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Introduction

A classic portfolio optimization problem with terminal utility maximization criterion is usu-

ally solved via the dynamic programming approach which reduces to solving a Bellman

equation or a quasi-variational inequality (for recent developments see [Vath et al., 2007,

Øksendal and Sulem, 2010, Ma et al., 2013]). We consider a generalization of the approach

in discrete time when the underlying process driving the stochastic system is not explicit,

rather two of its properties are known: the expected value and range at any given mo-

ment, plus the range is considered compact. For a detailed discussion of the approach, see

[Andreev, 2015]. Ideologically similar research for a simplified one-step problem can be found

in [Deng et al., 2005].

One of the main steps in solving a dynamic programming problem is establishing the

necessary properties of the value function. In finance, the pioneering work of Merton

[Merton, 1969] considers a simplified problem statement which allows for the analytic so-

lution of the problem. A more elaborate framework requires proof of the correctness of

the problem itself by proving that the value function exists and finite over a required do-

main. For this purpose, various approaches are implemented (usually a unique research is

required for each problem). In [Davis and Norman, 1990] the value function properties are

derived from the specific form of the price process and the utility function which make the

function homogeneous. The paper [Vath et al., 2007] presents the boundaries of the value

function based on the form of the corresponding Hamilton-Jakobi-Bellman quasi-variational

inequality. [Ma et al., 2013] studies the problem in continuous time by approximating it

with a sequence finite-step problems and researching properties of their value functions. The

framework and assumptions of [Fruth et al., 2013] allow to represent the value function as a

Riemann-Stieltjes integral and prove its existence and boundedness.

In this paper we provide practically useful sufficient conditions for the finiteness and

boundedness of the value function for the worst-case optimization problem. For the particular

case of the portfolio selection problem, we present economically reasonable conditions for the

boundedness above and below and provide their interpretation. The paper is structured as

follows: Section 1 provides a quick overview of the worst-case optimization framework and

the Bellman-Isaacs equation; Section 2 presents results for the general optimization problem;

Section 3 presents results for the portfolio selection problem; Section 4 concludes.

3



1 The worst-case optimization framework

Consider a general stochastic system at moments t0, . . . , tN for a filtration {Fn}Nn=0. Let Hn

denote the Fn−1-measurable strategy at tn and {Hk}Nk=1 denote the whole strategy, let Sn
be the Fn-measurable system state at tn. Let R̄ = R∪ {∞}. In this section we consider the

state space R̄l with the Euclidian metric. The following notation will be used for n = 1, N :

• A is a set of admissible strategies;

• Sn ⊆ R̄l is a state space of the system at tn, while Sn denotes the particular state at

tn;

• A | Sn−1 is a set of admissible strategies starting at moment tn−1 given the state

Sn−1 ∈ Sn−1, n = 1, N ; an element of A | Sn−1 is denoted H≥n;

• Sn | H≤n ⊆ R̄l is the range of Sn given the strategy H≤n = {Hk}nk=1;

• Sn | (Hn,Sn−1) ⊆ R̄l is range of Sn given that the strategy at tn is Hn and the state at

tn−1 is Sn−1;

• SN | (H≥n,Sn−1) ⊆ R̄l is the range of SN given the state Sn−1 ∈ Sn−1 and the strategy

H≥n ∈ A | Sn−1.

S0 ∈ Rl is the given finite initial state. For further reference, we formally assume S0 = {S0}

and H≤0 = H0.

The stochastic parameters of the system are driven by the Fn-measurable process Θn

with a distribution Q from the class of distributions QE with the expected value En and

compact support Kn at tn, n = 1, N . Indexing for Q will be analogous to H. Consider the

following dynamics of the system:

Sn | (Hn,Sn−1) = fn (Θn, Hn,Sn−1) . (1)

Note that since the dynamics of the system (1) is Markov, Sn | (H≤n,Sn−1) = Sn | Sn−1. For

ease of notation we will also write ESQf(Sn | Hn) instead of ESQf (Sn | (Hn,S)) for S ∈ Sn−1
since the conditioning on S is implied by the conditional expectation operator.

Definition 1.1. For a given collection of Fn−1-measurable sets Dn, Dn ⊆ R̄m+1, Dn 6= ∅,

admissible strategy is a strategy H such that for all n = 1, N
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1. Hn ∈ Dn;

2. Hn is Fn−1-measurable;

3.

Q {Hn ∈ An | Fn−1}
a.-s.
= Q {Hn ∈ An | Sn−1} ∀An ∈ B(Dn), ∀Q ∈ QE

(Markov control policy).

Given the terminal utility function J on SN , the optimal strategy is a strategy H∗ ∈ A

such that

inf
Q∈QE

ES0Q J(SN | H∗N) = sup
H∈A

inf
Q∈QE

ES0Q J(SN | HN). (2)

The Bellman-Isaacs equation of the problem is

Vn−1(S) = sup
Hn∈Dn(S)

inf
Qn∈QEn

ESQnVn(Sn | Hn), S ∈ Sn−1, n = 1, N, (3)

VN(S) = J(S), S ∈ SN , (4)

where Vn(S) is the value function at tn.

