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Abstract. The universal enveloping algebra of any simple Lie algebra g con-
tains a family of commutative subalgebras, called the quantum shift of argu-
ment subalgebras [R1, FFT]. We prove that generically their action on finite-
dimensional modules is diagonalizable and their joint spectra are in bijection
with the set of monodromy-free LG -opers on P1 with regular singularity at
one point and irregular singularity of order two at another point. We also prove
a multi-point generalization of this result, describing the spectra of commut-
ing Hamiltonians in Gaudin models with irregular singularity. In addition, we
show that the quantum shift of argument subalgebra corresponding to a regular
nilpotent element of g has a cyclic vector in any irreducible finite-dimensional
g -module. As a byproduct, we obtain the structure of a Gorenstein ring on
any such module. This fact may have geometric significance related to the
intersection cohomology of Schubert varieties in the affine Grassmannian.

1. Introduction

Let g be a simple Lie algebra over C . The symmetric algebra S(g) carries a
natural Poisson structure. A Poisson commutative subalgebra Aµ of S(g) = C[g∗] ,
called the classical shift of argument subalgebra, was defined in [MF] (see also
[Ma]). It is generated by the derivatives of all orders in the direction of µ ∈ g∗
of all elements of the algebra of g-invariants in C[g∗] . Recently, this algebra was
quantized in [R1, FFT]. More precisely, a commutative subalgebra Aµ of the
universal enveloping algebra U(g) of g was constructed and it was proved that for
all regular µ ∈ g∗ the associated graded of Aµ , with respect to the order filtration
on U(g) is Aµ . The algebra Aµ is called the quantum shift of argument subalgebra
of U(g). This is a free polynomial algebra in 1

2(dim g + rk g) generators for any
regular µ ∈ g∗ (see [R1, FFT]). We identify g and g∗ using an invariant inner
product and regard µ as an element of g .

For any regular µ the algebra Aµ contains the centralizer of µ in g . In par-
ticular, if µ is regular semisimple, then Aµ contains a Cartan subalgebra of g .
Hence it acts on weight subspaces of g-modules. We note that, as shown in [R1], a
certain limit of Aµ in the case when g = sln may be identified with the Gelfand–
Zetlin algebra. Hence the algebra Aµ may be thought of as a generalization of
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the Gelfand–Zetlin algebra to an arbitrary simple Lie algebra. It is an interesting
question to describe the joint (generalized) eigenvalues of Aµ on g-modules.

The first steps towards answering this question were taken in [FFT], where it
was shown that Aµ is isomorphic to the algebra of functions on a certain space of
LG-opers on the projective line P1 . More precisely, this is the space of LG-opers
on P1 with regular singularity at the point 0 and irregular singularity of order 2
at the point ∞ , with a fixed 2-residue determined by µ (see [FFT] for details).
Here LG is the Langlands dual group of G (LG is taken to be of adjoint type), and
LG-opers are connections on a principal LG-bundle over P1 satisfying a certain
transversality condition, as defined in [BD]. The appearance of the Langlands
dual group is not accidental, but is closely related to the geometric Langlands
correspondence, through a description of the center of the completed enveloping
algebra of the affine Kac–Moody algebra ĝ at the critical level in terms of LG-opers
on the punctured disc [FF1, Fr2, Fr4].

Thus, we obtain that the spectra of Aµ on a g-module M are encoded by
LG-opers on P1 satisfying the above properties. Furthermore, in [FFT] it was
shown that if M = Vλ , the irreducible finite-dimensional g-module with dominant
integral highest weight λ , then these LG-opers satisfy two additional properties:
they have a fixed residue at the point 0 (where the oper has regular singularity),
determined by λ (we denote the space of such opers by OpLG(P1)λ

π(−µ) ), and they
have trivial monodromy.

It was conjectured in [FFT] that in fact there is a bijection between the spectra
of Aµ on Vλ and the set of monodromy-free opers from OpLG(P1)λ

π(−µ) for regular
µ ∈ g∗ . In this paper we prove this conjecture (see Corollary 3). Furthermore, we
prove the following statement (see Corollary 4):

Theorem A. For generic regular semisimple µ ∈ g∗ and any dominant integral
λ, the quantum shift of argument subalgebra Aµ ⊂ U(g) is diagonalizable and has
simple spectrum on the irreducible g-module Vλ . Moreover, its joint eigenvalues
(and hence eigenvectors, up to a scalar) are in one-to-one correspondence with
monodromy-free opers from OpLG(P1)λ

π(−µ) .

In this paper we do not address the question of constructing the eigenvectors of
Aµ . Conjecturally, for generic µ , they may be constructed by the Bethe Ansatz
method (see [FFT, Section 6]), but we do not attempt to prove this conjecture
here, nor do we use Bethe Ansatz in the proof of Theorem A. Instead, we rely on
the isomorphism between the algebra Aµ and the algebra of functions on opers
and the study of opers with irregular singularity and trivial monodromy.

The crucial step in our proof is the analysis of the action of Aµ in the case
when µ = f , a regular nilpotent element of g∗ ' g . The algebra Af contains the
centralizer af of f in g . Elements of af and more general elements of Af are
not diagonalizable operators on Vλ , but nilpotent operators. Hence it is natural
to view them as “creation operators” and ask whether they generate Vλ from its
highest weight vector. Theorem 1 in the main body of the paper implies that the
answer to this question is affirmative (see Corollary 2 for more details).

Theorem B. The g-module Vλ is cyclic as an Af -module. The annihilator of Vλ

in Af is generated by the no-monodromy conditions on opers from OpLG(P1)λ
0 .
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This provides a natural structure of a Gorenstein ring on any finite-dimensional
irreducible g-module Vλ . We hope that this fact has a geometric interpretation.
Namely, due to the results of [Gi, MV], the space Vλ may be naturally identified
with the global cohomology of the irreducible perverse sheaf on the Schubert va-
riety Grλ in the affine Grassmannian of the Langlands dual group LG . On the
other hand, the universal enveloping algebra U(af ) of the centralizer af of the
principal nilpotent element f is identified with the cohomology ring of the affine
Grassmannian. Hence it acts on the cohomology of our perverse sheaf. This action
is precisely the action of U(af ) on Vλ [Gi]. But U(af ) is a subalgebra of the com-
mutative algebra Af . This leads us to a natural question: what is the geometric
meaning of Af ? Perhaps, if one could answer this question, one could derive the
cyclicity of Vλ as a Af -module by geometric means.

The shift of argument subalgebra Aµ has a multi-point generalization, denoted
by Aµ(z1, . . . , zN ), where z1, . . . , zN are distinct points on P1\∞ . This is a com-
mutative subalgebra of U(g)⊗N , which consists of the Hamiltonians of the Gaudin
model with irregular singularity [R1, FFT]. We show that for any regular µ ∈ g∗

this algebra is isomorphic to the algebra of functions on the space of LG-opers
on P1 with regular singularities at z1, . . . , zN and irregular singularity of order
2 at ∞ , with the 2-residue determined by µ (see Proposition 3). We also prove
a conjecture of [FFT] that for any regular µ ∈ g∗ the set of joint eigenvalues of
this algebra on the tensor product Vλ1⊗ . . .⊗VλN

of irreducible finite-dimensional
g-modules is in bijection with the set of opers of this kind with fixed residues
determined by the highest weights λ1, . . . , λN and the no-monodromy condition
(see Corollary 5). For generic z1, . . . , zN and generic regular semisimple µ , this
gives a multi-point generalization of Theorem A (see Corollary 6). We also prove
a multi-point analogue of Theorem B (see Corollary 5).

