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Abstract

Slow-fast systems on the two-torus are studied. As it was shown before,
canard cycles are generic in such systems, which is in drastic contrast
with the planar case. It is known that if the rotation number of the
Poincaré map is integer and the slow curve is connected, the number of
canard limit cycles is bounded from above by the number of fold points
of the slow curve. In the present paper it is proved that for non-integer
rotation numbers or unconnected slow curve there are no such geometric
constraints: it possible to construct generic system with “as simple as
possible” slow curve and arbitrary many limit cycles.

1 Introduction

Consider a generic slow-fast system on the two-dimensional torus{
ẋ = f(x, y, ε)

ẏ = εg(x, y, ε)
(x, y) ∈ T2 ∼= R2/(2πZ2), ε ∈ (R+, 0) (1)

Assume that f and g are smooth enough and g > 0. The dynamics of this
system is guided by the slow curve:

M = {(x, y) | f(x, y, 0) = 0}.

It consists of equilibrium points of the fast motion (i.e. motion determined by
system (1) for ε = 0). Particularly, one can consider two parts of the slow curve:
one is stable (consists attracting hyperbolic equilibrium points) and the other
unstable (consists of repelling hyperbolic equlibrium points). On the plane R2,
there is rather simple description of the generic trajectory of (1): it consists of
interchanging phases of slow motion along stable parts of the slow curve and
fast jumps along straight lines y = const near folds of the slow curve. On the
two-torus, more complicated behaviour can be locally generic.

Definition 1. A solution (or trajectory) is called canard if it contains an arc of
length bounded away from zero uniformly in ε that keeps close to the unstable
part of the slow curve.
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It is usually also demanded in the definition of canard solution that it spends
bounded away from 0 time near stable part of the slow curve as well. We will not
expose this additional requirement because we are interested mostly in attracting
canard cycles which have to satisfy it automatically.

Canards are not generic on the plane: one have to introduce an additional
parameter to get an attracting canard cycle. However, they are generic on the
two-torus, which was explained in [1] and strictly proved in [2]. The explanation
involves the rotation number of the Poincaré map.

Assume that there exists global cross-section Γ = {y = const} transversal
to the field. Then one can define the Poincare map Pε : Γ → Γ. It is a diffeo-
morphism of a circle. The rotation number ρ(ε) of the map Pε continuously
depends on ε. For generic system (1) function ρ(ε) is a Cantor function (also
known as devil’s staircase) whose horizontal steps occur at rational values which
(in general case) corresponds to hyperbolic periodic points of map Pε. These in
turn corresponds to limit cycles of the original vector field. More precisely, if
the Poincaré map has a rotation number with a denominator n then the initial
vector field has a limit cycle which makes n full passes along the slow direction
of the torus y. In particular, fixed points of Poincare map correspond to limit
cycles which make only one round along the slow direction of the torus. Here
and below we will assume that fast coordinate x is vertical and slow coordinate
y is horizontal.

While hyperbolic limit cycles present, the rotation number is preserved under
small perturbations. So when the rotation number increases, the limit cycles
have to bifurcate through saddle-node (parabolic) bifurcation. Near the critical
value of the parameter, the derivative of the Poincare map for both colliding
cycles have to be close to 1. This is possible only if the cycles spend comparable
time near stable and unstable part of the slow curve, and thus they are canards.

The next natural question is to provide an estimate for the number of canard
cycles that can born in a generic slow-fast system on the two-torus. The answer
to this question for the case of the integer rotation number and a rather wide
class of systems was given in [3].

Theorem 1. For generic slow-fast system on the two-torus with retractable
nondegenerate connected slow curve the number of limit cycles that make one
pass along the axis of slow motion is bounded by the number of fold points of
the slow curve. This estimate is sharp in some open set in the space of slow-fast
systems on the two-torus.

