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Given two points a = (a1, . . . ,an) and b = (b1, . . . ,bn) from Rn with a < b componentwise
and a map f from the rectangle Ib

a = [a1,b1] × · · · × [an,bn] into a metric semigroup
M = (M,d,+), we study properties of the total variation TV( f , Ib

a) of f on Ib
a introduced by

the first author in [V.V. Chistyakov, A selection principle for mappings of bounded variation
of several variables, in: Real Analysis Exchange 27th Summer Symposium, Opava, Czech
Republic, 2003, pp. 217–222] such as the additivity, generalized triangle inequality and
sequential lower semicontinuity. This extends the classical properties of C. Jordan’s total
variation (n = 1) and the corresponding properties of the total variation in the sense of
Hildebrandt [T.H. Hildebrandt, Introduction to the Theory of Integration, Academic Press,
1963] (n = 2) and Leonov [A.S. Leonov, On the total variation for functions of several
variables and a multidimensional analog of Helly’s selection principle, Math. Notes 63
(1998) 61–71] (n ∈ N) for real-valued functions of n variables.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction to part I

The notion of a function of bounded variation was introduced by Jordan in [32] for real-valued functions on the closed
interval I = [a,b] ⊂ R with a,b ∈ R, a < b. In the present time this notion is well studied and applied in many directions
even for metric space valued maps (e.g., [3,6,7,9,11,15,18–21,26,35,39,40]) and can be formulated as follows. Let (M,d)

be a metric space with metric d and f : I → M be a map. Then f is said to be of bounded variation on I (in symbols,
f ∈ BV(I; M)) if its ( Jordan) variation defined by

V b
a ( f ) = sup

P

m∑
i=1

d
(

f (xi−1), f (xi)
)

is finite, the supremum being taken over all partitions P = {xi}m
i=0 of the interval I , i.e., m ∈ N and a = x0 < x1 < · · · <

xm−1 < xm = b. Let us note that the value V b
a ( f ) depends only on the order relation on the domain I , which is a linear

order, and the distance function d in the target space M , and these are minimal assumptions for the value V b
a ( f ) to be

meaningful.
Given x, y ∈ I with x � y and f : I → M , the value V y

x ( f ) is defined in a similar way, and it is well known (e.g., from
the references above, or as almost straightforward consequences of the definition of V y

x ( f )) that it has the following three
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basic properties: (a) it is additive in the sense that if a � x � y � z � b, then V z
x ( f ) = V y

x ( f ) + V z
y( f ); (b) the inequality

d( f (x), f (y)) � V y
x ( f ) holds for all x, y ∈ I , x � y; and (c) it is sequentially lower semicontinuous in the sense that if x, y ∈ I ,

x � y, and a sequence of maps f j : I → M , j ∈ N, converges pointwise on I to a map f : I → M (i.e., d( f j(x), f (x)) → 0 as
j → ∞ for all x ∈ I), then V y

x ( f ) � lim inf j→∞ V y
x ( f j).

In particular, these properties are essential for the validity of the following Helly-type pointwise selection principle in
the space BV(I; M) ([28] if M = R, and [7,11,15,18] in the general case): if a sequence { f j} ≡ { f j} j∈N of maps from BV(I; M) is
such that the closure in M of the set { f j(x)} j∈N is compact for each x ∈ I and the sequence {V b

a ( f j)} j∈N is bounded, then there exists
a subsequence of { f j}, which converges pointwise on I to a map f from BV(I; M). This compactness result effectively applies to
the proof of the existence of selections of bounded variation for univariate multi-valued maps with compact images from M
(cf. [7,10,11,15,22]).

At the same time the above Helly-type selection principle is a motivation for this paper (part I). In what follows we will
be interested to what extent the three properties above of the Jordan variation carry over to maps of several real variables
so that the Helly theorem still holds. These properties are also of independent importance in the study of (multi-valued)
nonlinear superposition operators acting on BV maps of several variables (in a paper under preparation) as it was exposed
in more particular cases in [16] and [17]. Basing on the results and technique of this part, two extensions of the Helly-type
pointwise selection principle to metric semigroup-valued maps of several variables will be established in part II of this paper
(we refer to part II in this issue for more details).

Properties (a), (b) and (c) above depend upon notions of bounded variation for functions of several variables, which
are known to be quite numerous in the literature (e.g., [4,8,23,25,29,31,37,41–43]) and which generalize different aspects
of the classical Jordan variation. Under some approaches to the multidimensional variation [2,8,36], which involve certain
integration procedures, Helly-type theorems are rather concerned with the almost everywhere convergence of extracted sub-
sequences, and no stronger convergence can be expected in this case. On the other hand, for real-valued functions of several
variables there are definitions of the notion of variation [29,34], which go back to Vitali [41], Hardy [27] and Krause [1,23],
such that a complete analogue of the Helly theorem holds with respect to the pointwise convergence of extracted subse-
quences. Moreover, it was shown recently [17,34] that certain counterparts of properties (a) and (b) hold for the variation
in the sense of Vitali–Hardy–Krause.

The aim of part I is to study properties of the notion of total variation [29,34] for maps of several variables under
minimal requirements on the target space M such that the approach of Vitali, Hardy and Krause is still applicable (in some
generalized sense [14]). This is interesting in connection with the notion of a multifunction of several variables of bounded
variation: it suffices to assume that the target space M is a metric semigroup (cf. Section 2). Note that in this case most
approaches to the multidimensional variation lose sense (except the approach in [2]).

This paper (part I) is organized as follows. In Section 2 we present necessary definitions and our three main results,
Theorems 1, 2 and 3, which extend the properties of additivity, generalized triangle inequality and sequential lower semi-
continuity of the Jordan variation to metric semigroup-valued maps of several variables. Sections 3–5 are devoted to their
proofs.

2. Definitions and main results

Throughout the paper we adopt and follow the Vitali–Hardy–Krause approach to the notion of variation for maps of
several variables in the multiindex notation initiated in [12,14] and developed in detail in [17] (equivalent approaches in
different notation for real functions can be found in [33,34]).

Let N and N0 stand for the sets of positive and nonnegative integers, respectively, and n ∈ N. Given x, y ∈ Rn , we write
x = (x1, . . . , xn) = (xi: i ∈ {1, . . . ,n}) for the coordinate representation of x, and set x + y = (x1 + y1, . . . , xn + yn), and
x − y is defined similarly. The inequality x < y will be understood componentwise, i.e., xi < yi for all i ∈ {1, . . . ,n}, and a
similar meaning applies to x = y, x � y, y � x and y > x. If x < y or x � y, we denote by I y

x the rectangle
∏n

i=1[xi, yi] =
[x1, y1] × · · · × [xn, yn]. Elements of the set Nn

0 are as usual said to be multiindices and denoted by Greek letters and, given
θ = (θ1, . . . , θn) ∈ Nn

0 and x ∈ Rn , we set |θ | = θ1 + · · · + θn (the order of θ ) and θx = (θ1x1, . . . , θnxn). The n-dimensional
multiindices 0n = (0, . . . ,0) and 1n = (1, . . . ,1) will be denoted simply by 0 and 1, respectively (actually, the dimension of 0
and 1 will be clear from the context). We also put E(n) = {θ ∈ Nn

