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HYPERCOMMUTATIVE OPERAD AS A HOMOTOPY QUOTIENT OF BV

A. KHOROSHKIN, N. MARKARIAN, AND S. SHADRIN

Abstract. We give an explicit formula for a quasi-isomorphism between the operads Hycomm (the homol-
ogy of the moduli space of stable genus 0 curves) and BV/∆ (the homotopy quotient of Batalin-Vilkovisky
operad by the BV-operator). In other words we derive an equivalence of Hycomm-algebras and BV-algebras
enhanced with a homotopy that trivializes the BV-operator.

These formulas are given in terms of the Givental graphs, and are proved in two different ways. One
proof uses the Givental group action, and the other proof goes through a chain of explicit formulas on
resolutions of Hycomm and BV. The second approach gives, in particular, a homological explanation of
the Givental group action on Hycomm-algebras.

0. Introduction

The main purpose of this paper is to describe a natural equivalence between the category of differential
graded Batalin-Vilkovisky algebras enhanced with the trivialization of BV-operator and the category of
formal Frobenius manifolds without a pairing (also known under the name of hypercommutative algebras).
The problem we are discussing has an explicit topological origin. I. e., we are looking for an equivalence
of the operad of moduli spaces of stable curves and a homotopy quotient of the framed discs operad by
the circle action. Having in mind that both topological operads under consideration are known to be
formal we restrict ourselves to the corresponding relationship of the homology operads. We suggest a pure
algebraic solution of the problem accompanied with an exact formula for the desired quasi-isomorphism.

Let us first briefly recall the definitions of two categories under consideration using the language of
operads. Consider the moduli spaces of stable genus 0 curvesM0,n+1, n = 2, 3, . . . . A stable genus 0 curve
is a nodal curve of arithmetic genus 0 with (n+1) pairwise distinct marked points in its smooth part, and
it has at least three special points (nodes or marked points) on each of the irreducible components. The
points are labeled by the numbers 0, 1, . . . , n. There is a natural stratification by the topological types
of nodal curves. The strata of codimension one can be realized as the images of the gluing morphism
ρ = ρi : M0,n1+1 × M0,n2+1 → M0,n+1, n = n1 + n2 − 1, i = 1, . . . , n1, where the new nodal curve is

obtained by attaching the zero point of a curve in M0,n2+1 to the i-th point of a curve in M0,n1+1. These

morphisms define on the spaces M0,n+1, n = 2, 3, . . . , the structure of a topological operad. Therefore,

the homology of the spaces M0,n+1, n = 2, 3, . . . , are endowed with the structure of an algebraic operad.
This operad is called the hypercommutative operad and we denote it by Hycomm. We recall an explicit
description of the hypercommutative algebra in Section 3.2. We refer to [24] for details and to [18] for the
description of the intersection theory on M0,n+1. (Note that Manin uses in [24] the notation Com∞ for
the operad of hypercommutative algebras.)

Another important topological operad under consideration is the framed little discs operad. The set
of n-ary operations of this operad consists of configurations of the disjoint union of n small discs inside
the unit disc, each inner disc has a marked point on the boundary. It is equivalent to mark a point on
the boundary of the circle or to fix a rotation of the inner disc which gives an identification of the inner
disc with a standard disc of the same radius. The gluing of the outer boundary of the unit disc coming
from configuration of n1 small discs with the boundary of the i’th inner disc of the configuration of n2
small discs defines a configuration of n1 + n2 + 1 small pointed discs which prescribes the composition
rules in the operad. The homology of this operad is known under the name of Batalin-Vilkovisky operad
and has very simple description in terms of generators and relations. Namely, a (differential graded)
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Batalin-Vilkovisky algebra is a graded commutative associative algebra with two operators, d of degree
1 and ∆ of degree −1, such that d2, ∆2, and d∆ + ∆d are equal to zero, d is a derivation and ∆ is a
differential operator of the second order with respect to the multiplication.

These two algebraic structures, hypercommutative algebras and Batalin-Vilkovisky algebras are known
to be closely related. The hypercommutative algebra structure is the most important ingredient of
a formal Frobenius manifold structure. A typical application of a relation between BV-algebras and
hypercommutative algebras is that under some conditions like Hodge property or some trivialization of
the BV-operator ∆ we obtain a Frobenius manifold structure on the cohomology of a BV-algebra; we refer
to [3, 2, 22, 17, 4, 8, 5, 7] for different aspects and different examples of this kind of correspondence and
relations between them. The topological origin of all these statements looks as follows. The homotopy
quotient of the framed little discs operad by rotations is weakly equivalent to the operad of moduli
spaces of stable genus 0 curves. This statement was mentioned in [23] and written in details in [7]. We
are focused on the algebraic counterpart of this statement equipped with precise formulas.

In topology the homotopy quotient functor by the group G is a functor from the category of G-spaces to
the category of spaces which is defined as a left adjoint functor to the trivial embedding: any topological
space admits a trivial action of the group G. The algebra over the homotopy quotient by G of a given
operad P is an algebra over P where the action of G is trivialized. We will show the equivalence of this
two definitions in the particular case G = S1 and P = BV.

In general, the condition on trivialization of the BV-operator ∆ that one has to use can be formulated
in several different ways. First, we require that ∆ is homotopically trivial, that is, the full homotopy
transfer of ∆ on the cohomology of d is equal to zero. Equivalently, we can say that the spectral sequence
(if exists) for (d,∆) converges on the first page. (See [5] for details of this approach.) We use the
different but similar approach. Consider the bi-complex V [[z]] with differential d + z∆, where z is a
formal parameter of homological degree 2, and consider a particular trivialization (homotopy) for the
action of ∆. Namely, we choose a particular automorphism of the space V [[z]] which gives a quasi-
isomorphism of complexes with respect to differentials d and d+ z∆. The other possible way to say the
same is that d + z∆ = exp(−φ(z))d exp(φ(z)), where z is a formal variable, and φ(z) =

∑∞
i=1 φiz

i is
some series of operators. We consider these extra operators φi, i = 1, 2, . . . , as a part of the algebraic
structure we have, and a BV algebra equipped with this extra trivialization data is a representation of
the homotopy quotient of the BV operad. We denote this model of the homotopy quotient by BV/∆.

The main result of this paper is an explicit formula for a quasi-isomorphism θ : Hycomm → BV/∆.
This result summarizes the relations between hypercommutative algebras and Batalin-Vilkovisky alge-
bras mentioned above. The equivalence of the homotopy categories of Hycomm-algebras and homotopy
quotient of BV-algebras was given in [7] on the level of chains.

There are two ways to construct this map:
First approach goes through a careful analysis of a system of relations between the operads Hycomm,

BV/∆, the operad of Gerstenhaber algebras and the gravity operad. It deals with different precise
relationships between homotopy quotients and equivariant (co)homology first discovered by Getzler in [10,
11, 12]. Theorem 4.1 summarizes these relationships in main Diagram (22) of quasi-iso relating BV/∆
and Hycomm. We go through Diagram (22) specifying the generating cocycles in the cohomology at each
step. As a result we get a formula for θ given in terms of summations over three-valent graphs.

Second approach is a generalization of the interpretation of the BCOV theory suggested in [30]. There
is an action of the loop group of the general linear group on the representations of Hycomm in a given
vector space. It was constructed by Givental and the action of its Lie algebra was studied by Y.-P. Lee,
see [15, 20]. We generalize this group action to an action on the space of morphisms from Hycomm to an
arbitrary operad. This way we can describe the map θ as an application of a particular Givental group
element to a very simple morphism from Hycomm to BV/∆, the one that preserves the commutative
associative product and ignores all the rest. In this case the final formula is given in terms of summations
over graphs with arbitrary valencies of vertices.

We state that these two formulas for θ coincide, however, we prefer to omit the direct proof of this
statement and use the uniqueness arguments in order to explain the coincidence. The Givental-style for-
mula is simpler for applications and contains already all cancellations, however, the homological approach
is of it’s own interest. In particular, it allows to give additional point of view on the ψ-classes which we
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want to use elsewhere. So far, we show how one can get the topological recursion relations using this
homological interpretation.

Finally, our result on an explicit quasi-isomorphism formula allows to give a new interpretation for the
Givental group action mentioned above. It appears that the action of the Givental group on morphisms
of Hycomm corresponds to the ambiguity of a particular choice of a trivialization for ∆ in BV/∆.

0.1. Outline of the paper. We repeat once again that in spite of topological motivation all proofs and
all expositions are purely algebraic. All operads involved and algebras over them are defined in pure
algebraic terms of generators and relations.

In Section 1 we formulate our main result on an explicit formula for the quasi-iso θ : Hycomm → BV/∆.
Section 2 deals with the circle action. Namely, the categorical definition of the homotopy quotient by ∆
is given in 2.2 and the algebraic counterpart of Chern classes is presented in 2.3.

In Section 3 we introduce notations and definitions for all operads involved in the main chain of quasi-
isomorphisms between Hycomm and BV/∆ (Diagram (22)). This part is quite technical and is needed
mainly to fix the notation.

Section 4 contains the main Diagram (22) of quasi-iso connecting Hycomm and BV/∆. We play around
it in order to get algebraic description of ψ-classes and a useful dg-model of the BV-operad. In Section 5
we go through all these quasi-isomorphisms specifying generating cocycles in the cohomology, and this
way we obtain a direct map θ : Hycomm → BV/∆. In Section 6 we recall the Givental theory, apply it in
order to get a formula for θ from Section 1, and then use the existence of such a map in order to give a
new interpretation for the Givental theory.

Those readers who are interested more in the results rather than in the proofs may skip technical
Sections 3 and 5.

0.2. Acknowledgment. We are grateful to V. Dotsenko, E. Getzler, A. Givental, G. Felder, A. Losev,
and B. Vallette for useful discussions on closely related topics.

1. An explicit formula

In this section we give an explicit formula for a map Hycomm → BV/∆ that takes Hycomm isomor-
phically to the cohomology of BV/∆.

1.1. A presentation of BV/∆. The definition of a homotopy quotient given below is more convenient
for applications then the standard categorical definition. We discuss the equivalence of these definitions
in Section 2.2.

The algebras over the homotopy quotient BV/∆ are in one-to-one correspondence with the BV-algebras
where ∆ acts trivially on homology and moreover one chooses a particular trivialization for this action.
I. e. the BV/∆ algebra on a complex (V

q

, d) consists of commutative multiplication, differential operator
∆ : V

q

→ V
q

[−1] of order at most 2 and an isomorphism of complexes

(1) Φ(z) : (V
q

[[z]], d + z∆) → (V
q

[[z]], d),

where z is a formal parameter of degree 2 and Φ(z) is a formal power series in z. I. e. Φ(z) =
∑

i>0Φiz
i.

Φi should be linear endomorphisms of the vector space V
q

of pure homological degree −2i and Φ0 = IdV .
Our formulas below become simpler if we consider exponential coordinates for trivialization. Namely,

we represent Φ(z) as a series exp(φ(z)), φ(z) :=
∑

i>1 φiz
i that is,

IdV +Φ1z +Φ2z
2 + . . . = exp(φ1z + φ2z

2 + . . .).