Consider the strategies

H∗n ∈ Arg max
Hn∈Dn(S)

inf
Qn∈QEn

ESQnVn(Sn | Hn), S ∈ Sn−1, (5)

which can be proven optimal via the corresponding Verification theorem. Let A∗ be the set

of admissible strategies which satisfy (5) for n = 0, N − 1, and let A∗ | Sk−1, k = 1, N , be

the set of strategies H∗≥k ∈ A | S which satisfy (5) for n ≥ k, given the initial state S ∈ Sk−1
at tk−1.

2 Results for a general problem

Below we provide sufficient conditions for the finiteness of the value function.

Lemma 2.1. Let J(S) ∈ [J ; J ] on SN , where J, J ∈ R̄, J ≤ J ; let Vn−1(S) be defined by

(3)-(4). Then sup
S∈Sn−1

Vn−1(S) ∈ [J ; J ] on Sn−1 for all n = 1, N .

Proof. For n = N , let S ∈ SN−1. For any HN ∈ DN (S), SN | (HN ,S) ∈ SN and we have

f(S, HN) = inf
QN∈QEN

ESQNJ(SN | HN) ∈ [J ; J ].

5



Then

VN−1(S) = sup
HN∈DN (S)

inf
QN∈QEN

ESQNJ(SN | HN) = sup
HN∈DN (S)

f(S, HN) ∈ [J ; J ]

and we can prove the statement for the remaining n by induction.

The conditions of the Lemma can be useful for a bounded utility functions such as CARA

utility, but, generally, in case of the unbounded SN−1 the payoff can be infinite, e. g. for the

CRRA utility, which makes the value function unbounded as well. This might be avoided if

the optimal strategies are certainly bounded. Let H∗n be any strategy that satisfies (5) and

consider

D∗n(S) = Arg max
Hn∈Dn(S)

inf
Qn∈QEn

ESQVn(Sn | Hn)

so that H∗n ∈ D∗n(S) for all S ∈ Sn−1, n = 1, N .

Statement 2.1. For any n = 1, N and any S ∈ Sn−1 let J(·) ∈ [Jn(S); Jn(S)] on

SN | (H∗≥n,S) where Jn(S), Jn(S) ∈ R̄. If Vn−1(S) is defined by (3)-(4), then Vn−1(S) ∈

[Jn(S); Jn(S)].

Proof. By the Verification theorem,

Vn−1(S) = inf
Q≥n∈Q≥n

ESQ≥nJ(SN | H∗≥n) ∈ [Jn(S); Jn(S)].

Graph of a map F : A → B is the set Gr(F ) = {(a, b) ∈ A×B : b ∈ F (a)}. Domain of

the map F is the set {a ∈ A : F (a) 6= ∅}.

Statement 2.2. For A ⊂ Rl and B ⊂ Rp, consider the set-valued map F : A → B with

closed domain. If F (a) is upper hemicontinuous (u. h. c.) on A, compact for every a ∈ A

and A is non-empty and compact then Gr(F ) is compact.

Proof. It is well-known that the conditions yield the closedness of Gr(F ). Assume that

Gr(F ) is not bounded. Then there is an unbounded sequence (an, bn) ∈ Gr(F ). Since A is

compact then an → a∗ ∈ A hence bn → ∞. On the other hand, Gr(F ) is closed, therefore

each point of convergence of bn belongs to F (a∗) which contradicts the boundedness of F (a∗).

This means that Gr(F ) is bounded and closed hence compact.
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Lemma 2.2. For each n = 1, N let

• D∗n(S) be compact for each S ∈ Sn−1;

• D∗n(S) be u. h. c. on Sn−1;

• f(Θ, H,S) be continuous on
{

(Θ, H,S) : Θ ∈ Kn, H ∈ D∗n(S), S ∈ Sn−1
}
.

Also let J(S) be uniformly bounded above (below) on any compact subset of SN . Then Vn−1(S)

is uniformly bounded above (below) on any compact set in Sn−1 for all n = 1, N .

Proof. Assume that Vn is uniformly bounded above/below on any compact subset of Sn and

let Mn−1 be a compact subset of Sn−1. Consider the set-valued function Rn(S) on Mn−1:

Rn(S) =
{

(Θ, H,S) : Θ ∈ Kn, H ∈ D∗n(S)
}
.

Since D∗n(S) is u. h. c. on Sn−1, Rn(S) is u. h. c. on Sn−1. By Statement 2.2, Gr(Rn)

is compact. Then the image Mn of Gr(Rn) under f is a compact subset of Sn, therefore

V n ≤ Vn(S) ≤ V n on Mn, V n, V n ∈ R̄, and we have3

∀S ∈Mn−1 Vn−1(S) = inf
Qn∈Qn

ESQnVn(Sn | H∗n) ∈ [V n;V n],

i. e. Vn−1 is uniformly bounded above/below onMn−1 respectively. Since VN obviously satis-

fies the required boundedness property due to VN(S) ≡ J(S), we can prove the boundedness

by induction for all n = 1, N .