We note that for the ordinary Gaudin model (with regular singularity) a de-
scription of the spectrum of the Hamiltonians in terms of an appropriate set of
monodromy-free opers analogous to our Corollary 5 was conjectured in [Fr3, Con-
jecture 1] (it was proved in [Fr3, Theorem 2.7,(3)] that the spectrum does embed
into this set of monodromy-free opers). In the course of writing this paper we
learned that a variant of this conjecture was proved in [MTV1] in the case when
g = glM by a detailed analysis of intersections of Schubert varieties in the Grass-
mannian.1 This result should be related to our Corollary 3 in the case of g = glN
via the duality of [TL].

Finally, we expect that the results of this paper may be generalized to the
affine Kac–Moody algebras. As explained in [FF2], the affine analogue of the shift
of argument subalgebra corresponding to regular semisimple µ is the algebra of
quantum integrals of motion of the AKNS hierarchy of soliton equations. Such an
algebra may also be defined for a regular nilpotent µ . In this case, its action is not
diagonalizable, but it gives rise to a commutative algebra of creation operators.
We expect that these operators generate highest weight modules over affine Kac–
Moody algebras; for example, the irreducible integrable representations. In the
latter case, we expect that the generators of the corresponding annihilating ideal

1In the subsequent paper [MTV2] a statement closely related to our Corollary 5 has been
proved for g = glM .
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are given by the no-monodromy conditions on the corresponding affine opers, by
analogy with Theorem B in the finite-dimensional case. We plan to discuss this in
more detail in our next paper.

The present paper is organized as follows. In section 2 we collect basic facts on
Gaudin models and opers. In section 3 we formulate and discuss the main result
of the paper. The detailed proof is given in the last section 4.

Acknowledgments. We thank A. Glutsyuk, Yu. Ilyashenko, and V. Toledano
Laredo for useful discussions. We also thank anonymous referees for useful com-
ments.

2. Preliminaries

2.1. Gaudin algebras. Gaudin model was introduced in [Ga1] as a spin model
related to the Lie algebra sl2 , and generalized to the case of an arbitrary semisimple
Lie algebra in [Ga2], Section 13.2.2. For any x ∈ g , set

x(i) = 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1 ∈ U(g)⊗N

(x at the ith place). Let {xa}, a = 1, . . . , dim g , be an orthonormal basis of g with
respect to Killing form, and let z1, . . . , zN be pairwise distinct complex numbers.
The Hamiltonians of Gaudin model are the following mutually commuting elements
of U(g)⊗N :

(1) Hi =
∑

k 6=i

dim g∑

a=1

x
(i)
a x

(k)
a

zi − zk
.

In [FFR], a large commutative subalgebra A(z1, . . . , zN ) containing the Hi ’s
was constructed with the help of the affine Kac–Moody algebra ĝ , which is the
universal central extension of g((t)). Namely, according to [FF1, Fr2], the complet-
ed enveloping algebra Ũκc(ĝ) of ĝ at the critical level (in the notation of [FFT])
contains a large center Z(ĝ). Set ĝ+ = g[[t]] ⊂ ĝ and ĝ− = t−1g[t−1] ⊂ ĝ . The
natural homomorphism Z(ĝ) −→ (Ũκc(ĝ)/Ũκc(ĝ) · ĝ+)ĝ+ is surjective [FF1, Fr2].
Every element of the latter quotient has a unique representative in U(ĝ−). Thus
we obtain the following natural embedding

(Ũκc(ĝ)/Ũκc(ĝ) · ĝ+)ĝ+ ↪→ U(ĝ−).

Let z(ĝ) ⊂ U(ĝ−) be the image of this embedding. The commutative subalgebra
A(z1, . . . , zN ) ⊂ U(g)⊗N is then the image of z(ĝ) ⊂ U(ĝ−) under the homomor-
phism

(2) U(ĝ−) −→ U(g)⊗N , xat
m 7→

n∑

i=1

zm
i x(i)

a

of evaluation at the points z1, . . . , zN (see [FFR]).
This construction is generalized as follows (see [FFT, R1]. For different approach

in the case g = glN see [ChT]). One constructs a family of homomorphisms
depending on a collection of pairwise distinct nonzero complex numbers z1, . . . , zN

(3) U(ĝ−) −→ U(g)⊗N ⊗ S(g), xat
m 7→

n∑

i=1

zm
i x(i)

a ⊗ 1 + δ−1,m ⊗ xa.
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Composing this with the evaluation S(g) −→ C at any point µ ∈ g∗ = Spec S(g),
we obtain a family of homomorphisms U(ĝ−) −→ U(g)⊗N depending on z1, . . . , zN

and µ ∈ g∗ :

xat
m 7→

n∑

i=1

zm
i x(i)

a + δ−1,mµ(xa).

Now, for any collection z1, . . . , zN and µ ∈ g∗ , the image of z(ĝ) under the cor-
responding homomorphism from this family is a certain commutative subalgebra
of U(g)⊗N depending on z1, . . . , zN and µ ∈ g∗ . We denote it by Aµ(z1, . . . , zN ).
In particular, A(z1, . . . , zN ) = A0(z1, . . . , zN ) corresponding to µ = 0.

These subalgebras contain the following “inhomogeneous” Gaudin Hamiltoni-
ans:

Hi =
∑

k 6=i

dim g∑

a=1

x
(i)
a x

(k)
a

zi − zk
+

dim g∑

a=1

µ(xa)x(i)
a .

It is shown in [R1, Proposition 4] that Aµ(z1, . . . , zN ) = Aµ(z1 + c, . . . , zN + c)
for any c ∈ C . Hence one can assume z1, . . . , zN to be an arbitrary collection
of pairwise distinct complex numbers, not necessarily nonzero. In particular, for
N = 1, we obtain a family of commutative subalgebras Aµ(z1) ⊂ U(g) which does
not depend on z1 . We will set z1 = 0 in this case and denote this algebra simply
by Aµ . It is proved in [FFT, R1] that the associated graded algebra of Aµ (with
respect to the PBW filtration) for regular µ is the (classical) shift of argument
subalgebra Aµ ⊂ S(g).

This Poisson commutative subalgebra was first constructed by Mishchenko and
Fomenko in [MF], in the following way. Let

(4) S(g)g = C[P1, . . . , P`],

where ` = rank(g) be the center of S(g) with respect to the Poisson bracket, and
the Pi are chosen so that they are homogeneous with respect to the natural grading
on S(g). Let µ ∈ g∗ be a regular element. Then the subalgebra Aµ ⊂ S(g) is
generated by the elements ∂n

µPk , where k = 1, . . . , `, n = 0, . . . ,deg Pk − 1, (or,
equivalently, generated by central elements of S(g) = C[g∗] shifted by tµ for all t ∈
C). These elements are algebraically independent (for a uniform proof, see [FFT,
Theorem 3.11]). Hence the subalgebra Aµ ⊂ S(g) is a free polynomial algebra
in 1

2(dim g + rk g) generators (and therefore has maximal possible transcendence
degree). Since grAµ = Aµ , we obtain the following

Lemma 1. For regular µ the algebra Aµ is a free polynomial algebra in 1
2(dim g+

rk g) generators.

From now on we will identify g and g∗ using the Killing form and regard µ as
an element of g .