This allows us to describe the operad BV/∆ in the following way.
In order to homotopically resolve the operation ∆ in the operad BV we have to add a number of

generators φi, i > 1, degφi = −2i, and define a differential d that vanishes on all generators of BV

operad and such that ∆ itself becomes an exact cocycle, while the rest of the BV-structure survives
in the cohomology (and no new cohomology cycles appear). We rewrite the formula d exp(φ(z)) =
exp(φ(z))(d + z∆) as

(2) Φ(z)−1dΦ(z) = exp(−φ(z))d exp(φ(z)) = d+ z∆
3



and use the expansion of the left hand side of the latter equation in order to define a differential that we
denote by ∆ ∂

∂φ
on the generators φi as an expression for [d, φi]. That is, the formulas

∆ = [d, φ1],(3)

0 = [d, φ2] +
1

2
[[d, φ1], φ1],

0 = [d, φ3] + [[d, φ1], φ2] + [[d, φ2], φ1] +
1

6
[[[d, φ1], φ1], φ1],

turn into

∆
∂

∂φ
(φ1) = [d, φ1] = ∆(4)

∆
∂

∂φ
(φ2) = [d, φ2] = −

1

2
[∆, φ1]

∆
∂

∂φ
(φ3) = [d, φ3] = −[∆, φ2] +

1

3
[[∆, φ1], φ1],

respectively.
We define the operad BV/∆ to be the operad obtained by adding to BV the generators φi, i > 0, with

the differential ∆ ∂
∂φ

equal to zero on BV and given by Equations (4). We use the notation ∆ ∂
∂φ

for the

differential in order to point out that it decreases the degree in φ by 1 and increases the degree in ∆ also
by 1 so looks like a differential operator ∆ ∂

∂φ
.

1.2. A formula for quasi-isomorphism. We construct a map Hycomm → BV/∆. To the generator
mn ∈ Hycomm(n) given by the fundamental cycle [M0,n+1] we associate an element θn of BV/∆(n)
represented as a sum over all possible rooted trees with n leaves, where

• at the each vertex with k inputs we put the (k−1) times iterated product in the BV-algebra. The
iterated product m(x1, . . . , xk) is defined as m(x1, . . . m(xk−2,m(xk−1, xk)) . . . ), where m(x1, x2)
denotes the usual binary multiplication from BV(2). Abusing the notation we denote the iterated
product by the same letter m.

• Each input/output e of any given vertex in a graph is enhanced by a formal parameter ψe. I. e.
a vertex with k inputs will be equipped with k+1 additional parameters. These parameters will
be used to determine the combinatorial coefficient of the graph.

• On each leaf e (an input of the graph) we put the operator exp(−φ(−ψe)), where ψe is the defined
above formal parameter associated to the corresponding input e of the vertex where the leaf is
attached.

• At the root (the output of the graph) we put the operator exp(φ(ψ)). Again, ψ is a formal
parameter associated to the output of the vertex, where the root is attached.

• At the internal edge that serves as the output of a vertex v′ and an input of a vertex v′′ we put
the operator

E := −
exp(−φ(−ψ′′) exp(φ(ψ′))− 1

ψ′′ + ψ′
,

where ψ′ (respectively, ψ′′) are attached to the output of v′ (respectively, the corresponding input
of v′′) in the same way as above.

Each graph should be considered as a sum of graphs obtained by expansion of all involved series in ψ’s,
and each summand has a combinatorial coefficient equal to the product over all vertices of the integrals

(5)

∫

M0,k+1

ψd00 ψ
d1
1 · · ·ψdkk :=

{
(k−2)!

d0!d1!···dk !
, if k − 2 = d0 + d1 + · · ·+ dk;

0, otherwise,

where the degrees d0, d1, . . . , dk are precisely the degrees of ψ-classes associated to the inputs/output of
a vertex.

Note that after expansion of all exponents there are only finitely many monomials in ψ’s that con-
tribute in the total summand for θn. Consequently, θn is represented by a finite sum of combinations of
multiplications and φi’s. In particular, the total degree of each nonzero term is equal to 2 − 2n (recall
that degm = 0 and degφi = −2i).

4



Remark 1.1. Here ψ-classes and their integrals over the space M0,k+1, as in Equation (5), should be
understood as a formal notation for some combinatorial constants (multinomial coefficients). However,
in Sections 6 and 5.2.1 we clarify the geometric meaning and the origin of this formula.

Example 1.2. Explicit formulas for the θ2 and θ3.

θ2 (x1, x2) =m (x1, x2)

θ3 (x1, x2, x3) =φ1 (m (x1, x2, x3)) + (m (x1, x2, φ1(x3)) +m (x2, x3, φ1(x1)) +m (x3, x1, φ1(x2)))

− (m (x1, φ1 (m(x2, x3))) +m (x2, φ1 (m(x1, x3))) +m (x3, φ1 (m(x1, x2)))) .

Theorem 1.3. Using the Leibniz rule, the map θ defined on generators by θ : mn 7→ θn extends to a
morphism of operads θ : Hycomm → BV/∆. Moreover, θ is a quasi-isomorphism of operads.

We present two ways to prove this theorem.
The first proof uses computations with equivariant homology. It is presented in Section 5. First, we

give a sequence of natural quasi-iso connecting Hycomm and BV/∆. Second, a careful diagram chase
allows us to obtain a formula for θ, and, in addition, a natural homological explanation of the Givental
group action on representations of Hycomm.

The second proof also consists from two steps. The first step is the same. We observe that the
cohomology of BV/∆ coincides with Hycomm. Second, we notice that the expression for θk does not
contain ∆ and therefore θk /∈ Im(∆ ∂

∂φ
). Third, using a certain generalization of the Givental theory we

show that θk are ∆ ∂
∂φ

-closed. The degree count implies that θ defines a quasi-isomorphism of operads.

This proof is explained in detail in Section 6.

1.3. Examples. There are natural examples of the BV/∆ algebras structures on the de Rham complexes
of Poisson and Jacobi manifolds. These examples are discussed in detail in [5] from a different perspective.

In the case of a Poisson manifold, we consider its de Rham complex with the de Rham differential ddR

and wedge product, and the operator φ1 equal to the contraction with the Poisson structure and φi = 0,
i = 2, 3, . . . . The operator ∆ = [ddR, φ1] is a BV-operator, thus we have a natural structure of a BV/∆
algebra. In the case of Jacobi manifold the BV/∆ structure exists on the space of basic differential forms,
the construction is very similar, and we refer to [5] for details.

In both cases, the explicit formulas for θk, k = 2, 3, . . . , gives a structure of the Hycomm algebra on
the cohomology in these examples. In fact, with these formulas it is easy to see that in these cases the
structure of a Hycomm-algebra gives raise to a full structure of a Frobenius manifold, that is, we also
have a scalar product and homogeneity with all the necessary properties.

In [5] the structure of a Hycomm algebra is obtained in a different way, using a general result of
Drummond-Cole and Vallette in [8] on a homotopy Frobenius structure on the cohomology of a BV-
algebra, where the homotopy transfer of the BV operator ∆ vanishes. In fact this result in [8] is completely
parallel to ours, as it is shown in [5], though exact match of the formulas will require more work.

2. Circle action

In this section we compare our definition of a homotopy quotient with a categorical one and show how
this affects to the Chern classes.

2.1. Homotopy quotient in Topology. Consider a topological space X with a chosen action of the
group S1. If the action of S1 is not free then the quotient space X/S1 is not well defined. Therefore in
order to define the quotient one has to replace the space X by a homotopy equivalent space X×ES1 with
the free action of S1. Recall that ES1 is a contractible space with the free S1-action. The corresponding

bundle ES1 S1

→ BS1 is called the universal S1-bundle and it’s base BS1 is called classifying space and

known to coincide with CP∞. The homotopy quotient “X/S1” is defined as a factor X×ES1

S1 .

There is another categorical definition which we find useful to recall. Denote by S1-T op (resp.T op)
the homotopy categories of topological spaces with (and without) action of S1. There is a natural exact

functor TrivS
1

: T op → S1-T op which assigns a trivial action of S1 on any topological space. The left

adjoint functor to the functor TrivS
1

is called the homotopy quotient by S1:

HomT op(X/S
1, Y ) ≃ HomS1-T op(X,Triv

S1

(Y ))
5



In particular, if X is isomorphic to the direct product Z×S1 the homotopy quotient X/S1 is isomorphic
to Z.

2.2. Homotopy quotient for algebraic operads. Replace the category T op by the category dg-Op
of differential graded operads. The cohomology ring of the circle is the Grassman algebra k[∆] with
one odd generator of degree −1 such that ∆2 = 0. The category ∆-dg-Op of dg-operads with a chosen
embedding of the Grassman algebra k[∆] replaces the category of S1-T op of topological spaces with a
circle action. An object of the category ∆-dg-Op is a dg-operad with a chosen unary operation of degree
−1, such that its square is equal to zero. Any dg-operad Q admits a trivial map k[∆] → Q with ∆ 7→ 0.
This defines a functor Triv∆ : dg-Op→ ∆-dg-Op.

Definition 2.1. The homotopy quotient by ∆ is the left adjoint functor to the enrichment by trivial
embedding of Grassman algebra: I. e. it is a functor (-)/∆ : ∆-dg-Op→ dg-Op such that for any pair of
operads P,Q there exists a natural equivalence

Homdg-Op(P/∆,Q) ≃ Hom∆-dg-Op(P, T riv
∆(Q))

which is functorial in P and in Q.

In Section 1.1 we have already chosen a particular model of the homotopy quotient by ∆. Let us show
that this model indeed satisfies the adjunction property required by Definition 2.1. First, let us repeat
the construction from Section 1.1 in a general setting.

Any given operad Q with a chosen unary operation ∆ ∈ Q(1) (such that ∆2 = 0) may be extended by
a collection of unary operations φi, i = 1, 2, . . . , of homological degree degφi = −2i, and the differential
prescribed by Equation (2). We remind that the generating series in z of the sequence of identities on
the commutators [d, φi] defines a differential:

exp(−φ1z
1 − φ2z

2 − . . .)d exp(φ1z
1 + φ2z

2 + . . .) = d+ z∆.

Note that the differential decreases the degree in φi’s by 1 and increases the degree in ∆ by 1. We want
to keep this property in the notation for the differential; therefore, we denote it by ∆ ∂

∂φ
and this notation

should be understood just as a single symbol.

Proposition 2.2. The functor that sends an operad Q with a chosen squared zero unary operation ∆ to

the dg-operad
(
Q ⋆ k〈φ1, φ2, . . .〉,∆

∂
∂φ

)
gives a particular model of the homotopy quotient Q/∆. I. e. the

twisted free product with φ’s is the left adjoint functor to the trivial action of k[∆].