Lemma 2.2′. For each n = 1, N let

• Dn(S) be compact for each S ∈ Sn−1;

• Dn(S) be upper hemicontinuous (u.h.c.) on Sn−1;

• f(Θ, H,S) be continuous on
{

(Θ, H,S) : Θ ∈ Kn, H ∈ Dn(S), S ∈ Sn−1
}
.

Also let J(S) be uniformly bounded above (below) on any compact set in SN . Then Vn−1(S)

is uniformly bounded above (below) on any compact set in Sn−1 for all n = 1, N .

Proof. The proof almost completely repeats Lemma 2.2 for Dn(S) instead of D∗n(S) and is

left to the reader.
3For the upper boundedness, take V n = −∞ and V n ∈ R; for the lower boundedness, take V n =∞ and V n ∈ R.
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3 Application to the optimal portfolio selection problem

On a market with m risky assets and one risk-free asset, let the risky price model be multi-

plicative as

∆Xn = µnXn−1∆tn + σnXn−1
√

∆tn, n = 1, N, (6)

with σn ∼ Qn ∈ QE
n . The risk-free price dynamics follows the standard process

∆Yn = rnYn−1∆tn, n = 1, N, (7)

where rn is the risk-free rate.

Assume that HX
n is a vector of volumes of the risky assets at tn, while HY

n is a volume

of the risk-free asset. Let WX
n and W Y

n be the value of risky and risk-free positions at tn

respectively, the total wealth be Wn = WX
n + W Y

n and the transaction costs function at

tn−1 be Cn−1(∆HX
n ,Sn−1), where ∆HX

n is the volume of the transaction. Then the budget

equation gives us

∆HX
n

T
Xn−1 + ∆HY

n Yn−1 = −Cn−1(∆HX
n ,Sn−1) (8)

⇔

HY
n = Y −1n−1

(
Wn−1 −HX

n

T
Xn−1 − Cn−1(∆HX

n ,Sn−1)
)
, (9)

which allows to treat only HX as the unknown strategy.

In the context of the portfolio selection framework, the state of the system is

S =
(
Θ, X,HX ,W Y

)
∈ Rp × Rm

+ × R̄m × R̄,

where Θ is the vector of p = l − 2m − 1 parameters, X is the vector of prices of the

m risky assets, HX is the portfolio of the risky assets and W Y is the value of the risk-free

position. Note that infinite values of positions are formally allowed to research the finiteness

of the optimal strategy, whereas an infinite solution in the portfolio selection problem usually

means that the problem is ill-posed or the market parameter values are not economically

reasonable.
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The dynamics of the system (1) can be written out as

Sn | (HX
n ,Sn−1) =

(
Θn, Xn(Θn,Sn−1), HX

n , W
Y
n (HX

n ,Sn−1)
)
, (10)

where W Y
n is derived from the budget equation (9) and the dynamics of the risk-free price

(7) as

W Y
n (HX

n ,Sn−1) = W Y
n−1r̃n − (HX

n −HX
n−1)

TXn−1r̃n − Cn−1(HX
n −HX

n−1,Sn−1)r̃n, (11)

r̃n = 1 + rn∆tn.

The Bellman-Isaacs equation in this case can be written as

Vn−1(X,H
X ,W Y ) = sup

HX
n ∈Dn

inf
Qn∈QEn

ESn−1

Qn
Vn

(
(1 + µn∆tn + Θn

√
∆tn)X,HX

n ,(
W Y − (HX

n −HX)TX − Cn−1(HX
n −HX , Sn−1)

)
r̃n

)
, n = 1, N, (12)

VN(X,HX ,W Y ) = J(X,HX ,W Y ), (13)

Then we can provide the analog of Lemma 2.2 for the portfolio selection problem:

Theorem 3.1. Let Vn(S) be defined by (12)-(13). For each n = 1, N let

• D∗n(S) be compact for each S ∈ Sn−1;

• D∗n(S) be upper hemicontinuous (u.h.c.) on Sn−1;

• Cn−1(HX ,S) be continuous on
{

(H,S) : H ∈ D∗n(S), S ∈ Sn−1
}
;

• Xn(Θ,S) be continuous on Kn × Sn−1;

and let J(S) be uniformly bounded above (below) on any compact subset of SN . Then Vn−1(S)

is uniformly bounded above (below) on any compact subset of Sn−1 for all n = 1, N .

Proof. Since (11) defines a continuous map, (10) implies that the map fn in (1) is continuous

on
{

(Θ, H,S) : Θ ∈ Kn, H ∈ D∗n(S), S ∈ Sn−1
}
for every n = 1, N . Then the statement

follows from Lemma 2.2.
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The first condition of Theorem 3.1 has a simple economic interpretation. If the phase

constraints allow infinite values of the strategy then the problem basically allows obtaining

an infinite payoff by investing an infinite volume in certain assets which usually means that

the problem is ill-posed and its formulation is economically unreasonable. It is appropriate

to assume that the infinite positions in a portfolio are either a priori suboptimal or forbidden

by the trading limits. Note that D∗n(S) is bounded if Dn(S) is bounded, so the first condition

of the Theorem can be replaced by the boundedness of the risky positions in the portfolio.

