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Abstract 
 

In this study we investigate the successive approximation procedure allowed us to 
derive new equation, valid for the transport of dissolved matter in porous media, or in 
random force fields, on the macroscopic scale. 

To do this the diagram technique was exploited. 
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1.  Introduction 
In [1] we got two basic equations that describe diffusion process in two types of random porous media. 
Both equations contain coefficients, which are functions of some centered random process )(~ xε . Hence 
the solutions to initial value problems (with deterministic initial conditions) involving these equations 
are functional of )(~ xε . We aim at obtaining an equation for the evolution of u , which is an average 
of concentration function of grains in the porous media u , and represents the concentration on the 
macroscopic scale. 

It is desirable to have the averaging procedure universal so that it can be used for a media with 
arbitrarily stochastic character. For instance, the averaging method from [2] is usable only for telegraph 
random fields and not for fields with another characteristic. Surely, we want to have the procedure that 
can be applied for different equations, not only for the ones that are studied in this thesis. 

We can consider two known methods, allowing approaching our objective. Both are more or 
less general but suffer some failures for complexity and can be more or less comfortable, according to 
the type of random process, ε~  belong to. 

One of them is a perturbation method combined with graphic rules helping to deal with fixed-
point equations whose solutions expand into series, whose successive terms in turn split into finite 
sums, involving more and more expressions. 
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Another method consists in deriving equations for the averaged concentration, but they involve 
new dependent variables that are functional derivatives (of different orders) of the previous ones, 
computed with respect to )(~ xε . Then, averaging over the realizations of the random field is to be 
performed. The thus obtained chain of equations is infinite and should be cut according to the sense of 
the problem. Then we will have the self-contained system. 

We can show that both methods lead to the same results when comparisons are feasible. 
In this article we will concentrate on the first of mentioned approaches. 

 
 
2.  Perturbation Method and Diagram Technique 
Upon averaging a partial differential equation with stochastic coefficients, we obtain derivatives of the 
average of the unknown. Besides, we obtain averages of products, containing the basic unknown and 
the stochastic coefficient. In Fourier space, the latter yields convolutions, and it is possible to arrive at 
some fixed-point equation for the Laplace-Fourier transform of the average. Iterating the fixed-point 
problem leads to an equation with infinite series whose successive items involve multi-point 
correlations of the stochastic process, in Fourier variables. 

Graphics may help handling the many terms. Here we present this method, with the help of an 
example, obtained in [1]. 
 
2.1. A simple Small-scale Problem 

Let us use according to [3, 4] the perturbation method and diagrams for equation 
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that was derived in [1]. 
In this purpose we use instead of random function )(xε  another one, which is )x(ln)x( ε=η . It 

should be mentioned that [3] considered stationary diffusion problem under random force field and so 
there was no time derivative term in the equation corresponding to (1) in [3]. It looks evident that 
because of the similarity of the above equations also the diffusion processes in random media ( )(xε  - 
random characteristics) have much in common with diffusion process under random force fields ( )x(η  
is something like the potential of some gradient force fields). 
 
2.2. Laplace-Fourier Space Analysis 

For (1) we will use Laplace transform over time and Fourier transform over space coordinate. We 
assume that both transforms are applicable. 

Let us choose Fourier transformation for an arbitrary function )(xz  over x  coordinate as 
follows: 
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For the sake of simplicity we choose the initial conditions as )(),0( xxu δ= , where )(xδ  is the 
Dirac delta function. In q , k  variables ( q  - Laplace parameter, k  - wave number in Fourier transform) 
(2.1) can be re-written as 
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So that 
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Hence ),( 0 qku satisfies the fixed point equation (2). Formally solving the latter may help 
finding properties of ),( 0 qku and of the average >< ),( txu . This way, we may obtain an equation for 
the evolution of >< ),( txu  . 