Proof. Recall that k[∆] is a skew commutative algebra with one odd generator ∆, where the skew-
commutativity implies the relation ∆2 = 0. This algebra is Koszul and its Koszul dual is the free algebra
k[δ] with one even generator of degree 2. The free product of the Grassman algebra k[∆] and the free
algebra F generated by the augmentation ideal of Koszul dual coalgebra together with Koszul differential
is acyclic. We state that φi’s is just a one possible way to find generators in the free algebra generated
by the augmentation ideal of k[δ] and the differential ∆ ∂

∂φ
is the corresponding description of the Koszul

differential.
Therefore, the free product k[∆]⋆k〈φ1, φ2, . . .〉 is a factor of the free associative algebra generated by ∆

and φi, i = 1, 2, . . . by the unique relation ∆2 = 0. This algebra is acyclic with respect to the differential
∆ ∂
∂φ

, admits the natural splitting:

(6) k
17→1
→֒

(
k〈∆, φ1, φ2, . . .〉/(∆

2),∆
∂

∂φ

)
∆,φi 7→0
։ k

and satisfies the following universal categorical property: For any dg-algebra (A, dA) with a chosen dg-
subalgebra (k[∆A], 0) there exists a map of dg-algebras ϕA : (k[∆] ⋆ k〈φ1, φ2, . . .〉,∆

∂
∂φ

) → (A, dA) that

sends ∆ 7→ ∆A and is functorial with respect to A. One should think about the dg-algebra (k[∆] ⋆
k〈φ1, φ2, . . .〉,∆

∂
∂φ

) as a noncommutative algebraic replacement of the universal bundle ES1.

We will come back to the connection with the universal bundle in the next Section 2.3. �

For any given dg-operad (P, dP) we define the quasi-isomorphic inclusion of dg-operads

(7) εP : (P, dP) →

(
P ⋆ k[∆] ⋆ k〈φ1, φ2, . . .〉, dP +∆

∂

∂φ

)

6



that sends P to P; and with any dg-operad (Q, dQ) with a chosen unary operation ∆Q ∈ Q(1) we associate
the projection of S1-dg-operads

(8) ηQ :

(
Q ⋆ k〈φ1, φ2, . . .〉 ⋆ k[∆], dQ + (∆−∆Q)

∂

∂φ

)
→ (Q, dQ)

that sends identically Q to Q, ∆ 7→ ∆Q and φi maps to 0 for all i.

Lemma 2.3. The morphisms εP and ηQ are quasi-isomorphisms for all P and Q.

Proof. The proof follows from the acyclicity of the dg-algebra (k[∆] ⋆ k〈φ1, φ2, . . .〉,∆
∂
∂φ

). �

Let us also give one more explanation on why we call the data φi’s by a choice of trivialization of the

action of S1. The action of S1 on a topological space X is encoded in the fibration X ×ES1 S1

→ B. The
trivialization of the S1 action is the isomorphism of this fibration and the trivial one. I.e. is given via
isomorphism Φ of the base B and the product X ×BS1. The algebraic counterpart of this isomorphism
looks as follows:

Φ : Tork[∆]
q

(V
q

,k)
≃

−→ V
q

⊗ Tork[∆]
q

(k,k)

where V
q

= C
q

(X). The trivial module k admits a Koszul resolution

(k[∆]⊗ k[z], z
∂

∂∆
) → k

and we ends up with the following isomorphism of complexes:

Φ = Φ(z) : (V
q

[z], d + z∆) → (V
q

[z], d)

that is called the trivialization of the action of ∆ (the trivialization of S1-action).

2.3. Chern character. Suppose that Q is a topological operad with a chosen embedding S1 →֒ Q(1).
Note that the latter embedding gives, in particular, the action of (n+1) copies of S1 on the space of n-ary
operations Q(n) via the substitution on inputs/output of operations. It is possible to take a homotopy
quotient with respect to the action on each particular input/output on the space of n-ary operations of
Q. We denote by Q/(◦i∆) the quotient with respect to the action of S1 on the i-th slot. Moreover, the
S1-action on each particular input produces a canonical S1-fibration on the space of n-ary operations of
the entire quotient Q/∆. It is simpler to describe the algebraic counterpart of this fibration in order to
define the first Chern class of this fibration which gives a canonical operation on a factor. This description
will be used later on to give another algebraic description of the ψ-classes in the moduli spaces of curves.

We hope that the reader will not be confused about no difference in the notations of the topological
operad and the corresponding algebraic operad of its singular chains. From now on Q means an algebraic
operad with a chosen unary odd operation ∆ with ∆2 = 0. Let (Q/∆)ǫi be the subset of n-ary operations
in Q/∆ where we take the augmentation map

ǫ : k〈φ1, φ2, . . .〉 ։ k

with respect to the i-th input of operations. I. e. we consider only those elements of Q/∆ which do
not contain any nonconstant element from the algebra k〈φ1, φ2, . . .〉. The natural inclusion of complexes
(Q/∆)ǫi(n) → (Q/∆)(n) gives the algebraic model of the S1-fibration described above.

Let ∂
∂φ1

be the derivation of the algebra k〈φ1, φ2, . . .〉 that sends the generator φ1 to 1 and all other

generators φi for i > 2 to zero. Let ◦i
∂
∂φ1

be the derivation of the set of n-ary operations Q/∆(n) obtained

by applying the derivation ∂
∂φ1

in the i-th slot of the operation.

Proposition 2.4. The derivation ◦i
∂
∂φ1

of the complex of n-ary operations Q/∆(n) represents the eval-

uation of the first Chern class of the S1-fibration over Q/∆ associated to the S1 action in the i-th slot.

Proof. The Chern class is defined as a generator of the cohomology of the Eilenberg-Maclein space
BS1 (the base of the universal bundle). In order to switch to algebra we have to reformulate the
required categorical properties of the universal bundle in algebraic terms. First, let us formulate the
desired property in the category of commutative dg-algebras since the homology functor is the map from
topological spaces to commutative algebras. The commutative dg-algebra (k[∆, u],∆ ∂

∂u
) is an acyclic

dg-algebra that satisfy the universal property: for any commutative dg-algebra (A, dA) with a chosen dg-
subalgebra (k[∆], 0) there exists a map of dg-algebras ϕA : (k[∆, u],∆ ∂

∂u
) → (A, dA) that sends ∆ 7→ ∆
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and is functorial with respect to A. The generator u is the multiplicative generator of H
q

(BS1;k) and
the derivation ∂

∂u
coincides with the evaluation of the first Chern class of the circle bundle. Second,

we notice that the dg-algebra (k[∆] ⋆ k〈φ1, φ2, . . .〉,∆
∂
∂φ

) is an acyclic dg-algebra satisfying the same

universal property, but in the category of noncommutative algebras. Now the generator φi corresponds
to the additive generators of H2i(BS1;k). There exists a natural quasi-iso projection between these two
algebras:

(9) ab :
(
k〈∆, φ1, φ2, . . .〉/(∆

2 = 0),∆ ∂
∂φ

)
// //
(
k[∆, u],∆ ∂

∂u

)
.

that sends ∆ to ∆, φ1 to u and all other φi, for i > 2 to 0. Moreover, the derivation ∂
∂φ1

of the left hand

side of (9) commutes with the differential and is mapped to the derivation ∂
∂u

on the right and, therefore,
coincides (on the homology level) with the evaluation of the first Chern class. �

3. Operads involved: definition and notation

In this section we recall the definitions of algebraic operads that correspond to the topological operads
of open and closed moduli spaces of curves of zero genus. We follow the papers of Getzler [12, 10]. Since
we want to work with precise formulas, we specify algebraic generators and relations in these operads.

We also give definitions of the operads involved in Section 5 in the main commutative diagram (22)
used to derive the equivalence of Hycomm and BV/∆.

We use the notation ◦l for the operadic compositions in the l’th slot. I. e. for an operad P and a pair
of finite sets I, J the composition ◦l : P(I ⊔ {l}) ⊗ P(J) → P(I ⊔ J) is a substitution of operations from
P(J) into the slot l of operations from P(I ⊔ {l}). The corresponding cocomposition map P∨(I ⊔ J) →
P∨(I ⊔ {l}) ⊗ P∨(J) for the dual cooperad P∨ will be denoted by µl or just by µ if the precise index
becomes clear from the context.

There are two standard ways to think of elements of an operad/cooperad in terms of its (co)generators.
The first way in terms of tree monomials represented by planar trees and the second one is in terms
of compositions/cocompositions of operations presented by formulas with brackets. Our approach is
somewhere in the middle: in most cases, we prefer (and strongly encourage the reader) to think of tree
monomials, but to write formulas required for definitions and proofs in the language of operations since
it makes things more compact. While using the language of operations/cooperations we always suppose
that the (co)operation that is attached to the root vertex is written in the leftmost term.

3.1. BV and framed little discs operad. The space of configurations of the small little discs without
intersections inside the unit disc form one of the most well known topological operad. The boundary of
the unit disc is considered as an output and the boundaries of the inner small discs are considered as
inputs. This means that the composition rules are defined by gluing the boundary of the inner disc of
the outgoing operation with the outer boundary of the incoming operation. Following May [26] we use
the name Ed for this operad where d is a dimension of the disc. We restrict ourself to the case d = 2. It
is also known that operad E2 is formal over Q (see e.g. [31, 19]) and its homology operad coincides with
the operad of Gerstenhaber algebras.

Recall, that the operad Gerst of Gerstenhaber algebras is a quadratic operad generated by two binary
operations: the commutative associative multiplication and the Lie bracket of degree −1. The quadratic
operadic relations consists of: the associativity of multiplication, Jacobi identity for the bracket and the
Leibniz identity for their composition:

[a · b, c] = ±[a, c] · b± a · [b, c]

Moreover, the space of n-ary operations Gerst(n) form a coalgebra, such that the composition maps are
compatible with comultiplications in these coalgebras. We will come back later to this description of the
Gerstenhaber operad in Section 3.4.

Let us mark a point on the boundary circle of each inner disk in a configuration from E2(n). This
leads to a description of the space of n-ary operations of the operad of framed little discs which we denote
by FE2. The composition rules in FE2 are also defined by gluing the boundary of the inner disc of the
outgoing operation with the outer boundary of the incoming operation but now the marked point of the
inner circle should be glued with the north pole of the outer circle. I. e. one has to rotate the incoming
configuration with respect to the angle prescribed by the marked point in the inner circle of the outgoing
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configuration. This operad is also known to be formal ([29, 14]) and the homology operad coincides with
the operad of Batalin-Vilkovisky algebras (shortly denoted by BV).

The operad BV is generated by the binary commutative associative multiplication and a unary opera-
tion ∆ of degree −1 such that ∆2 = 0 and ∆ is a differential operator of the second order with respect
to the multiplication. The latter statement is equivalent to the following so-called 7-term relation:

∆(abc)− (∆(ab)c +∆(bc)a +∆(ca)b) + (∆(a)bc+∆(b)ca+∆(c)ab) = 0

We omit the precise signs that comes from the Koszul sign rule in the Z-graded settings.
Note that the topological description of the operad of framed little discs is presented as a semi-direct

product (or semi-direct composition) of the little discs operad E2 and the group of rotations S1. The
topological definition of the semi-direct composition of a group and an operad is given in [28]. In our case,
the group is S1, and the algebraic counterpart consists of the semi-direct product of the Gerstenhaber
operad with a free skew-commutative algebra k[∆] generated by a unique generator ∆ of degree −1. This
leads to the following equality of operads:

BV = Gerst⋉ k[∆].