Moreover, upper hemicontinuity of D∗n(S) can also be replaced by upper hemicontinuity

of Dn(S) and we can prove the equivalent of Theorem 3.1 in terms of Dn(S) by using

Lemma 2.2′.

Uniform upper boundedness on compact sets holds for a wide class of the terminal utility

functions, e. g. CARA and CRRA utilities. Therefore, under the conditions of Theorem

3.1, we can usually assume that Vn < +∞ for all n. On the other hand, the value function

can attain −∞ even for the “ordinary” system trajectories. In case of the portfolio selection

problem, J(S) = −∞ might mean that the selected strategy has led to undesirable results,

e. g. the portfolio has negative wealth which might be interpreted as bankruptcy. Below,

we provide sufficient conditions for the lower boundedness of the value function for a wide

class of the utility functions which depend on the terminal liquidation value of the portfolio.

By liquidation value WL of the portfolio we mean the potential gains from liquidating all

positions at the real market. In presence of transaction costs, the liquidation value is less

than the market value by the amount of the costs carried:

WL
n (S) = W Y +HXT

X − Cn(HXT

,S), S = (Θ, X,HX ,W Y ) ∈ Sn.

For a given positive x ∈ R and n = 1, N , consider

Sn−1(x) =
{
S ∈ Sn−1 : WL

n−1(S) ≥ x
}
.

Theorem 3.2. Let Vn(S) be defined by (12)-(13),

J(S) =

 F
(
WL
N(S)

)
, if WL

N(S) ≥ w, w ∈ R, w ≥ 0,

−∞, otherwise,

be defined on SN , where F (x) ≥ c on [w,+∞), and let w̃n−1 = w
N∏
i=n

r̃i

. If for every n = 1, N

10



• 0 ∈ Dn(S) for any S ∈ Sn−1(w̃n−1),

• Cn−1(H,S) = Cn−1(−H,S) for any S ∈ Sn−1(w̃n−1) and H ∈ Dn(S),

then for any n = 1, N , Vn−1(S) ≥ c on Sn−1(w̃n−1).

Proof. We prove the statement by induction. To shorten notation, formally assume that
N∏

i=N+1

r̃i = 1. Then the form of J(S) gives us that VN(S) ≥ c on

S ∈ SN : WL
N(S) ≥ w

N∏
i=N+1

(1 + ri∆ti)

 = SN(w̃N).

Assume that the statement is true for Vn. Then for S = (Θ, X,HX ,W Y ) ∈ Sn−1(w̃n−1),

Vn−1(S) = sup
HX
n ∈Dn(S)

inf
Qn∈Qn

ESQnVn
(
Θn, Xn(Θn,S), HX

n ,

W Y r̃n − (HX
n −HX)T r̃n − Cn−1(HX

n −HX ,S)r̃n
) 0∈Dn(S)
≥

≥ inf
Qn∈Qn

ESQnVn
(

Θn, Xn(Θn,S), 0,W Y r̃n +HXT

Xr̃n − Cn−1(−HX ,S)r̃n

)
=

Cn−1(−HX ,S)=Cn−1(HX ,S)
= inf

Qn∈Qn
ESQnVn

(
Θn, Xn(Θn,S), 0,WL

n−1(S)r̃n
)

= inf
Qn∈Qn

ESQnVn (Sn)

where Sn =
(
Θn, Xn(Θn,S), 0,WL

n−1(S)r̃n
)
∈ Sn. If WL

n−1(S) ≥ w
N∏
i=n

r̃i

, then

WL
n (Sn) = 0TXn(Θn,S) +WL

n−1(S)r̃n = WL
n−1(S)r̃n ≥

w
N∏

i=n+1

r̃i

,

hence Vn (Sn) ≥ c for any Θn ∈ Kn, thus

Vn−1(S) ≥ inf
Qn∈Qn

ESQnVn (Sn) ≥ c.

The condition 0 ∈ Dn(S) means that at tn−1 it is allowed to invest all the capital in the

risk-free asset for the next period. This is an economically reasonable and not a constraining

condition unless the portfolio manager has some specific investment limitations. The second

condition of transaction costs symmetry is rather common in academic literature. For some
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order-driven markets it can even be shown [Gatheral, 2010] that the symmetry is a necessary

condition for the absence of the round-trip arbitrage on the market. The specific form of the

utility function J means that one of the necessary conditions for the optimality is that the

portfolio terminal liquidation value must not fall below the given threshold. The result of

the Theorem states that in this case, the value function is uniformly bounded from below for

such portfolios whose liquidation value does not fall below the present value of the threshold.