A method, allowing to solve (2) at least formally, may be iterating this equation, thus leading to 
an infinite expansion giving ),( 0 qku in closed form. Describing and storing the items in the expansion 
can be done via formulae, containing multiple integrals. 

The integrals result from an iterated process. For this reason, we can represent them with the 
help of drawings (or diagrams) giving the rules of the process in a less unpleasant form. 
 
2.3. Diagram Technique 

A diagrammatic expression for the fixed-point equation (2) may be: 
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 (3) 
The rules, which define the correspondence between (2) and diagram (3), are as in [4, 5]. 

 
Rules 

1. each dual horizontal line  bears ),( 0 qku ; 
 

2. each horizontal line bears ),( 00 qkP ; 
 

3. each vertical line with wave number k  bears factor )(~ kη ; 
 
 

4. each triple vertex  bears factor 1kk ⋅ ; 
 
 

5. for each wave number for vertical line the integration is executed. 
 

The rules apply each time we have to consider instead of (2) an equation of the more general 
form 
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except for rule 4, which then takes the more general form “each triple vertex bears factor ),( 0 kkΘ ”. 
The iterative procedure for this method means that the solution of (2) in zero approximation 

),(),( 0000 qkPqku =  is substituted in the right hand-side of (2) or (3). As the result, we receive the 
solution in first approximation 
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which is substituted into the right-hand side of (2) and leads us to the second approximation, etc. As 
the result, we receive the solution for (3) as the series: 
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2.4. Averaging 

This solution for concentration ),( 0 qku  in (4) contains random function )(~ kη . We are interested in 
averaged concentration, and (4) should be averaged over realizations of random field. For the n -th 
diagram, which is 

; 
the average is 
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where the Laplace parameter q has been dropped from ),( 00 qkP . 
Subsequent calculations significantly depend on the stochastic properties of )(~ kη , more 

especially on the multi-point correlation )(~)(~
1 nkk ηη K  (in momentum space). For translation 

invariant stochastic fields, )(~)(~
1 nkk ηη K  is equal to 

1... nkk ++δ  times a function of 11 ,..., −nkk  . 

Here, we also assume that )(2)(~
0 xDx ηπη −=  is a Gaussian random field. This implies [6, 7] 

that only correlations involving an even number of wave-vectors are non zero, and that for n=2p they 
split according to 
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where summation is over all the possible !)!12( −p  pairings of nkk ,...,1 . This implies that the above 
averages in turn split into !)!12( −p  sums of multiple integrals where process )(~ kη only appears via 
products involving two-wave-vectors correlation functions. Hence only even-vertex averaged diagrams 
contribute. Each diagram with p2  vertices splits into a sum of !)!12( −p  diagrams that we will 
describe below. 

Indeed, in view of uniformity, we have )()()(~)(~
211~21 kkkkk += δψηη η , where )(~ kηψ  is the 

Fourier direct image of two-point correlation function )(~)(~)( 1212~ xxxx ηηψη =−  over )( 12 xx − . 

Averaged diagram with 2p vertices split into !)!12( −p  integrals over pR , corresponding to the 
!)!12( −p  pairings. For pairing ( ) ( )pp 21221 ... αααα − , we obtain 
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where Π  stands for a product over the pairs. Hence we have an integral over pR  due to the 
)(

212 iii
kk ααδ +

−
 . A graphic representation can consist in connecting the vertices, labeled by wave 

numbers 
ii

kk
212 αα −

of a pair, and we will label the thus obtained arc 
12 −i

kα . Thus, diagram with two 
vertices 
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can be replaced after averaging by the diagram 
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Diagram with four vertices 
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can be replaced after averaging by the sum of diagrams A, B and C defined by 
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Diagrams A, B, C represent 
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which is a variant of (6). 
Expressions (5) and (6) were derived by direct calculations. They are equivalent to diagrams 

with the following rules. 
 
Diagrammatic Rules for Averaged Equations 

1. Each arc labeled αk  corresponds to wave number αk  and factor ( )αηψ k~ ; the arc bears 
integration with respect to αk . 