In the present paper we consider two related cases not covered by theorem 1:
non-integer rotation numbers and unconnected slow curve. The latter case
is of special interest because slow-fast systems with unconnected slow curve
appear naturally in physical applications, e.g. in the modelling of circuits with
Josephson junction [5].

Our main results state that in contrast with Theorem 1, in these cases there
are no geometric constraints on the number of (canard) limit cycles.

First for any desired number of limit cycles l we construct open set in the
space of the slow-fast systems on the two-torus with convex slow curve (i.e.
having only two fold points) with at least l canard cycles that make two passes
along the axis of slow motion. (I.e. the corresponding Poincaré map has half-
integer rotation number.) See Theorem 2.
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Then we construct topologically generic (residual) set of slow-fast systems
on the two-torus with two connected components with at least l canard cycles
and integer rotation number of Poincaré map. See Theorem 4.

Acknowledgements. The authors are grateful to Yu. S. Ilyashenko, John
Guckenheimer, Victor Kleptsyn and Alexey Klimenko for fruitful discussions
and valuable comments.

2 Main results

In this section we state our main results. We are interested only in the phase
curves of system (1), so one can divide it by g and consider without loss of
generality case of g ≡ 1.

Definition 2. Slow curve M is called nondegenerate if it has finite number of
nondegenerate fold points: for every fold point G the following conditions hold:

∂2f(x, y, 0)

∂x2

∣∣∣∣
G

6= 0,
∂f(x, y, 0)

∂y

∣∣∣∣
G

6= 0,

We will call M convex if it is contained in the fundamental domain of the
two-torus

{−π < x < π,−π < y < π}

and is a convex curve.

Definition 3. Fix some vertical segment (x1, x2) × {y = const} intersecting
unstable part of the slow curve (to be chosen later). Every trajectory that cross
this segment will be called canard.

Theorem 2. For every desired number of limit cycles l ∈ N there exists an
open set in the space of slow-fast systems on the two-torus with the following
properties.

1. Slow curve M is a connected convex nondegenerate curve containing in
the fundamental domain of a torus.

2. For every system from this set there exists a sequence of intervals
{Rn}∞n=0 ⊂ {ε > 0}, accumulating at zero, such that for every ε ∈ Rn
there exist exactly l canard limit cycles.

Remark 3. Using appropriate change of coordinates, one can replace the con-
dition of convexity to the condition that M has only two nondegenerate fold
points .

Theorem 2 is proved in section 3.
The following theorem deals with the case of unconnected slow curve.

Theorem 4. For every desired number of limit cycles l ∈ N there exists a
topologically generic (residual) set in the space of slow-fast systems on the two-
torus with the following properties.

1. Slow curve M is nondegenerate curve with two connected components and
4 fold points.
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2. For every system from this set there exists a sequence of intervals
{Rn}∞n=0 ⊂ {ε > 0}, accumulating at zero, such that for every ε ∈ Rn
there exist exactly l canard limit cycles.

Theorem 4 is proved in section 5.

3 The construction of limit cycles

In this section we show that near every neutral singular trajectory there exists
canard limit cycle. Such singular trajectory is defined by an equation involving
integrals of the derivative of f over some arcs of the slow curve. In the following
section we will show that for every desired number of limit cycles there exists
an open set of systems such that the corresponding equation has the desired
number of roots. It finishes the proof of Theorem 2.

3.1 Settings and notations

Let M be a slow curve. It consists of stable (M−) and unstable (M+) parts and
two jump points: the forward jump point G− and the backward jump point G+,
see fig. 1:

M = M+ t {G+} tM− t {G−}.

Assume without loss of generality that y(G±) = ∓1. Here and below every
equation with ±’s and ∓’s corresponds to a couple of equations: with all top
and all bottom signs.

We will also use the notation M±(y) assuming that M± here are functions,
whose graph x = M±(y) defines unstable and stable parts of the slow curve.