0: θ � 1 and |θ | is even} (the set of ‘even’ multiindices) and
O(n) = {θ ∈ Nn

0: θ � 1 and |θ | is odd} (the set of ‘odd’ multiindices). For elements from the set A(n) = {α ∈ Nn
0: 0 �= α � 1}

we simply write 0 �= α � 1.
The domain of (almost) all maps under consideration will be a rectangle Ib

a with fixed a,b ∈ Rn , a < b, called the
basic rectangle. The range of maps will be a metric semigroup (M,d,+), i.e., (M,d) is a metric space, (M,+) is an Abelian
semigroup with the operation of addition +, and d is translation invariant: d(u, v) = d(u + w, v + w) for all u, v, w ∈ M .
A nontrivial example of a metric semigroup is as follows [24,38]: Let (X,‖ · ‖) be a real normed space and M be the
family of all nonempty closed bounded convex subsets of X equipped with the Hausdorff metric d given by d(U , V ) =
max{e(U , V ),e(V , U )}, where U , V ∈ M and e(U , V ) = supu∈U infv∈V ‖u − v‖. Given U , V ∈ M , defining U ⊕ V as the closure
in X of the Minkowski sum {u + v: u ∈ U , v ∈ V } we find that the triple (M,d,⊕) is a metric semigroup (actually, M is an
abstract convex cone but this is irrelevant for our purposes).
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Given f : Ib
a → (M,d,+), we define the Vitali-type n-th mixed ‘difference’ of f on a subrectangle I y

x ⊂ Ib
a , where x, y ∈ Ib

a
and x < y, by (cf. [14])

mdn
(

f , I y
x
) = d

( ∑
θ∈E(n)

f
(
x + θ(y − x)

)
,

∑
η∈O(n)

f
(
x + η(y − x)

))
. (2.1)

For example, for the first three dimensions we have: if n = 1, then E(1) = {0} and O(1) = {1}, and so, md1( f , I y
x ) =

d( f (x), f (y)); if n = 2, then E(2) = {(0,0), (1,1)} and O(2) = {(0,1), (1,0)}, and so,

md2
(

f , I y
x
) = d

(
f (x1, x2) + f (y1, y2), f (x1, y2) + f (y1, x2)

);
if n = 3, then E(3) = {(0,0,0), (1,1,0), (1,0,1), (0,1,1)} and O(3) = {(1,1,1), (1,0,0), (0,1,0), (0,0,1)}, and so,

md3
(

f , I y
x
) = d

(
f (x1, x2, x3) + f (y1, y2, x3) + f (y1, x2, y3) + f (x1, y2, y3),

f (y1, y2, y3) + f (y1, x2, x3) + f (x1, y2, x3) + f (x1, x2, y3)
)

(one may draw corresponding pictures to see the points where f is evaluated at the left- and right-hand places
of d(‘left’, ‘right’)).

Remark 2.1. Formally, the value mdn( f , I y
x ) from (2.1) is defined for x < y. Now if x, y ∈ Ib

a , x � y and x �< y, then the
right-hand side in (2.1) is equal to zero for any map f : Ib

a → M . In fact, if xi = yi for some i ∈ {1, . . . ,n}, then∑
θ∈E(n)

f
(
x + θ(y − x)

) =
∑

θ∈O(n)

f
(
x + θ(y − x)

)
.

In order to see this, given θ = (θ1, . . . , θn) ∈ E(n), we set θ = (θ1, . . . , θn) = (θ1, . . . , θi−1,1 − θi, θi+1, . . . , θn) and note
that θ ∈ O(n) and, moreover, the map θ �→ θ is a bijection between E(n) and O(n). It remains to take into account that
x + θ(y − x) = x + θ(y − x) for all θ ∈ E(n), because

xi + θi(yi − xi) = xi = xi + (1 − θi)(yi − xi) = xi + θ i(yi − xi).

The Vitali-type n-th variation [17,34,41] of f : Ib
a → M is defined by

Vn
(

f , Ib
a

) = sup
P

∑
1�σ�κ

mdn
(

f , I x[σ ]
x[σ−1]

)
, (2.2)

the supremum being taken over all multiindices κ ∈ Nn and all net partitions of Ib
a of the form P = {x[σ ]}κσ=0, where points

x[σ ] = (x1(σ1), . . . , xn(σn)) from Ib
a are indexed by σ = (σ1, . . . , σn) ∈ Nn

0 with σ � κ and satisfy the conditions: x[0] = a,
x[κ] = b and x[σ − 1] < x[σ ] for all 1 � σ � κ (in other words, a net partition P is the Cartesian product of ordinary
partitions of closed intervals [ai,bi], i = 1, . . . ,n). Note that all rectangles Ix[σ ]

x[σ−1] of a net partition are non-degenerated,

non-overlapping and their union is Ib
a .

In order to define the notion of the total variation of a map f : Ib
a → M we need the notion of variation of f of order less

than n. Following [17], we define the truncation of a point x ∈ Rn by a multiindex 0 �= α � 1 by x�α = (xi: i ∈ {1, . . . ,n}, αi = 1),
and set Ib

a�α = Ib�α
a�α . Clearly, x�1 = x and Ib

a�1 = Ib
a , and if x ∈ Ib

a , then x�α ∈ Ib
a�α. For example, if x = (x1, x2, x3, x4) and

α = (1,0,0,1), we have x�α = (x1, x4) and Ib
a�α = [a1,b1] × [a4,b4]. Given f : Ib

a → M and z ∈ Ib
a , we define the truncated

map f z
α : Ib

a�α → M with the base at z by f z
α(x�α) = f (z + α(x − z)) for all x ∈ Ib

a . It follows that f z
α depends only on |α|

variables xi ∈ [ai,bi], for which αi = 1, and the other variables remain fixed and equal to z j when α j = 0. In the above
example we get f z

α(x1, x4) = f z
α(x�α) = f (x1, z2, z3, x4) for (x1, x4) ∈ [a1,b1] × [a4,b4].

Now, given f : Ib
a → M and 0 �= α � 1, the function f a

α : Ib
a�α → M with the base at z = a depends only on |α| variables,

and so, making use of the definitions (2.2) and (2.1) with n replaced by |α|, f replaced by f a
α and Ib

a replaced by Ib
a�α, we

get the notion of the (Hardy–Krause-type [1,23,27]) |α|-th variation of f , which is denoted by V |α|( f a
α, Ib

a�α).
The total variation of f : Ib

a → M in the sense of Hildebrandt ([13,16], [29, III.6.3], [30] if n = 2) and Leonov ([12,14,17,34]
if n ∈ N) is defined by

TV
(

f , Ib
a

) =
∑

0 �=α�1

V |α|
(

f a
α, Ib

a

⌊
α

) ≡
n∑

i=1

∑
α�1, |α|=i

V i
(

f a
α, Ib

a

⌊
α

)
, (2.3)

the summations here and throughout the paper being taken over n-dimensional multiindices in the ranges specified under
the summation sign.

For the first three dimensions n = 1,2,3 we have, respectively,
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TV
(

f , Ib
a

) = V b
a ( f ), the usual Jordan variation on the interval [a,b],

TV
(

f , Ib
a

) = V b1
a1

(
f (·,a2)

) + V b2
a2

(
f (a1, ·)

) + V 2
(

f , Ib1,b2
a1,a2

)
,

TV
(

f , Ib
a

) = V b1
a1

(
f (·,a2,a3)

) + V b2
a2

(
f (a1, ·,a3)

) + V b3
a3

(
f (a1,a2, ·)

)
+ V 2

(
f (·,·,a3), Ib1,b2

a1,a2

) + V 2
(

f (·,a2, ·), Ib1,b3
a1,a3

)
+ V 2

(
f (a1, ·,·), Ib2,b3

a2,a3

) + V 3
(

f , Ib1,b2,b3
a1,a2,a3

)
.

We denote by BV(Ib
a; M) the space of all maps f : Ib

a → M of finite (or bounded) total variation (2.3).
Our first main result, a counterpart of property (a) from the Introduction to be proved in Section 3, is the additivity

property of |α|-th variation V |α| for each 0 �= α � 1 (which is well known when M = R):

Theorem 1. Given f : Ib
a → M, x, y ∈ Ib

a with x < y, z ∈ Ib
a and 0 �= α � 1, if {x[σ ]}κσ=0 is a net partition of I y

x , then

V |α|
(

f z
α, I y

x
⌊
α

) =
∑

1�α�σ �α�κ�α
V |α|

(
f z
α, I x[σ ]

x[σ−1]
⌊
α

)
, (2.4)

where the summation is taken only over those σi in the range 1 � σi � κi with i ∈ {1, . . . ,n}, for which αi = 1.