Here the semi-direct product Gerst⋉ k[∆] means the operad generated by the binary commutative mul-
tiplication, Lie bracket and unary operation ∆ subject to relations for multiplication and bracket as in
Gerst, ∆2 = 0 as in the skew-commutative algebra k[∆] and the following commutation relation between
∆ and generators of Gerst:

{∆, multiplication} = Lie bracket, {∆, Lie bracket} = 0

The patterned brackets denotes the operadic commutator. In particular, the operadic commutator of a
unary operation ∆ and an n-ary operation α(-, . . . , -) means the following expression with n+ 1 terms:

{∆, α(-, . . . , -)} := ∆ ◦ α(-, . . . , -)−

n∑

i=1

α(-, . . . , -) ◦i ∆.

We will come back later to the precise description of the spaces of n-ary operations of Gerst(n) and BV(n)
in Sections 3.4 and 3.7 respectively.

3.2. Closed moduli spaces of zero genus. The union of spaces of compactified moduli spaces of
curves of zero genus form an operad. This operad is formal. Its homology is called Hycomm (the operad
of hypercommutative algebras).

The algebraic description of the operad Hycomm looks as follows. The operad Hycomm has one
generator in each arity grater or equal to 2. The generator mk of arity k is of degree (4−2k) and is given
by the fundamental cycle mk := [M0,k+1]. The generators satisfy the following quadratic relations (here
a, b, c, x1, . . . , xn, n > 0, are elements of a Hycomm-algebra):

(10)
∑

S1∐S2={1,...,n}

±m|S2|+2(m|S1|+2(a, b, xS1
), c, xS2

) =
∑

S1∐S2={1,...,n}

±m|S2|+2(a,m|S1|+2(b, c, xS1
), xS2

).

Here, for a finite set S = {s1, . . . , sk}, xS denotes for xs1 , . . . , xsk , and ± means the Koszul sign rule. Let
us define a family of binary operations mx(-, -) on V parametrized by the same space V :

∀x ∈ V let mx(a, b) :=
∑

n>0

1

n!
mn+2(a, b, x, . . . , x)

Then Equation (10) is equivalent to the associativity of the multiplication mx(-, -) for all x ∈ V . This
observation explains the relation between hypercommutative algebras and Frobenius manifolds.

The first Chern class of the tangent bundle at the i’th marked point on M0,n+1 is usually denoted by

ψi. Let m
d0d1...dn
n be the cycle corresponding to the evaluation of the product of ψ-classes of corresponding

degrees on the fundamental cycle of the space of curves:

md0d1...dn
n := ψd00 ψ

d1
1 . . . ψdnn [M0,n+1].

These classes satisfy the so-called Topological Recursion Relations that are quadratic linear relations in
the operadic sense:
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m(d0+1)d1···dn +md0···di−1(di+1)di+1···dn =
∑

S1⊔S2⊔{0,i}
={0,...,n}

md0dS1
0 ◦|S1|+1 m

0didS2 ∀1 6 i 6 n;

m(d0+1)d1···dn =
∑

S1⊔S2⊔{0,i,j}
={0,...,n}

md0dS1
0 ◦|S1|+1 m

0didjdS2 ∀1 6 i, j 6 n.

Here we denote by dS , S = {s1, . . . , sk}, the sequence ds1 · · · dsk . We will come back later to TRR
equations in Section 5.2.1. For more details see [24].

3.3. Open moduli spaces of zero genus. The shifted homology of the union of spaces of open moduli
spaces of curves of zero genus also form a formal operad. The corresponding algebraic operad is called
Grav (the operad of gravity algebras). It was studied by Getzler in [12], in particular, he proved that
Grav and Hycomm are Koszul dual to each other.

An algebra over Grav is a chain complex with graded anti-symmetric products

(11) m̄n[x1, . . . , xn] : A
⊗n → A

of degree 2− n that satisfy the relations:
∑

16i<j6k

±m̄k+l−1[m̄2[ai, aj ], a1, . . . , âi, . . . , âj , . . . , ak, b1, . . . , bl](12)

=

{
m̄l+1[m̄k[a1, . . . , ak], b1, . . . , bl], l > 0,

0, l = 0,

for all k > 2, l > 0, and a1, . . . , ak, b1, . . . , bl ∈ A. For example, in the case of k = 3 and l = 0, we obtain
the Jacobi relation for m̄2[·, ·].

Once again, Getzler proved in [12] that Hycomm and Grav are Koszul dual operads. Moreover for all
n > 2 the generators mn ∈ Hycomm(n) and m̄n ∈ Grav(n) are Koszul dual generators in these operads.1

In particular, the associativity relation for the commutative multiplication m2 ∈ Hycomm(2) is a relation
Koszul dual to the Jacobi relation for the Lie bracket m̄2 ∈ Grav(2).

Let us also mention another result due to Getzler which hints the desired connection between Hycomm

and BV. The space of cotangent lines at the i-th marked point of curves from M0,n+1 forms a line
bundle over the open moduli space M0,n+1. Consider the product of corresponding (n + 1) principal
U(1)-bundles over M0,n+1, where the factors are numbered by the marked points.

Statement 3.1. ([10]) The homology of the total space of the (S1)×(n+1)-bundle over M0,n+1 (associated
with the product of cotangent lines at the marked points of a curve) coincides with the space of n-ary
operations in the operad BV.

We give the algebraic counterpart of this statement in the next section.

3.4. Gerstenhaber and gravity operads. Getzler observed that the S1-equivariant homology of the
Gerstenhaber operad is isomorphic to the gravity operad. This statement has very clear geometric
background, see [10], since the Gerstenhaber operad is the homology of the little disk operad. We recall
the algebraic counterpart of this isomorphism.

It is easier to compute the cohomology rather than homology of the space of little disks (it was done
by Arnold in [1]). This way we obtain a description of the cooperad dual to the Gerstenhaber operad.
The space of n-ary cooperations of the cooperad Gerst∨ form a so-called Orlik-Solomon algebra:

Gerst∨(n) :=
k

[
{wij}16i,j6n, i 6=j

]

(wij − wji, wijwjk + wjkwki + wkiwij)

Here we mean that Gerst∨(n) is a quotient modulo an ideal of the free graded commutative algebra
generated by wij , degwij = 1.

1 We are a bit cheating here because Koszul duality gives the duality between generators and cogenerators. But there
is no reason to separate generators and cogenerators in our particular situation because the corresponding subspaces of
homological degrees 2n− 4 and n− 2 in Hycomm(n) and Grav(n) respectively are one-dimensional.

10



The cooperad structure satisfies the Leibniz rule with respect to the product structure in the algebra
Gerst∨(n), n > 2. Therefore, it is enough to define the cooperad structure µ : Gerst∨(I ⊔ J) → Gerst∨(I ⊔
{∗}) ⊗ Gerst∨(J) on the generators wij. By definition,

(13) µ(wij) =





wij ⊗ 1, if i, j ∈ I;

wi∗ ⊗ 1, if i ∈ I, j ∈ J ;

1⊗ wij , if i, j ∈ J.

There is an action of the circle S1 on the little discs operad via the rotation of the outer circle. The
corresponding coaction of the generator ∆ of the first cohomology of the circle S1 on the space Gerst∨(n)
is given by the following operator:

(14)
∂

∂w
:=

∑

16i<j6n

∂

∂wij
.

The action of the operator ∂
∂w

on Gerst∨ is dual to the action of the operator ∆ on Gerst.

Statement 3.2. ([10]) The action of the operator ∆ is free on the Gerstenhaber operad Gerst. The image
of ∆ coincides with its kernel and is isomorphic to the gravity operad.

Let us define a homotopy model for the gravity operad. We use standard manipulations with equivari-
ant homology. We consider the free polynomial algebra k[δ], δ is even, as the Koszul dual of the algebra
k[∆].

Definition 3.3. By k[δ] ⊗ Gerst we denote a dg-operad with (k[δ] ⊗ Gerst)(n) := k[δ] ⊗ (Gerst(n)) for
n > 2 and (k[δ]⊗ Gerst)(1) := Gerst(1) = k. The composition is defined by

(15) (δa ⊗ α) ◦ (δb ⊗ β) := δa+bα ◦ β for α, β ∈ Gerst(n).

The BV-operator defines the differential δ∆: δaα 7→ δa+1∆(α) on this operad.

Let us rephrase Statement 3.2 in the language of cooperads. We use the notation u for the even variable
linear dual to δ and k[u]⊗ Gerst∨(n) for the space linear dual to k[δ]⊗ Gerst(n) for all n > 2.

Lemma 3.4. The augmentation map of dg cooperads

(16) ε : (k[u]⊗ Gerst∨,
∂

∂u

∂

∂w
) ։

(
Grav∨, 0

)

that maps u 7→ 0 and Gerst∨ ։ Gerst∨/(Im ∂
∂w

) = Grav∨ is a quasi-isomorphism.

In particular, the map ε maps any basic element wij ∈ Gerst∨(n) to the unique n-ary cogenerator m̄n

of the gravity cooperad. The precise homological grading is discussed in the next section.

3.5. Bar complexes. In this section we recall the general definition of cobar complex and the precise
formulation of Koszul self-duality for the operad Gerst and Koszul resolution of Hycomm via a cobar
complex of Grav.

Consider a cooperad P∨ with a cocomposition µ : P∨ → P∨ ◦ P∨. Let P∨
+ be the augmentation

ideal. In all our examples P∨(1) = k and the augmentation ideal P∨
+ is equal to ⊕n>2P

∨(n). The cobar
complex B(P∨) is a free dg-operad generated by the shifted space P∨

+[−1]. The cocomposition µ defines
a differential of degree 1 on generators. Using the Leibniz rule we extend it to the whole cobar complex
B(P∨).

In [13] it is proved that the operad Gerst is Koszul self-dual up to an appropriate even shift of ho-
mological degree. Pure algebraic proof of that fact was first given in [25]. Let us specify the desired
homological shift. Note that Getzler defined two different types of grading on Grav in [12, 10]. They
differ by the even shift s2 on the Gerstenhaber operad that we define now. By s2Gerst∨ we denote a
quadratic cooperad whose n-th space is given by s2Gerst∨(n) = Gerst∨(n)[2n−2]. In other words, we can
define s2Gerst∨ as a quotient of a free cooperad generated by binary operations modulo an ideal exactly
in the same way as Gerst∨, but we shift by 2 the homological degree of the binary generators.