Call Π = S1 × [−1, 1] a basic strip.
Fix vertical segment J+ (resp., J−) which intersect M+ (M−) close enough

to the jump point G− (G+), and does not intersect M− (M+). Let

y(J±) =: α± = ±1∓ δ±,

where δ± are small. Note that the definition of J± differs from one in [1, 2]:
instead of placing J+ near G+ we place it near G− (and do opposite with J−).

We have to reproduce the notation on oriented arcs on a circle from [2] and
Poincaré maps. Consider arbitrary points a and b on the oriented circle S1.
They split the circle into two arcs. Denote the arc from point a to point b (in
the sense of the orientation of the circle) by [a, b〉. The orientation of this arc
is induced by the orientation of the circle. Also denote the same arc with the
reversed orientation by 〈a, b]. (See fig. 2.)

Denote also the Poincaré map along the phase curves of the main system (1)
from the cross-section y = a to the cross-section y = b in the forward time

by P
[a,b〉
ε . Also, let P

〈a,b]
ε = (P

[a,b〉
ε )−1: this is the Poincaré map from the

cross-section y = b to the cross-section y = a in the backward time. This fact
is stressed by the notation: the direction of the angle bracket shows the time
direction.
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Figure 1: The slow curve and jump points. Note that horizontal axis is y and
vertical is x

3.2 Preliminary results

Denote
D+
ε := P 〈−π,α

+]
ε , D−ε = P [α−,π〉

ε

It is proved in [1, 2] (see Shape lemmas there) that |D±ε | = O(e−C/ε). Note that
as ε decrease to 0, D+

ε moves downward and D−ε moves upward, making in-
finitely many rotations (see Monotonicity lemmas in [1, 2]) and meet each other
infinitely many times. The values of ε for which D+

ε and D−ε have nonempty
intersection forms intervals Rn:

{Rn}∞n=0 = {ε > 0: D+
ε ∩D−ε 6= ∅}.

As it was shown in [1, 2], intervals Rn has exponentially small length and accu-
mulate at zero. If one pick any sequence εn ∈ Rn, n = 1, 2, . . ., then

εn = O

(
1

n

)
Let ε ∈ Rn and pick some point q ∈ D+

ε ∩D−ε . Consider the trajectory which
pass through q. In the forward time, this trajectory make several (about O(1/ε))
rotations, then perform backward jump, follow unstable part of the slow curve
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Figure 2: Orientation of the arcs

M+ and finally intersect J+. In the backward time, this trajectory (again after
several rotations) will pass near the stable part of the slow curve M− and finally
intersect J−. We will call this trajectory grand canard.

Let U be a segment of the stable or unstable part of the slow curve M .
Introduce the notation:

Φ(U) =

∫
U

f
′

xdy (2)

Denote also for brevity
Φ±[y1, y2〉 := Φ(U),

where U is an arc of M± projected on [y1, y2〉.
Function Φ is approximately a logarithm of a derivative of a solution that

pass near segment U with respect to the initial condition. Formally, the following
theorem holds:

Theorem 5 (See [1]). Let U = [A,B] ⊂ M± and X = [x1, x2] × {y(A)} be a
segment that contains A and do not cross M in points different from A. Then

log
(
P [y(A),y(B)〉
ε (x)

)′
x

∣∣∣∣
X

=
Φ(U) +O(ε)

ε
.

Moreover, similar (but a little weaker) estimate holds for trajectories ex-
tended through the jump point even after they make O(1/ε) rotations along the
x-axis after the jump. The exact statement follows.

Theorem 6 (See [2, 3]). Let U = [A,G−] ⊂ M− ∪ {G−}, X as in previous
Theorem and y1 is a point outside of the projection of M to y-axis, such that
there is no other points of that projection on arc [1, y1〉. Than the following
holds:

log
(
P [y(A),y1〉
ε (x)

)′
x

∣∣∣∣
X

=
Φ(U) +O(εν)

ε
,

where ν ∈ (0, 1/4].