To summarize the results of the section, the following statement can be formulated for a

general form of trading limits:

Theorem 3.3. Let Vn(S) be defined by (12)-(13),

J(S) =

 F
(
WL
N(S)

)
, if WL

N(S) ≥ w, w ∈ R, w > 0,

−∞, otherwise,

be defined on SN , where F (x) ≥ c on [w,+∞) and F (WL
N(S)) is uniformly bounded above

on any compact subset of SN . Let w̃n−1 = w
N∏
i=n

r̃i

. If for every n = 1, N

• D∗n(S) is compact for each S ∈ Sn−1,

• D∗n(S) is u. h. c. on Sn−1,

• 0 ∈ Dn(S) for any S ∈ Sn−1(w̃n−1),

• Cn−1(HX ,S) is continuous on
{

(H,S) : H ∈ D∗n(S), S ∈ Sn−1
}
,

• Cn−1(H,S) = Cn−1(−H,S) for any S ∈ Sn−1(w̃n−1) and H ∈ Dn(S),

• Xn(Θ,S) is continuous on Kn × Sn−1,

then for any n = 1, N , Vn−1(S) < +∞ on Sn−1 and Vn−1(S) ≥ c on Sn−1(w̃n−1).

Proof. The statement trivially follows from Theorems 3.1 and 3.2 since J(S) is uniformly

bounded above on any compact subset of SN thus making Vn−1(S) above-bounded at any

point of Sn−1 (a single-point set is a compact subset of Sn−1) for every n = 1, N .

As before, conditions for D∗n(S) of the Theorem can be replaced with the analogous

conditions for Dn(S) based on Lemma 2.2′. For an example of J(S) from the Theorem,

consider the CRRA utility

J(S) =


WL
N (S)γ
γ

, if WL
n (S) ≥ 0,

−∞, otherwise,
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for which the required uniform boundedness follows from continuity on the effective domain.

For an example of the upper hemicontinuous and compact constraint sets, consider for

n = 1, N matrices Uk
n−1 ∈ Rm×m, k = 1, r, and Dn(S) which, for every S ∈ Sn−1, consists of

portfolios Z ∈ Rm such that

−βX,kn−1Wn−1 ≤ XT
n−1U

k
n−1Z ≤ βY,kn−1Wn−1, k = 1, q, (14)

XT
n−1U

k
n−1|Z| ≤ β̃Y,kn−1Wn−1, k = q + 1, r, (15)

where Wn−1 = W Y
n−1 + HX

n−1
T
Xn−1, βX,kn−1, β

Y,k
n−1, β̃

Y,k
n−1 ∈ R̄ and non-negative, and the | · |

operator is applied element-wise. Inequalities (14) represent trading limits for the positions

in risky assets and their linear combinations, the limit value being a fraction of the portfolio

market value. This type of constraints can also incorporate a limit on position in the risk-

free asset, since it can be restated as a risky-asset limit according to the budget equation.

Assume that {Uk
n−1}i,j =

 1, i = j = k,

0, otherwise
for k = 1, q. Then the k-th inequality represents

the limits for long and short position in k-th risky asset. In the absence of the individual

limits, constraints (14) might not guarantee boundedness of Dn since some position can be

increased infinitely by short-selling other assets. In this case, another set of constraints can

be imposed for absolute values of positions and their combinations (15). Note that when Dn

is non-empty, it is a bounded polyhedron hence compact. Infinite values of βX,kn−1, β
Y,k
n−1, β̃

Y,k
n−1

mean the absence of the corresponding limit.

Lemma 3.1. If Dn(S) is bounded for each S ∈ Sn−1(0), then the set-valued function Dn(S)

is upper hemicontinuous on Sn−1(0).

Proof. To demonstrate the idea of the proof, we only consider the case when at least one of

βX,kn−1 or βY,kn−1 is finite and at least one β̃Y,kn−1 is finite. For other cases the proof can be easily

conducted by analogy.

Let I be a set of m-dimensional vectors, which elements are either 1 or −1. The set,

defined by the system of inequalities (14)-(15), can be represented as a union of sets of linear

inequalities, each element representing linear constraints active on a specific orthant of m-

dimensional Euclidean space. For each δ ∈ I, consider Iδ = diag(δ) and let Dδ
n(S) consist
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of such Z ∈ Rm that 

XT
n−1U

k
n−1Z ≤ βY,kn−1Wn−1, k = 1, p,

XT
n−1U

k
n−1Z ≥ −β

X,k
n−1Wn−1, k = 1, p,

XT
n−1U

k
n−1I

δZ ≤ β̃Y,kn−1Wn−1, k = p+ 1, r,

IδZ ≥ 0.

(16)

Then Dn(S) =
⋃
δ∈I

Dδ
n(S).

If WL
n−1 ≥ 0 then Wn−1 ≥ 0 and Dn contains 0. Therefore, the sets Dn(S) are compact

on Sn−1(0). If Dn(S) is bounded then Dδ
n(S) is bounded for every δ ∈ I as well. Since

the system (16) can be represented in the form Dδ
n(S) =

{
Z ∈ Rm : Aδn−1(S)Z ≤ Bδ

n−1(S)
}
,

where Aδn−1(S) and Bδ
n−1(S) are obviously continuous in S, we use Theorem 5.1 to prove

that Dδ
n(S) is upper hemicontinuous on Sn−1(0) for every δ ∈ I. Then Dn(S) is upper

hemicontinuous on Sn−1(0) as the union of a finite number of upper hemicontinuous set-

valued functions.

