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Heat operator with pure soliton potential: Properties of Jost
and dual Jost solutions
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Properties of Jost and dual Jost solutions of the heat equation, �(x, k) and �(x, k), in
the case of a pure solitonic potential are studied in detail. We describe their analytical
properties on the spectral parameter k and their asymptotic behavior on the x-plane
and we show that the values of e−qx�(x, k) and the residues of eqx�(x, k) at special
discrete values of k are bounded functions of x in a polygonal region of the q-plane.
Correspondingly, we deduce that the extended version L(q) of the heat operator with
a pure solitonic potential has left and right annihilators for q belonging to these
polygonal regions. C© 2011 American Institute of Physics. [doi:10.1063/1.3621715]

I. INTRODUCTION

The Kadomtsev–Petviashvili equation in its version called KPII,

(ut − 6uux1 + ux1x1x1 )x1 = −3ux2x2 , (1.1)

where u = u(x, t), x = (x1, x2), and the subscripts x1, x2, and t denote partial derivatives, is a
(2 + 1)-dimensional generalization of the celebrated Korteweg–de Vries (KdV) equation. There are
two nonequivalent versions of the KP equations, corresponding to the two choices ± for the sign in
the rhs of (1.1), which are, respectively, referred to as KPI and KPII. The KP equations, originally
derived as a model for small-amplitude, long-wavelength, weakly two-dimensional waves in a
weakly dispersive medium,1 have been known to be integrable since the beginning of the 1970s2, 3

and can be considered prototypical (2 + 1)-dimensional integrable equations.
The KPII equation is integrable via its association with the operator

L(x, ∂x ) = −∂x2 + ∂2
x1

− u(x), (1.2)

which defines the well-known equation of heat conduction, or heat equation for short, since it can
be expressed as the compatibility condition [L, T ] = 0 of the Lax pair L and T , where T is given
by

T (x, ∂x , ∂t ) = ∂t + 4∂3
x1

− 6u∂x1 − 3ux1 − 3∂−1
x1

ux2 . (1.3)

The spectral theory of the operator (1.2) was developed in Refs. 4–7 in the case of a real
potential u(x) rapidly decaying at spatial infinity, which, however, is not the most interesting case,
since the KPII equation was just proposed in Ref. 1 in order to deal with a two-dimensional weak
transverse perturbation of the one-soliton solution of the KdV. In fact, if u1(t, x1) obeys KdV, then
u(t, x1, x2) = u1(t, x1 + μx2 − 3μ2t) solves KPII for an arbitrary constant μ ∈ R. In particular,
KPII admits a one-soliton solution of the form

u(x, t) = − (κ1 − κ2)2

2
sech2

[
κ1 − κ2

2
x1 + κ2

1 − κ2
2

2
x2 − 2(κ3

1 − κ3
2 )t

]
, (1.4)

where κ1 and κ2 are arbitrary real constants.
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A spectral theory of the heat operator (1.2) that also includes solitons has to be built. In the
case of a potential u(x) ≡ u0(x) rapidly decaying at spatial infinity, according to Refs. 4–7, the
main tools in building the spectral theory of the operator (3.1), as in the one-dimensional case, are
the integral equations whose solutions define the related Jost solutions. However, if the potential
u(x) does not decay at spatial infinity, as is the case when line-soliton solutions are considered, the
integral equations of the decaying case are ill-defined, and one needs a more general approach. In
solving the analogous problem for the nonstationary Schrödinger operator, associated with the KPI
equation, the extended resolvent approach was introduced.8 Accordingly, a spectral theory of the
KPII equation that also includes solitons has to be investigated using the resolvent approach. In this
framework it was possible to develop the inverse scattering transform for a solution describing one
soliton on a generic background9 and to study the existence of the (extended) resolvent for (some)
multisoliton solutions.10

However, the general case of N -solitons is still open. Following,8 the first step in building the
inverse scattering for this case lies in building a Green’s function G(x, x ′, k) of the heat operator
(1.2) corresponding to the pure N -soliton potential u(x), such that

ei k(x ′
1−x1)+k2(x ′

2−x2)G(x, x ′, k) (1.5)

is bounded for any x and any k ∈ C. We expect this Green’s function to be bilinear in the Jost
solutions �(x, k) and �(x, k) of the heat operator and its dual and we, therefore, first need to study
the general properties of these solutions. Once this study is performed and the Green’s function G
is obtained, the Jost solution �̃ for a potential given as a sum of two terms,

ũ(x) = u(x) + u′(x), (1.6)

where u(x) is a pure N -soliton potential and u′(x) is an arbitrary bidimensional decaying smooth
perturbation can be derived as a solution of the integral equation

�̃ = � + Gu′�̃, (1.7)

which is well defined since it has a well behaving kernel Gu′ thanks to u′. Analogously, for the Jost
solution �̃ of the dual heat operator. Then, having these building blocks, �̃ and �̃, at hand, one
can assemble the inverse scattering theory.

The paper in organized as follows. In Sec. II, we consider the multisoliton potential obtained
in its general form in Ref. 11 and showing Nb “incoming” rays and Na “outgoing” rays at large
spaces. We reformulate this potential in terms of τ -functions as in the review paper12 and in
Ref. 13. In Sec. III, we consider the Jost solutions of the heat operator and its dual, already obtained
in Ref. 11, but they are also expressed in terms of τ -functions as in Ref. 13. In view of getting
the asymptotic behavior of the Jost solutions, the asymptotic behavior at large x of the multisoliton
potential, studied in detail in Ref. 13, is reviewed in Sec. II, showing that the round angle at the origin
can be divided into N = Na + Nb angular sectors, such that the potential on their bordering rays
has a constant soliton-like behavior, while the potential along directions inside the sectors has an
exponentially decaying behavior, which is explicitly given. In Sec. IV by using the results obtained
for the potential, the asymptotic behavior at large x of the Jost and dual Jost solutions and their
values or, accordingly, residues at the discrete points of the spectrum are also obtained. In Sec. V
by using the results obtained in Sec. IV, we show that the values of e−qx�(x, k) and the residues
of eqx�(x, k) at special discrete values of k are bounded functions of x in a polygonal region of
the q-plane included inside the parabola q2 = q2

1 . Correspondingly, we conclude that the extended
version L(q) of the heat operator with a pure solitonic potential has left and right annihilators for q
belonging to these polygonal regions. It follows that the extended resolvent M(q), inverse to L(q),
does not exist for q belonging to these polygons. However, the Green’s function G(x, x ′, k), needed,
as indicated above, for building the inverse scattering theory in the case of KPII solutions with
solitons, can be obtained by a reduction procedure involving q values outside the parabola.
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II. MULTISOLITON POTENTIALS AND THEIR PROPERTIES

A. Main notation

Soliton potentials are labeled by the two numbers (topological charges), Na and Nb, that obey
the condition

Na, Nb ≥ 1. (2.1)

Let

N = Na + Nb, (2.2)

so that N ≥ 2. We introduce the N real parameters

κ1 < κ2 < · · · < κN , (2.3)

and the functions

Kn(x) = κn x1 + κ2
n x2, n = 1, . . . ,N . (2.4)

Let

eK (x) = diag{eKn (x)}Nn=1 (2.5)

be a diagonal N × N matrix, let D be a N × Nb constant matrix with at least two nonzero maximal
minors, and let V be an “incomplete Vandermonde matrix,” i.e., the Nb × N matrix

V =

⎛⎜⎜⎝
1 . . . 1
...

...

κ
Nb−1
1 . . . κ

Nb−1
N

⎞⎟⎟⎠ . (2.6)

Then, the soliton potential is given by

u(x) = −2∂2
x1

log τ (x), (2.7)

where the τ -function can be expressed as

τ (x) = det
(
VeK (x)D

)
. (2.8)

See the review paper,12 the references therein and Ref. 13, where the same notation has been used.
There exists a dual representation for the potential in terms of the τ -function (see Refs. 10, 13,

and 14),

τ ′(x) = det
(
D ′e−K (x)γV ′) , (2.9)

where D ′ is a constant Na × N matrix that, such as the matrix D, has at least two nonzero maximal
minors and that is orthogonal to the matrix D in the sense that

D ′D = 0, (2.10)

where the zero in the rhs is a Na × Nb matrix, V ′ is the N × Na matrix

V ′ =

⎛⎜⎜⎝
1 . . . κ

Na−1
1

...
...