Reverting the time, one can obtain a similar result for M+ and G+.
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3.3 The first release point

Assume that ε ∈ Rn for some n and therefore there exists grand canard. Let p be
some point in the basic strip Π, such that y(p) is strictly inside the arc [α−, α+〉
and p is bounded away from M . Consider the trajectory that pass through
p. Call it p-trajectory. In the forward time, it attracts to M− after time O(ε)
(“falls”). Assume without loss of generality that this fall is made in negative
direction (“downwards”). After the fall, the trajectory followsM− exponentially
close to the grand canard (being “above” the grand canard) until the jump point.
Assume that the segment of the trajectory before the jump point is given as a
graph of function y = ψ−(x).

After the jump, it will follow grand canard during the rotation phase, then
perform backward jump and pass near some segment unstable part of the slow
curve M+. Assume that the segment of the trajectory after the backward jump
point is given as a graph of function y = ψ+(x).

At some point it is possible that the trajectory will be released from the grand
canard (and thus M+) before intersection with J+ and attracted to M− again.
This release will be made in positive direction (“upward”), because p-trajectory
is above the grand canard. If the release occur, denote the y-coordinate of the
release point by β̂(p). More exact, demand that

ψ+(β̂(p))−M+(β̂(p)) = c,

where c is some constant.

Definition 4. Assume that |Φ−[y(p), 1〉| < Φ+[−1, 1〉. Then there exist singu-
lar release point β = β(p) ∈ [−1, 1〉 such that

Φ−[y(p), 1〉+ Φ+[−1, β(p)〉 = 0 (3)

Proposition 7. The release point β̂(p) is defined iff the singular release
point β(p) is defined. The following estimate holds:

β̂(p) = β(p) +O(εν).

Proof. Assume that β(p) is defined. Consider point β1 = β(p) + δ1 for some
small δ1 > 0, such that β1 < α+. Then Φ−[y(p), 1〉+ Φ−[−1, β1〉 > 0.

Let
R1
ε = P [−π,β1〉

ε ◦ P [y(p),π〉
ε .

Theorem 6 and the chain rule imply that

log(R1
ε)
′
x =

Φ+[y(p), 1〉+ Φ−[−1, β1〉+O(εν)

ε
→∞ as ε→ 0+ (4)

Let the segments of grand canard in basic strip given by functions ϕ+(y) (for
part near M+) and ϕ−(y) (for part near M−). It follows from geometric singular
perturbation theory [4] that outside of some neighborhood of the jump points,

ϕ±(y) = M±(y) +O(ε).

Therefore x(p)− ϕ−(y(p)) = x(p)−M−(y(p)) +O(ε) is bounded away from 0.
Mean value theorem implies that

R1
ε(x(p))−R1

ε(ϕ
−(y(p))) = (x(p)− ϕ−(y(p))) · (R1))′x →∞
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But by definition of grand canard, R1
ε(ϕ
−(y(p))) = ϕ+(β1) and the correspond-

ing point belongs to O(ε)-neighborhood of M+. Therefore, p-trajectory have to
be far from M+ when y-coordinate reaches β1. Thus it is released earlier and
β̂(p) is defined.

Conversely, assume that β̂(p) is defined. Let

R2
ε = P [−π,β̂(p)〉

ε ◦ P [y(p),π〉
ε .

Then
R2
ε(x(p))−R2

ε(ϕ
−(y(p)))

x(p)− ϕ−(y(p))
=

c+O(ε)

x(p)−M−(y(p)) +O(ε)
.

Due to mean value theorem, it follows that the derivative of Rε in some point x∗

have to be of order constant. However Theorem 6 and the chain rule imply again
that

log(R2
ε)
′
x =

Φ+[y(p), 1〉+ Φ−[−1, β̂(p)〉+O(εν)

ε
. (5)

If Φ+[y(p), 1〉 + Φ−[−1, β̂(p)〉 is not zero, the derivative have to be either ex-
ponentially small or exponentially big as ε → 0+. So the following estimate
holds:

Φ+[y(p), 1〉+ Φ−[−1, β̂(p)〉 = O(εν).

which differs from equation (3) only on O(εν). Inverse function theorem finishes
the proof.