In order to present our second main result (Theorem 2), we need a lemma concerning mixed differences and some
short notations, which will be used throughout the paper. Given 0 �= α � 1, the sum over ‘ev θ � α’ denotes the sum over
‘θ ∈ E(n) s.t. θ � α’, where ‘s.t.’ is the usual abbreviation for ‘such that’, and a similar convention applies to the sum over
‘od θ � α’.

Lemma 1. If f : Ib
a → M, x, y ∈ Ib

a , x � y, z ∈ Ib
a and 0 �= α � 1, then

md|α|
(

f z
α, I y

x
⌊
α

) = d

( ∑
ev θ�α

f
(
z + α(x − z) + θ(y − x)

)
,

∑
od θ�α

f
(
z + α(x − z) + θ(y − x)

))
. (2.5)

In particular, if z = a or z = x, we have, respectively,

md|α|
(

f a
α, I y

x
⌊
α

) = md|α|
(

f a+α(x−a)
α , I y

a+α(x−a)

⌊
α

)
,

md|α|
(

f x
α, I y

x
⌊
α

) = d

( ∑
ev θ�α

f
(
x + θ(y − x)

)
,

∑
od θ�α

f
(
x + θ(y − x)

))
. (2.6)

The proof of Lemma 1 is the same as in [17, Part I, Lemma 5] (and so, details are omitted): we note only that θ ′ ∈ N|α|
0

and |θ ′| is even (odd) if and only if there exists a unique θ ∈ Nn
0 s.t. θ � α, |θ | is even (odd, respectively) and θ ′ = θ�α, and

apply definition (2.1) where n is replaced by |α|.

Theorem 2. If f ∈ BV(Ib
a; M), x, y ∈ Ib

a and x � y, then

d
(

f (x), f (y)
)
�

∑
0 �=α�1

md|α|
(

f x
α, I y

x
⌊
α

)
� TV

(
f , I y

x
)
.

This theorem will be proved in Section 4. It is a generalization of property (b) from the Introduction and a counterpart
of Leonov’s (in)equalities established in [34, Theorem 2 and Corollary 5] for real-valued functions of n variables (cf. also
[17, Part I, Lemma 6 and (3.5)]). The inequalities in Theorem 2 are also known for metric semigroup-valued maps of two
variables [5,16]. However, in the general case Theorem 2 needs a different proof as compared to the cases of maps of one
or two variable(s) or M = R.

The last property, to be established in Section 5, is the sequential lower semicontinuity of the total variation TV(·, Ib
a):

Theorem 3. If a sequence of maps { f j} from Ib
a into M converges pointwise on Ib

a to a map f : Ib
a → M, then TV( f , Ib

a) �
lim inf j→∞ TV( f j, Ib

a).
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3. Proof of Theorem 1

In order to prove Theorem 1, we need several lemmas. The following equality will be needed in Lemma 2 (cf. [17, Part I,
equality (3.4)]): given two multiindices 0 � β � γ � 1, we have:∣∣{α: β � α � γ and |α| = i

}∣∣ = C i−|β|
|γ |−|β| for all |β| � i � |γ |, (3.1)

where |A| denotes the number of elements in the set A and, given 0 � j � m, C j
m = (m

j

) = m!
j!(m− j)! is the usual binomial

coefficient (with 0! = 1). Also, recall (cf. Section 2) that a multiindex α is said to be even (odd) if α ∈ E(n) (α ∈ O(n),
respectively).

Lemma 2. (a) Given m ∈ N and integer 0 � k � m − 1, we have:

�m/2∑
i�k/2

C2i−k
m−k =

� (m+1)/2∑
i�(k+1)/2

C2i−1−k
m−k = 2m−k−1,

where the summations are taken over integer i in the ranges specified.
(b) Given two multiindices 0 � β � γ � 1 with β �= γ , we have:∣∣{even α: β � α � γ }∣∣ = ∣∣{odd α: β � α � γ }∣∣.

Proof. (a) Since the case m = 1 is clear, let m � 2. By the binomial formula, we find 0 = (1 − 1)m−k = ∑m−k
j=0 (−1) j C j

m−k .
Considering the possibilities when m and k are of different evenness or of the same evenness and changing the summation
index j appropriately, we arrive at the desired equality.

(b) By virtue of (3.1), the left-hand side of the equality is equal to

∣∣{α: β � α � γ and |α| = 2i for all i s.t. |β| � 2i � |γ |}∣∣ =
� |γ |/2∑
i�|β|/2

C2i−|β|
|γ |−|β|,

and the right-hand side of the equality is equal to

∣∣{α: β � α � γ and |α| = 2i − 1 for all i s.t. |β| � 2i − 1 � |γ |}∣∣ =
� (|γ |+1)/2∑
i�(|β|+1)/2

C2i−1−|β|
|γ |−|β| .

It remains to put m = |γ | and k = |β|, note that k < m and apply the equality from the previous assertion (a). �
Since (M,d,+) is a metric semigroup, then, by virtue of the triangle inequality for d and the translation invariance of

metric d on M , we have, for all u, v, u′, v ′ ∈ M:

d(u, v) � d
(
u′, v ′) + d

(
u + u′, v + v ′),

d
(
u + u′, v + v ′) � d(u, v) + d

(
u′, v ′). (3.2)

Inequality (3.2) yields that the addition operation (u, v) �→ u + v is a continuous map from M × M into M . More generally,
if u j → u, v j → v , u′

j → u′ and v ′
j → v ′ as j → ∞ (convergence of sequences in M), then lim j→∞ d(u j + v j, u′

j + v ′
j) =

d(u + v, u′ + v ′).
Before we turn to the proof of Theorem 1, a few remarks are in order. Note that if P = {x[σ ]}κσ=0 is a net partition of Ib

a ,
then

Ib
a =

⋃
1�σ�κ

I x[σ ]
x[σ−1] =

⋃
1�σ�κ

n∏
i=1

[
xi(σi − 1), xi(σi)

] =
n∏

i=1

(
κi⋃

l=1

I xi(l)
xi(l−1)

)
(3.3)

is a union of non-overlapping non-degenerated rectangles Ix[σ ]
x[σ−1] with the sides parallel to the coordinate axes. In this sec-

tion it will be convenient and brief to term the union as in (3.3) also a partition of Ib
a (by non-overlapping non-degenerated

rectangles).
If P = {x[σ ]}κσ=0 and P ′ = {x′[σ ′]}κ ′

σ ′=0 are two net partitions of Ib
a , we say that P ′ is a refinement of P if P ⊂ P ′ . Also,

for the sake of convenience we define the n-th prevariation of f : Ib
a → M , corresponding to P , by

vn( f ;P) =
∑

1�σ�κ

mdn
(

f , I x[σ ]
x[σ−1]

)
.
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It follows that the Vitali-type n-th variation of f is given by Vn( f , Ib
a) = supP vn( f ;P), where the supremum is taken over

all net partitions P of Ib
a .

The basic ingredient in the proof of Theorem 1 is the following

Lemma 3. Given f : Ib
a → M, if P and P ′ are two net partitions of Ib

a s.t. P ⊂ P ′ , then vn( f ;P) � vn( f ;P ′).

In order to prove this lemma we need three more Lemmas 4–6. In what follows we fix a map f : Ib
a → M .