The Koszul self-duality means that the natural projection of dg-operads

(17) π :
(
B(s2Gerst∨), µ

)
։ (Gerst, 0)
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is a quasi-isomorphism. Here the map π interchanges the multiplication and the bracket. In particular,
under π

w12 ∈ Gerst∨(2) 7→ multiplication(18)

1 ∈ Gerst∨(2) 7→ Lie bracket

Gerst∨(k) → 0 for k > 2.

In order to give a similar construction for the resolution of the operad Hycomm, we consider the cobar
complex of the equivarient model of the gravity operad:

(19) B(k[u]⊗ s2Gerst∨)
ε
։ B(Grav)

κ
։ Hycomm.

The differential d on B(k[u] ⊗ s2Gerst∨) is a sum of two parts. The first summand is equal to the inner
differential ∂

∂u
∂
∂w

. The second summand is given by cocomposition µ defined by Equation (13). For

example, on a generator uk

k! f(wij), where f is a monomial in wij, 1 6 i 6= j 6 n, the differential is given
by

d

(
uk

k!
f(wij)

)
=

uk−1

(k − 1)!

∑

i,j

∂f

∂wij
+

∑

I⊔J=[n],|J |>2,|I|>1,
k1+k2=k

(−1)degwf
I uk1

k1!
f I ⊗

uk2

k2!
fJ

Since f ∈ Gerst∨(n) is a monomial in wij , for each decomposition I ⊔ J = [n] we have a uniquely defined
pair of monomials f I ∈ Gerst∨(|I|+1) and fJ ∈ Gerst∨(|J |). It is important for Koszul sign rule in future
computations to recall once again the degree of a particular generator of the cobar complex:

deg(
uk

k!
f(wij)) = 2− 2n+ 2k + degwf + 1 = 3− 2(n− k) + degwf

3.6. Applying the homotopy quotient and the free product to gravity operad. Let us apply the
composition of functors we defined in Section 2.2 to the free dg-model of the operad of hypercommutative
algebras discussed in Equation (19). I. e. in this section we describe the dg-operad which is the homotopy
quotient by ∆ of the free product with k[∆] of the dg-operad B(k[u]⊗ s2Gerst∨).

Consider first the image of the free product functor B(k[u] ⊗ s2Gerst∨) ⋆ k[∆]. Note that k[u] comes
from the cohomology ring of BS1 and, therefore, it is natural to define the differential which interacts
the action of ∆ and u:

∆ad ∂

∂u
: γ 7→

{
∆,

∂γ

∂u

}
= ∆ ◦

∂γ

∂u
−

n∑

i=1

±
∂γ

∂u
◦i ∆.

That is, the operator ∂
∂u

acts on n-ary operation γ and ∆ad ∂
∂u

acts as the commutator of ∂γ
∂u

and ∆. Note

that operators ∆ad and ∂
∂u

commute.
The following corollary follows directly from the proof of Proposition 2.2:

Corollary 3.5. The natural projection that takes ∆, φ1, φ2, . . . to 0 is a quasi-isomorphism of dg-operads
(20)(

B(k[u]⊗ s2Gerst∨) ⋆ k[∆]

∆
,
∂

∂u

∂

∂w
+ µ+∆ad ∂

∂u
+∆

∂

∂φ

)
−→

(
B(k[u]⊗ s2Gerst∨),

∂

∂u

∂

∂w
+ µ

)
.

The operad B(k[u]⊗ s2Gerst∨) ⋆ k[∆] will be referred to as an equivariant cobar complex. This operad
is spanned by trees whose vertices are marked by elements of the cooperad k[u] ⊗ s2Gerst∨ and some
edges are marked by ∆.

3.7. BV and semi-direct composition of operads. In this section we recall the presentation of
the BV operad in terms of the semi-direct composition. The topological definition of the semi-direct
composition of a group and an operad is given in [28]. In our case, the group is S1, and the algebraic
counterpart consists of the semi-direct composition of the Gerstenhaber operad with a free algebra k[∆]
generated by a unique generator ∆ of degree −1. As we have already mentioned in Section 3.4, the circle
acts by inner rotations of the disc and the corresponding coaction is given by the operator ∂

∂w
defined by

Equation (14).
We have already mentioned in Section 3.1 that the operad Gerst ⋉ k[∆] coincides with BV. Let us

specify a bit the description of Gerst⋉k[∆]. The space of n-ary operations of Gerst⋉k[∆](n) is equal to
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Gerst(n) ⊗ k[∆1, . . . ,∆n]. In particular, Gerst ⋉ k[∆](1) = k[∆]. By definition, for any γ ∈ Gerst(n) we
have:

γ ◦i ∆ := γ ⊗∆i;

∆ ◦ γ :=

n∑

i=1

γ ◦i ∆+∆(γ),

where in the last summand we use the action of ∆ on Gerst. These two formulas allow to extend
unambiguously the operadic product on Gerst to an operadic product on Gerst⋉ k[∆](n). Moreover, the
projection π : B(s2Gerst∨) ։ Gerst from Equation (18) is extended to a quasi-isomorphism of semi-direct
compositions:

(21) π : (B(s2Gerst∨)⋉ k[∆], µ) ։ (Gerst⋉ k[∆], 0) = (BV, 0).

Lemma 3.6. The natural projection

ǫ :

(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆],

∂

∂u

∂

∂w
+ µ+∆ad ∂

∂u

)
։
(
B(s2Gerst∨)⋉ k[∆], µ

)

that sends u 7→ 0, ∆ 7→ ∆, and Gerst → Gerst, is a quasi-isomorphism of dg-operads.

Proof. First, we check that ǫ is a morphism of dg-operad. Indeed, a direct computation follows that ǫ
is compatible with the differentials. Since the cobar complexes are free operads, we immediately get the
compatibility with the operadic structures.

Then we consider a filtration by the number of internal edges in cobar complexes both in the source
and in the target of ǫ. The associated graded differential in the target is equal to 0, and the associated
graded differential in the source dg-operad is equal to ∂

∂u
∂
∂w

+∆ad ∂
∂u

.
At that point it is possible to choose a filtration (or rather a sequence of filtrations) in the source

dg-operad such that associated graded differential will simplifies further and is equal to is ∆out ∂
∂u

. Here
∆out is an operator defined by ∆out(γ) = ∆◦γ, that is, we create a new ∆ only at the output of a vertex.

The cohomology of the complex (k[∆] ⊗ k[u],∆ ∂
∂u

) is equal to k. Therefore, the cohomology with

respect to the differential ∆out ∂
∂u

are generated by the graphs whose vertices are decorated by u0 and
there are no ∆’s on the outputs of the vertices. This means that the whole graph is allowed to have
only some ∆’s at the global inputs of the graph. This kind of graphs span by definition the semi-direct
composition B(s2Gerst∨)⋉ k[∆]. �

4. Main diagram of quasi-isomorphisms

In this section we present the full diagram of quasi-isomorphisms that connects Hycomm and BV/∆.
We show how ψ-classes appears in the picture and how one can get an algebraic model of the Kimura-
Stasheff-Voronov operad.

In the forthcoming Section 5 we are going to move through this diagram the generators mk of Hycomm,
and this way we obtain a quasi-isomorphism θ : Hycomm → BV/∆.

Theorem 4.1. We have the following sequence of quasi-isomorphisms:

(22)
(
B(k[u]⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ µ
)

ε

��

(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆]/∆,

∂
∂u

∂
∂w

+ µ+∆ad ∂
∂u

+∆ ∂
∂φ

)j
oo

ǫ

��(
B(Grav∨), µGrav

)

κ

��

(
B(s2Gerst∨)⋉k[∆]

∆ , µ+∆ ∂
∂φ

)

π

��

(Hycomm, 0)
θ //

(
BV/∆,∆ ∂

∂φ

)

Proof. In Section 3 we give a detailed description of all the morphisms involved in Diagram (22) and
prove that they are quasi-isomorphisms, except for θ. Indeed,
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κ: The morphism κ is a quasi-isomorphism because the operads Hycomm and Grav are Koszul dual
to each other, see Section 3.3.

ε: The equivariant model of the operad Grav is discussed in Section 3.4. We apply the cobar functor
to the quasi-isomorphism ε :

(
k[u]⊗ Gerst∨, ∂

∂u
∂
∂w

)
→ Grav∨ described in Lemma 3.4.

j: The morphism j is a special case of the composition of the free product functor and the homotopy
quotient functor discussed in Section 2.2, see Corollary 3.5.

ǫ: The existence of ǫ is discussed in Section 3.7. The quasi-isomorphism property of ǫ is proved in
Lemma 3.6 via a sequence of filtrations.

π: The map π is obtained as a homotopy quotient of the quasi-isomorphism given by Equation (21).
The latter one is obtained from the standard Koszul resolution of Gerst (see Equations (17),(18)).

θ : Section 5 contains a careful description of θ together with the proof of quasi-iso and commutativity
of the diagram. We take the generators of Hycomm and move the corresponding cocycles through
the diagram above in a clockwise direction. We will show that the resulting map of generators
from Hycomm to BV/∆ defines a morphism of operads and does not depend on particular choices
of cocycles one should made in-between. In particular, the image of the map θ coincides with
the intersection of the kernel of differential ∆ ∂

∂φ
with the suboperad of BV/∆ generated by

multiplication and φi’s.

�

Recall from Section 2.3 that any given S1-operad Q and a pair of natural numbers i < n defines an
S1-fibration over Q/∆(n) associated with the S1-rotations in the i-th slot. We will apply this construction
for the operad BV in order to have another description of the line bundles over the moduli space M0,n+1

formed by the cotangent lines at the marked point. Recall that ψ-classes are the first Chern classes of
these line bundles. Theorem 4.2 below explains the algebraic counterpart of the action of ψ-classes in
Diagram (22).

Theorem 4.2. The S1-fibration over the space of n-ary operation of the homotopy quotient by S1 of
the framed little discs operad associated to the rotations in the i’th slot coincides with the S1-bundle over
M0,n+1 coming from the line bundle of the cotangent lines at the i-th marked point.

The algebraic models of the evaluation of the first Chern class of S1-bundles under consideration are
underlined in the following refinement of commutative Diagram (22):

(23)
(
B(k[u]⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ µ
)

κ◦ε

��

(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆]/∆,

∂
∂u

∂
∂w

+ µ+∆ad ∂
∂u

+∆ ∂
∂φ

)j
oo

π◦ǫ

��

(Hycomm, 0)
θ //

(
BV/∆,∆ ∂

∂φ

)

◦i
∂

∂φ1

GG

ψi

GG

◦i
∂
∂u

+◦i
∂

∂φ1

��
◦i

∂
∂u

��

Each operator drawn as a loop near the appropriate complex defines an operator which commutes with
differential in this complex and the vertical and horizontal arrows map these derivations one to another.
For example, the derivation ◦i

∂
∂u

is the differentiation by u-variable in the vertex attached to the i-th

slot (input/output) of the element in the cobar complex B(k[u]⊗ s2Gerst∨), and the differentiation ◦i
∂
∂φ1

means the noncommutative differentiation by φ1 in the algebra k〈φ1, φ2, . . .〉 which is also attached to the
i-th slot.