3.4 The second release and limit cycles

After the first release, p-trajectory attracts to M− and again follow it until the
jump point, then jumps, rotates, perform backward jump and follows M+ until
possible second release. Note that the second release will be made in negative
direction, because after the first release p-trajectory is below the grand canard.
Denote the y-coordinate of the second release by γ̂(p) (defined if the second
release occurs).

Similarly to Proposition 7, let γ(p) be the root of equation

Φ−[β(p), 1〉+ Φ+[−1, γ(p)〉 = 0. (6)

Then the following assertions hold:

Φ−[β(p), 1〉+ Φ+[−1, γ̂(p)〉 = O(εν); (7)

γ̂(p) = γ(p) +O(εν) (8)

Consider function

S(p) = Φ−[β(p), 1〉+ Φ+[−1, y(p)〉

Note that β(p) in fact depends only on y(p), so one can write S(y) instead
of S(p) assuming that y(p) = y.

Proposition 8. Let p be such point that γ(p) is defined, S(y(p)) = 0 and
S′y(y(p)) 6= 0. Then there exists limit cycle that intersects O(εν)-neighborhood
of point p.
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Proof. Consider points p1 = (x(p), y1) and p2 = (x(p), y2) such that S(p1) > 0,
S(p2) < 0 and p is close to both p1 and p2. Due to continuous dependence of the
solution of differential equations on the initial condition, p1- and p2-trajectories
performs two releases and γ(p1), γ(p2) are defined.

Denote the Poincaré map from the cross section {x = x(p)} to itself by Q(y).
It is defined in some neighborhood of point y(p) and

Q(y) = γ̂(y) +O(ε) = γ(y) +O(εν). (9)

Due to (6),
S(p) = Φ+[−1, y(p)〉 − Φ+[−1, γ(p)〉

Function Φ+[−1, y〉 is increasing in y. Therefore γ(p1) < c1 < y1 and γ(p2) >
c2 > y2. Due to (9),

Q(y1) < y1, Q(y2) > y2.

Intermediate value theorem imply that there exists point y∗ between y1 and y2
such that Q(y∗) = y∗ and the limit cycle present.

4 Geometric construction

In this section we construct an open set of systems with arbitrary number of
roots of equation S(y) = 0 defining the neutral contour. In the previous section
it was shown that for every such root there exists a limit cycle of a system.
Thus theorem 2 will be proved.

4.1 Problem statement

First of all state the problem in terms of integrals of the pair of functions. Let
N = ([the desired number of limit cycles] + 1). We have a sum of integrals

S(a) =

∫ a

−1
λ+dy +

∫ 1

a

λ−dy +

∫ β(a)

−1
λ+dy +

∫ 1

β(a)

λ−dy (10)

where

β(a) :

∫ 1

a

λ−dy = −
∫ β(a)

−1
λ+dy (11)

and our goal is to construct such (smooth) functions

λ− : [−1, 1]→ R− and λ+ : [−1, 1]→ R+ (12)

that sum S(a) changes sign at least (N−1) times on the interval (−1, 1). We also
have to demand that the there exists such smooth function f that λ± = f

′

x|M± .

4.2 Algorithm

Slow curve M is fixed. We choose sufficiently smooth function f in system (1),
which zero level set coincides with M . It defines functions λ+ and λ− with
range of values given by (12). Algorithm is intended to correct these functions
to get sign changes for the sum S. We will construct such functions that sum

9



of the first and fourth terms in sum S will have sign changes, and the sum of
the second and the third terms will be at the same moments equal to zero.

Algorithm consists of three steps. First of all we choose any 2N points
a1, . . . , aN and bN , . . . , b1 on the horizontal axis such that:

−1 = a0 < a1 < . . . < aN < bN < . . . < b1 < b0 = 1.