1 . . . κ
Na−1
N

⎞⎟⎟⎠ , (2.11)

and γ is the constant, diagonal, real N × N matrix

γ = diag{γn}Nn=1, γn =
N∏

n′=1
n′ �=n

(κn − κn′)−1. (2.12)
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In order to study the properties of the potential and the Jost solutions, it is convenient to use an
explicit representation for the determinants. By using the Binet–Cauchy formula for the determinant
of a product of matrices, we get

τ (x) =
∑

1≤n1<n2<···<nNb ≤N
fn1,...,nNb

Nb∏
l=1

eKnl (x) (2.13)

with

fn1,n2,...,nNb
= V (κn1 , . . . , κnNb

)D(n1, . . . , nNb ), (2.14)

where we used the notation

V (κ1, . . . , κN ) =
∏

1≤m<n≤N
(κn − κm) (2.15)

for the Vandermonde determinant and

D(n1, . . . , nNb ) = det

⎛⎜⎜⎝
Dn1,1 . . . Dn1,Nb

...
...

DnNb ,1 . . . DnNb ,Nb

⎞⎟⎟⎠ , (2.16)

for the maximal minors of the matrix D. Notice that the coefficients fn1,n2,...,nNb
are invariant under

permutations of the indices.
In what follows, it is convenient to consider indices n, n1, . . . , nNb of parameters κn , coefficients

fn1,n2,...,nNb
, etc., to be running modN throughout Z, i.e., let

n → n (mod N ). (2.17)

From (2.13), it follows directly that condition

fn1,...,nNb
≥ 0 for all 1 ≤ n1 < n2 < · · · < nNb ≤ N (2.18)

is sufficient (see Ref. 15) for the regularity of the potential u(x), i.e., for the absence of zeros of τ (x)
on the x-plane. Thanks to (2.3), (2.14), and (2.15), this condition is equivalent to the condition that
all maximal minors of the matrix D are non-negative. In Ref. 13, it was mentioned that condition
(2.18) is also necessary for the regularity of a potential under evolution with respect to an arbitrary
number of higher times of the KP hierarchy. In Ref. 15, it was suggested to decompose soliton
solutions of KPII into subclasses, associated with the Schubert cells on Grassmanian. It is proved
there that condition (2.18) is necessary for the regularity of the all solutions associated with a cell.
However, the problem of finding necessary conditions for the regularity of the multisoliton solution
under evolution with respect to KPII only is still open.

Under condition (2.17) and thanks to (2.3), we have the following lemma (see Ref. 16),which
we use below.

Lemma 2.1: Let

gl,m,n = (κl − κm)(κn − κn+Nb )(κl + κm − κn − κn+Nb ). (2.19)

Then

gl,m,n ≥ 0 for any n ∈ Z, l = n, . . . , n + Nb, m = n + Nb, . . . ,N + n, (2.20)

and the equality takes place only when l and m independently take the values n or n + Nb modN .

Matrices D and D ′ have rather interesting properties (see Refs. 13 and 16). In particular, the
products D†D and D ′D ′†, where † denotes Hermitian conjugation of matrices (in fact, transposition
here), are positive and then invertible, and so there exist matrices (see Ref. 17),(

D
)(−1) = (D†D)−1D†,

(
D ′)(−1) = D ′†(D ′D ′†)−1, (2.21)
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that are, respectively, the left inverse of the matrix D and the right inverse of the matrix D ′, i.e.,(
D
)(−1)D = ENb , D ′(D ′)(−1) = ENa , (2.22)

where ENa and ENb are the Na × Na and Nb × Nb identity matrices. Products of these matrices in
the opposite order give the real self-adjoint N × N matrices

P = D
(
D
)(−1) = D(D†D)−1

(
D
)†

, (2.23)

P ′ = (
D ′)(−1)D ′ = (

D ′)†
(D ′D ′†)−1D ′, (2.24)

which are orthogonal projectors, i.e.,

P2 = P, (P ′)2 = P ′, P P ′ = 0 = P ′ P, (2.25)

and complementary in the sense that

P + P ′ = EN . (2.26)

The matrices D and D′ are not in one-to-one correspondence with the potential u(x). Indeed,
by (2.7), (2.8), and (2.9) one gets that the potential is invariant under the substitutions

D → Dv, D ′ → v′D ′, (2.27)

where v and v′ are, respectively, arbitrary constant, nonsingular Nb × Nb and Na × Na matrices.
Thus under condition (2.3), the (Na, Nb)-soliton potential is parameterized by the point of the
Grassmanian GrNb,N if representation (2.8) is used or by the point of the Grassmanian GrNa ,N if
representation (2.9) is used.

B. Asymptotic behavior of the τ -function and potential u(x)

Here, we briefly report the main asymptotic properties of the function τ (x) and potential u(x) at
large space (see Ref. 16 for details), which are necessary to know in order to derive the asymptotic
properties of the Jost and dual Jost solutions and their discrete values.

The asymptotic of τ (x) is determined by the interrelations between the functions Kn(x) for
different n, that is, due to (2.4), by the differences

Kl (x) − Km(x) = (κl − κm)(x1 + (κl + κm)x2) for any l, m ∈ Z, (2.28)

which are linear with respect to the space variables. Then, the asymptotic behavior must have a
sectorial structure on the x-plane, and in order to describe this structure we divide the x-plane into
sectors.

We introduce rays rn on the x-plane given by

rn = {x : x1 + (κn+Nb + κn)x2 = 0, (κn+Nb − κn)x2 < 0), n = 1, . . . ,N . (2.29)

They intersect the corresponding lines x2 = ±1 at the points

(κn+Nb + κn,−1) for n = 1, . . . , Na,

(−κn+Nb − κn, 1) for n = Na + 1, . . . ,N . (2.30)

Therefore, as n increases from n = 1 to n = Na , the ray rotates anticlockwise in the lower half
x-plane, crosses the positive part of the x1 axis in coming to n = Na + 1 and then rotates anticlock-
wise in the upper half x-plane up to n = N , and finally crossing the negative part of the x1 axis for
n = N + 1 comes back to the ray r1(x) thanks to (2.17) (see Fig. 1).

Let us assume that some rays, e.g., rm and rn , where for definiteness m < n, are parallel. By
(2.29), this means that κm+Nb + κm = κn+Nb + κn , i.e., that κn − κm = κm+Nb − κn+Nb , where the lhs
is positive thanks to (2.3). Then, because of (2.17), it is easy to see that the rhs can be positive only
if 1 ≤ m ≤ Na < n ≤ N , and hence by (2.30), the ray rm is in the bottom half-plane and rn is in the
upper one. We see that for generic values of the κn and when Na �= Nb, the rays in the upper and
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σ1

σn

σNa+1 x1

x2

r1
rNa

rNa+1

rn−1rn

rN

FIG. 1. Sector σn corresponds to Na + 2 ≤ n ≤ N .

bottom half-planes cannot be parallel, while this is possible for a special choice of the κn . In contrast,
in the case Na = Nb, all pairs rn and rn+Na , n = 1, . . . , Na , and only these pairs give parallel rays.
In the special case Na = Nb = 1, we get two rays producing the straight line x1 + (κ1 + κ2)x2 = 0
that divides the x-plane into two half-planes.

In the same way, we introduce sectors σn , which are subsets of the x-plane characterized as

σn = {x : Kn−1(x) < Kn+Nb−1(x) and Kn(x) > Kn+Nb (x)} for n = 1, . . . ,N . (2.31)

From (2.28) and the discussion above, it follows that the σn are sharp (for N > 2) angular sectors
with vertices at the origin of the coordinates bounded from the right (looking from the origin) by
the ray rn−1 and from the left (looking from the origin) by the ray rn and that the sectors σn are
ordered anticlockwise as n increases, starting “from the left” with the sector σ1, which includes the
negative part of the x1 axis, and then with the sectors σn (n = 2, . . . , Na) in the bottom half-plane,
the sector σNa+1 “to the right,” that includes the positive part of the x1 axis, and the sectors σn

(n = Na + 2, . . . ,N ) on the upper half-plane, finishing with the sector σN adjacent to the sector σ1,
in this way covering the whole x-plane with the exception of the bordering rays rn (see Fig. 1).

