and  are the parameters determining one-
dimensional Dirichlet distributions and C are the
counters obtained in the course of sampling:  is
the number of times word w is encountered in topic t,

 is the number of times word w in document d is

related to topic t,  = nt is the number of words

related to topic t, and  = nd is the length of docu-
ment in words. During the sampling, matrix p(z =
j|wi = m, z–i, w–i) is calculated that is used to determine
counters by formula (1). Then, these counters are used
to calculate final distributions d, j and m, j by formulas
(2) and (3), respectively.

Solving the TM problem is equivalent to stochastic
matric decomposition by which large matrix F con-
taining documents d and words w is approximated by
the product of two matrices, d, j and m, j, of lower
dimensions. However, the stochastic matric decom-
position is not unique and can only be determined to
within a nonsingular transformation [10]. In terms of
the Gibbs sampling algorithm, the nonunique recov-
ery of a multidimensional density of the mixture of
distributions implies that the algorithm starting from
various initial distributions would converge to differ-
ent points in the set of solutions. This is manifested by
the fact that, for different starts of the algorithm from
same initial data, the content of matrices d, j and m, j
will be different; in other words, the Gibbs sampler is
not stable. Problems the solutions of which are not
unique and/or stable are called “ill-posed.” A general
approach to solving such problems is provided by the
regularization according to Tikhonov [11], which con-
sists in adding a priori information that allows the set
of solutions to be decreased.

In the present work, it is proposed to perform sam-
pling by the granulated LDA technique, which differs
from the conventional Gauss sampling [8] by using a
modified topic concept. According to this, first, each
document is treated as a granulated surface consisting
of granules. Each granule represents a sequence of
words of preset length. Second, all words belonging to
same granule refer to the same topic. Granules are
characterized by their size, which represents the width
of the sampling window (regularization parameter).
The granulated TM variant is aimed at the recovery of
matrices d, j and m, j by averaging the topic content of
granules over a large number of documents, i.e., by
calculating the expected values (mathematical expec-
tation).

The granulated variant of Gauss sampling was
implemented as follows. After the initiation of matri-
ces d, j and m, j, two embedded cycles are organized
so that the external cycle runs over the list of docu-
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ments, while the internal cycle performs random sam-
pling over granules. During this, all words in a ran-
domly selected window are allocated to the same topic
with randomly generated number. The number of ran-
dom “samples” of words in a document is equal to the
number of words in this document. During long-term
sampling, words frequently encountered inside a gran-
ule will more frequently have the same topic number
and their probability of belonging to same topic will
be, on average, higher. At the last stage, final calcula-
tion of matrices d, j and m, j of the distributions of
words and documents is performed using the corre-
sponding counters.

The stability of TM in this work was evaluated by
mutual comparison of a series of one-dimensional dis-
tributions (topics) obtained in various runs based on
the Kullback–Leibler normalized measure (Kn) [12].
Investigation showed that two topics are identical pro-
vided that Kn > 90% [12]. In the present work, a topic
was considered stably reproduced from one run to
another if it was reproduced in three runs on a level of
Kn > 90%. In order to evaluate the stability of TM, we
have analyzed three topic models based on the Gibbs
sampling procedures: (i) LDA (standard variant);
SLDA (model with learning); and (iii) GLDA (granu-
lated LDA with granule size +1).

Each model was started three times from the same
initial data. The models were tested on a set of
101 481 documents from the Livejournal social net-
work using 200 topics with the same Dirichlet function
parameters  = 0.1 and  = 0.5. The TM results
showed that the standard LDA variant provided 74 sta-
ble topics of 200, the SLDA variant yielded 87 stable
topics, and the GLDA variant ensured 195 stable top-
ics.

Thus, the results of statistical modeling showed
that the proposed granulated LDA (GLDA) model
significantly exceeds other analogous models in
respect of stability and can be effectively used in solv-
ing problems related to the recovery of multidimen-
sional distributions in physics and other fields (e.g.,
data mining) employing statistical physico-mathe-
matical models.
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