Proof. We omit the detailed proof of this Theorem because the proof repeats the one of Theorem 4.1 and is
based on the results of Getzler mentioned in Statement 3.1. It is a direct check that the diagram commutes
everywhere except the leftmost arrow. From Proposition 2.4 we know that the corresponding derivations
drawn in the loops represents the evaluation map with the first Chern class on the homology level.
Statement 3.1 finishes the coincidence of the corresponding bundles and Chern classes respectively. �
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Recall that for any operad Q with a chosen S1-action we construct a functorial quasi-iso projection

ηQ :
(
(Q/∆) ⋆ k[∆], (∆−∆Q)

∂
∂φ

)
7→ Q (Compare with Equation (8)). We want to apply the functor

ηQ ◦ (- ⋆ k[∆]) to the main Diagram (22). This operation is well defined because all operads involved
in Diagram (22) are quasi-iso to the image of the functor of homotopy quotient by ∆. Moreover the
composition of functors ηQ ◦ (- ⋆ k[∆]) applied to the second column of Diagram (22) just removes the
homotopy quotient. On the other hand we show how this functor affects the differential if we apply
the same functor to the left column of Diagram (22). Indeed we have the following dg-model for the
BV-operad (the image of ηQ ◦ (- ⋆ k[∆]) to the left-top operad from Diagram (22)):

(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆],

∂

∂u

∂

∂w
+ µ+∆ad ∂

∂u

)
.

Theorem 4.2 says that the differential in the bottom of the column should replace the operator ∂
∂u

by the
evaluation of the corresponding ψ-class. I. e. the image of the bottom complex is (Hycomm ⋆ k[∆],∆ψ)
where the differential “∆ψ” is defined on the generators by the following formula:

(∆ψ) ·mn =
n∑

i=0

(ψimn) ◦i ∆−
∑

S1⊔S2={0,..,n}

m|S1|+1 ◦∗ ∆ ◦∗ m1+|S2|

The formulas have the same form whenever one uses the ψ-classes description of the Hycomm-operad:

(∆ψ) · ψd00 . . . ψdii . . . ψdnn [M0,n+1] =

n∑

i=0

ψi

n∏

s=0

ψdss [M0,n+1] ◦i ∆+

−
∑

S1⊔S2={0,...,n}

∏

s∈S1

ψdss [M0,|S1|+1]⊗∆⊗
∏

s∈S2

ψdss [M0,|S2|+1]

We finally ends up with the following corollary which seems to be quite useful in order to have a
description of the Quillen homology and minimal resolution of BV-operad:

Corollary 4.3. There exists a commutative diagram of quasi-isomorphisms of operads:
(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆],

∂
∂u

∂
∂w

+ µ+∆ad ∂
∂u

)

κ◦ε

��

(
B(k[u]⊕ k[u]⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ µ
)j

oo

π◦ǫ

��
(Hycomm ⋆ k[∆],∆ψ)

θ // (BV, 0)

Note that the operad (Hycomm ⋆ k[∆],∆ψ) is an algebraic model of Kimura-Stasheff-Voronov operad
(see e.g.[16] for details). Moreover, the map θ becomes an obviously defined projection that sends the
operation m2 ∈ Hycomm(2) to the multiplication in BV, ∆ to ∆ and all other generators mk for k > 3 of
the operad Hycomm are mapped to 0.

5. Diagram chase

This technical section consists of the precise description of the inverse maps that appear in Dia-
gram (22). The aim is to get precise formulas for the cocycles in this Diagram. We move our cocycles
through the Diagram (22) step by step in the clockwise direction starting with the operad Hycomm.

5.1. The inverse of κ. The generators of the cohomology of
(
B(Grav∨), µGrav

)
that project under κ to

the cocycles mi, i = 2, 3, . . . , are m̄i described in Section 3.3, see Equation (11).

5.2. The inverse of ε. The complex
(
B(k[u]⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ µ
)
has two differentials. The quasi-

isomorphism ε is the projection to the cohomology with respect to the differential ∂
∂u

∂
∂w

.
Let us give the inductive procedure of writing an inverse map to ε. We will show how one can increase

the number of inputs in order to write down a sequence of representing cocycles. The way we are doing
that is not symmetric in the inputs; each cocycle will depend on the ordering of the inputs, but different
orderings will give homologous cocycles. The map that increases the number of inputs is defined as a
linear combination of some auxiliary maps that we introduce now.
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Consider the natural embedding of the Orlik-Solomon algebras:

ιI,n : k[u]⊗ Gerst∨(I) → k[u]⊗ Gerst∨(I ⊔ {n});

ιI,n : wij 7→ wij , ∀ i, j ∈ I;

ιI,n : u 7→ u.

The meaning of this formula is the following. We just increase the number of inputs: the set of inputs I
is replaced by the set of inputs I ⊔ {n}.

We extend the map ιI,n to a derivation of the bar-complex B(k[u]⊗s2Gerst∨). It is not well-defined for
the operations of arity > n, because in this case it might appear that I ∋ n. But we restrict the resulting
map to the operations of arity n − 1. We denote this extension by ιn : B(k[u] ⊗ s2Gerst∨)(n − 1) →
B(k[u]⊗ s2Gerst∨)(n).

Now we define a collection of derivations ςsn, s = 0, . . . , n− 1, of the Bar-complex B(k[u]⊗ s2Gerst∨).
Again, this definition we need only in arity (n − 1), and it doesn’t work in arity > n. The map ςsn
increases the set of inputs by the input n in the same sense as ιn. Since ςs,n is a derivation, it is enough
to describe what happens when we apply it to a corolla γ. It produces a tree with one internal edge and
two internal vertices. One vertex coincides with the corolla γ and the remaining vertex corresponds to a
binary operation, that is, it has two inputs and one output. There are two cases, s = 1, . . . , n − 1, and
s = 0. For s = 1,. . . ,n− 1 we have a map:

ςsn : k[u]⊗ Gerst∨(I) →
(
k[u]⊗ Gerst∨(I ⊔ {∗} \ {s})

)
⊗
(
k[u]⊗ Gerst∨({s, n})

)
;

uk

k!
f(wij) 7→

∑

k1+k2=k

uk1

k1!
f(wij)⊗

uk2+1

(k2 + 1)!
wsn.

Note that in the first factor on the right hand side we identify wis and wi∗ as it is prescribed by the
cocomposition rules defined in Equation (13). For s = 0 we have:

ς0n : k[u]⊗ Gerst∨(I) →
(
k[u]⊗ Gerst∨({∗, n})

)
⊗
(
k[u]⊗ Gerst∨(I)

)
;

uk

k!
f(wij) 7→ −

∑

k1+k2=k

uk2+1

(k2 + 1)!
w∗n ⊗

uk1

k1!
f(wij).

Lemma 5.1. The map ζn := ιn +
∑n−1

s=0 ςsn is a chain map of homological degree (−2) between the
subcomplexes spanned by operations of arity (n− 1) and n:

ζn :

(
B(k[u]⊗ s2Gerst∨)(n− 1),

∂

∂u

∂

∂w
+ µ

)
→

(
B(k[u]⊗ s2Gerst∨)(n),

∂

∂u

∂

∂w
+ µ

)
[−2]

Proof. The only thing that we have to check is that ζn commutes with the differential. Since ιn and ςsn,
s = 0, . . . , n − 1, as well as ∂

∂u
∂
∂w

and µ are all derivations of the cobar complex, it is enough to check
the compatibility on the generators.

First, observe that [ιn,
∂
∂u

∂
∂w

] = 0, because they does not interact with the n’th input. Then we

compute the image of the commutator [ιn, µ] applied to the monomial uk

k! f(wij), where the indices i, j
belong a given set K:

(ιnµ− µιn)

(
uk

k!
f(wij)

)
= ιn




∑

I⊔J=K,
|J |>2,|I|>1,
k1+k2=k

(−1)degwf
I uk1

k1!
f I ⊗

uk2

k2!
fJ




−




∑

(I⊔{n})⊔J=K⊔{n},
|J |>2,|I|+1>1,
k1+k2=k

(−1)degwf
I uk1

k1!
f I ⊗

uk2

k2!
fJ +

∑

I⊔(J⊔{n})=K⊔{n},
|J |+1>2,|I|>1,
k1+k2=k

(−1)degwf
I uk1

k1!
f I ⊗

uk2

k2!
fJ



.
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Since ιn increases the number of inputs in the operations but does not change the monomial, the only
summands that are not canceled in the difference above are the ones with |J | = 1 or |I| = 0. Therefore,

[ιn, µ] ·

(
uk

k!
f(wij)

)
= −

∑

k1+k2=k

(
∑

s∈K

(−1)degwf
uk1

k1!
f∗ ⊗

uk2

k2!
1s,n +

uk1

k1!
1n∗ ⊗

uk2

k2!
f

)

The monomial f∗ is obtained from f by replacing the index s by an additional index ∗ that appears in
the cocomposition.

Observe that [ςsn, µ] = 0, s = 0, . . . , n − 1, since µ vanishes on binary operations. Meanwhile, for
s = 1, . . . , n− 1 we have:

[
ςsn,

∂

∂u

∂

∂w

](
uk

k!
f(wij)

)

=
∑

k1+k2=k−1

uk1

k1!

∂f

∂w
⊗

uk2+1

(k2 + 1)!
wsn −

∂

∂u

∂

∂w


 ∑

k1+k2=k

uk1

k1!
f ⊗

uk2+1

(k2 + 1)!
wsn




=
∑

k1+k2=k−1

uk1

k1!

∂f

∂w
⊗

uk2+1

(k2 + 1)!
wsn −

∑

k1+k2=k

(
uk1−1

(k1 − 1)!

∂f

∂w
⊗
uk2

k2!
wsn + (−1)degwf−1u

k1

k1!
f ⊗

uk2

k2!
1sn
)

= (−1)degwf
∑

k1+k2=k

uk1

k1!
f ⊗

uk2

k2!
1sn.

Here the sign (−1)degwf−1 comes from the Koszul sign rule. Similarly, for s = 0 we have:

[
ς0n,

∂

∂u

∂

∂w

](
uk

k!
f(wij)

)
=

∑

k1+k2=k

uk1

k1!
1∗n ⊗

uk2

k2!
f.

Finally, we see the cancellation:

[
ζn,

∂

∂u

∂

∂w
+ µ

](
uk

k!
f(wij)

)

= −
∑

k1+k2=k

(
∑

s∈K

(−1)degwf
uk1

k1!
f ⊗

uk2

k2!
1s,n +

uk1

k1!
1n ⊗

uk2

k2!
f

)

+
∑

k1+k2=k

uk1

k1!
1∗n ⊗

uk2

k2!
f +

n−1∑

s=1

∑

k1+k2=k

(−1)degwf
uk1

k1!
f ⊗

uk2

k2!
1sn

= 0.