Therefore, the sectors σn define an N -fold discretization of the round angle at the origin, with
the integer n (mod N ) playing the role of a discrete angular variable. It is clear that in the study of
the asymptotic behavior of the τ -function we consider the x-plane a vector space, since the finite
part of x is irrelevant when x → ∞.

For determining the directions of the rays rn and sectors σn , we introduce the vectors

yn = (κ2
n+Nb

− κ2
n , κn − κn+Nb ), n = 1, . . . ,N , (2.32)

and use them for giving the following definition.

Definition 2.1: We say that x → ∞ along the ray rn, if x → ∞ and there exists α → +∞ such
that x − αyn is bounded. This will be denoted by x

rn−→ ∞.
We say that x → ∞ in the sector σn, n = 1, . . . ,N , if x → ∞ and there exist α → +∞ and

β → +∞, such that x − αyn−1 − βyn is bounded. This will be denoted by x
σn−→ ∞.

Notice that, for x
rn−→ ∞,

Kn(x) − Kn+Nb (x) is bounded and (κn+Nb − κn)x2 → −∞, (2.33)
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and, for x
σn−→ ∞,

Kn+Nb−1(x) − Kn−1(x) → +∞, Kn(x) − Kn+Nb (x) → +∞, (2.34)

as follows directly from the definition. In fact, we have a more general statement.

Lemma 2.2: Let Na, Nb ≥ 1 and n ∈ Z be arbitrary. Then

1. if x
rn−→ ∞, we have that Kl (x) − Km(x) → +∞ or is bounded for any l = n, . . . , n +

Nb and m = n + Nb, . . . ,N + n, where the boundedness takes place if and only if (l, m)
= (n, n), (n, n + Nb), (n + Nb, n), (n + Nb, n + Nb);

2. if x
σn−→ ∞, we have that Kl(x) − Km(x) → +∞ for any l = n, . . . , n + Nb − 1 and m

= n + Nb, . . . ,N + n − 1;

where summation of indices is always understood mod N .

Thanks to Lemma 2.2 above, the asymptotics of the τ -function is given by the following
Theorem (see Ref. 16).

Theorem 2.3: If condition (2.18) is satisfied, the asymptotic expansion of τ (x) for x → ∞ for
any n ∈ Z is given by

x
rn−→ ∞ : τ (x) = (

zn + zn+1eKNb+n (x)−Kn (x) + o(1)
)

exp

⎛⎝n+Nb−1∑
j=n

K j (x)

⎞⎠ , (2.35)

x
σn−→ ∞ : τ (x) = (zn + o(1)) exp

(
n+Nb−1∑

l=n

Kl(x)

)
, (2.36)

where the notation

zn = fn,n+1,...,n+Nb−1 ≡ V (κn, . . . , κn+Nb−1)D(n, . . . , n + Nb − 1) (2.37)

was introduced for any n = 1, . . . ,N .

As we see from (2.35) and (2.36), the leading asymptotic term along the ray direction rn is given

by the sum of the leading terms obtained for x
σn−→ ∞ and x

σn+1−→ ∞. Since the exponential factor
cancels out when this expansion (2.35) of τ (x) is inserted in (2.7), the factor in parenthesis gives
the ray behavior of the potential u(x) at infinity. Explicitly, taking (2.17) into account, we get Na

asymptotic rays in the bottom half-plane: x2 → −∞, x1 + (κn + κn+Nb )x2 bounded. Along these
rays, the potential behaves as

u(x) = −2∂2
x1

log
(
zn + zn+1eKn+Nb (x)−Kn (x)

)
, n = 1, . . . , Na . (2.38)

In the same way, the potential u(x) has Nb asymptotic rays in the upper half-plane: x2 → +∞,
x1 + (κn + κn+Na )x2 bounded. Along these rays, it behaves as

u(x) = −2∂2
x1

log
(
zn+Na + zn+Na+1eKn (x)−Kn+Na (x)), n = 1, . . . , Nb. (2.39)

The asymptotic behavior inside the sectors σn is given by (2.36), where the only x-dependent term
is the exponential factor. Taking its linear dependence on x and (2.18) into account, we get that u(x)
decays (exponentially) in all directions inside all sectors, i.e., on the whole x-plane with exception
of the rays r1, . . . , rN .

Thanks to condition (2.17), the coefficients zn defined in (2.37) are a special subset of the
coefficients fn1,...,nNb

in (2.14). Theorem 2.3 shows that the behavior of the potential at large x is
determined by the coefficients zn only. Therefore, the condition

zn > 0, n = 1, . . . ,N , (2.40)

is a sufficient condition for the regularity of the potential at large x . If the stronger condition (2.18)
is not satisfied, singularities can appear, but only in a finite region of the x-plane.
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Taking the special role played by coefficients zn into account, let us introduce the matrices

vn =

⎛⎜⎝ Dn,1, . . . , Dn,Nb

. . . . . . . . .

Dn+Nb−1,1, . . . , Dn+Nb−1,Nb

⎞⎟⎠ , n = 1, . . . ,N , (2.41)

and hence by (2.16), det vn = D(n, . . . , n + Nb − 1), and by (2.37)

zn = V (κn,...,κn+Nb−1 ) det vn, (2.42)

which is different from zero thanks to (2.40). Then, we can perform the special permutation

πn(l) = Na + 1 + l − n, l = 1, . . . ,N , (2.43)

which shifts the matrix vn in the bottom part of the matrix D. Thus, we get the representations

D = πn

(
d(n)

ENb

)
vn, D ′ = v′

n(ENa ,−d(n))π
†
n , (2.44)

where the Na × Na matrix v′
n is defined by analogy. Here, πn denotes the matrix of permutation

(2.43), π†
n is its Hermitially conjugate, and ENa and ENb are the Na × Na and Nb × Nb unity

matrices. The Na × Nb rectangular submatrix d(n) is defined by any of the equalities in (2.44), and it
is obvious that matrices D and D ′ obey (2.10) thanks to their block structure. Representation (2.44)
is convenient for studying the asymptotic properties of the Jost solutions.

III. JOST SOLUTIONS

Since the heat operator is not self-dual, one must simultaneously consider its dual Ld (x, ∂x )
= ∂x2 + ∂2

x1
− u(x) and then introduce the Jost solution �(x, k) and the dual Jost solution �(x, k)

obeying the equations

L(x, ∂x )�(x, k) = 0, Ld (x, ∂x )�(x, k) = 0, (3.1)

where k is an arbitrary complex variable, playing the role of a spectral parameter. The reality of the
potential u(x), that we always assume here, is equivalent to the conjugation properties

�(x, k) = �(x,−k), �(x, k) = �(x,−k). (3.2)

The τ -function representations for the Jost solutions were derived in Ref. 13 and are given as

�(x, k) = τ�(x, k)

τ (x)
e−i kx1−k2x2 , �(x, k) = τ� (x, k)

τ (x)
ei kx1+k2x2 (3.3)

with

τ�(x, k) = det
(
VeK (x)(κ + i k)D

)
, τ�(x, k) = det

(
VeK (x)(κ + i k)−1D

)
, (3.4)

where κ + i k denotes the diagonal N × N matrix

κ + i k = diag{κ1 + i k, . . . , κN + i k} (3.5)

and analogously for the matrix (κ + i k)−1. By these definitions, ei kx1+k2x2�(x, k) is a polynomial
with respect to k of degree Nb and e−i kx1−k2x2�(x, k) is a meromorphic function of k that becomes a
polynomial of degree Na after multiplication by

∏N
n=1(κn + i k). In other words, �(x, k) is an entire

function of k and �(x, k) a meromorphic function with poles at points k = iκn , n = 1, . . . ,N .
Introducing the discrete values of �(x, k) at these points as an N row

�(x, iκ) = {�(x, iκ1), . . . , �(x, iκN )}, (3.6)

and the residues of �(x, k) at these points

�κn (x) = res
k=iκn

�(x, k) (3.7)
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as an N -column

�κ (x) = {�κ1 (x), . . . , �κN (x)}T, (3.8)

we have the relations (see Ref. 13),

�(x, iκ)D = 0, D ′�κ (x) = 0. (3.9)

Thanks to (2.23) and (2.24) relations (3.9) can be written equivalently in the form �(x, iκ)P = 0,
P ′�κ (x) = 0, and hence by (2.26) and the last equality in (2.25),

�(x, iκ) = �(x, iκ)(P + P ′) = �(x, iκ)P ′, �κ (x) = (P + P ′)�κ (x) = P�κ (x), (3.10)

and then by (2.25) for any x and x ′,

�(x, iκ)�κ (x ′) ≡
N∑

n=1

�(x, iκn)�κn (x ′) = 0. (3.11)

This means that the product �(x, k)�(x ′, k) of the Jost solutions obeys the well-known Hirota
bilinear identity18 for the Beiker–Akhiezer solutions, if the contour of integration surrounds all
points k = iκn .

