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Abstract—The transformation of internal waves over the oceanic shelf of variable depth is studied analytically
within a linear theory of a two-layer flow. It is shown that, at a specific character of depth variation, the inter-
nal wave propagates without reflection from the slope even if it is sufficiently steep. The properties of such
progressive waves are studied—their form and the current structure in the upper and lower layers. The trans-
formation of the wave propagating from the open ocean, where the depth is assumed to be constant, is con-
sidered. It is shown that the wave is transformed at the shelf edge and does not change its form in the course
of time during its further propagation over the shelf. The height and form of the internal wave are calculated
at the interface of the transition of the two-layer flow into the one-layer flow. Applications of the developed
analytical theory to the estimation of internal wave transformation over a real shelf are discussed.
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INTRODUCTION

The transformation of the internal wave field
observed over the shelf is now actively modeled within
different models of the stratified ocean from weakly
nonlinear to fully linear models. We shall present here
the latest reviews and books on this problem [16, 20,
26]. The role of the analytical models developed for
the idealized conditions is sufficiently important
because it makes it possible to study the effects in a
wide range of parameter variation and deeply under-
stand the physics of the processes. However, the num-
ber of such models in the theory of internal waves is
extremely small. All of them are related to the vertical
propagation of a monochromatic wave in the ocean
with nonhomogeneous distribution of the buoyancy
frequency or to the description of the mode structure
of internal waves [3, 6, 11]. In the case of the propaga-
tion of internal wave packets over an uneven bottom,
approximate analytical expressions are obtained on
the basis of the asymptotic methods in the case of a
smoothly varying bottom and slow variation in the ver-
tical stratification of density and currents in the hori-
zontal direction [7, 10, 27]. Such methods can also be
applied to the analysis of the transformation of a soli-
tary weakly nonlinear wave (soliton) in the coastal
zone [10, 15, 19, 21, 22]. Approximate solutions are
known for the transformation of an internal wave in a
two-layer flow with a step at the bottom [17, 23]. Here
we present one exact analytical solution in the model
of internal wave transformation over uneven bottom in
a two-layer ocean, which shows the possibility of non-
reflecting wave propagation over a slope even if it is
sufficiently steep. Such a model is also useful for test-

ing the newly developed numerical models of internal
waves. First, we shall describe the structure of the wave
field over the variable bottom of a special shape, which
we shall call the “nonreflecting bottom” (Section 2).
Then, we shall consider the transformation of this field
by the waves arriving from the open ocean and its
transformation in the transition zone when a two-layer
flow becomes a one-layer flow (Section 3). The results
are summarized in the Conclusions.

1. PROGRESSIVE WAVES IN A TWO-LAYER
OCEAN OF VARIABLE DEPTH

Here we consider the propagation of waves in a
two-layer ocean of variable depth (Fig. 1). Using the
rigid lid approximation at the free surface and the
Boussinesq approximation, we write linearized equa-
tions for shallow water [6, 7, 8, 12]:

hyuy + hy(x)u, =0, (1)
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where 1 is the displacement of the interface between
fluids of different densities, #, and u, are average veloc-
ities of the flows in the upper and lower layers, 4, and
h,(x) are the depths of the upper and lower layers, and
g = g(p, — p1)/p, is the reduced acceleration due to
gravity,
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We exclude the flow velocity in the upper layer from
(1). Then Eq. (2) is written as

W g MO0 _ g, )
ot hy+h,0x
and system of equations (3) and (4) becomes closed.

These equations are reduced to the wave equation for
the displacement of the interface boundary,

2
-2 = o, 5)
or Ox Ox
where
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determines the velocity of long waves’ propagation in
a two-layer ocean.