�

We define a sequence of elements νn ∈ B(k[u]⊗ s2Gerst∨)(n), n = 2, 3, . . . . We set ν2 = w12 and define
νi+1 := ζi+1(νi), i = 2, 3, . . . . Lemma 5.1 implies that

Corollary 5.2. The elements νn are the cocycles that project to the generators of the hypercommutative
operad, n = 2, 3, . . . . That is, for all n > 2 we have:

(
∂

∂u

∂

∂w
+ µ

)
νn = 0 and κ(ε(νn)) = mn.

Remark 5.3. Any permutation σ of the inputs will provide another choice of a cocycle given by

ζσ(n)(ζσ(n−1)(. . . (ζσ(3)(wσ(1)σ(2))) . . .)).

It is homologous to νn for any σ ∈ Sn.
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5.2.1. The topological recursion relation. In this section we show how the formulas for νn, n = 2, 3, . . . ,
imply the topological recursion relations.

Lemma 5.4. The following two cocycles are homologous:

νn ◦1
∂

∂u
and

∑

|S1⊔S2|=n−2

νS1⊔{2,∗} ⊗ νS2⊔{1}.

Similarly, the cocycle ∂
∂u

◦0 νn is homologous to the sum
∑

|S1⊔S2|=n−2 νS1⊔{∗} ⊗ νS2⊔{1,2}.

Proof. Recall that the meaning of the derivation ◦i
∂
∂u

is to take the partial derivative with respect to the
variable u attached to the i-th input (or, in the case of i = 0, output) of the element in the cobar complex
(c. f. Theorem 4.2). A direct computation similar to the one we made in the proof of Lemma 5.1 shows

that the commutator [◦i
∂
∂u
, ζn] acts on the monomial generator uk

k! f(wij) by the following formula:

(24)

[
◦i
∂

∂u
, ζn

](
uk

k!
f(wij)

)
=

[
◦i
∂

∂u
, ςin

](
uk

k!
f(wij)

)
=
uk

k!
f∗ ⊗ win.

Here f∗ is obtained from f by replacing the index i with the index ∗ corresponding to the coproduct.
Note that two cocycles are homologous if and only if they have the same image under the morphism

κ◦ε, since this morphism is a projection on the homology. Recall that the augmentation map ε annihilates
all positive powers of u and, in particular, ε ◦ ςsn = 0. This implies the following sequence of identities:

ε

(
νn ◦1

∂

∂u

)
= ε




n∑

j=3

ζn . . . [◦1
∂

∂u
, ζj ] . . . ζ3w12




= ε




n∑

j=3

ιn · · · ιj+1

[
◦1

∂

∂u
, ς1j

]
ιj−1 · · · ι3(w12)




= ε




n∑

j=3

∑

S1⊔S2={j+1,...,n}




∏

s∈S1

ιs


 ιj−1 · · · ι3(w2∗)


⊗


∏

s∈S2

ιs(w1j)






= ε




∑

S1⊔S2={3,...,n}

νS1⊔{2,∗} ⊗ νS2⊔{1}


 .

The second statement of Lemma 5.4 deals with the derivation ∂
∂u

◦0 with respect to the variable u attached
to the output. The proof is absolutely the same. �

These homologous properties of the cocycles νn implies the topological recursion relations.

Corollary 5.5. We have:

(25) ψd00 ψ
d1+1
1 ψd22 · · ·ψdnn [M0,n+1] =

∑

S1⊔S2={3,...,n}

∏

s∈S1⊔{0,2}

ψdss [M0,|S1|+3]⊗
∏

s∈S2⊔{1}

ψdss [M0,|S2|+2].

Similarly,

(26) ψd0+1
0 ψd11 · · ·ψdnn [M0,n+1] =

∑

S1⊔S2={3,...,n}

∏

s∈S1⊔{0}

ψdss [M0,|S1|+2]⊗
∏

s∈S2⊔{1,2}

ψdss [M0,|S2|+3].

Proof. It follows from Theorem 4.2 that we can use the partial derivation with respect to u attached to
the i-th input (respectively, to the output) instead of taking ψ-class in the i-th marked point (respectively,
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to the 0-th marked point). Therefore,

ψ1

∏

s∈{0,...,n}

ψdss [Mn+1] = κ ◦ ε

((
∂

∂u
◦0

)d0 n∏

s=1

(
◦s
∂

∂u

)ds
◦i

∂

∂u
νn

)

= κ ◦ ε



(
∂

∂u
◦0

)d0 n∏

s=1

(
◦s
∂

∂u

)ds ∑

S1⊔S2={3,...,n}

νS1⊔{2,∗} ⊗ νS2⊔{1}




=
∑

S1⊔S2={3,...,n}

κ ◦ ε



(
∂

∂u
◦0

)d0 ∏

s∈S1⊔{2}

(
◦s

∂

∂u

)ds
νS1⊔{2,∗}


⊗ κ ◦ ε




∏

s∈S2⊔{1}

(
◦s
∂

∂u

)ds
νS2⊔{1}




=
∏

s∈S1⊔{0,2}

ψdss [M0,|S1|+3]⊗
∏

s∈S2⊔{1}

ψdss [M0,|S2|+2]

The proof of the second statement of the corollary is exactly the same. �

Remark 5.6. The symmetric group acts on the cocycles νn changing them to the homologous one. There-
fore, one can change the indices 1, 2 in the statement of Lemma 5.4 and Corollary 5.5 to any other pair
of indices i, j ∈ {1, . . . , n}. This completes our algebraic proof of the topological recursion relations.

In particular, Equations (25) and (26) imply combinatorially that in the case d0+ · · ·+ dn = n− 2 the
product of ψ-classes evaluated on the fundamental class coincides with the iterated multiplication up to
a multinomial coefficient:

(27) ψd00 . . . ψdnn [Mn+1](x1, . . . , xn) =
(n− 2)!

d0! . . . dn!
m(x1, . . . , xn)

This formula explains the factors used in the definition of the map θ and, in particular, in Equation (5).

5.3. The inverse of j. In this section we construct the cocycles in the complex

(28)

(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆]/∆,

∂

∂u

∂

∂w
+ µ+∆

∂

∂u
+∆

∂

∂φ

)

that represent there the generators mn, n = 2, 3, . . ., of Hycomm.
The construction uses the definition of the homotopy quotient. Recall that the defining Equation (1)

implies the following two identities:

(d+∆
∂

∂φ
)Φ(z) = Φ(z)(d+ z∆), Φ(z)−1(d+∆

∂

∂φ
) = (d+ z∆)Φ(z)−1

Therefore, the adjoint action of Φ on the complex (28) given by Φad(z) : γ 7→ Φ(z)γΦ(z)−1 satisfies the
following equation:

(29)

(
d+∆

∂

∂φ

)
Φad(z)(γ) = Φad(z)(dγ + z[∆, γ]).

We use Φ(z) as a group-like element. This means that we want Φad(z) must preserve the operadic
composition, that is, Φad(z)(α ◦ β) = (Φad(z)α) ◦ (Φad(z)β), where z is an operator acting on corollas.

Lemma 5.7. Let ν be a cocycle in
(
B(k[u]⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ µ
)
. The cochain Φad( ∂

∂u
)ν is a cocycle in

the dg-operad
(
B(k[u]⊗ s2Gerst∨) ⋆ k[∆]/∆, ∂

∂u
∂
∂w

+ µ+∆ad ∂
∂u

+∆ ∂
∂φ

)
. Moreover, j(Φad

(
∂
∂u

)
ν) = ν.

Proof. Equation (29) implies that
(
∂

∂u

∂

∂w
+ µ+∆

∂

∂φ
+∆ad ∂

∂u

)
Φad

(
∂

∂u

)
ν = Φad

(
∂

∂u

)(
∂

∂u

∂

∂w
+ µ+∆ad ∂

∂u
−∆ad ∂

∂u

)
ν = 0.

Since j annihilates φi, i = 1, 2, . . ., the second statement of the lemma is obvious. �

Therefore, cocycles representing the generators mn, n = 2, 3, . . ., of Hycomm in the dg-operad (28) can
be given by the formula

(30) Φad
(
∂

∂u

)
νn = Φad

(
∂

∂u

)
ζn · · · ζ3(w12).
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5.4. The projection π ◦ ǫ. In this section we apply the projection π ◦ ǫ to the cocycles given by
Equation (30).

Recall that the projection ǫ from Section 3.7 maps u to 0. The projection π given by Equations (21)
and (18) annihilates all non-binary trees in the cobar complex. In particular, π vanishes on all contribu-
tions of the operators ιn for the formulas νm for all 3 6 n 6 m. Therefore,

(31) θn := π ◦ ǫ

(
Φad

(
∂

∂u

)
· νn

)
= π ◦ ǫ


Φad

(
∂

∂u

) ∑

(i3,...,in):
∀s 06is6s

ςinn · · · ςi33(w12)


 .

Finally we are able to state our main result:

Theorem 5.8. The map θ : Hycomm → BV/∆ defined by θ : mn 7→ θn is a quasi-isomorphism of dg-
operad. It makes the diagram (22) commutative.

Proof. Theorem 4.1 implies that the cohomology of
(
BV/∆,∆ ∂

∂φ

)
is isomorphic to Hycomm.

We denote by Q ⊂ BV/∆ the intersection of the kernel of ∆ ∂
∂φ

with the suboperad of BV/∆ generated

by multiplication and φi’s. Observe that the suboperad Q ⊂ BV/∆ belongs to the cohomology. Indeed,
by definition Q doesn’t intersect the image of ∆ ∂

∂φ
and belongs to the kernel of ∆ ∂

∂φ
. Note that ∆

does not appear in the representing cocycles Φad( ∂
∂u

)νn and, therefore, θn also does not contain ∆ in its
presentation in terms of the generators. This implies that the cocycles θn belong to Q, n = 2, 3, . . . .

The same is true if we apply the diagram chase for any element of Hycomm. Therefore the full

cohomology of
(
BV/∆,∆ ∂

∂φ

)
is equal to Q, and the map mn 7→ θn, n > 2, defines the isomorphism

between Hycomm and Q. �

We finish this section with a diagram that summarizes our chase of cocycles in Diagram (22):

νn ∈ B(k[u]⊗ s2Gerst∨)

κ◦ε

��

Φad
(
∂
∂u

)
νn ∈ B(k[u]⊗s2Gerst∨)⋆k[∆]

∆

j
oo

π◦ǫ

��
mn ∈ Hycomm

θ // θn ∈ BV/∆

5.5. Examples for n = 2 and 3. In this section we compute Formula (31) for n = 2 and n = 3 and
show the coincidence of two morphism (one via Givental graphs, another via diagram chase) for n = 2, 3.
A direct computation for n = 2 gives that

θ2 = π ◦ ǫ

(
Φad

(
∂

∂u

)
(w12)

)
= π (w12) = m2,

which is exactly the formula for θ2 described in Section 1.2.
In the case of n = 3, we have:

θ3 = π ◦ ǫ ◦ Φad
(
∂

∂u

)
(ς03(w12) + ς13(w12) + ς23(w12))

By definition,

ς03(w12) + ς13(w12) + ς23(w12) = −(uw3∗) ◦∗ w12 + w2∗ ◦∗ (uw13) + w1∗ ◦∗ (uw23).