Let us introduce

ϕ(x) = �(x, iκ)D ′(−1)
, ψ(x) = D(−1)�κ (x), (3.12)

where notation (2.21) was used. By this definition, we have

ϕ(x) = (
ϕ1(x), . . . , ϕNa (x)

)
, Na-row, (3.13)

ψ(x) = (
ψ1(x), . . . , ψNb (x)

)T
, Nb-column, (3.14)

and, by (2.23) and (2.24), we get the representations

�(x, iκ) = ϕ(x)D ′, �κ = Dψ(x). (3.15)

Thus, we constructed Na solutions and Nb dual solutions that parameterize discrete values of
the Jost and dual Jost solutions (which have N components). It is clear that ϕ(x) and ψ(x) are not
invariant with respect to the redefinition of the matrices D and D′ mentioned in (2.27), while, in
contrast, the combinations Dv−1

n and v′
n
−1D′ are invariant with respect to transformation (2.27), as

follows from (2.44).
It is necessary to mention that, with the above Definitions (3.3), the Jost solutions at large k

have the asymptotics

lim
k→∞

(i k)−Nb ei kx1+k2x2�(x, k) = 1, lim
k→∞

(i k)Nb e−i kx1−k2x2�(x, k) = 1, (3.16)

and the potential is reconstructed as

u(x) = −2 lim
k→∞

(i k)−Nb+1∂x1

(
ei kx1+k2x2�(x, k)

)
≡ 2 lim

k→∞
(i k)Nb+1∂x1

(
e−i kx1−k2x2�(x, k)

)
. (3.17)

IV. ASYMPTOTICS OF THE JOST SOLUTIONS

A. Asymptotics of the Jost solutions �(x, k) and �(x, k) for a generic k ∈ C

Since, as was already noted in Ref. 13, the functions τ�(x, k) and τ� (x, k) defined in (3.4) can
be obtained from the function τ (x) by means of the respective special Miwa shifts18 eK (x) → eK (x)

(κ + i k) and eK (x) → eK (x)(κ + i k)−1, their asymptotic behavior follows trivially from Theorem 2.3
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for τ (x), if k �= iκn for all n. Therefore, from Eq. (3.3), we get that the Jost solutions for x
σn−→ ∞

inside an arbitrary angular sector σn , n = 1, . . . ,N , have the following asymptotic behaviors:

�(x, k) = e−i kx1−k2x2

n+Nb−1∏
j=n

(κ j + i k) + . . . , (4.1)

�(x, k) = ei kx1+k2x2

n+Nb−1∏
j=n

(κ j + i k)−1 + . . . , (4.2)

where summation of indices is mod N and the dots denote weaker terms. The asymptotic behavior
along the ray x

rn−→ ∞ also easily follows from Theorem 2.3, and we omit it here since, in what
follows, we are interested only in the exponential behavior of the leading terms, while we have two
leading terms with the same asymptotic behavior in the ray directions (see (2.35)). To emphasize
this, we introduce the “closed” sectors σn . In other words we introduce the following.

Definition 4.1: We say that x → ∞ along the direction of the closed sector σn , n = 1, . . . ,N ,
if x → ∞ and there exist non-negative α and β, such that x − αyn−1 − βyn is bounded when

α + β → ∞. This will be denoted by x
σn−→ ∞.

According to this definition, asymptotics (4.1) and (4.2) are valid for x
σn−→ ∞.

In what follows, it is enough to study the asymptotic behavior of only one of the Jost solutions,
�(x, k) or �(x, k). Indeed, thanks to (3.3), the dual representations for τ in (2.8) and (2.9), and the
analogous ones for τ� and τ� (see Remark 5.1 in Ref. 13), one can derive that the Jost solutions
�(x, k) and �(x, k) are related by the equation

�(x, k) = [
�(−x, k)

] N∏
n=1

(κn + i k)−1, (4.3)

where the square brackets in the rhs means that in �(−x, k), as defined in (3.4), one has to perform
the substitutions

Na ↔ Nb, D → γD ′T, (4.4)

where the matrices D ′ and γ are defined in (2.10) and (2.12) and the superscript T denotes matrix
transposition. It is easy to see that asymptotics (4.1) and (4.2) have this property, if one notices that
substitution (4.4) thanks to Definition 2.1 leads to the sector relations

[σn] = σn+Na , [σn+Na ] = σn, (4.5)

and hence the asymptotic behavior of �(x, k) in the sector σn is given by the asymptotic behavior
of �(−x, k) in the sector σn+Na , once the transformations (4.4) are performed.

When k = iκm for some m, some terms in τ�(x, k) (see (3.4)) are absent. In the case when such
terms are coefficients of the leading exponents, we get zero asymptotics, and the exact behavior of
the Jost solution cannot be derived from (4.1). The same is valid for residues of �(x, k). Thus, we
have to consider asymptotic behavior at these values of k separately.

B. Asymptotics of the discrete values of the Jost solutions

In order to find the asymptotic behavior of the discrete values of the Jost solutions, we notice
that according to (3.3) and (3.4), and Definition (2.4), they equal

�(x, iκm) = τ�(x, iκm)

τ (x)
eKm (x), �κm (x) =

res
k=iκm

τ�(x, k)

τ (x)
e−Km (x), (4.6)
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where m = 1, . . . ,N . We consider the asymptotic of �(x, iκm), since the behavior of �κm (x) can
be obtained from (4.3), which for these discrete values means

�κm (x) = i(−1)N γm
[
�(−x, iκm)

]
, (4.7)

where we used notation (2.12) and the square brackets denotes operation (4.4).

Let us fix some n = 1, . . . ,N , and let x
σn−→ ∞. From (4.1), we have

�(x, iκm) =
{

a(n)
m (x), m = n, . . . , n + Nb − 1,

p(n)
m eKm (x), m = n + Nb, . . . , n + N − 1,

+ . . . , (4.8)

where the constants p(n)
m equal

p(n)
m =

n+Nb−1∏
j=n

(κ j − κm) (4.9)

and the functions a(n)
m (x), which give the leading asymptotic behavior for the corresponding values

of m, should be determined (thanks to (4.1) we know only that they tend to zero when x
σn−→ ∞).

Using the permutation introduced in (2.43), we write

�(x, iκ)πn ≡ (
�(x, iκm+n+Nb−1)

)N
m=1

=
(

p(n)
n+Nb

eKn+Nb (x), . . . , p(n)
n+N−1eKn+N−1(x), a(n)

n , . . . , a(n)
n+Nb−1

)
+ . . . . (4.10)

Now by (2.44), from (3.9), we get

a(n)
m = −

Na∑
l=1

p(n)
n+l+Nb−1eKn+l+Nb−1(x)(d(n))l,m−n+1, m = n, . . . , n + Nb − 1,

where we used that the matrices vn are invertible. Inserting these relations in (4.10) and again using
(2.44), we get

�(x, iκ) =
(

p(n)
n+Nb

eKn+Nb (x), . . . , p(n)
n+N−1eKn+N−1(x)

)
v′

n
−1D ′ + . . . , (4.11)

�κ (x) = −iDvn
−1
((

p(n)
n

)−1
e−Kn (x), . . . ,

(
p(n)

n+Nb−1

)−1
e−Kn+Nb−1(x)

)T
+ . . . , (4.12)

where the second equality is derived by means of (4.7), (2.44), and (4.9). Thanks to (3.12), this

means that for x
σn−→ ∞, we proved that

ϕ(x) =
(

p(n)
n+Nb

eKn+Nb (x), . . . , p(n)
n+N−1eKn+N−1(x)

)
v′

n
−1 + . . . , (4.13)

ψ(x) = −ivn
−1
((

p(n)
n

)−1
e−Kn (x), . . . ,

(
p(n)

n+Nb−1

)−1
e−Kn+Nb−1(x)

)T
+ . . . . (4.14)

The asymptotic values of ϕ(x) and ψ(x) depend on the choice of the matricesD andD′ (cf. discussion
after (2.43)), while asymptotics (4.11) and (4.12) are invariant. In fact, we can give a more detailed
description of this asymptotic behavior. For this let us divide the sectors σn in two subsectors

σ ′
n = {x : Kn+Nb−1(x) > Kn−1(x) and Kn−1(x) > Kn+Nb (x)},

σ ′′
n = {x : Kn+Nb (x) > Kn−1(x) and Kn(x) > Kn+Nb (x)}.