Denote by gR the compact real form of g , and let x 7→ x̄ be the corresponding
R-linear involution on g . Any irreducible finite-dimensional g-module has a gR -
invariant Hermitian form. We shall use the following

Lemma 2. For z1, . . . , zN ∈ R and µ ∈ igR , there is a C-basis in the algebra
Aµ(z1, . . . , zN ) ⊂ U(g)⊗N acting by Hermitian operators on any irreducible finite-
dimensional g-module.
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Proof. 2 Note that the center at the critical level and the homomorphism (3) are
defined over R . For x ∈ g , let x[−k] = x ⊗ t−k ∈ ĝ− . According to [R2], the
subalgebra z(ĝ) ⊂ U(ĝ−) is the centralizer of the following quadratic element

H[−1] :=
dim g∑

a=1

xa[−1]xa[−1].

Consider the anti-involution ω on the enveloping algebra U(ĝ−), defined on
the generators as x[−k] 7→ −x[−k] . Note that ω(H[−1]) = H[−1] and H[−1] ∈
U(ĝR−). Therefore, the subalgebra z(ĝ) ⊂ U(ĝ−) is stable under two commut-
ing involutions: ω and the involution x[−k] 7→ x̄[−k] . Hence, we can choose
a basis {bm} of z(ĝ) which consists of elements for which ω(bm) = bm . The
evaluation homomorphism at z1, . . . , zN and µ sends an element x[−k] ∈ ĝ− to
n∑

i=1
z−k
i x(i) + (µ, x)δ1,k . For x[−k] ∈ ĝR− , z1, . . . , zN ∈ R and µ ∈ igR , this acts

as an anti-Hermitian operator. This means that, for each b ∈ U(ĝ−), the opera-
tors representing b and ω(b) are Hermitian-conjugate. Hence the image of each
bm ∈ z(ĝ) in Aµ acts as a Hermitian operator. ¤

The algebra U(g)⊗N has an increasing filtration by finite-dimensional subspaces,

U(g)⊗N =
∞⋃

k=0

U(g)⊗N
(k) ,

where U(g)⊗N
(k) is spanned by monomials of total order less than or equal to k . We

define the limit lim
s−→∞B(s) for any one-parameter family of subalgebras B(s) ⊂

U(g)⊗N , depending on s rationally, as
∞⋃

k=0

lim
s−→∞B(s) ∩ U(g)⊗N

(k) .

This limit here is understood as the limit of families of points in the corresponding
Grassmannian (this limit exist since every rational map from P1 to the Grassman-
nian is regular). It is clear that the limit of a family of commutative subalgebras is
a commutative subalgebra. It is also clear that passage to the limit is compatible
with homomorphisms of filtered algebras (in particular, with the projection onto
any factor and a finite-dimensional representation on any factor) in the following
sense: for any homomorphism of filtered algebras ϕ : U(g)⊗N −→ F one has

ϕ
(

lim
s−→∞B(s)

)
⊂ lim

s−→∞ϕ(B(s)).

This implies the following standard result.

Proposition 1. Let B(s) ⊂ U(g)⊗N be a family of commutative subalgebras,
depending on s rationally, and V a finite-dimensional representation of U(g)⊗N .
If the algebra lim

s−→∞B(s) has a cyclic vector in V , then the same holds for B(s)

2We thank V. Toledano Laredo for pointing out that an earlier version of this proof was
incomplete.
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with generic s ∈ C. If the joint spectrum of lim
s−→∞B(s) on V is simple, then the

same holds for B(s) with generic s ∈ C.

We need the following facts on the limit points of the family Aµ(z1, . . . , zN ).

Proposition 2. [R1]

lim
s−→∞Aµ(sz1, . . . , szN ) = lim

s−→∞Asµ(z1, . . . , zN ) = A(1)
µ ⊗ · · · ⊗A(N)

µ ⊂ U(g)⊗N

for regular µ.

Remark. In [R1] this Proposition is stated for regular semisimple µ , but the proof
works for any regular µ without any changes.

We have Aξ = Atξ for any t ∈ C×, ξ ∈ g . This follows from Lemma 1 of [R1],
which states that the algebra Aξ is generated by the elements homogeneous in
ξ . We also have At Ad(g)ξ = Ad(g)Aξ ⊂ U(g) (this follows from g-equivariance
of the evaluation homomorphism U(ĝ−) −→ U(g) ⊗ S(g)). Thus, the subalgebras
Aξ ⊂ U(g) and At Ad(g)ξ ⊂ U(g) are conjugate for any g ∈ G, t ∈ C∗, ξ ∈ g .

Let
g = n+ ⊕ h⊕ n−

be a Cartan decomposition of g . We denote by Π be the set of simple roots of g .
We will choose generators {e−α}α∈Π of the lower nilpotent subalgebra n− . Let

f =
∑

α∈Π

e−α ∈ g

be a principal nilpotent element and {e, h, f} be a principal sl2 -triple in g , where
h ∈ h . Let zg(e) be the centralizer of e in g . Consider Kostant’s slice

gcan := f + zg(e).

This is an affine subspace in g , which consists of regular elements. On the other
hand, for any regular µ ∈ g , the AdG-orbit of µ intersects gcan at one point (this
is a classical result due to Kostant [K]).

Lemma 3. For any regular µ the closure of the family At Ad(g)µ ⊂ U(g) (g ∈
G, t ∈ C∗, ξ ∈ g) contains the subalgebra Af ⊂ U(g).

Proof. According to [K], there exists x ∈ zg(e) such that Af+x belongs to the
family At Ad(g)µ . Since x ∈ n+ , we have

lim
t−→−∞ exp(2t)Ad exp(th)(f + x) = f,

and therefore Af is a limit point of the family At Ad(g)µ . ¤
The ”most degenerate” subalgebra Aµ ⊂ U(g) among those corresponding to

regular µ is the subalgebra Af . It is a free commutative algebra with generators
Π(n)

i such that grΠ(n)
i = ∂n

f Pi ∈ S(g), where i = 1, . . . , l, n = 0, 1, . . . , di =
deg Pi − 1, Pi are the generators of S(g)g (see formula (4)).

The element 1
2h defines the principal gradation degpr on U(g) such that

degpr eα = −degpr e−α = 1, α ∈ Π, degpr hα = 0, hα ∈ h.

The generators of Af are homogeneous with respect to this gradation, with
degpr Π(n)

i = −n . Thus, the algebra Af is graded by the principal gradation:
7



Af =
⊕

n≥0 A
(−n)
f . Note that the Poincaré series of Af with respect to the princi-

pal gradation is equal to that of the algebra U(n−). Thus, it is natural to expect
that irreducible highest weight g-modules are cyclic as Af -modules (having the
highest weight vector as a cyclic vector).

2.2. Opers on the projective line. Now let us describe the spectra of Gaudin
algebras following [FFT].

Consider the Langlands dual Lie algebra Lg whose Cartan matrix is the trans-
pose of the Cartan matrix of g . By LG we denote the group of inner automor-
phisms of Lg . We fix a Cartan decomposition

Lg = Ln+ ⊕ Lh⊕ Ln−.

The Cartan subalgebra Lh is naturally identified with h∗ . We denote by L∆,
L∆+ , and LΠ the root system of Lg , the set of positive roots, and the set of
simple roots, respectively. We denote by Lb+ the Borel subalgebra Ln+ ⊕ Lh .

Set
p−1 =

∑

α∨∈Π∨
e−α∨ ∈ Lg.

Let

ρ =
1
2

∑

α∈∆+

α ∈ h∗ = Lh.

