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Abstract
A new protocol for quantum key distribution through empty space is proposed. Apart from the
quantum mechanical restrictions on distinguishability of non-orthogonal states, the protocol
employs additional restrictions imposed by special relativity. The protocol ensures generation
of a secure key even for the source generating non-strictly single-photon quantum states and
for arbitrary losses in quantum communication channel.

1. Introduction

The unconditional security of quantum key distribution is
based on two fundamental no-go theorems of quantum
mechanics: (i) impossibility of cloning an arbitrary unknown
quantum state [1] and (ii) impossibility of reliable distin-
guishability of non-orthogonal quantum states [2].

However, in practice quantum states emitted by the
source are not strictly single-photon ones which, together with
losses in the quantum communication channel, breaks the
key security for all basic quantum key distribution protocols
(B92 [2], BB84 [3], SARG04 [4], decoy state [5], phase-time
coding [6]) if the quantum channel length and/or losses exceed
some critical values.

For lossless channels, quantum cryptography protocols
employing single-photon orthogonal states with the spa-
tial extent exceeding the channel length were suggested
earlier [7, 8].

2. Relativistic quantum key distribution

A new relativistic quantum key distribution protocol utilizing
additional constraints imposed by special relativity is

proposed below. We shall first describe the protocol for a
single-photon source and a quantum channel with arbitrary
losses, and then extend it to a multi-photon source.

(1) Alice and Bob keep under full control spatial domains
required to prepare and detect quantum states (figure 1). The
distance between points iA and fB is L. Their clocks are
synchronized4.

(2) Alice prepares at a publicly known time tA = 0 in
the vicinity of point iA a localized single-photon quantum
state |iA〉. Then she applies at random one of the two unitary
operations, U0

A or U1
A, transforming the localized state at time

tA = 0 into one of the extended states at time t′A:|0̄A〉, |1̄A〉 =

U0,1
A |iA〉 =

1
√

2
(|1A〉 ± e±iϕ

|2A〉). The states |1A〉 and |2A〉

have the same shape as |iA〉 and only differ due to a
spatio-temporal shift along the two branches of the light cone,

|0̄A〉, |1̄A〉 =

(
|1A〉〈iA| 0

0 ±e±iϕ
|2A〉〈iA|

)
1
√

2

(
|iA〉

|iA〉

)

=
1
√

2

(
|1A〉

±e±iϕ
|2A〉

)
. (1)

4 The requirement for Alice and Bob’s clocks to be synchronized can be
lifted by employing a two-pass scheme.
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Figure 1. Spatio-temporal diagram explaining the protocol. The
speed of light is taken to be c = 1.

The column vectors in equation (1) represent single quantum
states. The top and bottom rows correspond to states referring
to the same time but localized around different spatial points.

(3) By the time t′B the states are entirely found in the
spatial domain controlled by Bob, |0̄t′B

〉, |1̄t′B
〉 =

1
√

2
(|1t′B〉 ±

e±iϕ
|2t′B
〉).

Bob performs a unitary transformation which does not
depend on input state and maps the extended quantum states
into states localized around the point (fB, tB),

|0̄t′B
〉, |1̄t′B

〉 =

(
|fB〉〈1t′B

| 0

0 |fB〉〈2t′B
|

)

×
1
√

2

(
|1t′B
〉

±e±iϕ
|2t′B
〉

)

=
1
√

2

(
|fB〉

±e±iϕ
|fB〉

)
. (2)

Then Bob performs at random and independently of Alice
one of the two local measurements at point (fB, tB). The
measurements are similar to those used in the standard B92
protocol [2],

I = P0,1 + P⊥0,1, P⊥0,1 = I − P0,1;

P0,1 =
1
2

(
1 ±e∓iϕ

±e±iϕ 1

)
|fB〉〈fB|. (3)

The conditional probability for Bob obtaining a con-
clusive outcome 0 (or 1) provided that Alice sent
0 (or 1) is P{0B|0A} = Tr{|0̄t′B

〉〈0̄t′B
|P⊥1 } = P{1B|1A} =

Tr{|1̄t′B
〉〈1̄t′B
|P⊥0 } = cos2(ϕ). The probability of an inconclu-

sive outcome is P{?B|0A} = Tr{|0̄t′B
〉〈0̄t′B
|P0,1} = P{?B|1A} =

Tr{|1̄t′B
〉〈1̄t′B
|P1,0} = sin2(2ϕ). Inconclusive outcomes are

discarded. Bob also discards all counts whose delay at point
(fB, tB) exceeded tB − l/c, l being the state extent.