Lemma 4. Given x, y ∈ Ib
a with x < y and x′ ∈ Ib

a , we have the following partition of I y
x , induced by the point x′:

I y
x =

⋃
1−ξ�α�1

I x′+α(y−x′)
x+αξ(x′−x), (3.4)

where the multiindex ξ ≡ ξ(x, x′, y) = (ξ1, . . . , ξn) is given by

ξi ≡ ξi
(
x, x′, y

) =
{

1 if xi < x′
i < yi,

0 if x′
i � xi or x′

i � yi,
i ∈ {1, . . . ,n}, (3.5)

and

mdn
(

f , I y
x
)
�

∑
1−ξ�α�1

mdn
(

f , I x′+α(y−x′)
x+αξ(x′−x)

)
. (3.6)

Before we prove Lemma 4, let us establish two of its particular variants as Lemmas 5 and 6 (note that in Lemma 5 the
rectangles in the union may degenerate).

Lemma 5. If x, y ∈ Ib
a with x < y and x′ ∈ I y

x , then we have the following union of non-overlapping (possibly, degenerated) rectangles

I y
x =

⋃
0�α�1

I x′+α(y−x′)
x+α(x′−x) , (3.7)

and the following inequality holds:

mdn
(

f , I y
x
)
�

∑
0�α�1

mdn
(

f , I x′+α(y−x′)
x+α(x′−x)

)
. (3.8)

Proof. Since xi � x′
i � yi for all i ∈ {1, . . . ,n}, we have:

I yi
xi

= [xi, yi] = [
xi, x′

i

] ∪ [
x′

i, yi
] = I

x′
i

xi
∪ I yi

x′
i
=

1⋃
αi=0

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

,

and so (cf. Eq. (2.5) in [17, Part II]),

I y
x =

n∏
i=1

I yi
xi

=
n∏

i=1

(
1⋃

αi=0

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

)
=

⋃
0�α�1

I x′+α(y−x′)
x+α(x′−x) .

The mixed difference at the left-hand side of (3.8) is given by (2.1), and again by virtue of (2.1), the mixed difference at
the right-hand side of (3.8) is equal to

mdn
(

f , I x′+α(y−x′)
x+α(x′−x)

) = d

( ∑
evβ�1

h(α,β),
∑

od β�1

h(α,β)

)
,

where h(α,β) = f (x + (α ∨ β)(x′ − x) + αβ(y − x′)) and α ∨ β = α + β − αβ . Noting that if α = β , then α ∨ β = β and
αβ = β , we find∑

0�α�1

∑
evβ�1

h(α,β) =
∑

evβ�1

∑
0�α�1,

α �=β

h(α,β) +
∑

evβ�1

h(β,β)

=
∑

evβ�1

∑
0�α�1,

α �=β

h(α,β) +
∑

evβ�1

f
(
x + β(y − x)

)

≡ U + u.
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Let us show that the double sum U can be represented as

U =
∑

0 �=γ �1

∑
0�δ�γ ,

δ �=γ

cγ δ f
(
x + γ

(
x′ − x

) + δ
(

y − x′))

with certain integer factors cγ δ to be evaluated below. In fact, given 0 �= γ � 1 and 0 � δ � γ with δ �= γ , there exist even
β � 1 and 0 � α � 1, α �= β , s.t. α ∨ β = γ and αβ = δ. In order to see this, if γ is even or δ is even, we may set β = γ
and α = δ, or β = δ and α = γ , respectively. Now, if γ and δ are odd, then since δ �= γ , we can find i ∈ {1, . . . ,n} s.t. δi = 0
and γi = 1, and so, if we set β = (δ1, . . . , δi−1,1, δi+1, . . . , δn), then δ � β � γ , δ �= β �= γ and |β| = |δ| + 1 is even, and it
remains to put α = γ + δ − β .

Given γ and δ as above, let us evaluate cγ δ . Since δ = αβ � β � α ∨ β = γ and, given even β , the multiindex 0 � α � 1,
α �= β , s.t. α ∨ β = γ and αβ = δ, is determined uniquely by α = γ + δ − β , we have cγ δ = |{even β: δ � β � γ }|.

In a similar manner, we find∑
0�α�1

∑
odβ�1

h(α,β) =
∑

odβ�1

∑
0�α�1,

α �=β

h(α,β) +
∑

odβ�1

f
(
x + β(y − x)

) ≡ V + v,

where

V =
∑

0 �=γ �1

∑
0�δ�γ ,

δ �=γ

dγ δ f
(
x + γ

(
x′ − x

) + δ
(

y − x′))

with dγ δ = |{odd β: δ � β � γ }|. By Lemma 2(b), cγ δ = dγ δ , and so, U = V . Applying the translation invariance of d and
inequality (3.2), we obtain inequality (3.8):

d(u, v) = d(U + u, V + v) = d

( ∑
0�α�1

∑
evβ�1

h(α,β),
∑

0�α�1

∑
od β�1

h(α,β)

)

�
∑

0�α�1

d

( ∑
evβ�1

h(α,β),
∑

od β�1

h(α,β)

)
. �

Lemma 6. Given x, y ∈ Ib
a with x < y and x′ ∈ I y

x , we have the following partition of I y
x , induced by x′:

I y
x =

⋃
λ�α�μ

I x′+α(y−x′)
x+α(x′−x) , (3.9)

where the multiindices λ ≡ λ(x, x′) = (λ1, . . . , λn) and μ ≡ μ(x′, y) = (μ1, . . . ,μn) are defined for i ∈ {1, . . . ,n} by

λi ≡ λi
(
x, x′) =

{
1 if xi = x′

i,

0 if xi < x′
i,

and μi ≡ μi
(
x′, y

) =
{

0 if x′
i = yi,

1 if x′
i < yi,

and the following inequality holds:

mdn
(

f , I y
x
)
�

∑
λ�α�μ

mdn
(

f , I x′+α(y−x′)
x+α(x′−x)

)
. (3.10)

Proof. First, we note that, since xi < yi for all i ∈ {1, . . . ,n}, then λ � μ. In particular, if x < x′ < y, then λ = 0 and μ = 1,
and we get (3.7) as a consequence of (3.9).

In order to prove (3.9), given i ∈ {1, . . . ,n}, consider the following possibilities: (i) x′
i = xi and x′

i < yi ; (ii) xi < x′
i and

x′
i = yi ; and (iii) xi < x′

i and x′
i < yi . We have, respectively:

(i) λi = 1 and μi = 1, and so, if λi � αi � μi , then αi = 1 and

I yi
xi

= I yi
x′

i
=

⋃
αi=1

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

;

(ii) λi = 0 and μi = 0, and so, if λi � αi � μi , then αi = 0 and

I yi
xi

= I
x′

i
xi

=
⋃
αi=0

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

;
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(iii) λi = 0 and μi = 1, and so, if λi � αi � μi , then αi ∈ {0,1} and

I yi
xi

= I
x′

i
xi

∪ I yi
x′

i
=

1⋃
αi=0

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

.

Moreover, in all the cases (i)–(iii) the left endpoint xi +αi(x′
i − xi) is less than the right endpoint x′

i +αi(yi − x′
i), and so, all

the closed intervals above are non-degenerated. It follows that

I y
x =

n∏
i=1

I yi
xi

=
n∏

i=1

( ⋃
λi�αi�μi

I
x′

i+αi(yi−x′
i)

xi+αi(x′
i−xi)

)
=

⋃
λ�α�μ

I x′+α(y−x′)
x+α(x′−x) .

