В.А. Солнцев, А.И. Шульга

Московский государственный институт электроники и математики, e-mail: shhll3@mail.ru

КВАЗИСТАЦИОНАРНЫЙ АНАЛИЗ ПОДАВЛЕНИЯ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ В СВЧ УСИЛИТЕЛЯХ С ПОМОЩЬЮ КОРРЕКЦИИ ПО ОГИБАЮЩЕЙ СИГНАЛА

V.A. Solntcev, A.I. Shulga

Moscow State Institute of Electronics and Mathematics

QUASISTATIONARY ANALYSIS OF THE SUPPRESSION OF NONLINEAR DISTORTIONS IN MICROWAVE AMPLIFIERS WITH CORRECTION OF SIGNAL ENVELOPE

The nonlinear distortion level of signals in a microwave amplifier in the case of a cubic polynomial approximation of its characteristic is considered. The application opportunity of the additive feedback or constant feedback with signal envelope using is demonstrated.

Борьба с нелинейными искажениями сигналов в усилителях является важной задачей при решении проблемы увеличения количества передаваемой информации на единицу ширины спектра сигнала, к тому же наличие комбинационных составляющих на выходе усилителя может привести к нарушению связи в соседних каналах. Поэтому актуальной задачей является разработка методов анализа и подавления нелинейных искажений. Целью данной работы является исследование метода подавления нелинейных искажений с помощью дополнительного сигнала, имеющего частоту огибающей.

Рассматриваем аппроксимацию передаточной характеристики усилителя полиномом третьей степени с коэффициентами a_0 , a_1 , a_2 , a_3 . При работе усилителя в двухчастотном режиме и воздействии на вход усилителя тестового сигнала (амплитуды входных сигналов равны друг другу, начальные фазы также равны друг другу) для оценки уровня полезных сигналов и комбинационных составляющих третьего порядка могут быть использованы следующие выражения [1]:

$$A_{_{6bLX}} = a_1 \cdot A_{_{6X}} - \frac{3}{4} \cdot |a_3| \cdot A_{_{6X}}^3, A_{_{6bLX,KC3}} = \frac{3}{4} \cdot |a_3| \cdot A_{_{6X}}^3, \tag{1}$$

где $A_{\text{вых}}$ -амплитуда полезного сигнала на выходе, $A_{\text{вых.кc}}$ -амплитуда комбинационной составляющей третьего порядка, а $A_{\text{вх}}$ - амплитуда входного сигнала. В нормированном виде выражения (1) имеют вид [2]:

$$Y = 1.5 \cdot X - 0.5X^3, Y_{kc3} = \frac{1}{6} \cdot X^3,$$
 (2)

где

$$Y = \frac{A_{\text{\tiny GEMX}}}{A_{\text{\tiny GEMX,MAC}}}, X = \frac{A_{\text{\tiny GEX}}}{A_{\text{\tiny GEX,MAC}}}, Y_{\text{\tiny KC3}} = \frac{A_{\text{\tiny GEMX,KC3}}}{A_{\text{\tiny GEMX,MAC}}}, A_{\text{\tiny GEX,MAC}} = \sqrt{\frac{4}{27} \cdot \frac{a_1}{|a_3|}}, A_{\text{\tiny GEMX,MAC}} = \frac{2}{3} \cdot a_1 \cdot \sqrt{\frac{4}{27} \cdot \frac{a_1}{|a_3|}},$$
(3)

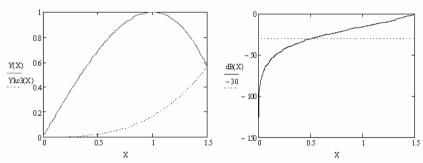


Рис. 1. Универсальные характеристики для полезных сигналов, комбинационных составляющих третьего порядка; относительный уровень комбинационных составляющих третьего порядка

Уровень комбинационных составляющих третьего порядка возрастает с увеличением входного сигнала. В точке насыщения, где X=1, он равен -12 дБ, то есть для уменьшения комбинационных составляющих третьего порядка до уровня -30 дБ необходимо понизить уровень входного сигнала вдвое, что нежелательно.

Уменьшение вредных высокочастотных комбинационных составляющих сигналов третьего порядка усилительного устройства может быть достигнуто с помощью низкочастотной обратной связи, применение которой экспериментально исследовано в [3].

Идея подавления состоит в следующем (рис. 3): сигнал, частота которого $\Delta \omega$ представляет собой разность частот полезных сигналов, примешивается к полезным сигналам на входе, т.е. на входе имеем многочастотный сигнал (частоты исходных полезных сигналов и $\Delta \omega$).

$$U_{ex}(t) = U_1 \cos(\omega_1 t) + U_2 \cos(\omega_2 t) + U_{oc} \cos(\Delta \omega t + \pi)$$

$$\xrightarrow{\mathbf{W}_1, \mathbf{W}_2} \text{Вход} \qquad \qquad \mathbf{Усилитель} \qquad \qquad \mathbf{Bыход}$$

Рис. 2. Блок-схема усилителя СВЧ с низкочастотной обратной связью по огибающей

В общем случае считаем $U_1 \neq U_2$. Наличие низкой частоты на входе приводит на выходе к изменению комбинационных составляющих третьего порядка, отстоящих от полезных сигналов на $\Delta \omega$. Подбором величины сигнала $U_{\rm OC}$, передаваемого через низкочастотную обратную связь, можно добиться подавления комбинационных составляющих третьего порядка.