(4.15)

It is easy to see that

σn = σ ′
n ∪ σ ′′

n ∪ r ′
n, (4.16)

where r ′
n is the ray belonging to the sector σn ,

r ′
n = {x : Kn−1(x) = Kn+Nb (x) and (κn+Nb − κn−1)x2 < 0}. (4.17)
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By analogy with (2.32), we can determine it by means of the directing vector

y′
n = (κ2

n+Nb
− κ2

n−1, κn−1 − κn+Nb ). (4.18)

In the case Na = 1, i.e., Nb = N − 1 by (2.2), these definitions are senseless as follows from (2.17).
So, we will consider this case below separately. Now by analogy with Definition 2.1, we introduce
the following.

Definition 4.2: We say that x → ∞ in the closed subsector σ ′
n (notation x

σ ′
n−→ ∞) or in the

closed subsector σ ′′
n (notation x

σ ′′
n−→ ∞), n = 1, . . .N , if there exist non-negative α and β, such

that α + β → +∞ and

for x
σ ′

n−→ ∞ : x − αyn−1 − βy′
n is bounded,

for x
σ ′′

n−→ ∞ : x − αy′
n − βyn is bounded.

Then, we have the following lemma.

Lemma 4.1: 1. If x
σ ′

n−→ ∞, then Kn−1(x) > Km(x) for any m = n + Nb, . . . , n + N − 2 and
Km(x) > Kn+Nb−1(x) for any m = n, . . . , n + Nb − 2;

2. if x
σ ′′

n−→ ∞, then Kn+Nb (x) > Km(x) for any m = n + Nb + 1, . . . , n + N − 1 and Kn(x)
> Km(x) for any m = n + 1, . . . , n + Nb − 1.

Proof: Thanks to Definition 4.2, Kn−1(x) − Km(x) = αgn−1,m,n−1 + β g̃n−1,m,n−1 and Km(x)
− Kn+Nb−1(x) = αgm,n−1,n−1 + β g̃m,n+Nb−1,n−1, where gl,m,n is defined in (2.19) and g̃l,m,n is gl,m,n

with the substitution Nb → Nb + 1. Then the first statement follows by Lemma 2.1. In the same way,
we get Kn+Nb (x) − Km(x) = αg̃n−1,m,n−1 + βgn,m,n and Km(x) − Kn(x) = αg̃m,n,n−1 + βgm,n,n ,
and the second statement again results from Lemma 2.1. �

Thanks to this lemma, from (4.11), we get

�(x, iκm) = p(n)
n−1

(
v′

n
−1D′)

Na ,meKn−1(x) + . . . , x
σ ′

n−→ ∞, (4.19)

�(x, iκm) = p(n)
n+Nb

(
v′

n
−1D′

)
1,m

eKn+Nb (x) + . . . , x
σ ′′

n−→ ∞, (4.20)

for any n = 1, . . . ,N and m = n, . . . , n + Nb − 1. In the exceptional case Na = 1, it is easy to
see that, thanks to (2.17), both these equalities coincide, and we can use either of them for the
asymptotic behavior in the whole sector σn . Correspondingly, relations for the asymptotic values
of �κm (x) follow from (4.7) and (4.12), where it is necessary to take into account that images of
subsectors (4.15) are different from σ ′

n+Na
and σ ′′

n+Na
(cf. (4.5)). Exactly, we get a decomposition of

sectors σn different from (4.16),

σn = [
σ ′

n+Na

] ∪ [σ ′′
n+Na

]
, (4.21)

where the square brackets by (4.4) denotes substitution Na ↔ Nb. Hence, by (4.15),

[σ ′
n+Na

] = {x : Kn+Nb−1(x) > Kn−1(x) and Kn(x) > Kn+Nb−1(x)},
[σ ′′

n ] = {x : Kn+Nb−1(x) > Kn(x) and Kn(x) > Kn+Nb (x)}.
(4.22)

The same remark as above must be given in the case Nb = 1.
In the following, we need the asymptotics of �(x, iκm) and �κm (x) for fixed m in dependence

on n, while in the formulas above we have its asymptotic for fixed n in dependence on running
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m. These asymptotics can be easily obtained from (4.19) and (4.20), and analogous formulas for
�κm (x), and we can state the following theorem.

Theorem 4.2: The leading asymptotic behavior of the discrete values of the Jost solutions
�(x, k) and �(x, k) is given by

�(x, iκm)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p(n)

m eKm (x), x
σn−→ ∞, n ∈ [m + 1, m + Na],

p(n)
n−1

(
v′

n
−1D′

)
Na ,m

eKn−1(x), x
σ ′

n−→ ∞, n ∈ [m + Na + 1, m + N ],

p(n)
n+Nb

(
v′

n
−1D′

)
1,m

eKn+Nb (x), x
σ ′′

n−→ ∞, n ∈ [m + Na + 1, m + N ],

(4.23)

+ . . . ,

i�κm (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p(n)
m )−1e−Km (x), x

σn−→ ∞, n ∈ [m + Na + 1, m + N ],

(
Dvn

−1
)

m Nb

p(n)
n+Nb−1

e−Kn+Nb−1(x), x
[σ ′

n+Na
]−→ ∞, n ∈ [m + 1, m + Na],

(
Dvn

−1
)

m1

p(n)
n−1

e−Kn (x), x
[σ ′′

n+Na
]−→ ∞, n ∈ [m + 1, m + Na],

(4.24)

+ . . . .

We see that for n = m + 1, . . . , m + Na , the Jost solution �(x, iκm) has the same asymptotics
along the directions on the x-plane obtained by considering the union of the corresponding sectors
σn , that is, thanks to (2.31), along the directions

m+Na⋃
n=m+1

σn

=

⎧⎪⎨⎪⎩
{Km+Na (x) − Km(x) > −∞} ∩ {Km+Nb (x) − Km(x) > −∞}, Na < Nb,

{Km+Na (x) − Km(x) > −∞}, Na = Nb,

R2 \ {Km(x) − Km+Na (x) > −∞} ∩ {Km(x) − Km+Nb (x) > −∞}, Na > Nb,

(4.25)

where, say, the condition Km+Na (x) − Km(x) > −∞ means that x → ∞ in such a way that this
difference is bounded from below. Geometrically, the set in (4.25) essentially depends on the relation
between Na and Nb. Thus, in the first line, we have a sector with a sharp angle at the vertex (being
the intersection of two half-planes); in the second line, a half-plane and in the third line, a sector
with a blunt angle at the vertex.

V. ANNIHILATORS

In the theory of the one-dimensional Sturm–Liouville operator, it is well known that the discrete
value of the Jost solution corresponding to the one-soliton potential (i.e., the potential in (1.4) with
κ1 = −κ2) decays exponentially on the x1 axis as e−|x1κ1|. The Jost solution of the heat equation,
obviously, cannot have an analogous property on the whole x-plane because of the x2-dependence
of the exponential factor (see, e.g., (4.6)).
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In order to find a hint for a proper formulation in the case of the heat equation, let us consider
the trivial example of the one-soliton potential, i.e., the case Na = Nb = 1 and arbitrary κ1 and κ2

obeying (2.3). By (2.13) and (2.14), we have τ (x) = deK1(x) + eK2(x), where d is a constant, that
thanks to (2.7) gives (1.4). Then from (4.6), we have

�(x, iκ2) = −d�(x, iκ1) = d(κ1 − κ2)eK1(x)+K2(x)

deK1(x) + eK2(x)
, (5.1)

and, for the asymptotics of the discrete value of the Jost solution, we have

�(x, iκ1) ∼= �(x, iκ2) ∼=
⎧⎨⎩ eK2(x), x

σ1−→ ∞,

eK1(x), x
σ2−→ ∞,

(5.2)

where closed sectors σ1 and σ2 are given by

σ1 = {K1(x) − K2(x) > −∞} ≡ {x1 + (κ1 + κ2)x2 < +∞},
σ2 = {K2(x) − K1(x) > −∞} ≡ {x1 + (κ1 + κ2)x2 > −∞},