The operator Ad ρ defines the principal gradation on Lg , with respect to which we
have a direct sum decomposition Lb+ =

⊕L
i≥0 bi . Let p1 be the unique element of

degree 1 in Ln+ such that {p−1, 2ρ, p1} is an sl2 -triple (note that p−1 has degree
−1). Let

Vcan =
⊕̀

i=1

Vcan,i

be the space of Ad p1 -invariants in Ln+ , decomposed according to the principal
gradation. Here Vcan,i has degree di , the ith exponent of Lg (and of g). In
particular, Vcan,1 is spanned by p1 . Now choose a linear generator pj of Vcan,j .

Consider the Kostant slice in Lg ,

Lgcan =



p−1 +

∑̀

j=1

yjpj , y ∈ C


 .

By [K], the adjoint orbit of any regular element in the Lie algebra Lg contains a
unique element which belongs to Lgcan . Thus, we have canonical isomorphisms

(5) Lgcan−̃→Lg/LG = Lh/LW = h∗/W = g∗/G.

The notion of opers on an arbitrary curve was introduced by Beilinson and
Drinfeld in [BD]. We refer the reader to [FFT] for details. Here we will only
say that for an affine curve U = SpecR and an étale coordinate t on U , the
space OpLG(U) of LG-opers on U is isomorphic to the quotient of the space of
connections of the form

d + (p−1 + v(t))dt, v(t) ∈ Lb+ ⊗R
8



by the free action of the group LN+ ⊗ R of regular algebraic maps U −→ LN+ ,
where LN+ is the maximal unipotent subgroup of LG such that Lie LN+ = Ln+ .
Each oper has a unique representative of the form

d +


p−1 +

∑̀

j=1

uj(t)pj


 dt, uj(t) ∈ R.

In particular, the space OpLG(D×) of LG-opers on the formal punctured disc
D× = SpecC((t)) is isomorphic to the space of connections of the form

d +


p−1 +

∑̀

j=1

uj(t)pj


 dt, uj(t) ∈ C((t)).

We will consider opers on P1 with singularities at a finite number of points.
The oper has singularity of order k at z ∈ P1 if has the following form in local
coordinate t at z :

d +


p−1 +

∑̀

j=1

(uj(t− z)−k(dj+1) + O((t− z)−n−1))pj


 dt.

The k -residue of such oper at the point z , for k > 1, is p−1 +
∑`

j=1 ujpj (see
[FFT, Section 4.3] for details).

Following [FFT], we denote by OpLG(P1)(zi);π(−µ) the space of LG-opers on
P1\{z1, . . . zN ,∞} with regular singularities at the points zi, i = 1, . . . , N , and
with irregular singularity of order 2 at the point ∞ with the 2-residue π(−µ) ∈
Lg/LG = g∗/G , where π : g∗ −→ g∗/G is the projection. Each oper from this space
may be uniquely represented in the following form:

d +


p−1 +

∑̀

j=1

µjpj +
N∑

i=1

∑̀

j=1

dj∑

n=0

u
(i)
j,n(t− zi)−n−1pj


 dt,

where

p−1 +
∑̀

j=1

µjpj

is the (unique) element of Lgcan contained in the LG-orbit corresponding to the
G-orbit of µ ∈ g∗ under the isomorphism (5). Thus, OpLG(P1)(zi);π(−µ) is an
affine space of dimension 1

2(dim g + rk g)N .
We will be mainly interested in the special case OpLG(P1)(0);π(−µ) of opers

having regular singularity at 0 and irregular singularity of order 2 at the point ∞
with the 2-residue π(−µ). By a slight abuse of notation we will denote this space
simply by OpLG(P1)π(−µ) .

Rewriting an oper on P1 in local coordinate at any point z , we obtain an
inclusion OpLG(P1)(zi);π(−µ) ⊂ OpLG(D×

z ), where D×
z is the punctured disc at

the point z ∈ P1 . In particular, on the punctured disc D×∞ at ∞ (with the
9



coordinate s = t−1 ) each element of OpLG(P1)π(−µ) may be uniquely represented
by a connection of the form (see [FFT, Section 5.4]):

d−

p−1 −

∑̀

j=1

(s−2djµj + s−2dj−1uj(s))pj


 ds, uj(s) =

dj∑

n=0

uj,nsn.

On the punctured disc D×
0 at 0, each element of OpLG(P1)π(−µ) may be rep-

resented uniquely by a connection of the form

d +


p−1 +

∑̀

j=1

(µj +
dj∑

n=0

uj,nt−n−1)pj


 dt.

The 1-residue at 0 of this oper is equal to

p−1 +
∑̀

j=1

(uj,dj +
1
4
δj,1)pj ∈ Lgcan ' Lg/LG = g∗/G.

2.3. Gaudin algebra and opers. In [FF1] the center Z(ĝ) of the complet-
ed enveloping algebra Ũκc(ĝ) at the critical level is identified with the algebra
Fun(OpLG(D×)) of polynomial functions on the space OpLG(D×) of LG-opers on
the formal punctured disc D× = SpecC((t)).

By [FFT, Theorem 5.7,(4)], the algebra Aµ(z1, . . . , zN ), being a quotient of
Z(ĝ) = Fun(OpLG(D×)), is actually a quotient of the algebra of polynomial func-
tions on the space OpLG(P1)(zi);π(−µ) ⊂ OpLG(D×

0 ) (here D×
0 is the punctured

disc at the point 0 ∈ P1 ). The algebra Fun(OpLG(P1)(zi);π(−µ)) is a polynomial
algebra in 1

2(dim g + rk g)N generators.
On the other hand, Proposition 2 and Lemma 1 imply that for regular µ the

algebra Aµ(z1, . . . , zN ) is a free polynomial algebra in the same number of gen-
erators (see also [R1, Theorem 2 and Corollary 4]). Indeed, for the same rea-
son as in Lemma 3, it suffices to prove this for the principal nilpotent µ = f .
Note that for s ∈ C we have Asf (z1, . . . , zN ) = AAd(exp(− s

2
h))f (z1, . . . , zN ) =

Ad(exp(− s
2h)(Af (z1, . . . , zN )), due to the G-equivariance of the evaluation ho-

momorphism, and lim
s−→∞Asf (z1, . . . , zN ) = A

(1)
f ⊗· · ·⊗A

(N)
f ⊂ U(g)⊗N , by Propo-

sition 2. Thus we have a one-parameter family of subalgebras in U(g)⊗N , which
are all conjugate to Af (z1, . . . , zN ), having A

(1)
f ⊗· · ·⊗A

(N)
f as a limit point. Hence

the transcendence degree tr deg Af (z1, . . . , zN ) = tr deg A⊗N
f = 1

2(dim g + rk g)N .
Thus, we obtain the following assertion which was conjectured in [FFT, Con-

jecture 3].

Proposition 3. For regular µ there is an isomorphism

Aµ(z1, . . . , zN ) ' C[OpLG(P1)(zi);π(−µ)].

In particular, for regular µ the algebra Aµ is identified with the algebra of
polynomial functions on the space OpLG(P1)π(−µ) of LG-opers on P1 with regular
singularity at the point 0 and with singularity of order 2 at ∞ , with 2-residue
π(−µ) (we recall that π(−µ) denotes the image of −µ ∈ g∗ in g∗/G = Lg/LG).