An equation of type (5) is the main equation in the
theory of waves in nonhomogeneous media not only
for internal waves [1, 2]. In the general case, it
describes various processes of wave propagation,
reflection, scattering, and formation of resonance
effects. It has been noted for a long time in mathemat-
ical physics that, under specific conditions, Eq. (5)
can be reduced to a wave equation with constant coef-
ficients (see, for example, [25]), which rather simpli-
fies its solution. Recently, an interpretation was given
for solutions as nonreflecting waves in a nonhomoge-
neous medium that provide the possibility of the
energy transfer over long distances without scattering.
These phenomena were considered for the surface
waves in the ocean [5, 9]. Actually, solutions of the
same class were also found for vertical propagation of
internal waves in the ocean with nonhomogeneous
distribution of the buoyancy frequency [3, 6, 11, 18].
In this case the internal wave energy can spread into
the deep layers of the ocean. Here we shall discuss the
possibility of the existence of nonreflecting progressive
internal waves in a two-layer ocean of variable depth.
Let us reproduce briefly the procedure of obtaining
such solutions within Eq. (5); see [18]. It is based on
the presentation of the solution in the following form:

n(% x) = B(x)P@(1, 1), (7

We shall see below that here the new variables have the
sense of amplitude B(x) and phase: the time of propa-
gation t(x). Then Eq. (5) is reduced to an equation of
the Klein—Gordon type with variable coefficients for
the new unknown function ®(z, t):

3[82<D 2((11)282@} [2dBd7: d( 2 d«:ﬂacb
== = |- == = B | ==
or ax’ o’ dxdx dx dx 6(1:8)
——al(czg—g)q) = 0.
dx\ dx

Special requirements should be satisfied to make
the coefficients of Eq. (8) constant (then its wave solu-
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Fig. 1. Geometry of the problem.

tions have a clear physical sense). The first of them is
obvious from the structure of the wave operator in
square brackets. It leads to the following definition of
phase:

t(x) = c‘(’—jg)

Here we selected the plus sign for definiteness. The
second parenthesis in (8) should turn to zero providing
nongrowing spatial solutions, which leads to the fol-
lowing condition:

(€)

B(x) = const
Ne(x)
Finally, the coefficient at the last term in (8) should be
proportional to Bif we want to transform it to an equa-
tion with constant coefficients. Here we shall consider
only one specific case, in which the last additive in (8)
vanishes, which, with (10) taken into account, leads to
the following dependence of ¢(x):

c(x) = co(x/L)"", ¢ = Jg'h, (11)

where L characterizes the width of the shelf. In this
case, Eq. (8) is reduced to the wave equation with con-
stant coefficients
re_de _
o o
Equation (12) is well studied in mathematical
physics, and it is easy to formulate and solve the
Cauchy problem for it. In particular, the solutions of
Eq. (12) can be presented as a sum of the two waves
propagating to the opposite sides (without the bound-
ary conditions yet being taken into account), so that
solution (7) of the initial wave equation with variable
coefficients describes the progressive waves, which
exist despite the velocity variation with distance. This

(10)

(12)
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Fig. 2. Depth of the lower layer satisfying relation (13).

is precisely why we call these waves nonreflecting
waves, keeping in mind that they reflect not at the
underwater slope but only at its boundaries. The
objectives of our research are the physical properties of
such solutions in the theory of internal waves.

First of all, we consider the types of bottom topog-
raphy, where nonreflecting propagation of progressive
waves is possible. Using (6) and (11), we find the depth
of the lower layer,

(13)

The form of a nonreflecting slope is shown in Fig. 2.
Formally, function 4,(x) is defined only in the interval
0 <x< L. At point x = 0, the fluid becomes homoge-
neous and, if we consider that, in the region x < 0, the
depth of the basin coincides with the depth of the
upper layer 4, is or less than it, then internal waves can-
not propagate in the region x < 0. Actually, point x =0
is the edge for the surface waves: internal waves
approaching this point can either reflect or break (we
shall discuss this problem below). At the right bound-
ary (x = L), the depth of the basin increases sharply,
although the velocity of the propagation of internal

waves remains finite and tends to ¢, (within the shal-

low water theory). It is clear that sewing of the bottom
profile with a more realistic depth profile is needed in
this region (or we have to reject the shallow water
approximation). This will be discussed in Section 3.