(5.3)

where we understand inequalities here as in Definition (4.1). Now let the scalar product of the
two-dimensional vectors x = (x1, x2) and q = (q1, q2) be denoted by

qx = q1x1 + q2x2, (5.4)

and let

qmn = q2 − (κm + κn)q1 + κmκn (5.5)

for any m, n ∈ Z. Then, thanks to (5.2), for the asymptotic behavior of the functions e−qx�(x, iκ1)
and e−qx�(x, iκ2), we get

e−qx�(x, iκ1) ∼= e−qx�(x, iκ2)

∼=
⎧⎨⎩ exp[−(q1 − κ2)(x1 + (κ1 + κ2)x2 − q12x2], x

σ1−→ ∞,

exp[−(q1 − κ1)(x1 + (κ1 + κ2)x2 − q12x2], x
σ2−→ ∞,

(5.6)

and we deduce that they are bounded for all x if and only if q12 = 0 and κ1 < q1 < κ2, this on the
segment of the line q12 = 0 on the q-plane cutoff by the parabola q2 = q2

1 (see Fig. 2).
This trivial result has an unexpected generalization in the case Na �= Nb. Precisely, for Nb

> Na ≥ 1, the set of the q-plane where the discrete values �(x, iκm) of the Jost solution multiplied
by the exponent e−qx are bounded becomes a polygon. As regards the dual Jost solution, the functions
eqx�κm (x) are bounded inside a polygon for Na > Nb ≥ 1.

q
2
=
q 21

q1

q2

κ1 κ2

FIG. 2. (Color online) One-dimensional case.
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We then consider the case Nb > Na ≥ 1 and introduce the angular sectors

ρk(q) = θ (̃qk,k−Na )θ (̃qk+Na ,k), (5.7)

where the θ is step functions and

q̃mn = (κm − κn)qmn, (5.8)

and we call

Qm = (κm, κ2
m), Qn = (κn, κ

2
n ), (5.9)

the points of intersection of the line q̃mn = 0 with the parabola q2 = q2
1 in the q-plane.

The angular sector ρk(q) has a vertex on the parabola at the point Qk . The ray bordering the
sector from the left (looking from the vertex inside the sector) crosses the parabola at the point
Qk−Na and the ray bordering the sector from the right (looking from the vertex inside the sector)
crosses the parabola at the point Qk+Na . If we add the point at infinity to the parabola and, then
consider it a closed curve, as k increases, the sector moves along the parabola in the anticlockwise
direction.

Then, we can prove the following lemmas.

Lemma 5.1: The region of the q-plane defined by the characteristic function

Pm(q) =
m+Nb∏

k=m+Na

ρk(q) (5.10)

is a polygon included in the parabolic region q2 ≥ q2
1 with a vertex at the point Qm. More precisely,

this polygon is included in the polygon with the vertices Qm, Qm+1, . . . , Qm+Nb belonging to the
parabola, coincides with this polygon in the case Na = 1 and belongs to the strip

min
m≤l≤m+Nb

κl ≤ q1 ≤ max
m≤l≤m+Nb

κl . (5.11)

Proof: The angular sector ρk at k = m + Na has the left ray (looking from the vertex inside the
sector) crossing the parabola at the point Qm . As k increases, the sector rotates along the parabola
in the anticlockwise direction up to the sector ρm+Na , which has the right (looking from the vertex
inside the sector) crossing the parabola just at the point Qm . Therefore, the sectors ρk for k running
in the interval k = m + Na, . . . m + Nb cover a common region, which is a polygon inside the
parabola with a vertex at Qm . For Na = 1, each sector ρk has a right ray coinciding with the left
ray of the sector ρk+1 and the sides of the polygon are, therefore, just the intersections of the rays
bordering the angular sectors ρk with the region inside the parabola and the vertices of the polygon
are the points Qm , Qm+1, . . . , Qm+Nb belonging to the parabola. For Na > 1, the point Qk+Na , the
intersection of the right ray of the sector ρk with the parabola, lies to the left of the left ray of the
sector ρk+1 and, therefore, does not belong to the polygon, and we deduce that the polygon has only
one vertex belonging to the parabola, precisely, the point Qm , and that it belongs to the polygon with
the vertices Qm , Qm+1, . . . , Qm+Nb . In addition, we can deduce that the polygon defined by (5.10)
belongs to the strip in (5.11). �

Lemma 5.2: The polygon defined by the characteristic function

εm(q) =
m+Nb∏
k=m

θ (̃qk+Na ,k) (5.12)

satisfies the equation

εm(q) = Pm(q)

⎧⎪⎪⎨⎪⎪⎩
1, Nb ≥ 2Na − 1,

m+Na−1∏
k=m+Nb−Na+1

θ (̃qk+Na ,k), Nb < 2Na − 1,
(5.13)
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and, therefore, belongs to the polygon Pm(q) considered in Lemma 5.1 and is included in the
parabolic region q2 ≥ q2

1 of the q-plane. Moreover, the polygon defined by (5.12) is not void.

Proof: Thanks to the equality
∏m+Nb

k=m θ (̃qk+Na ,k) = ∏m+N
k=m+Na

θ (̃qk,k−Na ) obtained by shifting
k → k − Na , we get that

m+Nb∏
k=m

θ (̃qk+Na ,k) =
(

m+Nb∏
k=m

θ (̃qk+Na ,k)

)
m+N∏

k=m+Na

θ (̃qk,k−Na ),

as θ of the second factor are all present in the first one. Then, factoring Pm(q) from the rhs and
shifting the running index k for the remaining θ in the two corresponding products for k → k − Na

and k → k + Na , we get

εm(q) = Pm(q)

⎛⎝m+2Na−1∏
k=m+Na

θ (̃qk,k−Na )

⎞⎠ m+Nb∏
k=m+Nb−Na+1

θ (̃qk+Na ,k). (5.14)

If Nb ≥ 2Na − 1, the θ in the two products in the rhs are already present in Pm(q), and we then get
the first equality in (5.13). If Nb < 2Na − 1, we have

m+2Na−1∏
k=m+Na

θ (̃qk,k−Na ) =
m+Nb∏

k=m+Na

θ (̃qk,k−Na )
m+2Na−1∏

k=m+Nb+1

θ (̃qk,k−Na ), (5.15)

m+Nb−1∏
k=m+Nb−Na+1

θ (̃qk+Na ,k) =
⎛⎝ m+Na−1∏

k=m+Nb−Na+1

θ (̃qk+Na ,k)

⎞⎠ m+Nb∏
k=m+Na

θ (̃qk+Na ,k), (5.16)

and then recalling the expression for Pm(q) in (5.10) and (5.7) and noticing that the second product
in (5.15) and the first product in (5.16) coincide, we get the second equality in (5.13).

In order to prove that the polygon defined by (5.12) is not void, it is sufficient to prove
that the product in the second line of the rhs of (5.13) equals 1 at the point Qm . In fact, from
Definitions (2.19) and (5.8), we have that q̃k+Na ,k(Qm) = −gk+Na ,m,k+Na , which, thanks to Lemma
2.1, is greater or equal to zero only for m = k, . . . , k + Na (mod N ), which is impossible for
k = m + Nb − Na + 1, . . . , m + Na − 1 and Nb < 2Na − 1. �

Lemma 5.3: The characteristic functions εm(q) introduced in Lemma 5.2 coincide with the
characteristic function

ε̃m(q) =
m+Nb∏
k=m

θ (̃qk+Na ,k)
m+Nb−1∏

k=m

θ (̃ql+Na ,l+1). (5.17)

Proof: It follows if we notice that the parameters κNa+1, κl , and κl+1 for any value of l turn out to
be ordered only in one of the two following ways: κNa+1 < κl < κl+1 or κl < κl+1 < κNa+1 with the
only exception of the case l = N (mod N ), where κN+1 < κNa+1 < κN . Taking into account
that q is inside the parabola q2 = q2

1 , we get that for any value of l, θ (̃ql+Na ,l)θ (̃ql+Na ,l+1)
= θ (̃ql+Na ,l). �

Now, we can prove the following theorem.