In other steps we will construct sign changes (release points) of the sum S
between each ai and ai+1, i = 1, . . . , N − 1.

On the second step we change function λ+ on the interval [−1, aN ] and
function λ− on the interval [bN , 1] in such a way that sum of the first and the
fourth terms in S(a) change its sign (N − 1) times on the interval (−1, aN ).

We take consequent k = 0, 1, . . . , N and ask for next conditions according
to its evennes: if k is even, 0 ≤ k ≤ N , we ask for∣∣∣∣∫ ak+1

−1
λ+dy

∣∣∣∣ >
∣∣∣∣∣
∫ bk+1

1

λ−dy

∣∣∣∣∣ (13)

(Note that the second interval of integration is reversed.) We always can satisfy
that condition choosing λ+ big enough (by its absolute value) strictly inside the
interval [ak, ak+1]. For odd values of k we ask for reversed condition∣∣∣∣∫ ak+1

−1
λ+dy

∣∣∣∣ <
∣∣∣∣∣
∫ bk+1

1

λ−dy

∣∣∣∣∣ (14)

and satisfy that condition choosing the function λ− big enough (by its absolute
value) strictly inside the interval [bk, bk+1] . It is important that changes on the
current step doesn’t affect the previously achieved equalities. The second step
is over.

On the third (and last) step we will change λ+ and λ− on the remaining
intervals [aN , 1] and [−1, bN ] resp. to satisfy

bi = β(ai), i = N, . . . , 1. (15)

Rewrite in terms of integrals∫ 1

ai

λ−dy = −
∫ bi

−1
λ+dy, i = 1, . . . , N. (16)

This condition states that sum of the second and the third terms in sum (10)
equals to zero at the points a1, . . . , aN .

We do it by induction descending from the index N to 1. Let β(aN ) is not
equal to bN . If β(aN ) is greater than bN then∣∣∣∣∫ 1

aN

λ−dy

∣∣∣∣ >
∣∣∣∣∣
∫ bN

−1
λ+dy

∣∣∣∣∣ .
In this case we increase absolute value of λ+ strictly inside the interval [aN , bN ],
at that β(aN ) is decreasing. We increase λ+ until the equality becomes true.
Otherwise if β(aN ) is lower than bN we increase absolute value of λ− on the
same interval. After these corrections β(aN ) = bN .

10



Next we repeat the same for bN−1 and β(aN−1): now we can change λ+

inside the interval [bN , bN−1] and λ− inside the interval [aN−1, aN ]. Note that
these changes has no influence on the previously achieved equality β(aN ) = bN .

Next we repeat the same for k = N − 2, . . . , 1. Now all equalities in (16)
becomes true, third step is over.

Now sum S(ai) is positive for odd indexes and negative for even.

5 One pass canards for unconnected slow curve

5.1 Problem statement for disjoint slow curve and two
grand canards

Consider unconnected slow curve M which consists of two connected compo-
nents. Let the first one has projection on the y-axis [0, 1] and the second one
has projection [2, 3]. For simplicity consider curve with only 4 fold points, two
on each component, with the following y-coordinates: y(G+

1 ) = 0, y(G−1 ) = 1,
y(G+

2 ) = 2 and y(G−2 ) = 3. Fix four vertical segments J±1 and J±2 that intersect
the slow curve near corresponding jump points G∓1 and G∓2 like in part 3.1. Let
y(J±1 ) = α±1 , y(J±2 ) = α±2 . Denote

D+
1,ε = P

〈−π,y(J+
1 )]

ε , D−1,ε = P
[y(J−1 ), 32 〉
ε , (17)

D+
2,ε = P

〈 32 ,y(J
+
2 )]

ε , D−2,ε = P
[y(J−2 ),−π〉
ε . (18)

For the series of accumulating to zero exponentially small intervals R1 =
{R1

n}∞n=1 of parameter ε interval D−1 intersects with interval D+
2 . For other

series R2 = {R2
n}∞n=1 intersection holds for two remaining intervals D−2 and

D+
1 . For each of these series exists one of two possible grand canards. Series

may intersect.
The question is how many (canard) limit cycles can be in described system.