Let us now describe the structure of the progressive
waves propagating over the bottom topography (13). The
displacement of the interface boundary in a progressive
wave (propagating to the left for definiteness) is

N, x) = Bx)P[r+1(x)],
const 1

where function ®(#) should describe a sufficiently
short pulse with rapid decay at the ends providing
localization of the wave within interval 0 < x < L. The
temporal form of the internal wave at different spatial
point remains constant (only its amplitude and phase
change); however, its spatial structure changes in time.

(14)

B(x) =
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As seen from (14), the amplitude of the wave infinitely
grows when the wave approaches the edge (x = 0).
Observations show that internal waves can either break
at the slopes or completely reflect from them [13, 14,
24]. In the first case, nonlinear effects should be taken
into account and, here, the capabilities of the analyti-
cal solutions are restricted. In the second case, simi-
larly to the long surface waves [4], the problem can be
solved under specific conditions in the linear approxima-
tion. Precisely this case ill be considered below. When the
wave approaches the other boundary (x= L), its
amplitude remains finite. However, a change in the
bottom topography actually occurs near this boundary
because the depth never approaches infinity and the
transformation of the wave in this region should be
studied separately (Section 3).

The current induced by the progressive wave in the
lower layer is found from (4), and the current in the
upper layer is found from (1):

u(x,0) = ~B) X ue ),

(15)

ox)
B LU ),

U(E x) = (&) - 1250

€ = t+1(x).

Uy(x, 1)

e o

The expressions for the current velocities contain two
additives: the first of them repeats the form of the dis-
placement wave, and the second is determined by the
integral of this function. As a result, the form of the
velocity wave, unlike the displacement wave, changes
in time at different points. We note that in the vicinity
of the edge (x = 0), the current velocity in the upper
layer remains finite, while in the lower layer it
increases infinitely inversely proportional to the depth
of the lower layer. At the same time, the water dis-
charge in each layer remains finite and the total dis-
charge is zero. At the second boundary (x = L), the
velocity field remains finite, and the current velocity in
the lower layer decreases owing to the unlimited
increase in the thickness of the layer.

Formally, the progressive displacement wave
should change its sign in time to provide the conver-
sion of integral (16) at large times. However, in reality,
the internal wave propagates through the shelf zone
with a specific law of depth variation (13) during a
finite time, so that the wave field is limited.

2. TRANSFORMATION OF AN INTERNAL
WAVE AT THE BOUNDARIES
OF THE NONREFLECTING BOUNDARY

We already noted that progressive waves over a non-
reflecting bottom exist only in a limited interval, so
that it is important to investigate their generation by
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waves propagating from the open ocean. In a sketch of
a nonreflecting depth profile over slope (13), it should
be sewed with the flat bottom at a point, which we
denote here as x = x; (the geometry of the problem is
shown in Fig. 3).

A limited wave field over a nonreflecting slope has
a form of a standing wave (first, we consider the mono-
chromatic processes):

n(x’ l‘) _ At &[eiw(mr)_eim(t—r)]
Ne(x)

17)
= 2iA, /&Sin(mr)exp(iwt),
c(x)
where
_ [y 3 o)
T = J-C(y) T 1o

0

Here 4, is the amplitude of the wave that propagated
through point x = x; and ¢, is the velocity of the inter-

nal wave at the shelf edge x, (c, = ¢, (xo/L)??).