Using that

Φad
(
∂

∂u

)
((uw3∗) ◦∗ w12) =φ1 ◦ (w3∗ ◦∗ w12)− (w3∗ ◦3 φ1) ◦∗ w12 − w3∗ ◦∗ φ1 ◦∗ w12

Φad
(
∂

∂u

)
(w2∗ ◦∗ (uw13)) =w2∗ ◦∗ φ1 ◦∗ w13 − w2∗ ◦∗ w13 ◦1 φ1 − w2∗ ◦∗ w13 ◦3 φ1

Φad
(
∂

∂u

)
(w1∗ ◦∗ (uw23)) =w1∗ ◦∗ φ1 ◦∗ w23 − w1∗ ◦∗ w23 ◦2 φ1 − w1∗ ◦∗ w23 ◦3 φ1

it is then straightforward to compute the final expression for θ3 that appears to be a summation of 7
terms and coincides with the formula for θ3 described in Example 1.2.
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The fact that we finally obtain the same formula for all n > 0 as in Section 1.2 is based on Lemma 5.4
and in particular on the topological recursion relations considered in Theorem 4.2. An easier proof is
given in the next Section using a uniqueness argument.

5.6. Uniqueness. In order to get the coincidence of morphisms θ (first defined via summation of Givental
graphs in Section 1.2 and second via diagram chase in formula (31)) we just explain in the lemma below
that there is no big freedom in the possible morphisms from Hycomm to BV/∆.

Proposition 5.9. Any graded automorphism of the operad Hycomm is defined by arbitrary dilations of
m2 and m3. I. e. for a given pair λ2, λ3 there exist a unique automorphism of Hycomm given by formulas
mn 7→ λ2λ

n−2
3 mn with n > 2; moreover, any automorphism belongs to this system.

Proof. Indeed, note that for all n > 2 the subspace of Hycomm(n) of homological degree 4 − 2n is
onedimensional and is generated by the generator of Hycomm operad denoted earlier by mn. Therefore
any graded automorphism of Hycomm should be of the form mn 7→ λnmn. The quadratic equations∑

i+j mi ◦mj = 0 in the operad Hycomm implies that the product λiλj should depend only on the sum

i+ j. By induction this follows that λn = λ2λ3
n−2. �

Corollary 5.10. The morphism θ : Hycomm → BV/∆ given by Formula (31) via summation over binary
trees coincides with the morphism θ described in Section 1.2 via summation of Givental graphs.

Proof. In the proof of Theorem 5.8 we explained that the suboperad Q ⊂ BV/∆ that is the intersection of
the kernel of the differential ∆ ∂

∂φ
and the suboperad generated by multiplication and φi’s is isomorphic to

Hycomm. Two maps θ that we have constructed defines two particular (iso)morphisms from Hycomm to Q.
We checked that this two morphisms coincide for m2 and m3. Therefore, our uniqueness Proposition 5.9
implies that they are the same for all mk. �

Remark 5.11. It is possible to show the coincidence of two formulas for θ without using uniqueness
arguments. The proof we know is technical and is based on the generalization of Lemma 5.4.

6. Givental theory

In this section prove Theorem 1.3 using the Givental theory of a loop group action on the morphisms
from Hycomm to an arbitrary operad. In fact, the action of the loop group on the Hycomm-algebras
has also a homological explanation. It comes from the action on trivializations of BV-operator, and we
explain this at the end of this section.

6.1. Lie algebra action on morphisms of Hycomm. Consider an arbitrary operad P. We consider
morphisms of operads Hycomm → P. We are going to introduce an infinitesimal action of the Lie algebra
g := P(1) ⊗ C[[z]] on space of morphisms, where z is a formal variable and P(1) is considered as a Lie
algebra with respect to the commutator [x, y] = xy − yx, x, y ∈ P(1).

In order to fix a morphism of Hycomm to P, we consider a system of cohomology classes αn ∈
H

q

(M0,n+1,C)⊗ P(n). These classes must satisfy the following condition:

• For any map ρ : M0,n1+1×M0,n2+1 → M0,n+1, n1+n2 = n− 1, that realizes a boundary divisor

in M0,n+1 and induces the operadic composition ◦i : Hycomm(n1)⊗Hycomm(n2) → Hycomm(n),
we have:

(32) ρ∗αn = αn1
⊛i αn2

,

where by ⊛i we denote the simultaneous product of cohomology classes and the ◦i-composition
in P.

The infinitesimal action of the Lie algebra g is given by the explicit formulas. Consider an element
rℓz

ℓ ∈ g for some ℓ > 0. We have:

rℓz
ℓ.αn :=rℓ ◦1 ψ

ℓ
0αn + (−1)ℓ+1

n∑

m=1

ψℓmαn ◦m rℓ(33)

+
∑

I⊔J=[n]

∑

i+j=ℓ−1

(−1)i+1ρ∗

(
ψi1α|I|+1 ◦1 rℓ ⊛1 ψ

j
0α|J |

)
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Here in all cases ◦m denotes the operation in P; ψm denotes the ψ-class in the corresponding moduli
space (M0,n+1 in the second summand or M0,|I|+2 and M0,|J |+1 in the third summand), that is, the first

Chern class of the line bundle with the fiber T ∗
xmC over the curve (C, x0, x1, . . . , xk) ∈ M0,k+1 (k is then

equal to n, |I|, and |J |+1 respectively). Moreover, we always assume that the “output” marked point is
x0, and, in the third summand, we assume that the map ρ attaches the output point of M0,|J |+1 to the

first input (that is, the point x1) of M0,|I|+2.

Example 6.1. In the case ℓ = 0 we simply have r0z
0.αn = [r0, αn] in the sense of commutation of

operadic compositions in P.

The formula for the g-action is a generalization of the formulas considered in [15, 20, 30, 32], and we
refer the reader to these papers for a more detailed introduction to the Givental theory.

Lemma 6.2. For any r =
∑∞

ℓ=0 rℓz
ℓ ∈ g and any system of classes αn ∈ H

q

(M0,n+1,C)⊗ P(n), n > 2,

that satisfies the factorization condition (32), the classes αn+ǫ ·r.αn ∈ H
q

(M0,n+1,C)⊗P(n) also satisfy
the factorization condition (32) in the first order in ǫ.

Proof. It is a straightforward generalization of Proposition 6.9 in [32]. �

It follows from Lemma 6.2 that for any morphism g : Hycomm → P and an arbitrary sequence of
elements rℓ ∈ P(1), ℓ = 1, 2, . . . , we obtain a new morphism exp(r.)g : Hycomm → P, r =

∑∞
ℓ=1 rℓz

ℓ, by
exponentiation of the infinitesimal Lie algebra action defined above. This means that we define an action
of the Lie group G = {M(z) ∈ O(1)⊗ C[[z]],M(0) = 1} on the space of morphisms Hycomm → P.

6.2. Application to the BV-operad. We consider the morphism θ0 : Hycomm → BV that sends the
generator mk to the iterated multiplication m(), k > 2. In terms of the infinitesimal Givental action the
condition that ∆ is the second order operator with respect to the multiplication can be written as

(34) (∆z1).θ0 = 0

(it is proved in a bit different terms in [30, Proposition 1]).
The same map θ0 can be also considered as a map to BV/∆. In this case, in addition to Equation (34)

we also have

(35)

(
∆
∂

∂φ
z0
)
.θ0 = 0.

(abusing a little bit the notation we think of ∆ ∂
∂φ

as an element of BV/∆ such that the differential is

given by the commutator with this element).
Consider the map θ : Hycomm → BV/∆ defined by exp(φ(z).)θ0. There are several observations. First

of all, just by construction, θ is a morphism of operads. Second, we want to show that θ is a morphism
of dg-operads, that is, (∆ ∂

∂φ
z0).θ = 0. This follows from the following computation:

(
∆
∂

∂φ
z0
)
.θ =

(
∆
∂

∂φ
z0
)
. exp(φ(z).)θ0 = exp(φ(z).)

(
∆
∂

∂φ
z0 +∆z1

)
.θ0 = 0.

Here the first equality is the definition of θ, the second one is a consequence of Equation (2), and the
third equality follows from Equations (34) and (35).

Thus we see that θ(Hycomm) ⊂ Q ⊂ BV/∆, where Q is the suboperad considered in the proof of
Theorem 5.8, that is, Q is the intersection of the kernel of ∆ ∂

∂φ
with the suboperad generated by the

multiplication and φi’s, i = 1, 2, . . ..
In the proof of Theorem 5.8 we observed that Q is isomorphic to Hycomm. Moreover, a simple degree

count shows that the map θ : mk 7→ θk, k = 2, 3, . . . , preserves the degrees. Therefore, θ maps generators
to generators, and it is an isomorphism between Hycomm and Q.

The last observation is that θ is exactly the map constructed in Section 1.2 in terms of graphs. This
can be observed by an explicit exponentiation of the formula (33), and, for example, it is also explained
in [32, Section 6.14] and [6]. This completes the proof of Theorem 1.3.
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6.3. Homological origin of the Givental action. In this section we explain how the Givental group
action emerges naturally via the loop group action on trivializations of ∆.

Consider a finite-dimensional Hycomm-algebra V with zero differential. Let V̄ be the corresponding
differential graded BV-algebra with the differential d, and we denote by φi the corresponding additional
operators coming from structure of BV/∆ on V̄ .

Consider an arbitrary sequence of endomorphisms αi ∈ End(V ). Since the cohomology of V̄ coincides
with V , we can define a sequence of endomorphisms ᾱi ∈ End(V̄ ) such that they commute with the
differential on V̄ and their restrictions to the cohomology coincide with αi, i = 1, 2, . . ..

We have:

exp

(
−

∞∑

i=1

ᾱiz
i

)
d exp

(
∞∑

i=1

ᾱiz
i

)
= d

Therefore,

exp(−φ(z)) exp

(
−

∞∑

i=1

ᾱiz
i

)
d exp

(
∞∑

i=1

ᾱiz
i

)
exp(φ(z)) = d+ z∆

Thus we see that the sequence of operators φ′i given by the formula

φ′(z) =
∑

φ′iz
i : = ln(exp(ᾱ(z) exp(φ(z)))

defines a new BV/∆-algebra structure on (ς(V ), d). This structure induces a new Hycomm-algebra struc-
ture on V = H•(V̄ , d).

Theorem 6.3. The new Hycomm-algebra structure on V coincides with the one obtained by the Givental
group action of the element exp

(∑∞
i=1 αiz

i
)
applied to the original Hycomm-algebra.

Proof. It is easier to compare the infinitesimal deformations. Indeed, assume that
∑∞

i=1 ᾱiz
i = rℓz

ℓ and

we consider the first order deformation in rℓ. In this case φ′(z) = φ(z)+rℓz
ℓ. Then it is just a tautological

observation to see that the corresponding deformation of the formulas for θk in Section 1.2, k > 2, is
given by Equation (33). �
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