Statement 3.1. For any n = 1, N and any c ∈ R, the set {S ∈ Sn−1 : Wn−1 ≥ c} is closed.

Proof. The proof trivially follows from the definition of Wn−1 and is left to the reader.

For the particular structure of the trading limits, we can formulate the following result:

Theorem 3.4. Let Vn(S) be defined by (12)-(13), Dn(S) be defined by (14)-(15) and

J(S) =

 F
(
WL
N(S)

)
, if WL

N(S) ≥ w, w ∈ R, w > 0,

−∞, otherwise,

be defined on SN , where F (x) ≥ c on [w,+∞) and F (WL
N(S)) is uniformly bounded above

on any compact subset of SN . Let w̃n−1 = w
N∏
i=n

r̃i

. If for every n = 1, N

• Dn(S) is bounded for each S ∈ Sn−1(0),

• Cn−1(HX ,S) is continuous on
{

(H,S) : H ∈ Dn(S), S ∈ Sn−1
}
,

• Cn−1(H,S) = Cn−1(−H,S) for any S ∈ Sn−1(w̃n−1) and H ∈ Dn(S),

• Xn(Θ,S) is continuous on Kn × Sn−1,

then for any n = 1, N , Vn−1(S) < +∞ on Sn−1 and Vn−1(S) ≥ c on Sn−1(w̃n−1).

14



Proof. 1) By definition,WL
n ≥ c impliesWn ≥ c, therefore lower boundedness of Vn−1 follows

from Theorem 3.2 since 0 ∈ Dn(S) on Sn−1(w̃n−1). The proof of the upper boundedness

closely follows Lemma 2.2. We prove for Vn−1 an even stronger property of uniform upper

boundedness on compact subsets of Sn−1 from which the upper boundedness trivially follows.

The uniform upper boundedness holds for VN ≡ J . For the remaining n the proof is made

by induction: assume that the statement is true for Vn. Let Mn−1 be a compact subset of

Sn−1. Consider the set M ′
n−1 = Mn−1 ∩ {S ∈ Sn−1 : Wn−1 ≥ 0} which is bounded and closed

(by virtue of Statement 3.1) hence compact.

2) If M ′
n−1 = ∅, then Wn−1 < 0 and Dn−1(S) = ∅ on Mn−1. By convention, Vn−1(S) =

−∞ when the set of admissible strategies is empty therefore Vn−1(S) is uniformly upper

bounded on Mn−1.

3) If M ′
n−1 is not empty, consider the set-valued function Rn(S) on M ′

n−1:

Rn(S) =
{

(Θ, H,S) : Θ ∈ Kn, H ∈ Dn(S)
}
.

Since M ′
n−1 ⊆ Sn−1(0), Lemma 3.1 implies that Dn(S) is u. h. c. on M ′

n−1, hence Rn(S) is

u. h. c. on M ′
n−1. Compactness of Dn(S) and Kn implies compactness of Rn(S) for every

S ∈ M ′
n−1; domain of Rn is M ′

n−1 since 0 ∈ Dn(S) on M ′
n−1. By Statement 2.2, Gr(Rn) is

compact. Then the image M ′
n of Gr(Rn) under under the map (10) is a compact subset of

Sn, therefore Vn(S) ≤ V n on M ′
n, V n ∈ R, and we have

∀S ∈M ′
n−1 Vn−1(S) = inf

Qn∈Qn
ESQnVn(Sn | H∗n) ≤ V n.

By analogy to the case of empty M ′
n−1, we can see that Vn−1(S) = −∞ on Mn−1 \M ′

n−1,

therefore Vn−1 is uniformly bounded above on Mn−1, hence bounded above on Sn−1.

4 Conclusion

In this research we have presented sufficient conditions for the boundedness of the value

function for the worst case optimization problem. Since many practical (and especially fi-

nancial) cases assume that infinite strategy values are forbidden by an exogenous constraints,

we focus our attention on the properties of the value function itself. For a general frame-

work, sufficient conditions are presented for the bounded utility and for a general class of

utilities which includes continuous functions on the effective domain. For the portfolio se-
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lection problem, we consider a market with general multiplicative price model and non-zero

transaction costs. For a wide class of utility functions, a general class of transaction costs

functions and a general form of trading limits, we present sufficient conditions for the upper

and lower boundedness of the value function over time. The considered form of the utility

incorporates most of the commonly used utility functions (CRRA, CARA, HARA etc.). For

the specific form of linear trading limits we provide less restrictive sufficient conditions for

the upper and lower boundedness of the value function. In fact, we prove an even stronger

property of uniform upper boundedness over compact sets which can be easily seen in the

proofs. All the obtained results are practice-oriented and can be used to verify correctness

of the numeric scheme when solving the Bellman-Isaacs equation.
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5 Appendix

The following section uses classic results from convex geometry. For references, see e. g.