10



In particular, the space of opers corresponding to the algebra SpecAf looks as
follows (in this case π(−µ) = 0):

OpLG(P1)0 =



d−


p−1 −

∑̀

j=1

s−2dj−1uj(s)pj)


 ds,

∣∣∣∣∣∣
uj(s) =

dj∑

n=0

uj,nsn





=



d +


p−1 +

∑̀

j=1

dj∑

n=0

uj,nt−n−1pj


 dt





(here, as before, we omit z1 , which is set to 0).
Next, it is proved in [FFT, Theorem, 5.7], that for any collection of g-modules

Mi with highest weights λi , i = 1, . . . , N , the natural homomorphism

Aµ(z1, . . . , zN ) −→ End(M1 ⊗ · · · ⊗MN )

factors through the algebra of functions on the subspace OpLG(P1)(λi)
(zi);π(−µ) ⊂

OpLG(P1)(zi);π(−µ) which consists of the opers with the 1-residue π(−λi − ρ) at
zi . Moreover, for integral dominant λi the action of Aµ(z1, . . . , zN ) on the ten-
sor product of the finite-dimensional modules Vλi factors through the algebra of
functions on monodromy-free opers from OpLG(P1)(λi)

(zi);π(−µ) .
For every integral dominant weight λ , the set of monodromy-free opers on the

punctured disc D×
z at z with the regular singularity with the residue −λ − ρ at

z is defined by finitely many polynomial relations. Namely, each element of the
space Op(Dz)λ of opers on D×

z with regular singularity and residue π(−λ − ρ)
may be uniquely represented as

d +


p−1 +

∑̀

j=1

dj∑
n=−∞

uj,nt−n−1pj


 dt,

with

p−1 +
∑̀

j=1

uj,dj ∈ Ad(LG)(−λ− ρ).

It is shown in [FG, Section 2.9] that by using gauge action of B+((t)) one can
bring this connection to the form

d +

( ∑

α∨∈Π∨
t〈α

∨,λ〉e−α∨ + v(t)

)
dt,

where v(t) ∈ t−1Ln+ ⊕ Lb+[[t]] . Furthermore, this oper is monodromy-free if and
only if v(t) ∈ Lb+[[t]] [FG, Section 2.9]. Thus, the set of monodromy-free opers
is defined by dim Ln+ polynomial relations Pα(uj,n) enumerated by positive roots
α ∈ ∆+ . These polynomial relations have the degrees (α∨, λ + ρ) with respect to
the Z-grading defined by the formula deg uj,n = −n+ j (see [FG, Section 2.9], for
details).

Introduce a Z-grading on the algebra

Aµ(z1, . . . , zN )(λi) = C
[
OpLG(P1)(λi)

(zi);π(−µ)

]
= C[u(i)

j,n]j=1,...,`; n=0,...,dj ; i=1,...,N

11



by the formula deg u
(i)
j,n = −n + j . By comparing the degrees of the generators

of the polynomial algebras Aλ
f and C[OpLG(P1)λ

0 ] , we obtain the following (note
that we abbreviate the notation OpLG(P1)λ

(0);π(−µ) to OpLG(P1)λ
0 when µ = f ):

Lemma 4. For Aλ
f = C[OpLG(P1)λ

0 ] this grading coincides with the principal
grading on Aλ

f .

For any collection of integral dominant weights λ1, . . . , λN attached to the points
z1, . . . , zN , we denote by P

(z1,...,zN );µ;(λi)
zk;α the polynomial in u

(i)
j,n expressing the

”no-monodromy” condition at zk corresponding to the root α ∈ ∆+ .

Lemma 5. P
(z1,...,zN );µ;(λi)
zk;α is an inhomogeneous polynomial of highest degree

deg P
(z1,...,zN );µ;(λi)
zk;α = (α∨, λ + ρ). The leading term (the sum of monomials of

highest degree) of P
(z1,...,zN );µ;(λi)
zk;α is equal to P

(zk);f ;(λk)
zk;α .

Proof. Written in terms of a local coordinate t at zk , an oper from the set
OpLG(P1)(λi)

(zi);π(−µ) has the form

d +


p−1 +

∑̀

j=1

dj∑
n=−∞

vj,nt−n−1pj


 dt, vj,n = u

(k)
j,n + terms of lower degree.

More precisely, vj,n = u
(k)
j,n for n ≥ 0, and for n < 0, the polynomial vj,n is a

linear combination of scalars and u
(i)
j,m, m ≥ 0. Therefore, for n < 0, we have

deg vj,n < −n + j . Hence the assertion. ¤

According to Lemma 5, in order to show that the no-monodromy conditions
define a finite set of opers, it suffices to prove this for the space OpLG(P1)λ

0 . This
will be done in the next section.

3. Main results

3.1. Formulation of the Main Theorem. In section 4, we shall prove the fol-
lowing result.

Theorem 1. The set of monodromy-free opers from OpLG(P1)λ
0 is 0-dimensional

(equivalently, the trivial monodromy conditions P
(0);f ;(λ)
0;α (uj,n) form a regular se-

quence).

3.2. Corollaries. First, let us discuss some corollaries of this Theorem.
Let λ1, . . . , λN be, as before, a collection of dominant integral weights of LG

attached to the points z1, . . . , zN .

Corollary 1. The set of monodromy-free opers from OpLG(P1)(λi)
(zi);π(−µ) is 0-

dimensional.

Proof. This follows directly from Lemma 5. Indeed, the set of monodromy-
free opers from OpLG(P1)(λi)

(zi);π(−µ) is the set of common zeros of the polyno-

mials P
(z1,...,zN );µ;(λi)
zk;α . By Lemma 5, the leading terms of these polynomials
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are P
(zk);f ;(λk)
zk;α . By Theorem 1, the set of common zeros of P

(zk);f ;(λk)
zk;α is 0-

dimensional. Hence the set of common zeros of the polynomials P
(z1,...,zN );µ;(λi)
zk;α is

also 0-dimensional. ¤
Corollary 2. The g-module Vλ is cyclic as an Af -module. The annihilator of
Vλ in Af is the ideal Iλ ⊂ Af = C[OpLG(P1)λ

0 ] generated by the no-monodromy
conditions on opers from OpLG(P1)λ

0 .

Proof. Note first that this assertion agrees with the q -analog of the Weyl dimen-
sion formula. Namely, the Poincaré series of any irreducible finite-dimensional
g-module Vλ with respect to the principal grading is

χλ(q) =
∏

α>0

1− q(α∨,λ+ρ)

1− q(α∨,ρ)
.

We note that the non-central generators of Af have the degrees (α∨, ρ) with
respect to the principal grading, and the no-monodromy relations have the degrees
(α∨, λ+ρ). Theorem 1 implies that the algebra Af/Iλ is Gorenstein (i.e. its socle
is one-dimensional), and has the same Poincaré series with respect to the principal
grading as Vλ . Therefore the module Vλ is free as an Af/Iλ -module if and only
if each nonzero element of the socle of Af/Iλ sends the highest vector to some
nonzero vector (which is proportional to the lowest weight vector). Thus it remains
to show that there exists an element a ∈ Af such that avλ = vw0λ , (where w0 ∈ W
is the longest element of the Weyl group and vw0λ is the lowest weight vector).

Let e, h, f be the principal sl2 -triple containing f . The module Vλ decomposes
into the direct sum of irreducible sl2 -modules with respect to this sl2 -triple. Let
U be the irreducible sl2 -submodule containing vλ (this is an sl2 -submodule with
the highest weight 〈h, λ〉). Since vw0λ is the unique vector of the weight −〈h, λ〉
with respect to the principal sl2 , U contains vw0λ as well. This means that we
can take a = fdim U−1 ∈ Af . ¤
Corollary 3. For any regular µ the subalgebra Aµ has a cyclic vector in Vλ .
The annihilator of Vλ in Aµ is generated by the no-monodromy conditions. In
particular, the joint eigenvalues of Aµ in Vλ (without multiplicities) are in one-
to-one correspondence with monodromy-free opers from OpLG(P1)λ

π(−µ) .