После преобразования на характеристике усилителя получим выражение для амплитуды сигнала U_{oc} , передаваемого через отрицательную обратную связь и обеспечивающего полное подавление одной комбинационной составляющей третьего порядка:

$$U_{oc} = \frac{a_2 U_2 - \sqrt{a_2^2 U_2^2 - \frac{9}{4} a_3^2 U_1^2 U_2^2}}{\frac{3}{2} a_3 U_1}.$$
 (4)

При этом необходима адаптивная обратная связь ($U_{oc}=\beta_{ad}U_{\Delta\omega}$) с коэффициентом передачи:

$$\beta_{ad} = \frac{U_{oc}}{U_{1}^{2} \left(a_{2} + 3 \cdot |a_{3}| \cdot U_{oc}\right) - U_{oc} \left(a_{1} - \frac{3}{4} \cdot |a_{3}| \cdot U_{oc}^{2}\right)}.$$

Когда по адаптивной обратной связи передается лишь часть напряжения , необходимого для полного подавления комбинационной составляющей третьего порядка (коэффициент передачи подавляющего напряжения β), то:

$$U_{\alpha c}^{\dagger} = \beta \cdot U_{\alpha c}. \tag{5}$$

Вводя нормировку в виде:

$$X_{1} = \frac{a_{2}}{a_{1}} \cdot U_{1}, X_{2} = \frac{a_{2}}{a_{1}} \cdot U_{2}, X_{oc} = \left| \frac{a_{3}}{a_{2}} \cdot U_{oc} \right|, \alpha = \frac{a_{1} \cdot |a_{3}|}{a_{2}^{2}}, \tag{6}$$

где α -параметр нелинейности, получим относительный уровень комбинационных составляющих третьего порядка:

$$dB_{oc}(X_{1}, X_{oc}, \alpha, \beta) = 20 \cdot \lg \left| \frac{\frac{3}{4} \cdot \alpha \cdot X_{1}^{2} + \frac{3}{4} \cdot \frac{\beta^{2}}{\alpha} \cdot (X_{oc})^{2} - \frac{\beta}{\alpha} \cdot X_{oc}}{\frac{9}{4} \cdot \alpha \cdot X_{1}^{2} + \frac{3}{2} \cdot \frac{\beta^{2}}{\alpha} \cdot (X_{oc})^{2} - \frac{\beta}{\alpha} \cdot X_{oc} + 1} \right|,$$
(7)

где
$$X_{oc}(X_1, \alpha) = \frac{2}{3} \cdot (1 - \sqrt{1 - \frac{9}{4} \cdot \alpha^2 \cdot X_1^2}).$$
 (8)

При постоянном петлевом коэффициенте передачи $\beta_{\Pi}=a_{1}\cdot\beta_{oc}$:

$$dB_{oc}(X_{1}, X_{oc}, \alpha, \beta_{II}) = 20 \cdot \lg \left| \frac{-\frac{3}{4} \cdot \alpha \cdot X_{1}^{2} - \frac{3}{4} \cdot (X_{oc})^{2} - \frac{1}{\sqrt{\alpha}} \cdot X_{oc}}{-\frac{9}{4} \cdot \alpha \cdot X_{1}^{2} - \frac{3}{2} \cdot (X_{oc})^{2} - \frac{1}{\sqrt{\alpha}} \cdot X_{oc} + 1} \right|,$$
(9)

причем:

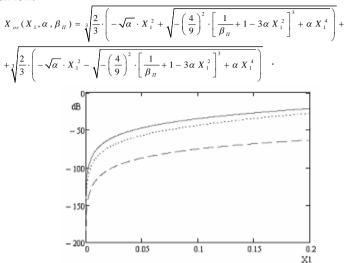


Рис. 3. Относительный уровень комбинационных составляющих третьего порядка ______ без OC, с постоянной OC, - - - - с адаптивной OC

На рис. З представлен график зависимости относительного уровня комбинационных составляющих третьего порядка в зависимости от вида ОС. Итак, при постоянной ОС относительный уровень может быть снижен на (2-7) дБ, а в случае адаптивной (5-11) дБ.

Библиографический список

- 1. Малышенко В.И. Нелинейный анализ многочастотных режимов работы ЛБВ при близких частотах / В.И. Малышенко, В.А. Солнцев // Электронная техника. Серия 1. Электроника СВЧ. 1972. Вып. 10. С. 16-26.
- 2. Солнцев В.А. Анализ преобразования сигналов с несколькими несущими в мощной ЛБВ / В.А.Солнцев, Т.М. Андреевская // Электронная техника. Серия 1. СВЧ-техника. 1997. Вып. 1 (469). С. 205-213.
- 3. Дутышев В.И. 100-Ваттный усилитель мощности с уменьшенным уровнем интермодуляционных искажений и защитой выходных транзисторов от пробоя при работе в двухсигнальном режиме / В.И. Дутышев // Электронная техника. Серия 1. СВЧ-техника. 2007. Вып. 4 (492). С. 118-122.