The point x′ gives rise to a net partition {x[σ ]}κσ=0 of I y
x as follows: we put κ = μ − λ + 1 and, given i ∈ {1, . . . ,n}, we

set xi(0) = xi and xi(1) = yi if κi = 1, and xi(0) = xi , xi(1) = x′
i and xi(2) = yi if κi = 2. We note that if 0 � σ � μ − λ, then

x[σ ] = x + (σ +λ)(x′ − x), and if 1 � σ � κ = μ−λ+ 1, then x[σ ] = x′ + (σ − 1 +λ)(y − x′). Also, note that x +λ(x′ − x) = x
and x′ + μ(y − x′) = y. It follows that

I y
x =

⋃
λ�α�μ

I x′+α(y−x′)
x+α(x′−x) =

⋃
1�σ�μ−λ+1

I x′+(σ−1+λ)(y−x′)
x+(σ−1+λ)(x′−x) =

⋃
1�σ�κ

I x[σ ]
x[σ−1].

Now, we turn to the proof of (3.10). By Lemma 5, inequality (3.8) holds. Clearly, if λ = 0 and μ = 1 (i.e., x < x′ < y), then
(3.8) implies (3.10). Assume that λ �= 0 (i.e., x �< x′) and suppose that 0 � α � 1 is s.t. λ � α. Then there exists i ∈ {1, . . . ,n}
s.t. λi = 1 and αi = 0, and so, xi = x′

i , which implies xi + αi(x′
i − xi) = xi = x′

i = x′
i + αi(yi − x′

i). It follows from Remark 2.1

that mdn( f , Ix′+α(y−x′)
x+α(x′−x) ) = 0. Similarly, if we assume that μ �= 1 (i.e., x′ �< y) and suppose that 0 � α � 1 is s.t. α � μ, then

there exists i ∈ {1, . . . ,n} s.t. αi = 1 and μi = 0, and so, x′
i = yi . Noting that xi + αi(x′

i − xi) = x′
i = yi = x′

i + αi(yi − x′
i), we

find mdn( f , Ix′+α(y−x′)
x+α(x′−x) ) = 0. In this way inequality (3.10) follows. �

Proof of Lemma 4. Suppose that x, y ∈ Ib
a , x < y and x′ ∈ Ib

a . We set x′′ = x + ξ(x′ − x), where ξ is defined in (3.5) (the point
x′′ will play the role of x′ from (3.9)). We have x � x′′ < y; in fact, given i ∈ {1, . . . ,n}, we find: if ξi = 1, then xi < x′

i < yi
and x′′

i = x′
i implying xi < x′′

i < yi , and if ξi = 0, then x′
i � xi or x′

i � yi , and x′′
i = xi implying xi = x′′

i < yi . Applying (3.9)
with x′ replaced by x′′ , we get the following partition of I y

x induced by x′′ and, hence, by x′:

I y
x =

⋃
λ′′�α�μ′′

I x′′+α(y−x′′)
x+α(x′′−x) , (3.11)

where λ′′ = λ(x, x′′) and μ′′ = μ(x′′, y) are defined in Lemma 6, i.e., given i ∈ {1, . . . ,n}, we have:

λ′′
i =

{
1 if xi = x′′

i ,

0 if xi < x′′
i ,

and μ′′
i =

{
0 if x′′

i = yi,

1 if x′′
i < yi .

We assert that λ′′ = 1 − ξ and μ′′ = 1. In fact, since x′′ < y, then μ′′ = 1. In order to see that λ′′ = 1 − ξ , let i ∈ {1, . . . ,n}.
If xi < x′

i < yi , then ξi = 1, and so, x′′
i = xi + ξi(x′

i − xi) = x′
i , which implies xi < x′′

i and λ′′
i = 0 = 1 − ξi . Now if x′

i � xi or
x′

i � yi , then ξi = 0, and so, x′′
i = xi , which gives λ′′

i = 1 = 1 − ξi .
Now, let us calculate the lower and upper indices in (3.11). We have: x + α(x′′ − x) = x + αξ(x′ − x) and

x′′ + α
(

y − x′′) = x + (1 − α)ξ
(
x′ − x

) + α(y − x).

Noting that the union in (3.11) is taken over α � 1 s.t. 1 − ξ � α, we get 1 − α � ξ , and so, (1 − α)ξ = 1 − α implying

x′′ + α
(

y − x′′) = x + (1 − α)
(
x′ − x

) + α(y − x) = x′ + α
(

y − x′).
These calculations and observations above prove equality (3.4).

Let us show that partition (3.4) is actually induced by x′ . Since x′ ∈ Ib
a , by Lemma 6, the point x′ induces a partition of Ib

a
of the form (3.9):

Ib
a =

⋃
λ′�β�μ′

I x′+β(b−x′)
a+β(x′−a)

,

where the multiindices λ′ = λ(a, x′) and μ′ = μ(x′,b) are defined in Lemma 6, i.e., given i ∈ {1, . . . ,n}, we have:

λ′
i =

{
1 if ai = x′

i,

0 if ai < x′
i,

and μ′
i =

{
0 if x′

i = bi,

1 if x′
i < bi .

We assert that for each α with 1 − ξ � α � 1 there exists a unique β ≡ β(α) with λ′ � β � μ′ s.t.

I x′+α(y−x′)
x+αξ(x′−x) = I y

x ∩ I x′+β(b−x′)
a+β(x′−a)

. (3.12)
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In order to prove (3.12), we define β = β(α) = (β1, . . . , βn) by

βi ≡ βi(α) =
{

αi if x′
i < yi,

0 if x′
i � yi,

i ∈ {1, . . . ,n},

and establish equality (3.12) componentwise. Given i ∈ {1, . . . ,n}, we consider the following two cases: (a) x′
i < yi , and (b)

x′
i � yi .

In case (a) we have βi = αi . First, assume that xi < x′
i , and so, ξi = 1. It follows that if 1 − ξi � αi � 1, then αi = 0 or

αi = 1. If αi = 0, then we find (for βi = αi = 0)

I
x′

i
xi

= [
xi, x′

i

] = [xi, yi] ∩ [
ai, x′

i

] = I yi
xi

∩ I
x′

i+βi(bi−x′
i)

ai+βi(x′
i−ai)

,

and if αi = 1, then we find (for βi = αi = 1)

I yi
x′

i
= [

x′
i, yi

] = [xi, yi] ∩ [
x′

i,bi
] = I yi

xi
∩ I

x′
i+βi(bi−x′

i)

ai+βi(x′
i−ai)

.

Now, assume that x′
i � xi , and so, ξi = 0 and x′

i � xi < yi � bi . It follows that if 1 − ξi � αi � 1, then βi = αi = 1 implying

I yi
xi

= [xi, yi] = [xi, yi] ∩ [
x′

i,bi
] = I yi

xi
∩ I

x′
i+βi(bi−x′

i)

ai+βi(x′
i−ai)

.

In case (b) we have ξi = 0, βi = 0 and ai � xi < yi � x′
i , and so, if 1 − ξi � αi � 1, then αi = 1 and

I yi
xi

= [xi, yi] = [xi, yi] ∩ [
ai, x′

i

] = I yi
xi

∩ I
x′

i+βi(bi−x′
i)

ai+βi(x′
i−ai)

.

Let us show that λ′ � β � μ′ . Let i ∈ {1, . . . ,n}. If ai = x′
i , then λ′

i = 1 = μ′
i and, since x′

i < yi , then βi = αi . By (3.5),
ξi = 0, and so, since 1 − ξi � αi � 1, then αi = 1, which implies λ′

i = βi = μ′
i . Now, if x′

i = bi , then λ′
i = 0 = μ′

i and, since
x′

i � yi , then βi = 0 (and ξi = 0), and so, λ′
i = βi = μ′

i . Finally, if ai < x′
i < bi , then λ′

i = 0 and μ′
i = 1, and so, since βi ∈ {0,1},

then λ′
i � βi � μ′

i .
The uniqueness of β(α), for each 1 − ξ � α � 1, is a consequence of the following: if λ′ � β � μ′ and β �= β(α), then

there exists i ∈ {1, . . . ,n} s.t. βi = 1 −βi(α). Arguing as in (a) and (b) above, we find that the equality (3.12) cannot hold for
this β .