[Artamonov and Latyshev, 2004].

Definition 5.1. For a set D ⊂ Rm, the ε-neighborhood of D is U(D, ε) =
{
u : d(u,D) < ε

}
.

Statement 5.1. If D is a compact subset of Rm and V is an open subset of Rm containing

D then there is ε > 0 such that U(D, ε) ⊂ V .

Proof. Let R = Rm \ V . Consider the function f(x) = d(x,R) which is positive for every

x ∈ D since D ∩ R = ∅. Therefore f attains a minimum value ε > 0 on compact D. If

u ∈ U(D, ε) then d(x, u) < ε = d(x,R) for any x ∈ D, therefore u /∈ R i. e. u ∈ V , hence

U(D, ε) ⊂ V .

Consider the set-valued function

D(S) =
{
x ∈ Rm : A(S)x ≤ B(S)

}
, A(S) ∈ Rr×m, B(S) ∈ Rr (17)

defined on S ⊆ Rl. By Ain and Bi
n we would mean the i−th row of An and the i-th component

of Bn respectively.

Statement 5.2. For any given S0 ∈ S, if intD(S0) 6= ∅ and both A(S) and B(S) are

continuous at S0, then there is such ε > 0 that D(S) 6= ∅ for every S ∈ Uε(S0).

Proof. Consider x0 ∈ intD(S0). By definition, A(S0)x0 < B(S0). By contradiction, assume

that there is a sequence {εn}∞n=1 such that εn −−−→
n→∞

0 and for each n there is such Sn ∈

17



Uεn(S0) that D(Sn) = ∅, hence max
1≤i≤r

(Ai(Sn)x0 −Bi(Sn)) > 0. Since Sn −−−→
n→∞

S0, we have

max
1≤i≤r

(A(S0)x0 −B(S0)) ≥ 0 which leads to contradiction.

Lemma 5.1. Consider D(S) according to (17). For any S0 ∈ S, if

• D(S0) is bounded,

• intD(S0) 6= ∅,

• A(S) and B(S) are continuous at S0

then D(S) is upper hemicontinuous at S0.

Proof. 1) Throughout the proof we denote Dn = D(Sn), An = A(Sn), Bn = B(Sn) for

n ≥ 0. Consider an open set V ⊃ D0. To show the upper hemicontinuity of D0 we need

to prove that there is an open neighborhood U(S0) of S0 such that D(S) ⊂ V for every

S ∈ U(S0).

Consider a sequence {Sn}∞n=1 such that Sn −−−→
n→∞

S0 and D′n = Dn \D0 6= ∅. (If such a

sequence does not exist, then the statement is proven.) By Statement 5.2, Dn 6= ∅ for large

enough n, so we shall assume that Dn are not empty since only large n will be of further

interest. Statement 5.1 implies that there is such ε > 0 that U(D0, ε) ∈ V . Since Sn con-

verges to S0, Sn ∈ Uε(S0) for sufficiently large n. Therefore, to prove upper hemicontinuity,

we only need to prove that Dn ∈ U(D0, ε) for sufficiently large n.

2) Consider a point x0 ∈ intD0. For each xn ∈ D′n the interval [x0;xn] intersects ∂D0,

let Yn = [x0;xn] ∩ ∂D0. Since Yn is compact, let yn = arg max
y∈Yn

d(y, ∂D0). By definition,

yn = tnx0 + (1− tn)xn, tn ∈ (0; 1).

yn ∈ ∂D0, therefore tn → 0 iif xn → ∂D0; tn < 1 since x0 ∈ intD0. We can also write

xn = pnyn + (1− pn)x0, pn =
1

1− tn
> 1. (18)

Note that pn → 1 iif xn → ∂D0; also xn is unbounded iif pn →∞.

First, we prove that there is a bounded set M and n0 > 0 such that Dn ⊆M for n ≥ n0.

By contradiction, we could construct an unbounded sequence of points xn ∈ D′n4 for which
4by taking a set sequence Mn = {x : ‖x‖ ≤ n} and constructing a corresponding sequence of points outside Mn.
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pn →∞. Then

Anxn ≤ Bn ⇐⇒ pnAnyn + (1− pn)Anx0 ≤ Bn ⇐⇒

⇐⇒ Anyn − Anx0 ≤
1

pn
(Bn − Anx0) = ηn. (19)

Bn−Anx0 → B0−A0x0 hence ηn → 0. yn ∈ ∂D0 hence bounded and there is a subsequence

ynk → yi ∈ ∂D0 such that Ainkynk → Bi
0 for some i = 1, r. x0 ∈ intD0 hence there is δi > 0

such that Ainkx0 → Bi
0 − δi. Therefore, Ainkynk − A

i
nk
x0 → δi > 0. Thus from (19) we have

0 < δi ≤ ηin → 0 which leads to contradiction.