(4) If the resulting error QB < Qc (see below), the errors
are corrected through a public channel. Then the distilled key
secrecy is amplified [9].

3. Intercept–resend attack

To distinguish between the states, Eve should have access to
entire states 1

√
2
(|1E〉 ± e±iϕ

|2E〉). Access to the front ‘part’
1
√

2
|1E〉 only is not sufficient to identify the state. To get

access to the second ‘half’ of the state ± 1
√

2
e±iϕ
|2E〉, Eve

should transform the state which is extended in both space and
time into a state localized at the point (fE, tE) (figure 1). This
cannot be done faster than the temporal extent of the past light
cone covering the entire considered state (figure 1). There
exist no physically realizable operators mapping extended
states into localized ones in shorter time; such an operator
would have non-zero matrix elements between the points
separated by a space-like interval. After gathering the two
‘halves’ of the state at point (fE, tE), Eve performs her
measurements. Because of the states’ non-orthogonality, the
minimal possible error in distinguishing the states is [10]
Qϕ = 1

2 (1−
√

1− |〈0̄A|1̄A〉|
2)= sin2(ϕ/2). Depending on the

measurement outcome, Eve can prepare a state consisting of
two halves which is similar to the initial state created by Alice.
Due to the special relativity restrictions, Eve cannot prepare
an extended state earlier than by time t′′E. However, at time
t′′E the state prepared by Eve will differ from Alice’s original
state 1

√
2
(|1A〉 ± e±ϕ |2A〉) by a spatio-temporal translation

through a distance equal to the state length (figure 1). Since
Bob performs his measurement in a certain temporal gap only,
Eve’s states which are shifted in time will yield the same
outcome for all states since the second half of Eve’s state
±e±iϕ

|2′E〉 cannot arrive in time for Bob’s measurement. As a
result, the probability of Bob making an error with the delayed
states is QB =

1
2 .

The speed of light in the atmosphere c′ differs from that
in vacuum, c. For Eve to be unable to compensate for the lack
of time needed to transform the state, its length l should satisfy
the condition l > c(T ′L−TL),T ′L = (L+ l)/c,T ′L = (L+ l)/c′,
where c′ = c(1 − ξ), so that l > ξL. The value of ξ in the
Earth’s atmosphere at heights h ≤ 10 km for λ ≈ 0.8 µm
is ξ ≈ 10−4, while for h > 10 km, c′ = c. Hence Eve can
only make up for the lack of time at height h by replacing
the quantum channel with the ideal one (i.e., vacuum). The
minimal state length lmin is limited by the condition lmin ≥

ξ × 10 (km) = 1 m. For l > lmin the key can be distributed
over arbitrarily large distances.

3.1. Inefficiency of the transparent attack

The most general and powerful eavesdropping strategy
in non-relativistic quantum cryptography is the collective
attack [11]. For each state sent by Alice to Bob, Eve prepares
an ancilla and lets it interact with the arriving state. After the
interaction the ancilla and the state end up in an entangled
state. The perturbed state sent by Alice travels further to
Bob while the modified ancilla is stored by Eve in quantum

2
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Figure 2. Optical diagram for the preparation and detection of
quantum states. The reflecting side of symmetric beam splitters
changing the state phase by π is shown with a solid line while the
dashed line represents the side which does not affect the phase.

memory. After all states are sent by Alice and measured by
Bob, Eve performs collective measurements of all ancillae
residing in her quantum memory. In the relativistic case
this attack is inefficient and actually reduces to the previous
intercept–resend strategy. The attack is described by a unitary
operator, e.g., for state 0

UBE(|0̄t′E
〉 ⊗ |A〉E) = |0̄t′E

〉 ⊗ |ϕ00〉E + |1̄t′E
〉 ⊗ |ϕ01〉E,

UBE(|1t′E
〉 ⊗ |A〉E) = |1t′E

〉 ⊗ |ϕ̃00〉E + |2t′E
〉 ⊗ |ϕ̃01〉E, (4)

where |0̄t′E
〉, |1̄t′E

〉 are Alice’s states at time t′E and
|ϕij〉E, |ϕ̃ij〉E are Eve’s states, (i, j = 0, 1). Taken into
account here is the fact that signal states are linearly
expressed through the localized basis states |1t′E

〉, |2t′E
〉.