Now, inequality (3.6) readily follows from Lemma 6, (3.11) and (3.4). �
Remark 3.1. (a) If x′ ∈ I y

x in Lemma 4, then it is easily seen that ξ = μ − λ, and so, equality (3.4) assumes the form:

I y
x =

⋃
1−(μ−λ)�α�1

I x′+α(y−x′)
x+α(μ−λ)(x′−x).

Although this equality looks different from (3.9), the two equalities are the same: this is verified as in (i)–(iii) of the proof
of Lemma 6.

(b) If x < x′ < y, then ξ = 1, λ = 0 and μ = 1, and so, (3.4), (3.9) and (3.7) are identical.
(c) Here we consider a certain particular case of (3.12) and establish conditions on x′ , under which x′ does not induce a

(further) partition of I y
x . In view of (3.12), we have:

I x′+α(y−x′)
x+αξ(x′−x) = I y

x if and only if ξ = 0 and α = 1, (3.13)

which is also equivalent to

a + β
(
x′ − a

)
� x and y � x′ + β

(
b − x′) with β = β(1). (3.14)

Clearly, if ξ = 0 and α = 1, then the left-hand side equality in (3.13) holds. Conversely, if the left-hand side equality in (3.13)
holds for some 1 − ξ � α � 1, then x + αξ(x′ − x) = x and x′ + α(y − x′) = y, and so, if we suppose that ξi = 1 for some
i ∈ {1, . . . ,n}, then, by (3.5), xi < x′

i < yi , and so, αi = 0 and x′
i = yi , which is a contradiction. Thus, ξ = 0 and α = 1.

Now, if ξ = 0 and α = 1, then, by (3.12) and (3.13),

I y
x = I y

x ∩ I x′+β(b−x′)
a+β(x′−a)

with β = β(1), (3.15)

which implies (3.14). Conversely, (3.14) implies (3.15), and so, the left-hand side equality in (3.13) holds, i.e., ξ = 0 and
α = 1.

This observation also shows that a point x′ ∈ Ib
a induces a ‘true’ partition of I y

x provided that, for all β with λ′ � β � μ′ ,
we have:

a + β
(
x′ − a

)
� x or y � x′ + β

(
b − x′),

which is also equivalent to ξ �= 0.
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Proof of Lemma 3. Let P = {x[σ ]}κσ=0 for some κ ∈ Nn and x′ ∈ P ′ . Given 1 � σ � κ , we set xσ = x[σ − 1], yσ = x[σ ] and

ξσ (x′) = ξ(xσ , x′, yσ ), where ξ is defined in (3.5), and note that xσ < yσ . The point x′ induces a partition of I yσ
xσ

= Ix[σ ]
x[σ−1]

of the form (3.4) with x = xσ and y = yσ , and so, by virtue of (3.3), we get the following partition of Ib
a , induced by x′:

Ib
a =

⋃
1�σ�κ

⋃
1−ξσ (x′)�α�1

I x′+α(yσ −x′)
xσ +αξσ (x′)(x′−xσ )

. (3.16)

We denote by P1 the net partition of Ib
a corresponding to (3.16). Moreover, by (3.6), for each 1 � σ � κ we have the

inequality:

mdn
(

f , I yσ
xσ

)
�

∑
1−ξσ (x′)�α�1

mdn
(

f , I x′+α(yσ −x′)
xσ +αξσ (x′)(x′−xσ )

)
. (3.17)

With no loss of generality we may assume that x′ /∈ P : if x′ ∈ P , i.e., x′ = x[σ ′] for some 1 � σ ′ � κ , then x′ does
not affect the partition P of Ib

a in the sense that P1 = P , and so, vn( f ;P1) = vn( f ;P). In order to see this, we note
that (3.5) implies ξσ (x′) = ξ(x[σ − 1], x[σ ′], x[σ ]) = 0, and so, by Remark 3.1(c), conditions (3.13) and (3.14) hold with
β = β(1) = (β1, . . . , βn) s.t.

βi =
{

1 if xi(σ
′
i ) < xi(σi),

0 if xi(σ
′
i ) � xi(σi)

=
{

1 if σ ′
i < σi,

0 if σ ′
i � σi .

Summing over 1 � σ � κ in (3.17) and taking into account (3.3) and (3.16), we obtain the inequality

vn( f ;P) � vn
(

f ;P1).
Replacing P by P1 in the arguments above, taking x′ ∈ P ′ \ P1 and denoting by P2 the partition of Ib

a induced from P1

by x′ , we get vn( f ;P1) � vn( f ;P2). Since P ′ \ P is a finite set, we exhaust it by points x′ in a finite number of steps, arrive
at the partition P ′ of Ib

a and prove the desired inequality vn( f ;P) � vn( f ;P ′). �
Proof of Theorem 1. 1. First, we establish (2.4) for α = 1 = 1n , i.e.,

Vn
(

f , I y
x
) =

∑
1�σ�κ

Vn
(

f , I x[σ ]
x[σ−1]

)
. (3.18)

Modulo the notation, there is no loss of generality if we assume that x = a and y = b, so that {x[σ ]}κσ=0 is a net partition
of Ib

a .
Let P be an arbitrary net partition of Ib

a . Denote by P ′ the net partition of Ib
a induced from P by points {x[σ ]}κσ=0, so

that P ′ is a refinement of P . Given 1 � σ � κ , set Pσ = P ′ ∩ Ix[σ ]
x[σ−1] and note that Pσ is a net partition of Ix[σ ]

x[σ−1] , and
P ′ = ⋃

1�σ�κ Pσ . Then by virtue of Lemma 3, we have:

vn( f ;P) � vn
(

f ;P ′) =
∑

1�σ�κ

vn( f ;Pσ ) �
∑

1�σ�κ

Vn
(

f , I x[σ ]
x[σ−1]

)
.

Since P is arbitrary, the left-hand side in (3.18) is not greater than the right-hand side.
Let us prove the reverse inequality. If Vn( f , Ix[σ ]

x[σ−1]) is infinite for some 1 � σ � κ , then since Ix[σ ]
x[σ−1] ⊂ Ib

a = I y
x , the

value Vn( f , I y
x ) is infinite as well. Thus, we suppose that the right-hand side of (3.18) is finite. Let ε > 0 be arbitrary. Given

1 � σ � κ , by the definition of Vn( f , Ix[σ ]
x[σ−1]), there exists a net partition of Ix[σ ]

x[σ−1] , denoted by Pσ (ε), s.t.

vn
(

f ;Pσ (ε)
)
� Vn

(
f , I x[σ ]

x[σ−1]
) − (ε/c),

where c = |{σ : 1 � σ � κ}|. We denote by P(ε) the net partition of Ib
a induced from {x[σ ]}κσ=0 by points from⋃

1�σ�κ Pσ (ε). Given 1 � σ � κ , we set P ′
σ (ε) = P(ε) ∩ Ix[σ ]

x[σ−1] and note that P ′
σ (ε) is a refinement of Pσ (ε), and

P(ε) = ⋃
1�σ�κ P ′

σ (ε). By virtue of Lemma 3, we find

Vn
(

f , Ib
a

)
� vn

(
f ;P(ε)

) =
∑

1�σ�κ

vn
(

f ;P ′
σ (ε)

)
�

∑
1�σ�κ

vn
(

f ;Pσ (ε)
)

�
∑

1�σ�κ

Vn
(

f , I x[σ ]
x[σ−1]

) − ε

( ∑
1�σ�κ

1

)
/c,

where the factor by ε is, actually, equal to 1. The desired inequality follows if we take into account the arbitrariness of ε > 0.
2. Now, suppose that 0 �= α � 1 and α �= 1. Note that x�α, y�α ∈ Ib�α

a�α and x�α < y�α, and that {x[σ ]�α}κ�α
σ �α=0 is a net

partition of Ib�α
a�α . So, replacing 1 = 1n by 1�α (so that |1�α| = |α|) and f —by f z

α in (3.18), we get:
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V |α|
(

f z
α, I y

x
⌊
α

) = V |1�α|
(

f z
α, I y�α

x�α
) =

∑
1�α�σ �α�κ�α

V |1�α|
(

f z
α, I x[σ ]�α

x[σ−1]⌊α
)
,

which is equal to the right-hand side of (2.4).
This completes the proof of Theorem 1. �

4. Proof of Theorem 2

In order to prove Theorem 2, we need two more lemmas (Lemmas 7 and 8).