If series R1 and R2 intersects thus there is both grand canards and situation is
close to the stated in part 4.1. But now instead of two passes there are one pass
along two parts of the slow curve. We skip the description of the construction
of limit cycles which is similar to section 3 and pass to geometric problem of
the construction of neutral contours in the next section.

Case of the only one canard cycle is studied in part 5.4.

5.2 Problem statement in terms of integrals for two grand
canards

Let N = ([the desired number of limit cycles] + 1). We have a sum of integrals

S(a) =

∫ a

0

λ+dy +

∫ 1

a

λ−dy +

∫ β(a)

2

λ+dy +

∫ 3

β(a)

λ−dy (19)

where

β(a) :

∫ 1

a

λ−dy = −
∫ β(a)

2

λ+dy (20)

and our goal is to construct smooth functions as in part 4.1 such that sum S(a)
changes sign at least (N − 1) times on the interval (0, 1). We still demand that

11



there exists smooth function f such that λ± = f
′

x|M± . Domain of functions λ−

and λ+ is disjointed and equal to the projection [0, 1]
⋃

[2, 3] of the slow curve.
Every one-pass cycle will have two release points, one on each component of

the slow curve.

5.3 Algorithm

Algorithm needs to be corrected respectively. Now we take points of the ’first’
release a1, . . . , aN at the projection [0, 1] of the first slow curve’s component.
Points bN , . . . , b1 are respectively in the interior of segment [2, 3].

0 < a1 < a2 < . . . < aN < 1, 2 < bN < bN−1 < . . . < b1 < 3 (21)

On the second step we do the same correction as before for the function
λ+ at the interior of segments [0, a1], . . . , [aN−1, aN ] and respectively for the
function λ− at the interior of segments [bN , bN−1], . . . , [b1, 3]. It will guarantee
the sign changes for the sum of the first and the last term in the sum (19).

Figure 3: Canard for disjointed curve

On the third step we also should modify domain of correction. Now
we achieve equalities (15) consequently correcting λ− at interior of segments
[aN , 1], [aN−1, aN ], . . . , [0, a1] and respectively λ+ at interior of segments [2, bN ],
[bN , bN−1] . . . , [b1, 3].

After that the sum (19) has (at least) N zeroes at segment [a1, aN ]. Each
zero corresponds to canard limit cycle which releases two times: at zero of the
sum on the first component and at the value which β takes at this zero on the
second component.
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5.4 Case of only one grand canard

Consider the system with nondegenerate slow curve with only 4 fold points such
that components’s projections on the y-axis does not intersect. Let fold points
and direction of fast motion for this system be as in 5.1.

Assume without loss of generality that∣∣∣∣∣∣
1∫

0

λ−dy

∣∣∣∣∣∣ <
∣∣∣∣∣∣

3∫
2

λ+dy

∣∣∣∣∣∣ . (22)

Thus strictly inside the segment [2, 3] exists a point b such that∣∣∣∣∣∣
1∫

0

λ−dy

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫

2

λ+dy

∣∣∣∣∣∣ . (23)

Fix vertical segments J+
2 and Γ̃, y(Γ̃) = b̃, that intersect only unstable part of

the slow curve’s second component and such that

b < b̃ < y(J+
2 ) < y(G−2 ).

On the stable part fix vertical segment J−2 such that b̃ < y(J−2 ).
On the first component’s slow curve fix segment J−1 in neighbourhood of G+

1

and J+
1 in neighborhood of G−1 .