Proof. Consider the family of commutative subalgebras At Ad(g)µ ⊂ U(g). By
Lemma 3, the subalgebra Af ⊂ U(g) is contained in the closure of this family.
Note that the condition that annihilator of Vλ in At Ad(g)µ is generated by the
no-monodromy conditions, as well as the existence of a cyclic vector is an open
condition on At Ad(g)µ ⊂ U(g). By Corollary 2, the subalgebra Af satisfies both
of these conditions, therefore the conditions are satisfied for some At Ad(g)µ (due
to Proposition 1). Since the subalgebras Aµ and At Ad(g)µ are conjugate, the
assertion is true for Aµ as well. This implies that the image of Aµ in End(Vλ) is
isomorphic to C[OpLG(P1)λ

π(−µ)] . Hence the joint eigenvalues of Aµ in Vλ (without
multiplicities) are in one-to-one correspondence with points of OpLG(P1)λ

π(−µ) .
(Note that this statement was conjectured in [FFT, Conjecture 2].) ¤
Corollary 4. For generic µ and any dominant integral λ, the quantum shift of
argument subalgebra Aµ ⊂ U(g) is diagonalizable and has simple spectrum on
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the g-module Vλ . Moreover, its joint eigenvalues (and hence eigenvectors, up
to a scalar) are in one-to-one correspondence with monodromy-free opers from
OpLG(P1)λ

π(−µ) .

Proof. First of all, by Lemma 2, the algebra Aµ with purely imaginary µ acts
by Hermitian operators on Vλ , and hence is diagonalizable. By Corollary 3, for
regular µ it has a cyclic vector. The two properties may only be realized if Aµ

has simple spectrum. Hence Aµ has simple spectrum for regular purely imaginary
µ . Since the simple spectrum condition is open, Aµ has simple spectrum for
generic µ . By Corollary 3, the joint eigenvalues of Aµ in Vλ are in one-to-one
correspondence with monodromy-free opers from OpLG(P1)λ

π(−µ) . ¤

Corollary 5. For any N -tuple of pairwise distinct complex numbers z1, . . . , zN ∈
C and any regular µ the subalgebra Aµ(z1, . . . , zN ) ⊂ U(g)⊗N has a cyclic vec-
tor in V(λi) = Vλ1 ⊗ · · · ⊗ VλN

. The annihilator of V(λi) in Aµ(z1, . . . , zN ) is
generated by the no-monodromy conditions. In particular, the joint eigenvalues
of Aµ(z1, . . . , zN ) in Vλ (without multiplicities) are in one-to-one correspondence
with the monodromy-free opers from OpLG(P1)(λi)

(zi);π(−µ) .

Proof. For the same reason as in Corollary 3, it suffices to prove this for the
principal nilpotent µ = f . Let e, h, f be the principal sl2 -triple containing f ,
and let s ∈ C . Then

exp(ad sh)(Af (z1, . . . , zN )) = Aexp(−2s)f (z1, . . . , zN ).

We have
lim

s−→−∞Aexp(−2s)f (z1, . . . , zN ) = A
(1)
f ⊗ · · · ⊗A

(N)
f ,

by Proposition 2). By Corollary 3, the algebra A
(1)
f ⊗· · ·⊗A

(N)
f has a cyclic vector

in V(λi) = Vλ1 ⊗ · · · ⊗ Vλn . Hence Aexp(−2s)f (z1, . . . , zN ) has a cyclic vector for
some s ∈ C . Since

exp(ad sh)(Af (z1, . . . , zN )) = Aexp(−2s)f (z1, . . . , zN ),

the algebra Af (z1, . . . , zN ) has a cyclic vector as well.
The assertion on the annihilator of V(λi) is proved by the same reasoning as in

Corollary 3 with the reference to Lemma 5. (Note that this implies Conjecture 4
of [FFT].) ¤

Corollary 6. For generic z1, . . . , zN ∈ C, µ the subalgebra Aµ(z1, . . . , zN ) ⊂
U(g)⊗N has simple spectrum in V(λi) = Vλ1 ⊗ · · · ⊗ VλN

. Hence the joint eigen-
vectors for higher Gaudin Hamiltonians in V(λi) are in one-to-one correspondence

with monodromy-free opers from OpLG(P1)(λi)
(zi);π(−µ) .

Proof. The same reasoning as in the proof of Corollary 4. ¤

3.3. Idea of the Proof of the Main Theorem. The proof of Theorem 1 will
be given in the next section. In the proof, we will treat the elements of OpLG(P1)λ

0

simply as connections on the trivial principal LG-bundle (where LG is the adjoint
group of the Lie algebra Lg) on the punctured neighborhood of ∞ (we consider
both formal and analytic neighborhoods) with irregular singularity of order 2 (i.e.,

14



we will use gauge transformations of such connections which do not preserve the
oper structure).

More precisely, the group LG[[t]] acts on connections

(6) d + A(t)dt, A(t) ∈ Lg

on the trivial principal LG-bundle on the formal punctured disc D = SpecC((t)) by
formal gauge transformations. Namely, the action of H(t) ∈ LG[[t]] on d + A(t)dt
is given by the formula

(7) d + (AdH(t)(A(t))−H ′(t)H(t)−1)dt.

For a horizontal section s(t) with respect to the connection (6) the section H(t)s(t)
is horizontal with respect to (7). Equivalently, for each Lg-valued solution ϕ(t) of
the Lg-valued differential equation

dϕ(t) + [A(t), ϕ(t)]dt = 0,

the Lg-valued function ψ(t) = AdH(t)(ϕ(t)) is a solution of

dψ(t) + [AdH(t)(A(t))−H ′(t)H(t)−1, ψ(t)]dt = 0.

In the same way, the group of analytic maps from an open subset U in C to
LG acts by gauge transformations on analytic connections on the trivial principal
LG-bundle on U .

The main tools we use are the following local normalization theorems for irreg-
ular singular connections.

Fact 1. (Hukuhara–Turritin–Levelt theorem, see [BV], and also [IYa, V] for the
gln case) Any connection d + A(t)dt on the punctured disc D× = SpecC((t)),

where A(t) =
∞∑

k=−2

Akt
k may be reduced by a suitable formal shearing gauge trans-

formation H(t
1
N ) to its formal normal form

(8) d + B(w)dw B(w) =
m∑

k=2

Bkw
−k + Cw−1,

where wN = t, m ≤ N + 1 and all Bk commute with C and belong to a fixed
Cartan subalgebra. Moreover, if A−2 is nilpotent, then m ≤ N .

Fact 2. (Sibuya sectorial normalization theorem, see [B], Appendix A. For the gln
case, see [S], [W], [IYa].) For any sector S of opening π

m−1 on the w -plane, the
formal gauge transformation H(w) may be extended to an analytic gauge transfor-
mation HS(w) conjugating the connection d + A(t)dt to its formal normal form.