3) Note that for every n ≥ 0 Dn is a polyhedron hence a closed convex set. Then it is

compact for n ≥ n0. Let n ≥ n0 and consider xn ∈ Arg max
x∈Dn

d(x,D0) for which define pn as

before. Since {pn} is bounded, it has a limit point. Assume that some limit point p̄ > 1 and

{pnk} is the corresponding convergent subsequence. As before, we have

pn′kAn′kyn′k + (1− pn′k)An′kx0 ≤ Bn′k

and Ain′kyn′k → Bi
0 for some i = 1, r and a subsequence {pn′k} of {pnk}. By letting n′k → ∞,

we obtain

p̄Bi
0 + (1− p̄)Ai0x0 ≤ Bi

0 ⇐⇒ (1− p̄)Ai0x0 ≤ (1− p̄)Bi
0 ⇐⇒ Ai0x0 ≥ Bi

0,

which contradicts the fact that x0 ∈ intD0. This means that pn → 1 which implies that

d(xn, D0)→ 0. By definition of xn we have

max
x∈Dn

d(x,D0) −−−→
n→∞

0.

Therefore, for any ε > 0 there is such N that for any n ≥ N and any x ∈ Dn, x ∈ U(D0, ε)

hence Dn ∈ U(D0, ε) which concludes the proof.

Statement 5.3 ([Panik, 2013, Corollary 2.48]). Polyhedron {x ∈ Rm : Ax ≤ B} is bounded

iif {x ∈ Rm : Ax ≤ 0} = {0}.

Theorem 5.1. Consider D(S) according to (17). For any S0 ∈ S, if

• D(S0) is bounded,

• D(S0) is non-empty;

19



• A(S) and B(S) are continuous at S0

then D(S) is upper hemicontinuous at S0.

Proof. Below we use the notation from the proof of Lemma 5.1.

1) First, assume thatD0 consists of more than one point. If intD0 6= ∅ then the statement

is obviously true due to Lemma 5.1. Otherwise D0 belongs to one of its facets which means

that there are such i1 < . . . < ip = 1, r that Aik(S0)x = Bik(S0) for each x ∈ D0, k = 1, p.

Then there is a linear transform C(S), continuous at S0, with detC(S0) 6= 0, such that

x = C(S0)y where y is a vector of coordinates of a point in aff(D0). Since D0 consists of

more than one point, riD0 6= ∅, therefore we can apply Lemma 5.1 to D0 in a linear space

aff(D0) to show upper hemicontinuity. Upper hemicontinuity in the original space then

follows from the continuity of C at S0.

2) Now we prove the statement for the single-point set D0. Let D0 = {x0}. For any

ε > 0 consider the set

D(S, ε) =
{
x ∈ Rm : A(S)x ≤ B(S) + ε · 1

}
.

By definition, x0 ∈ D(S0, ε) for any ε > 0. Now consider a monotonic sequence {εn} → 0

where each εn > 0. Since A0x0 ≤ B0 + εn · 1 and A0, B0 are finite, there is a neighborhood

Uδn(x0) of points near x0 for which the inequality holds. Therefore, for each εn > 0 there is

δn > 0 such that

Uδn(x0) ⊂ D(S0, εn).

Since D0 is bounded, D(S0, ε) is bounded for any ε > 0 by virtue of Statement 5.3. Then

by Lemma 5.1 D(S, εn) is u. h. c. at S0.

Consider a sequence {xn}, xn ∈ Arg max
x∈D(S0,εn)

d(x0, x). D(S0, εn) ⊆ D(S0, ε0) for any n ≥

0, hence {xn} is bounded and there are lim inf
n→∞

xn and lim sup
n→∞

xn. Consider a convergent

subsequence xnk → x̂.

A0xnk ≤ B0 + εnk =⇒ A0x̂ ≤ B0 =⇒ x̂ = x0.

Therefore lim inf
n→∞

xn = lim sup
n→∞

xn = x0 and xn → x0, thus

d (x0, D(S0, εn))→ 0.
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As in Lemma 5.1, to prove the upper hemicontinuity of D0 it is sufficient to prove that

for every ε > 0 there is an open neighborhood U(S0) of S0 such that D(S) ⊂ U(D0, ε) for

every S ∈ U(S0). Fix some ε > 0. For a large enough n

d (x0, D(S0, εn)) <
ε

2
=⇒ D(S0, εn) ⊂ U

(
{x0},

ε

2

)
= U

(
D0,

ε

2

)
. (20)

Since D(S, εn) is u. h. c. at S0, there is a neighborhood U(S0) such that for every S ∈ U(S0)

D(S, εn) ⊂ U
(
D(S0, εn),

ε

2

)
. (21)

By combining (20) and (21) we receive that

D(S) = D(S, 0) ⊆ D(S, εn) ⊂ U (D0, ε)

for every S ∈ U(S0)5, hence D(S) is u. h. c. at S0.

5Due to compactness, for any x ∈ D(S, εn) d (x,D(S0, εn)) = d(x, y0(x)), y0(x) ∈ D(S0, εn), and d(D0, y0(x)) =
d(x0, y0(x)). Then d(x,D0) = d(x, x0) ≤ d(x, y0(x)) + d(x0, y0(x)) <

ε
2
+ ε

2
= ε.
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