Lemma 7. If m ∈ N, u, v ∈ M, {u j}m
j=1 , {v j}m

j=1 ⊂ M and

�m/2∑
i=1

u2i + u +
� (m+1)/2∑

i=1

v2i−1 =
�m/2∑

i=1

v2i + v +
� (m+1)/2∑

i=1

u2i−1, (4.1)

then

d(u, v) �
m∑

j=1

d(u j, v j). (4.2)

Proof. Observe that if u + 
1 + · · · + 
k = v + r1 + · · · + rk for some k ∈ N and {
i, ri}k
i=1 ⊂ M , then d(u, v) �

∑k
i=1 d(
i, ri).

In fact, by the translation invariance of d and inequality (3.2), we have:

d(u, v) = d

(
u +

k∑
i=1


i, v +
k∑

i=1


i

)
= d

(
v +

k∑
i=1

ri, v +
k∑

i=1


i

)

= d

(
k∑

i=1

ri,

k∑
i=1


i

)
�

k∑
i=1

d(ri, 
i).

Applying this observation and equality (4.1), we get:

d(u, v) �
�m/2∑

i=1

d(u2i, v2i) +
� (m+1)/2∑

i=1

d(v2i−1, u2i−1) =
m∑

j=1

d(u j, v j). �

Remark 4.1. In particular, (in)equalities (4.1) and (4.2) hold for odd m if

u +
(m−1)/2∑

i=1

u2i =
(m+1)/2∑

i=1

u2i−1 and v +
(m−1)/2∑

i=1

v2i =
(m+1)/2∑

i=1

v2i−1, (4.3)

and for even m if either

u +
m/2∑
i=1

u2i = v +
m/2∑
i=1

u2i−1 and
m/2∑
i=1

v2i =
m/2∑
i=1

v2i−1, (4.4)

or

m/2∑
i=1

u2i = v +
m/2∑
i=1

u2i−1 and
m/2∑
i=1

v2i = u +
m/2∑
i=1

v2i−1. (4.5)

In the next lemma we set A0 ≡ A0(n) = {θ ∈ Nn
0: θ � 1}. Also, we stick to the following conventions: ‘u

.= 0’ will mean
that u is omitted in the formula under consideration (especially in a metric semigroup with no zero), and a sum over the
empty set is also omitted in any context (i.e.,

∑
∅

.= 0).

Lemma 8. Given a map h : A0 → M and a multiindex γ ∈ A0 , we have:∑
evα�γ

∑
ev θ�α

h(θ) = cγ +
∑

odα�γ

∑
ev θ�α

h(θ), (4.6)
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where cγ
.= 0 if γ is odd, and cγ = h(γ ) if γ is even, and∑

odα�γ

∑
od θ�α

h(θ) = dγ +
∑

evα�γ

∑
od θ�α

h(θ), (4.7)

where dγ = h(γ ) if γ is odd, and dγ
.= 0 if γ is even.

Proof. 0. Denote by L (by R) the set of all ‘admissible’ θ ’s at the left- (right-)hand side of the equality under consideration
and, given θ ∈ L (and θ ∈ R), by L(θ) (and by R(θ))—the multiplicity of the term h(θ) at the left- (and right-)hand sum(s).
Then the equality can be rewritten as∑

θ∈L
L(θ)h(θ) =

∑
θ∈R

R(θ)h(θ), (4.8)

where L(θ)h(θ) denotes the sum of terms of the form h(θ) taken L(θ) times (and likewise for R(θ)h(θ)). In what follows in
order to prove (4.8), we show that L = R and L(θ) = R(θ) for all θ ∈ L = R.

We divide the proof into four steps for clarity.
In the first two steps we let γ be odd (i.e., 0 � γ � 1 and |γ | is odd).
1. Let us establish (4.6). We have L = {even θ : ∃ even α � γ s.t. θ � α}, i.e., L = {even θ : θ � γ }, and R =

{even θ : ∃ odd α � γ s.t. θ � α}. The sets L and R are nonempty (0 ∈ L and 0 ∈ R) and L = R. In fact, the inclusion
L ⊃ R is clear, and so, we let θ ∈ L. Since θ is even, γ is odd and θ � γ , there exists i ∈ {1, . . . ,n} s.t. θi = 0 and γi = 1.
We set α = (θ1, . . . , θi−1,1, θi+1, . . . , θn). It follows that α � γ , |α| = |θ | + 1 is odd and θ � α, and so, θ ∈ R.

Given θ ∈ L = R, we find θ �= γ , L(θ) = |{even α: θ � α � γ }| and R(θ) = |{odd α: θ � α � γ }|. By Lemma 2(b),
L(θ) = R(θ), and so, (4.8) holds implying (4.6) with cγ

.= 0.
2. Let us prove (4.7). If |γ | = 1, then the equality is immediate: the left-hand side is equal to h(γ ) = dγ , while the double

sum at the right is omitted (in fact, even α � γ implies α = 0, and so, no odd θ s.t. θ � 0 exists). Now, if |γ | > 1, then
L = {odd θ : θ � γ } and R = {odd θ : ∃ even α � γ s.t. θ � α} ∪ {γ } (disjoint union), and L = R. Let θ ∈ L = R. If θ �= γ ,
then L(θ) = |{odd α: θ � α � γ }| and R(θ) = |{even α: θ � α � γ }|, and so, by Lemma 2(b), L(θ) = R(θ). Now if θ = γ ,
then L(γ ) = |{odd α: γ � α � γ }| = 1, and since dγ = h(γ ), then R(γ ) = 1 as well. The conclusion follows as in Step 1.

Suppose that γ is even.
3. In order to prove (4.6), we first note that if γ = 0, then the double sum at the right is omitted and the double sum at

the left is equal to h(0) = c0. Assume that γ �= 0. Then L = {even θ : θ � γ } and R = {γ }∪{even θ : ∃ odd α � γ s.t. θ � α}
(disjoint union), and L = R. Let θ ∈ L = R. Then L(θ) = |{even α: θ � α � γ }| and, in particular, L(γ ) = 1. If θ = γ , then,
since cγ = h(γ ), we have R(γ ) = 1, and if θ �= γ , then R(θ) = |{odd α: θ � α � γ }|, and so, by Lemma 2(b), L(θ) = R(θ).

4. Finally, we prove (4.7). Since the equality is clear for γ = 0 (i.e., ‘empty’ equality), we assume that |γ | > 0. We
have L = {odd θ : θ � γ }, R = {odd θ : ∃ even α � γ s.t. θ � α} and L = R. Given θ ∈ L = R, we find θ �= γ , L(θ) =
|{odd α: θ � α � γ }| and R(θ) = |{even α: θ � α � γ }|, and so, by Lemma 2(b), L(θ) = R(θ). �

Now we are in a position to prove Theorem 2.