Theorem 5.4: 1. In the case Na < Nb, the function e−qx�(x, iκm) for any m = 1, . . . ,N is
exponentially decreasing with respect to x for any q inside the polygon defined by the characteristic
function

εm(q) =
m+Nb∏
k=m

θ (̃qk+Na ,k), (5.18)

while there exists no such domain on the q-plane for Na ≥ Nb.
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2. In the case Na > Nb, the function eqx�κm (x) for any m = 1, . . . ,N is exponentially decreas-
ing with respect to x for any q inside the polygon defined by the characteristic function

εm(q) =
m+Nb∏
k=m

θ (̃qk,k+Na ), (5.19)

while there exists no such domain on the q-plane for Na ≤ Nb.
3. These polygons are all included in the parabolic region q2 ≥ q2

1 .

Proof: In (4.23) and (4.25), we have seen that the geometry of the sector �m = ⋃m+Na
n=m+1 σn ,

where �(x, iκm) has asymptotic behavior eKm (x), essentially depends on the relation between Na and
Nb. Then, we first let Na < Nb and consider the directing vectors of the rays bordering the sectors

�m , σ ′
n , and σ ′′

n (n = m + Na + 1, . . . , m + N ), where the product e−qx�(x, iκm), according to
(4.23) and (4.25), has the respective asymptotic behaviors eKm (x)−qx , eKn−1(x)−qx , and eKn+Nb (x)−qx .

For �m , they are ym and ym+Na ; for σ ′
n , they are yn−1 and y′

n; and for σ ′′
n , they are yn and y′

n (see (2.32)

and (4.18)). According to Definition 2.1, we say that x → ∞ in the sector �m , if x − αym − βym+Na

is bounded while α2 + β2 → ∞ and both α and β are bounded from below. On the other hand, it is
easy to see that

Km(x) − qx
∣∣
x=αym+βym+Na

= αq̃m+Nb,m − βq̃m+Na ,m, (5.20)

and we deduce that e−qx�(x, iκm) is bounded in the sector �m if and only if q̃m+Nb,m ≤ 0 and
q̃m+Na ,m ≥ 0. By Definition 4.2, we say that x → ∞ in the sectors σ ′

n and σ ′′
n , if x − αyn−1 − βy′

n
and x − αy′

n − βyn are, respectively, bounded while α2 + β2 → ∞ and both α and β are bounded
from below. Since we have

Kn−1(x) − qx
∣∣
x=αyn−1+βy′

n
= αq̃n+Nb−1,n−1 + βq̃n+Nb,n−1 (5.21)

and

Kn+Nb (x) − qx
∣∣
x=αy′

n+βyn
= αq̃n+Nb,n−1 + βq̃n+Nb,n, (5.22)

we conclude that e−qx�(x, iκm) is bounded in the sectors σ ′
n and σ ′′

n if and only if q̃n+Nb−1,n−1,
q̃n+Nb,n−1, and q̃n+Nb,n are less than or equal to zero.

Thus, the condition that the product e−qx�(x, iκm) decays asymptotically in any direction on the
x-plane is equivalent to the condition that q belongs to the set on the q-plane given by characteristic
function

ε̃m(q) =
m+Nb∏
k=m

θ (̃qk+Na ,k)
m+Nb−1∏

k=l

θ (̃ql+Na ,l+1), (5.23)

where we took into account that the indices are defined modN and that q̃m,n = −q̃n,m (see (5.5) and
(5.8)).

Thanks to the four lemmas above, the first part of statement 1 of the theorem for Na < Nb is
proved.

In the case Na = Nb, by (2.32), we have that ym+Na = −ym , m = 1, . . . , Na . Thus, it is enough to
consider the asymptotic behavior along the ray rm (see Definition 2.1). We choose ym as the directing
vector, and by (5.20) for β = 0, we have to consider the limits in both directions, α → ±∞. It is clear
that the rhs of (5.20), independently of the sign of q̃m,m+Nb , cannot decay in both these directions,
and this rhs is bounded only if q̃m,m+Nb = 0, which, thanks to (5.5) and (5.8), gives a line and not
a domain on the q-plane. Analogously, in the case Nb < Na , the directing vectors of the sector
in the third line of (4.25) are the same as in (5.20), but the conditions on the behavior of α and
β are different. Together with the limit α → +∞, β → +∞, we have to take sectors α → +∞,
β → −∞, and α → −∞, β → +∞ into account. Thus, we see that also in this case, it is impossible
to give conditions on q̃m,m+Nb and q̃m,m+Na that always make the limit of the rhs of (5.20) equal
to −∞. This proves statement 1 of the theorem. Statement 2 for eqx�κm (x) follows from (4.7). In
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FIG. 3. (Color online) Na = 4, Nb = 6, N = 10, polygon for m = 5 and union of polygons for m = 1, . . . , 10.

particular, the existence of the polygon only in the case Nb < Na results from above and (4.4). The
third statement of the theorem is proved in Lemma 5.2. �

Using (2.3), (2.17), and (5.8), we can rewrite (5.18) more explicitly,

εm(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nb∏
k=m

θ (qk,k+Na )
m∏

k=1

θ (−qk,k+Nb ), 1 ≤ m ≤ Na,

Nb∏
k=m

θ (qk,k+Na )
Na∏

k=1

θ (−qk,k+Nb )
m∏

k=Na+1

θ (qk,k−Na ), Na + 1 ≤ m ≤ Nb,

Na∏
k=m−Nb

θ (−qk,k+Nb )
m−Na∏
k=1

θ (qk,k+Na ), Nb + 1 ≤ m ≤ N .

(5.24)

For the potential u(x) with Na = 4 and Nb = 6, Fig. 3 shows the polygon with characteristic
function εm(q) on the q-plane in the case m = 5 and the union of all polygons for m = 1, . . . , 10.

VI. CONCLUDING REMARKS

Theorem 5.4 shows that the extended L-operator

L(x, x ′; q) = {−∂x2 − q2 + (∂x1 + q1)2}δ(x − x ′) − u(x)δ(x − x ′) (6.1)

is not invertible in the case, where u(x) is an (Na, Nb)-soliton potential. It has right annihilators if
Na < Nb and left ones if Nb < Na .

In fact, in the case Na < Nb, if we introduce an operator Hm with the kernel

Hm(x, x ′; q) = εm(q)e−qx�(x, κm)ψ(x ′; q), (6.2)

where ψ(x ′; q) is any arbitrary self-adjoint function bounded in x ′, we have

L(q)Hm(q) = 0. (6.3)

Analogously, for the case Nb < Na , we have

Km(q)L(q) = 0 (6.4)

with

Km(x, x ′; q) = εm(q)ϕ(x ; q)eqx ′
�κm (x ′), (6.5)

where ϕ(x ; q) is any arbitrary self-adjoint function bounded in x inside the polygon defined by
εm(q).
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We note that the total Green’s function G(x, x ′, k) of the operator L can be defined (see
Refs. 9 and 11) as the value of the kernel M(x, x ′; q) at q1 = k�, q2 = k2

� − k2
� for a complex

spectral parameter k = k� + i k�. These values of q lie outside the parabola q2 = q2
1 and, therefore,

outside the polygon and touch it only at the vertices. The Green’s function then exists for any k but it
is singular at the points k = iκm corresponding to the vertices of the polygon touching the parabola.
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APPENDIX: REGULARITY OF POTENTIAL AND JOST SOLUTIONS

We defined the Jost solutions �(x, k) in a symmetric form in (3.3), so that

χ (x, k) ≡ �(x, k)ei kx1+k2x2 (A1)

became a polynomial in the spectral parameter k with the higher power term given by (i k)Nb .
Therefore, it can be determined by giving its values at Nb points. If these points are chosen to be
k = iκn with n belonging to the subset J = {n1, · · · , nNb } of numbers in the interval {1, . . . ,N },
these values can be determined by a combined use of the analyticity properties of χ (x, k) and the
condition �(iκ)D = 0 in (3.9).