The main idea of the proof of Theorem 1 is as follows. The opers we are
interested in are represented by connections of the form d+A(s)ds , where A(s) =
∞∑

k=−2

Aks
k with nilpotent A−2 in the neighborhood of ∞ . By Hukuhara–Turritin–

Levelt Theorem, its formal normal form is (8) with m ≤ N . Moreover, all Bk are
zero if and only if the initial connection has regular singularity at ∞ , i.e. uj,n = 0
for n 6= dj . The solutions of Lg-valued ordinary differential equation

(9) dϕ(w) + [B(w), ψ(w)]dw = 0
15



have the form

Ad

(
exp

(
m∑

k=2

Bkw
−k+1

)
wC

)
x = Ad

(
exp

(
m∑

k=2

Bkt
−k+1

N

)
s

C
N

)
x,

where x ∈ Lg,m ≤ N (exponentials of linear combinations of fractional powers of
s). Each sector S on the w -plane with the origin at 0, which does not contain real
multiples of the eigenvalues of the operators Ad exp( 2πik

m−1)Bm for k = 1, . . . , m−
1, distinguishes a subspace of formal solutions of the equation (9) which decay
exponentially as w −→ 0 along each ray in this sector S . Due to the Sibuya theorem,
on such a sector we also have a subspace of exponentially decaying solutions of the
equation

(10) dϕ(s) + [A(s), ϕ(s)]ds = 0.

We have assumed that the connection d + A(s)ds has trivial monodromy rep-
resentation. Hence we may pick a global solution ϕ to the Lg-valued ordinary
differential equation (10) which decays exponentially as w −→ 0 along each ray in
some sector S0 on the w -plane. Since solution ϕ is a single-valued function of
s = wN , we find that ϕ also decays on the sector exp(2πik/N)S0, k = 1, . . . , N−1.
Consider the sector Sj = exp(2πi/N)S0 . We will show in section 4, that there
exists a sector Sr (actually Sr = exp( πi

m−1)S0 ) such that

(1) there is a formal solution of (10) which decays simultaneously on S0 and
Sj ;

(2) there is no formal solution of (10) which decays simultaneously on Sr and
S0 ;

(3) there is a sector S on the w -plane of the opening π
m−1 which has nonzero

intersection with Sj and Sr ;
(4) there is a sector S′ on the w -plane of the opening π

m−1 which has nonzero
intersection with S0 and Sr .

Applying Sibuya’s sectorial normalization theorem to the sectors S and S′ , we
obtain that there exists a nonzero formal solution of (10) exponentially decaying
on both S0 and Sr , which contradicts the second condition.

Thus, for any monodromy-free oper from OpLG(P1)λ
0 , we have uj,n = 0 for

n 6= dj and uj,dj are fixed by the residue at 0. Hence the space of monodromy-
free opers from OpLG(P1)λ

0 is 0-dimensional. This completes the proof.

4. Proof of the Main Theorem

In this section we prove Theorem 1.

4.1. The sl2 case. Let d + A(t)dt be a sl2 -connection, such that

(11) A(t) = e21 + (λ(λ + 1)t−2 + a2t−1)e12,

where λ is a fixed integral weight, a ∈ C .

Proposition 4. The connection (11) has trivial monodromy representation if and
only if a = 0.
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Proof. Let s = t−1 be the local coordinate at the infinity. We rewrite our connec-
tion in s as follows.

A(s) = s−2e21 + (λ(λ + 1) + a2s−1)e12.

Changing the variable as s = w2 , we obtain the following connection:3

d + A(w)dw, A(w) = 2(w−3f21 + (λ(λ + 1)w + a2w−1))e12.

The latter is conjugate to

(12) d + ((2ae11 − 2ae22)w−2 + B(w))dw,

where B(w) = O(w−1) as w −→ 0. The connection (12) is formally conjugate to

(13) d + ((2ae11 − 2ae22)w−2 + (b11e11 + b22e22)w−1)dw.

Moreover, by the Sibuya sectorial normalization theorem, for any sector S =
{w|Arg w ∈ (α, α + π)} , the formal gauge transformation H(w) can be extended
to an analytical gauge transformation HS(w) conjugating (12) to (13).

Consider two sectors, S0 = {w|Arg w ∈ (Arg a − π
2 , Arg a + π

2 )} and S1 =
{w|Arg w ∈ (Arg a + π

2 , Arg a + 3π
2 )} . We have the following basis of solutions to

the linear ordinary differential equation (13)

ψ0(w) = (0, exp(−2aw−1)wb22), ψ1(w) = (exp(2aw−1)wb11 , 0).

Note that the solution ψ0 decays exponentially as w −→ 0 along each ray in the
sector S0 and blows up exponentially as w −→ 0 along each ray in the sector S1 .
Respectively, ψ1 decays on S1 and blows up on S0 .

Assume that the connection (11) has trivial monodromy. Let ϕ be the global so-
lution to the equation (12) such that ϕ|S0 = HS0ψ0 . Since ψ0 decays exponentially
on S0 and the gauge transformation HS0(w) is bounded in some neighborhood of
0, the solution ϕ also decays on S0 . Since solution ϕ is a single-valued function
of s = w2 , we have ϕ(w) = ϕ(−w), and hence ϕ|S1 decays as well.

Consider the sector S = {w|Arg w ∈ (Arg a, Arg a + π)} . On S , we have the
following basis of solutions to the equation (12):

ϕ0 = HSψ0, ϕ1 = HSψ1.

We have ϕ = k0ϕ0 + k1ϕ1 for some k0, k1 ∈ C . Since ϕ decays on S ∩ S0 while
ψ1 blows up on S∩S0 , we have k1 = 0. Since ϕ decays on S∩S1 while ψ0 blows
up on S ∩ S1 , we have k0 = 0. Hence ϕ = 0 and we have a contradiction. ¤

4.2. General case. We replace LG by G to simplify notation. Let d+A(t)dt be
a connection on the trivial G-bundle on P1 such that

A(t) = p−1 +
∑̀

j=1


cjt

−dj−1pj +
dj−1∑

n=0

uj,nt−n−1pj


 .

Proposition 5. The connection d+A(t)dt has trivial monodromy representation
if and only if uj,n = 0 for all j, n.

3Note that if we were considering an oper with regular semisimple µ , then we would be able to
bring it to a normal form without extracting the square root of s . For this reason the argument
given below would not work in this case.
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Proof. Suppose that the connection d + A(t)dt has no monodromy while some of
the uj,n are nonzero.

Let s = t−1 be the local coordinate at the infinity. We rewrite our connection
in s as follows.

(14) d + A(s)ds, A(s) = s−2p−1 +
∑̀

j=1

cjs
dj−1pj +

djj−1∑

n=0

uj,nsn−1pj .

Let us change the variable as wN = s , where N =
∏

j∈E

j . The connection

rewrites as

(15) d + A(w)dw, A(w) = w−N−1p−1 +
∑

j∈E

cjw
jN−1pj +

j−1∑

n=0

uj,nwnN−1pj .

Due to the Hukuhara–Turritin–Levelt theorem, the connection (15) may be
reduced by a suitable formal gauge transformation H(w) to its formal normal
form

(16) d + B(w)dw B(w) =
m∑

k=2

Bkw
−k + Cw−1,

where m ≤ N and all Bk commute with C and belong to the fixed Cartan
subalgebra h ⊂ g . The coefficients Bk are zero (i.e., the connection has regular
singularity) if and only if all uj,n are zero.

Let ∆+ be the set of positive roots with respect to a Borel subalgebra containing
h . To any root α ∈ ∆+ such that α(Bm) 6= 0, we assign a collection of 2m − 2
separation rays (also known as Stokes directions) defined by the condition

(17) Re
α(Bm)
wm−1

= 0.