If the unitary operator in equation (4) were physically
realizable, it would necessarily have non-zero matrix elements
(〈2t′E
|[E〈ϕ̃01|UBE|A〉E]|1t′E

〉 = E〈ϕ̃01|ϕ̃01〉E) between points
(1E, t′E) and (2E, t′E) separated by a space-like interval, which
contradicts the fundamental relativistic causality principle. In
principle, Eve can transform the extended states into those
localized around the spatio-temporal point (fE, tE) and then
perform a unitary transformation UBE. After that, the localized
states can be transformed into extended ones. However, this
procedure would result in a delay and, finally, an error QB =

1
2

in Bob’s measurements just as in section 3.

3.2. Intercept–resend attack employing quantum states
prepared in advance

Eve prepares in advance her state 1
√

2
(|1A〉 + |2A〉) which

arrives at the same place as Alice’s original state by time
tE. Then Eve gathers Alice’s state in a single point (fE, tE)
and performs measurements at this point. Depending on the
measurement outcome, Eve changes locally at point (fE, tE)
the phase of the second half of her earlier prepared state which
later is received by Bob without any delay. Let the fraction of
qubits eavesdropped by Eve be δ. For these qubits Bob’s and

Eve’s error is δ. In the rest of the qubits, whose fraction is
1− δ, Bob’s error is 0 while Eve’s error is 1/2.

3.3. Effects of losses in the quantum channel

The analysis of signal attenuation is similar to the
intercept–resend attack. Here the role of Eve is played by
the medium itself. Transformation of an extended state into
a localized one requires finite time. After the absorption of a
transformed state the absorber (‘atom’) goes into one of the
two states depending on whether the absorbed state was 0 or
1. Eve measures the ‘atom’ state, the error in discriminating its
states being not less than Qϕ . Resending the states prepared by
Eve will result in a delay and, consequently, Bob’s error being
equal to 1/2. Formally, it is possible to imagine a situation
where both the front and the rear ‘halves’ of the state are
absorbed at a certain moment of time at different spatial points
of the medium. In that case, to identify the absorbed state
one should have access to spatially separated points of the
absorber which would require a finite time l/c anyway.

3.4. The secret key length

Let the sequences obtained by Alice, Bob and Eve after
discarding inconclusive outcomes be XN

= {0, 1}N , YN
=

{0, 1}N and EN
= {0, 1}N . Then the conditional Alice–Bob

and Alice–Eve probabilities for eavesdropped qubits are
P(e|x) = P(y|x) = 1 − Qϕ (e = y = x); P(e|x) = P(y|x) =
Qϕ (e, y 6= x). The transition probabilities for the rest of the
qubits are P(e|x) = 1

2 (∀e, x); P(y|x) = 1 (y = x), P(y|x) =
0 (y 6= x). The secret key length in the limit N →∞ is (for
details, see [11])

r = lim
N→∞

(
H(EN

|XN)− H(YN
|XN)

)
/N

= lim
N→∞

(
I(XN
;YN)− I(XN

;EN)
)
/N, (5)

where H(YN
|XN),H(EN

|XN), I(XN
;YN), I(XN

;EN) are con-
ditional and mutual information. Equation (5) takes into
account error correction with random Shannon codes and pri-
vacy amplification for the distilled key as well as the relations
H(YN

|XN) = −δNh(Qϕ), H(EN
|XN) = (1−δ)N−δNh(Qϕ),

where h(x) = −x log(x)− (1− x) log(1− x). It is convenient
to eliminate the parameter δ by expressing it through Bob’s
measured error QB = Qϕ ·δ+0 ·(1−δ). One has r = 1− QB

Qϕ
+

QB
Qϕ

h(Qϕ) − h(QB). The critical measured error level below
which the key distribution security is guaranteed is Qc = Qϕ .

4. Optical scheme

The optical diagram is presented in figure 2.
We shall work in the single-photon subspace. The unitary

operators describing the optical scheme operation are

U±s =
1
√

2

(
I ±I

∓I I

)
, UϕA,B =

(
I 0

0 eiϕA,B I

)
,

Uj→j+1 =


I 0

0
∞∑

j=−∞

|j+ 1〉〈j|

 ,
3
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Uπ1 =

(
I 0

0 eiπ
|1〉〈1| + I(6=1)

)
,

Uπ2 =

(
I 0

0 I(6=2)+ eiπ
|2〉〈2|

)
,

I(6=i) =
∞∑

j=−∞,j6=i

|j〉〈j|. (6)

The identity operator in the full space including the
vacuum state is Ī = |vac〉〈vac| + I, and I =