Let

�(k) =
∏
n∈J

(i k + κn). (A2)

Then the ratio χ (x, k)�−1(k) is normalized to 1 at infinity, and the poles at the points k = iκn with
n ∈ J are the only departures from analyticity. We therefore have

χ (x, k)

�(k)
= 1 +

∑
n∈J

χ (x, iκn)

(k − iκn)�′(iκn)
. (A3)

This gives

�(x, iκm) = �(x, iκm), m ∈ J, (A4)

�(x, iκm) = �(iκm)eKm (x)

(
1 − i

∑
n∈J

χ (x, iκn)

(κm − κn)�′(iκn)

)
, m /∈ J, (A5)

Then the condition (3.9) is equivalent to∑
m∈J

χ (iκm)

[
eKmDml − i

∑
n /∈J

�(iκn)eKn

(κn − κm)�′(iκm)
Dnl

]
= −

∑
n /∈J

�(iκn)eKnDnl . (A6)

Comparing this with (4.6) for the τ -function (up to the standard similarity property), we get

τ (x) = det

(
Dml − i

∑
n /∈J

�(iκn)eKn−Km

(κn − κm)�′(iκm)
Dnl

)
m∈J

l=1...,Nb

. (A7)

By inserting this τ -function in (2.7), we get the soliton solution, and different choices of the set J
correspond to different equivalent formulation, of the soliton solution, in accordance with the result
presented in Ref. 13.
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We want to get a regularity condition for the potential equivalent to (2.18), but involving only
the Na × Nb submatrix d(n) introduced in (2.44) and not the full N × Nb matrix D.

This, of course, can be obtained by purely algebraic methods. However, we want to get this result
by using the freedom in expressing the τ (x) function offered by (A7), thus showing its usefulness.

To get this result, we consider the evolution with respect to a multivalue time describing the
evolution of the entire KPII hierarchy. Then, the exponents in the different formulations of (A7)
are independent, and the requirement that their coefficients are greater than or equal to zero in one
formulation implies the same requirement in all other formulations.

We can then state the following theorem.

Theorem A.1: Let D be a N × Nb matrix of the form

D = πB with B =
(

d
Eb

)
, (A8)

where d is a real Na × Nb matrix and Eb is the unit Nb × Nb matrix and where the N × N matrix

π = ‖πmn‖Nm,n=1, πmn = δπ(m),n ≡ δm,π−1(n), (A9)

performs a permutation of the N rows of the matrix on the right according to the transformation

π : (1, . . . ,N ) → (π (1), . . . , π (N ). (A10)

Then all the maximal minors of the matrix D are non-negative if and only if the Na × Nb matrix

d̃kr = (−1)1+lr dπ( j(Na +1−k)),lr , k = 1, . . . , Na, r = 1, . . . , Nb, (A11)

where { j1, j2, . . . , jNa } is a permutation of {1, 2, . . . , Na}, such that

π−1( j1) < π−1( j2) < · · · < π−1( jNa ), (A12)

and {l1, l2, . . . , lNb} is a permutation of {1, 2, . . . , Nb}, such that

π−1(Na + l1) < π−1(Na + l2) < · · · < π−1(Na + lNb ) (A13)

is totally non-negative according to the definition in Ref. 19, i.e., has all its minors non-negative.

Proof: From (A8) and (A9), we have

Dml = Bπ(m),l . (A14)

Now let J be the set

J = {π−1(Na + 1), . . . , π−1(N )}, (A15)

and let

C J = {π−1(1), . . . , π−1(Na) (A16)

be its complement in the set {1, . . . ,N }.
Then, from (A7), we have

Nb∑
l=1

χ
(
iκπ−1(Na+l)

)⎡⎣eKπ−1(Na +l)δl,l ′ + i
Na∑
j=1

�
(
iκπ−1( j)

)
eKπ−1( j)(

κπ−1(Na+l) − κπ−1( j)
)
�′ (iκπ−1(Na+l)

)d j,l ′

⎤⎦
= −

Na∑
j=1

�
(
iκπ−1( j)

)
e

Kκ
π−1( j) d j,l ′ . (A17)

For the τ function, we therefore obtain

τ (x) = det

⎛⎝δl,l ′ + i
Na∑
j=1

�(iκπ−1( j))e
Kπ−1( j)−Kπ−1(Na +l)(

κπ−1(Na+l) − κπ−1( j)
)
�′(iκπ−1(Na+l))

d j,l ′

⎞⎠
l,l ′=1,...,Nb

. (A18)
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Let us re-order the rows in the matrix in the determinant from l = 1, 2, . . . , Nb to a permutation
l1, l2, . . . , lNb , such that

κπ−1(Na+l1) < κπ−1(Na+l2) < · · · < κπ−1(Na+lNb ), (A19)

and let us re-order the sum over j from j = 1, 2, . . . , Na to a permutation j1, j2, . . . , jNa , such that

κπ−1( j1) < κπ−1( j2) < · · · < κπ−1( jNa ). (A20)

Then, up to an unessential sign, the τ -function can be rewritten as

τ (x) = det

(
Er,l ′ +

Na∑
k=1

(
ie−K

π−1(Na +lr )

�′ (iκπ−1(Na+lr )
))�rk

(
�
(
iκπ−1( jk )

)
eKπ−1( jk )

)
d jk ,l ′

)
r,l ′=1,...,Nb

, (A21)

where

Er,l ′ = δlr ,l ′ , (A22)

�rk = 1

κπ−1(Na+lr ) − κπ−1( jk )
. (A23)

If we multiply the matrix in the determinant by E−1 from the right, we get

τ (x) = det(ENb + T ) (A24)

up to a sign, where (r, s = 1, . . . , Nb),

Trs =
Na∑

k=1

(
ie−K

π−1(Na +lr )

�′ (iκπ−1(Na+lr )
))�rk

(
�
(
iκπ−1( jk )

)
eKπ−1( jk )

)
d jk ,ls . (A25)

By using the Binet–Cauchy formula repeatedly, we have

τ (x) =
Nb∑

n=0

∑
1≤r1<r2<···<rn≤Nb

T

(
r1, r2, . . . , rn

r1, r2, . . . , rn

)
, (A26)

and then

T

(
r1, r2, . . . , rn

r1, r2, . . . , rn

)
=

∑
1≤k1<k2<···<kn≤Na

(
n∏

m=1

ie−K
π−1(Na +lrm )

�′ (iκπ−1(Na+lrm )
))

×
(

n∏
m=1

�
(
iκπ−1( jkm )

)
e

Kπ−1( jkm )

)
�

(
r1, r2, . . . , rn

k1, k2, . . . , kn

)
d

(
k1, k2, . . . , kn

r1, r2, . . . , rn

)
. (A27)

Now, if we require the coefficients of the exponents be non-negative, we get

det E

(
n∏

m=1

i

�′ (iκπ−1(Na+lrm )
))( n∏

m=1

�
(
iκπ−1( jkm )

))

× �

(
r1, r2, . . . , rn

k1, k2, . . . , kn

)
d

(
k1, k2, . . . , kn

r1, r2, . . . , rn

)
≥ 0. (A28)

Since

�

(
r1, r2, . . . , rn

k1, k2, . . . , kn

)
=

∏
1≤i<m≤n

(
κπ−1(Na+lri ) − κπ−1(Na+lrm )

) (
κπ−1( jkm ) − κπ−1( jki )

)
n∏

i,m=1

(
κπ−1(Na+lri ) − κπ−1( jkm )

) , (A29)
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the denominator in (A29) cancels with
∏n

m=1 �(iκπ−1( jkm )) in (A28), and after reversing the order of
the ri , we have (

n∏
m=1

�(iκπ−1( jkm ))

)
�

(
rn, r2, . . . , r1

k1, k2, . . . , kn

)
> 0. (A30)

Finally, since

−i�′(iκπ−1(Na+lrm )) = (−1)lrm −1
n∏

s=1,s �=m

∣∣−κπ−1(Na+lrm ) + κπ−1(Na+lrs )

∣∣ , (A31)

we get the condition

(−1)
∑n

m=1(1+lm )d

(
kn, kn−1, . . . , k1

r1, r2, . . . , rn

)
≥ 0. (A32)

We conclude that the matrix

d̃kr = (−1)1+lr dπ( j(Na +1−k)),lr , k = 1, . . . , Na, r = 1, . . . , Nb, (A33)

is totally non-negative. �
The following corollary follows easily from this theorem.

Corollary A.1: An Na × Nb matrix d̃ is totally non-negative, i.e., all its minors are non-negative,
if and only if all the maximal minors of the N × Nb matrix

D =
(

d

Eb

)
, (A34)

where

d jl = (−1)l+1d̃Na+1− j,l , j = 1, . . . , Na, l = 1, . . . , Nb, (A35)

and Eb is the unit Nb × Nb matrix, are non-negative. �
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