Remark. The set of Stokes directions is invariant under the transformations
w 7→ exp( πi

m−1)w (clear from the condition (17)) and w 7→ exp(2πi
N )w (since the

connection (14) depends on s = wN , not w ).

Generic case. Assume that Bm is generic, i.e., Bm is a regular element of h .
Then all separation rays are distinct. The proof under this assumption is slightly
simpler, so we shall give the detailed proof in this case first, and then explain what
should be changed for an arbitrary Bm .

In the generic case we have precisely M = (2m − 2)r separation rays, where
r = |∆+| . We label these separation rays d1, d2, . . . dM = d0 going counter-
clockwise, and choose the initial sector S0 to be between d0 and d1 .

Consider the g-valued ordinary differential equation

(18) dϕ(w) + [A(w), ϕ(w)]dw = 0,

and its formal normal form

(19) dϕ(w) + [B(w), ϕ(w)]dw = 0.
18



We have the following basis of solutions of equation (19):

(20) ψα(w) = Ad exp

(
m∑

k=2

1
k − 1

Bkw
−k+1

)
w−Ceα, ψhj (w) = Adw−Chj ,

where α ∈ ∆, and hj , j = 1, . . . , ` , is a basis of h . On each sector Si between the
separation rays di and di+1 , the formal solutions behave as follows:

(1) If Re α(Bm)
wm−1 < 0 on Si , then ψα(w) decays exponentially as w −→ 0 along

each ray in Si ,
(2) If Re α(Bm)

wm−1 > 0 on Si , then ψα(w) blows up exponentially as w −→ 0 along
each ray in Si ,

(3) ψhj
(w) has polynomial growth/decay as w −→ 0 along each ray in Si .

We note that if |i − j| < r then there is a root α ∈ ∆ such that Re α(Bm)
wm−1 < 0

on both Si and Sj . This means, that, for |i − j| < r , there is a formal solution
ψ(ij) = ψα which decays on both sectors Si and Sj .

Note that the formal solution are periodic with respect to w 7→ exp( 2πi
m−1)w . We

shall consider the behavior of solutions in the ”fundamental” sector Ŝ0 between
dM = d0 and d2r . For each sector Si ⊂ Ŝ0 except S0 , there is a formal solution
which decays simultaneously on Si and Sr . Moreover, for each sector Si ⊂ Ŝ0

there is a sector of opening π
m−1 (a half-period) which has nonzero intersection

with Si and Sr .
On the other hand, the global solutions of the equation (18) are periodic with

respect to w 7→ exp(2πi
N )w . Since the set of separation rays is invariant un-

der this transformation, this transformation permutes the sectors Si . Hence
the global solutions have the same asymptotic properties on the sectors S0 and
Sj = exp(2πi

N )S0 . Since m − 1 < N , the both sectors S0 and Sj = exp(2πi
N )S0

belong to the fundamental sector Ŝ0 .
Consider the sector Sj = exp(2πi

N )S0 . Since m−1 < N , we have 0 < j < 2r , and
therefore there is a formal solution ψ(jr) which decays on Sj and Sr . Moreover,
since the opening of the sector between dj and dr is less than π

m−1 , there is
a sector Sjr of opening π

m−1 which contains Sj and Sr . By Sibuya’s theorem,
the formal gauge transformation H(w) can be extended to an analytical gauge
transformation HSjr(w) conjugating (15) to (16) on Sjr . Thus, there is a solution
ϕ(jr) := HSjrψ

(jr) of the equation (18), which decays on both sectors Sj and Sr .
Due to the no-monodromy condition, there exists a global solution ϕ such that
ϕ|Sjr = ϕ(jr) . Moreover, the no-monodromy condition means that each solution
of the equation (18) is a single-valued function of s = wN , hence we have ϕ(w) =
ϕ(exp(2πi

N )w). This means that ϕ decays exponentially on S0 = exp(−2πi
N )Sj .

According to the Sibuya theorem, since the opening of the sector between dM =
d0 and dr is π

m−1 , the equation (18) can be conjugated to its formal normal form
in some sector S intersecting S0 as well as Sr . On S , we have the following basis
of solutions to the equation (18)

HSψα, HSψhj
, α ∈ ∆, j = 1, . . . , `.
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We have

ϕ =
∑

α∈∆

kαHSψα +
∑̀

j=1

khjHSψhj .

For any hj , the solution HSψhj does not decay exponentially on S , hence khj = 0
for all j = 1, . . . , ` . Next, for any α ∈ ∆ we have the following possibilities:

(1) either Re α(Bm)
wm−1 > 0 on S0 , and hence HSψα blows up on S ∩ S0 ,

(2) or Re α(Bm)
wm−1 > 0 on Sr , and hence HSψα blows up on S ∩ Sr .

In both cases we obtain that kα = 0 for all α ∈ ∆. Hence ϕ = 0, and we have
a contradiction.

General case. For non-generic Bm , the asymptotic behavior of formal solu-
tions is not determined only by Bm , but depends also on Bk with k < m . Thus
it is difficult to figure out on which sectors the given formal solution decays expo-
nentially. The crucial observation is that for our purposes it is sufficient to watch
only for the most rapid decay of solutions (i.e. faster than exp(bw−m+1) for some
b), which is determined by the leading term Bm .

We have M = (2m − 2)r separation rays, where r = #{α|α(Bm) 6= 0} . We
label the separation rays d1, . . . dM going in the positive sense, and choose the
initial sector S0 between dM and d1 . Note that, for non-generic Bm , some of the
separation rays may coincide. We choose the initial sector S0 to be non-empty.

Consider the g-valued ordinary differential equation (18), and its formal normal
form (19). We have the basis (20) of solutions to the equation (19), which behaves
on each sector Si between the separation rays di and di+1 as follows:

(1) If Re α(Bm)
wm−1 < 0 on Si , then ψα(w) decays most rapidly (i.e. faster than

exp(bw−m+1) for some b) as w −→ 0 along each ray in Si ,
(2) If Re α(Bm)

wm−1 > 0, then ψα(w) blows up as w −→ 0 along each ray in Si ,
(3) If Re α(Bm)

wm−1 = 0, then ψα(w) does not decay or decays not faster than
exp(bw−m+1) for all b ∈ C as w −→ 0 along each ray in Si ,

(4) ψhj (w) has polynomial growth/decay as w −→ 0 along each ray in Si .

As in the generic case, we note that if |i − j| < r then there is a root α ∈ ∆
such that Re α(Bm)

wm−1 < 0 on both Si and Sj , and hence, there is a formal solution
ψ(ij) = ψα which decays most rapidly on both sectors Si and Sj .

In the same way as in the generic case, we get the global solution ϕ of the
equation (18) which decays most rapidly on S0 and Sr . We take a sector S
intersecting both S0 and Sr , and represent the solution ϕ on S as

ϕ =
∑

α∈∆

kαHSψα +
∑̀

j=1

khjHSψhj .

For any hj , the solution HSψhj does not decay exponentially on S , hence khj for
all j = 1, . . . , ` . For any α ∈ ∆, we have the following possibilities:

(1) Re α(Bm)
wm−1 > 0 on S0 , and hence HSψα blows up on S ∩ S0 ,

(2) Re α(Bm)
wm−1 > 0 on Sr , and hence HSψα blows up on S ∩ Sr ,
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(3) Re α(Bm)
wm−1 = 0, and hence HSψα does not decay or decays not faster than

exp(bw−m+1) for all b ∈ C on S .
This means that kα = 0 for all α ∈ ∆. Hence ϕ = 0, and we have a contradiction.

¤
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