2. Each horizontal line labeled k  bears the factor ),(0 qkP . 

3. Each three lines vertex with an outgoing arc 1k

2k

21 kk −
labeled 2k  and horizontal lines 

labeled 1k  and )( 21 kk −  carries factor )( 212 kkk − . 

4. Each three lines vertex with an incoming arc labeled 2k  1k

2k

21 kk +
and horizontal lines 

labeled 1k  and )( 21 kk +  carries factor ( ) )kk(k 2121 +− . 
Each time we will average an equation of the form (2a), these rules will apply, except points 3 

and 4, which in general will take the form: 
1. each three lines vertex with an outgoing arc labeled 2k  and horizontal lines labeled 1k  

and )( 21 kk −  carries factor ))(,( 212 kkk −Θ ; 
2. each three lines vertex with an incoming arc labeled 2k  and horizontal lines labeled 1k  

and )( 21 kk +  carries factor ))(( 212 kkk +Θ . 
 
2.5. On the Macroscopic Scale 

Extreme incoming and outgoing horizontal straight lines for each diagram carry the same wave number 
0k  and respectively the same factor ),( 0

2
0 qkP . It gives us the possibility not to deal with the incoming 

lines for the next description. 
There also exists a special irreducible type of diagrams, which have no inner horizontal lines 

not surrounded by any arc, and reducible diagrams, with horizontal lines surrounded by arcs (and then 
the wave number is 0k ). For instance diagram А in (6) – is reducible but В and С are irreducible. 

Let us denote by iΣ  the sum of all irreducible diagrams, then the total sum Σ  of all diagrams 
is: 
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Hence, ),( 0 qku  satisfies: 
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Taking into account the expression of ),( 00 qkP  and turning back to physical variables tx, , we 
can rewrite (2.7) into the next form for ),( txu : 
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Here operator iΣ~  corresponds in physical variables to iΣ . In general, it is integro-differential. 
Equations (7) and (8) give only the formal solution to our problem, since an approximation for iΣ  
should be calculated. To do this, we will assume that fluctuations of the random field are small, so that 
it is enough for iΣ  to take into account only the diagram with the first degree of )(~ kηψ , so that we 
have 
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With 0a  being the amplitude of fluctuations, assumed to be small )1( 0 <<a , we denote by l  the 

correlation length. Because ηπη 02~ D−= , we have )(ˆ4)( 2
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Specializing the correlation function )(ˆ ~ kηψ allows to compute the leading orders in the right-
hand side of (2.9), but is not necessary if we focus on the macroscopic scale. We are looking for a large 
scale equation for the evolution of. This can be achieved if we measure x with a scale, large with 
respect to the one, we mean to characterize complexity or disorder in the medium. Such a scale may be 
the correlation length l of Gaussian process η . Non Gaussian processes, or higher dimensions, may 
need more than one length-scale. Here we will take the limit “ l tending to zero” with fixed k and q , 
and expand iΣ  with respect to parameter l . 

We can prove that under not very restrictive assumptions for the correlation function, the 
leading orders in this expansion are 
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with 1ν and 2ν being positively valued constants, only depending on the shape of function )(ˆ ~ kηψ . 
In tx,  variables, this corresponds to operator: 
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Here, according to [1] we use the fractional differential operator over time 2
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which is an integro-differential equation for the evolution of the averaged concentration in the presence 
of the random force. Let us note that in accordance with [3], we have the renormalization of diffusion 
coefficient, which is smaller than in the small scale equation. This is very common for the similar 
tasks. 

On the right-hand side of Equation (11) we can see terms mixing derivatives with respect to x 

and derivatives with respect to t, with small coefficients 2
1

1τν and τν 2
2ν

. Parameter 2ν  may be set 
equal to zero or not, depending on we only keep leading order or not in the expansion of iΣ  with 
respect to small parameter l . The effect of 
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