∑
∞

j=−∞|j〉〈j| is
the identity operator in the single-photon subspace, {|j〉} is
a set of localized states separated by spatial distance l. U±s
describes a symmetric beam splitter while UϕA,B represents
a phase modulator changing the relative phase of states
which travelled along different interferometer arms (ϕA,B =

ϕ for 0 and ϕA,B = π − ϕ for 1). Uπ2 describes a phase
modulator affecting the relative phase between |1〉 and |2〉 in
the superposition state in only one of the interferometer arms
which is realized by applying a voltage to the modulator when
the second ‘half’ of the state is passing through it5. Uj→j+1
is the shift operator in one of the arms. Alice employs the
following transformation of states:

U+s Uπ2U−s UϕAUj→j+1U+s

(
|1A〉

0

)

=
1
√

2

(
(|1A〉 + eiϕA |2A〉)

0

)
. (7)

The state amplitudes (figure 2) in D? (top row) and D0,1
(bottom row) are

U+s UϕBUj→j+1U−s Uπ1U+s
1
√

2

(
(|1A〉 + eiϕA |2B〉)

0

)

=
1
2

(
(eiϕA + eiϕB)|2B〉

−(eiϕA − eiϕB)|2B〉

)
. (8)

Actually, the outlined scheme implements the measure-
ments described by equations (2) and (3). If ϕA = ϕ is 0 (or
ϕA = π−ϕ is 1), and Bob chose ϕB = ϕ (or ϕB = π−ϕ), the
probability of a count occurring in D? is identically equal to
unity, while that in D0,1 is zero. On the contrary, if ϕA = ϕ (or
ϕA = π − ϕ), while ϕB = π − ϕ (or ϕB = ϕ), the probability
of a conclusive outcome (count) in D0,1 is cos2(ϕ), while that
of inconclusive outcomes in D? is sin2(ϕ).

5. Multi-photon case

The initial states prepared by Alice are attenuated coherent
laser pulses with average photon number µ = |α|2:|īα〉A =

e−
µ
2

(
|vac〉 +

∑
∞

n=1
αn
√

n!
|ī〉⊗n

A

)
, i = 0, 1. Eve can employ

any of the attacks described earlier, but there exists a
more efficient one. Eve can split the arriving state with a
beam splitter possessing the splitting coefficient η. Coherent
states are affected by the beam splitter in a self-similar

5 Such a transformation was implemented in the work [13].

way, i.e. states obtained by Eve and leaving the splitter
to Bob are |īα

√
1−η〉E ⊗ |īα

√
η〉B (i = 0, 1), respectively.

In this way Eve introduces neither delays nor any errors
in Bob’s measurements. Eve stores her states in quantum
memory and performs collective measurements at the very
end of the protocol, discarding the states whose counterparts
produced inconclusive outcomes in Bob’s measurements. The
transformations used by Bob are similar to those defined
by equations (7) and (8). Standard avalanche detectors do
not resolve the number of photons in the pulse and are
not sensitive to the vacuum component. The probability of
conclusive outcomes in D0,1 is e−µ(eµηcos2(ϕ)

−1), while that

of inconclusive outcomes is e−µ(eµηsin2(ϕ)
− 1). Eve cannot

obtain information exceeding Holevo’s boundary [12] for the
density matrix ensemble ρi√1−ηα

= |ī√1−ηα〉EE〈ī√1−ηα| (i =
0, 1):χ(ρ√1−ηα) < limη→0χ(ρ

√
1−ηα) = χ(ρα) = h(ζ ), ζ =

(1−ε)/2, ε = |A〈0̄α|1̄α〉A| = e−µcos2(ϕ). The secret key length
per one qubit sent by Alice is (see [11])

r = lim
N→∞

(
I(YN
|XN)− Nχ(ρα)

)
/N = 1− h(ζ ). (9)

It is interesting to note that Bob should not necessarily
monitor the average number of qubits reaching him. For large
average numbers of photons in signal states the secret key
length tends to zero, r ∝ e−µcos2(ϕ), although formally it is
always larger than zero. Security is guaranteed for arbitrary
µ but the key generation rate decays exponentially with µ
(for example, µ = 1 yields r ≈ 0.37N while µ = 2 results
in r ≈ 0.14N). It is important that the channel attenuation
does not appear in the security criterion at all, and the key
length depends on the initial quantum states only. In the
multi-photon case Eve herself acts as an attenuator by partly
absorbing the arriving states. However, in contrast to Bob who
discards inconclusive outcomes, Eve cannot follow a similar
strategy. Collective measurements can only reduce the state
discrimination error in Eve’s measurements compared with
individual measurements.
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