In the region of the constant depth, we have a stan-
dard superposition,

n(x, 1) = Aiexp[iw(t+x_xoﬂ

Co

+A,exp[iw(t—x_x0ﬂ.
Co

The amplitude of the reflected A4; and transformed A,
waves are found from the sewing condition at the shelf
edge (at point x;). This is the continuity of displace-
ment (pressure) and its spatial derivative (discharge).
The obtained algebraic system is easily solved; in par-
ticular, the amplitude of the transformed wave is

19)

1

A = A

1

exp(iot,) —

sin(wty) | (20)

0T,

It is determined by only one parameter wt,, where T, is
the propagation time of the internal wave from the
shelf edge to the water edge;

X

o= [4x 23 Q1)

S e e
0

This parameter has a clear physical sense as the ratio of
the wave runtime over the slope to the period of the
wave. As was expected, short waves (wt, = 1) almost
completely propagate over the slope, while long waves
(oty <€ 1) are completely reflected from the slope.
Using the spectral coefficients of reflection and trans-
formation, it is possible to calculate the wave field in
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Fig. 3. Geometry of the problem: nonreflecting slope is
sewed with the shelf break and the edge.

the vicinity of the shelf break. We are interested here
only in the transformed wave, which will further prop-
agate to the edge as a progressive wave. At the shelf
edge, we use the inverse Fourier—Laplace transforma-
tion for the wave and obtain the following Fredholm
equation of the second kind:

(-3 [nE+1-Tde = (. ()

We present here an approximate analytical solution of
Eq. (22) for the internal wave, which has the form of
the Korteweg de Vries soliton:

n(r) = Asechz(lr) , 23)

where T is the characteristic duration of the soliton.
Then in the case T << 1, we substitute in the integral 1,
for n; and obtain

n, = A{sechz(lT) + %[tanh(% - tanh(t _]2110)%})

As was expected, the short pulse practically com-
pletely propagates to the slope and almost does not
change its form. A positive tail follows the soliton after
the transformation at the inflection point, which ends
at the moment of the arrival of the wave reflected from
the inflection point. The wave form is presented in
Fig. 4 for 1, =8T.

In the course of time, as the wave propagates over
the slope, its form does not change, but the amplitude
increases when the wave approaches the water edge
according to relation (14). Of course, the wave form in
the space changes in time (see Fig. 5, in which the
transformation of the soliton is shown without taking
into account a weak positive tail). As the wave
approaches the water edge, its form becomes asym-
metrical and the front becomes steeper.
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Fig. 4. Incident (dashed line) and transformed (solid line)
waves at the shelf break.

Point x = 0 corresponds to the edge where the two-
layer fluid becomes a one-layer fluid. According to
(17), the wave is limited at the edge and the displace-
ment of the interface boundary between two fluids at
this point can be determined analytically through the
form of the transformed wave at the shelf edge:

n(x: 0’ l‘) = 2TO‘M‘

r (25)

A similar relation can also be obtained for the runup of
the surface waves over a nonreflecting beach [9]. Thus,
the maximum displacement of the interface boundary
between the two media is proportional to the ratio of
the arrival time to the wave period. For the short waves
it can be sufficiently high. It is clear, however, that the
waves of large amplitudes would most likely break over
the slope, which is frequently observed [13, 14, 22].
The investigation of the breaking conditions for inter-
nal waves over the slope is quite a difficult problem that
has yet to be solved. At the same time, the scenario of
the wave transformation without reflection at the slope
seems quite realistic.

CONCLUSIONS

It was shown that progressive internal waves can
exist in a two-layer nonhomogeneous ocean if the
depth variation law is specific even if the bottom slope
is steep. Such progressive waves exist only in a limited
shelf region without reflection from the slope. Their
form does not change in time, but they deform in
space, becoming steeper at the coast. The process of
their generation by the waves propagating from the
open ocean was investigated. In the general case, the
wave form transforms at the shelf edge. However, if the
wave is sufficiently short (compared with the arrival
time to the coast), it propagates over the slope with

TALIPOVA, PELINOVSKY
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Fig. 5. Wave transformation at the nonreflecting slope

(tg = 4T).

only slight deformation. If the initial amplitude of the
internal wave is quite small, its runup can occur with-
out breaking, and then the characteristics of the runup
can be calculated analytically. The importance of the
analytical solutions obtained here is related to the
demonstration of the possibility of strong wave ampli-
fication over the slope even if it is not smooth. The
other application of this theory is the fact that it can be
used to test the numerical models of internal wave
transformation in the ocean.
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