For all these segments denote as before

D+
1,ε = P

〈−π,y(J+
1 )]

ε , D−1,ε = P
[y(J−1 ), 32 〉
ε , (24)

D+
2,ε = P

〈 32 ,y(J
+
2 )]

ε , D−2,ε = P
[y(J−2 ),−π〉
ε . (25)

Proposition 9. Consider slow-fast system with following properties:

1. Slow curve M is nondegenerate with two connected components and 4 fold
points. Component’s projections on the y-axis are nonintersecting.

2. Interval D−1 intersects with the interval D+
2 .

3. Interval D−2 has no intersection with intervals D−1 and P
〈−π,b̃]
ε Γ̃.

Therefore there are only two limit cycles, both are canards.

From the last two conditions follows existence of only one grand canard.

Proof. Take some trajectory that intersects Γ in P
〈−π,b̃]
ε Γ̃. It is contained in

Γ \ D−2,ε. Thus in backward time it will be attracted by grand canard that
passes nearby unstable (unstable in forward time, stable in backward) part of
the second component of the M . So it will intersect cross-section Γ̃ and fall

into the P
〈−π,b̃]
ε Γ̃ again. That means that some limit cycle intersects Γ̃. Maybe

it is not unique. But for any configuration of limit cycles stable and unstable
ones are alternating, every stable has negative derivative of a Poincare map.
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In backward time every trajectory from Γ̃ after single pass has positive (for
arbitrary small values of ε) logarithm of derivative of order

1

ε

∣∣∣∣∣∣
1∫

0

λ−dy −
3∫

2

λ+dy

∣∣∣∣∣∣ =
1

ε

∣∣∣∣∣∣∣
3∫
b̃

λ+dy

∣∣∣∣∣∣∣ . (26)

Hence in forward time only one unstable canard limit cycle intersects Γ̃.

Now take any trajectory γ that intersects Γ \ (D−2,ε
⋃
P
〈− 1

2 ,b̃]
ε Γ̃). In forward

time it will fall onto the second slow curve’s stable component not later than
at b̃, hence will jump from G−2 and intersect Γ again at D−2,ε. Thus there are

some limit cycles intersecting D−2,ε. These cycles can’t be unstable because
logarithm of their derivative is positive and has an order of (26). Hence because
of alternating there is only one stable cycle. It is canard because it passes along
grand canard from neighborhood of G+

1 to some point that’s y-coordinate is not
larger than b̃.

6 Topologically generic systems

We call slow-fast system (with four fold points, like in part 5) good if there exists
ε0 such that for any positive ε 6 ε0 system doesn’t have both grand canards:

D+
1,ε

⋂
D−2,ε = ∅ or D−1,ε

⋂
D+

2,ε = ∅. (27)

Theorem 10. Topologically generic slow-fast system is not good.

Proof. Let R1
n be an interval on ε-axis described in theorem 2 that corresponds

to intersection of D+
1,ε and D−2,ε and R2

n corresponds to intersection of D−1,ε and

D+
2,ε. For good system there exists ε0 > 0 such that series {R1

n}∞1 and {R2
n}∞1

are nonintersecting for positive ε < ε0.
Now we will perturb system to get intersection of the series. Take soFme

segment [y1, y2] that doesn’t intersect projection of the slow curve. Add to
f some positive smooth function whose support is strictly inside the segment.
Thus for arbitrarily small values of parameter ε all trajectories that passes
segment [y1, y2] will made over this segment additional turn (or more) around
fast direction on the torus.

In other terms: for some n0 for any n > n0 interval R1
n (or R2

n) on ε-axis
will move left and take the place at least of interval R1

n+1 (or R2
n+1).

Thus if we increase the value of f continuously for some moment series
{R1

n}∞1 and {R2
n}∞1 will intersect.

So we can get both intersections in (27) for some intervals R1
n and R2

n ar-
bitrary close to any good system. Note that intersection in (27) holds for open
set of systems. Thus we can consequently build countable number of intersec-
tions for ε < ε0 in neighborhood of a good system. It corresponds to countable
intersection of open and dense sets, that is topologically generic.

This finished proof of theorem 4
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