Proof of Theorem 2. It suffices to prove only the first inequality: the second one follows from the first inequality, (2.2)
and (2.3). Setting u = f (x) and v = f (y) and taking into account (2.6), the first inequality in Theorem 2 can be rewritten
equivalently as

d(u, v) �
∑

0 �=α�1

d
(
u(α), v(α)

) =
n∑

j=1

∑
|α|= j

d
(
u(α), v(α)

)
(4.9)

(the sum over |α| = j designates the sum over 0 �= α � 1 s.t. |α| = j), where, given α, θ ∈ A0, we set h(θ) = f (x + θ(y − x)),

u(α) =
∑

ev θ�α

h(θ), and v(α) =
∑

od θ�α

h(θ) if α �= 0 and v(0)
.= 0.

In order to establish (4.9), given integer 0 � j � n, we also set

u j =
∑
|α|= j

u(α) and v j =
∑
|α|= j

v(α)

and note that

u0 = u(0) = h(0) = u, v0 = v(0)
.= 0, v = h(1), un = u(1) and vn = v(1).

Suppose that we have already verified equalities (4.3) if m = n is odd and (4.4) if m = n is even. Applying Lemma 7, we get
inequality (4.2), where, by virtue of (3.2), we have:
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d(u j, v j) = d

( ∑
|α|= j

u(α),
∑
|α|= j

v(α)

)
�

∑
|α|= j

d
(
u(α), v(α)

)
.

Now, (4.9) follows if we sum these inequalities over j = 1, . . . ,n and take into account (4.2).
It remains to verify equalities (4.3) and (4.4). For this, we apply Lemma 8 with γ = 1 and note that m = n = |γ | = |1|.

Suppose that n = |1| is odd. By virtue of (4.6), we have:

u +
(m−1)/2∑

i=1

u2i =
(n−1)/2∑

i=0

u2i =
(n−1)/2∑

i=0

∑
|α|=2i

u(α) =
∑

evα�1

u(α)

=
∑

odα�1

u(α) =
(n+1)/2∑

i=1

∑
|α|=2i−1

u(α) =
(m+1)/2∑

i=1

u2i−1,

and by virtue of (4.7), we get:

v +
(m−1)/2∑

i=1

v2i = h(1) +
(n−1)/2∑

i=0

v2i = h(1) +
(n−1)/2∑

i=0

∑
|α|=2i

v(α) = h(1) +
∑

evα�1

v(α)

=
∑

odα�1

v(α) =
(n+1)/2∑

i=1

∑
|α|=2i−1

v(α) =
(m+1)/2∑

i=1

v2i−1,

which establishes (4.3). Now suppose that n = |1| is even. By (4.6), we get:

u +
m/2∑
i=1

u2i =
n/2∑
i=0

u2i =
n/2∑
i=0

∑
|α|=2i

u(α) =
∑

evα�1

u(α)

= h(1) +
∑

odα�1

u(α) = v +
n/2∑
i=1

∑
|α|=2i−1

u(α) = v +
m/2∑
i=1

u2i−1,

and by virtue of (4.7), we have:

m/2∑
i=1

v2i =
n/2∑
i=0

v2i =
n/2∑
i=0

∑
|α|=2i

v(α) =
∑

evα�1

v(α)

=
∑

odα�1

v(α) =
n/2∑
i=1

∑
|α|=2i−1

v(α) =
m/2∑
i=1

v2i−1,

which establishes (4.4) and completes the proof of Theorem 2. �
Remark 4.2. The left-hand side inequality in Theorem 2 is of interest when x < y. However, if x � y and x �< y, it can be
refined in the following way (cf. [17, Part I, Lemma 6]): given x, y ∈ Ib

a , x < y, and 0 �= γ � 1, we have:

d
(

f (x), f
(
x + γ (y − x)

))
�

∑
0 �=α�γ

md|α|
(

f x
α, I y

x
⌊
α

)
.

In fact, by Theorem 2, we find

d
(

f (x), f
(
x + γ (y − x)

))
�

∑
0 �=α�1

md|α|
(

f x
α, I x+γ (y−x)

x
⌊
α

)
,

where, by virtue of (2.6), the mixed difference at the right is equal to

d

( ∑
ev θ�α

f
(
x + θγ (y − x)

)
,

∑
od θ�α

f
(
x + θγ (y − x)

))
. (4.10)

If α � γ , then αi = 1 and γi = 0 for some i ∈ {1, . . . ,n}, and so, arguing as in Remark 2.1 we find x + θγ (y − x) =
x + θγ (y − x) for all even θ with θ � α implying that (4.10) is equal to zero. Now if α � γ , then θγ = θ for any θ � α, and
so, (4.10) coincides with the right-hand side of (2.6).
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5. Proof of Theorem 3

Proof of Theorem 3. 1. First, we show that if x, y ∈ Ib
a , x < y, and 0 �= α � 1, then

md|α|
(

f a
α, I y

x �α) = lim
j→∞

md|α|
(
( f j)

a
α, I y

x
⌊
α

)
. (5.1)

By virtue of (2.5), we have:

md|α|
(

f a
α, I y

x
⌊
α

) = d

( ∑
ev θ�α

f
(

a + α(x − a) + θ(y − x)︸ ︷︷ ︸
(···)

)
,

∑
od θ�α

f (· · ·)
)

,

and a similar equality holds for f j in place of f . Applying the inequalities |d(u, v) − d(u′, v ′)| � d(u, u′) + d(v, v ′),
u, v, u′, v ′ ∈ M , and (3.2) and taking into account the pointwise convergence of f j to f , we find∣∣md|α|

(
( f j)

a
α, I y

x �α) − md|α|
(

f a
α, I y

x �α)∣∣
� d

( ∑
ev θ�α

f j(· · ·),
∑

ev θ�α

f (· · ·)
)

+ d

( ∑
od θ�α

f j(· · ·),
∑

od θ�α

f (· · ·)
)

�
∑

ev θ�α

d
(

f j(· · ·), f (· · ·)) +
∑

od θ�α

d
(

f j(· · ·), f (· · ·))
=

∑
0�θ�α

d
(

f j(· · ·), f (· · ·)) → 0 as j → ∞.

2. In the rest of this proof we need only the inequality

md|α|
(

f a
α, I y

x
⌊
α

)
� lim inf

j→∞
md|α|

(
( f j)

a
α, I y

x
⌊
α

)
, (5.2)

which readily follows from (5.1). If P = {x[σ ]}κσ=0 is a net partition of Ib
a , then P�α = {x[σ ]�α}κ�α

σ �α is net partition of Ib
a�α,

and so, given 1 � σ � κ , setting x = x[σ − 1] and y = x[σ ] in (5.2), we find∑
1�α�σ �α�κ�α

md|α|
(

f a
α, I x[σ ]

x[σ−1]
⌊
α

)
�

∑
1�α�σ �α�κ�α

lim inf
j→∞

md|α|
(
( f j)

a
α, I x[σ ]

x[σ−1]
⌊
α

)
� lim inf

j→∞
∑

1�α�σ �α�κ�α
md|α|

(
( f j)

a
α, I x[σ ]

x[σ−1]
⌊
α

)
� lim inf

j→∞
V |α|

(
( f j)

a
α, I x[σ ]

x[σ−1]
⌊
α

)
.

By the arbitrariness of P , we infer that

V |α|
(

f a
α, I x[σ ]

x[σ−1]
⌊
α

)
� lim inf

j→∞
V |α|

(
( f j)

a
α, I x[σ ]

x[σ−1]
⌊
α

)
.

We conclude that

TV
(

f , Ib
a

) =
∑

0 �=α�1

V |α|
(

f a
α, Ib

a

⌊
α

)
�

∑
0 �=α�1

lim inf
j→∞

V |α|
(
( f j)

a
α, Ib

a

⌊
α

)
� lim inf

j→∞
∑

0 �=α�1

V |α|
(
( f j)

a
α, Ib

a

⌊
α

) = lim inf
j→∞ TV

(
f j, Ib

a

)
. �
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