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ABSTRACT. Let D be the closed unit disk. We study the Hurwitz numbers corresponding to the
coverings of D whose only multiple critical value lies on the boundary of D and find differential
equations describing the generating function of these numbers.
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1. Introduction

A classical Hurwitz number is a weighted number of coverings of a compact genus g surface
S with critical values of given type [6]. The precise definition is as follows. Consider a ramified
covering ¢: 2 — S of S by a compact surface Q. Two coverings ¢ and ¢': ' — S are said to
be equivalent if there exists a homeomorphism f: Q — Q' such that ¢'f = p. Let Aut(yp) be the
group of self-equivalences of ¢, and let |Aut(y)| be its order.

In a neighborhood of each point y € €2, the covering ¢ is equivalent to the quotient map by
the group of rotations of order n(y) about y. The type of a value x € S is defined as the monomial
An(yy) " On(yy)> Where o Yx) = {y1,...,yr}. The values of all types except for a’f are said to be

critical. The critical values of type alf_lag are said to be simple.

Take finitely many points zi,...,z, € S and fix some monomials a!,...,a” in the vari-
ables a;. A classical Hurwitz number is defined as the number (al,...,a%), = Y |Aut(p)| 7!,
where the sum is taken over all equivalence classes of coverings with values z1,...,xz, of the
respective types a',...,a” and with no other critical values. A Hurwitz number of the form

(a)™ = <a,a’f_1a2,...,ak_1a2>0, where a is an arbitrary monomial in the variables a; and m

k—1
1

v

is the number of monomials a7 “ao in the brackets, is called a classical simple Hurwitz number.
The classical simple Hurwitz numbers are closely related to the intersection theory on the moduli
space of compact Riemann surfaces with marked points [7].

We assign variables p; to the variables a;, and the monomials p, = p;, ---p;, to the mono-
mials @ = a;, - - - a;,. The generating function of simple Hurwitz numbers is given by the formula
(N, p1,p2,...) = Zm>0 % > a(@)™pq, where the second sum is taken over all monomials. Accord-
ing to [5], the generating function ® (A, p1,pa,...) satisfies the cut-and-join differential equation

OP Ly, s 9 g 0*
o = Do In= 2;(Z+J)pipjapi+j+izj3]pi+j(m'
The proof is essentially based on the fact that the classical Hurwitz numbers are correlators of a
closed 2D topological field theory [3]. This equation has some remarkable properties. For example,
it is satisfied by the generating function of Hodge integrals [12].

The definition of Hurwitz numbers can be extended to coverings of arbitrary surfaces with
boundary by arbitrary surfaces with boundary [1]. In the present paper, we define and study the
simple Hurwitz numbers of a disk. They correspond to the coverings of the disk that have only
one multiple critical value and satisfy the additional condition that this value lies on the boundary
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of the disk. In particular, we find recursion relations that permit computing all simple Hurwitz
numbers of the disk.

The generating functions of simple Hurwitz numbers of a disk depend on complex parameters
a, (3, and v (which are analogs of the parameter A in the classical situation) and four infinite sets of
variables p;, p;, Pi, and p;, which describe the topological type of the multiple critical value (analogs
of the variables p; in the classical situation). The equation 9®/IX = L ® has a counterpart in the
form of three differential equations.

The Hurwitz numbers of surfaces with boundary are correlators of an open-closed (noncom-
mutative) 2D topological field theory [1]. That is precisely why the generating function of simple
Hurwitz numbers of a disk satisfies some differential equations.

The author is grateful to V. M. Buchstaber for useful discussion of topological properties of
coverings.

2. Hurwitz Numbers

Let D be the closed disk {z € C : |z| < 1} with oriented boundary, and let © be a compact
surface with boundary. In this paper, we use the term “covering” for degree k& Smith—Dold coverings
such that the function taking each point of the disk to the number of its preimages has the following
property: its restriction to the interior D° = D\ 9D of the disk is discontinuous at at most finitely
many points, and so is its restriction to the boundary dD. One can readily show that this class of
coverings is the same as the one considered in [1]. Recall that a continuous function ¢: Q@ — D is
called a Smith-Dold covering ([11], [4]) if there exists a continuous function ¢: D — Sym*(Q) such
that (1) x € tp(z) for all z € Q and (2) Sym”(p)(ty) = ky for all y € D.

In particular, dianalytic morphisms of Klein surfaces ([2], [8]) are coverings in our sense. More-
over, for every topological covering ¢: €2 — D there exists a dianalytic structure on ) making ¢
a morphism of Klein surfaces [9]. Morphisms of Klein surfaces are in a one-to-one correspondence
with real meromorphic functions in the sense of [10]. Namely, each dianalytic morphism can be
obtained from a real meromorphic function f on a real algebraic curve (P,7) as the composition
hofhit, where hy: P — P/(r) is the natural projection and ha(z) = Rez + i|Im z|.

The preimage ¢~ !(z) of an interior point € D\ 9D consists of n = n(x) < k points. Consider
a simple contour € D° bounding a small neighborhood of z. Its preimage ¢ ~!(r) splits into simple
contours C1,...,C, € Q° = Q\ 9Q. The unordered set (deg(¢|c,),---,deg(¢|c,)) of degrees of the
restrictions of ¢ to these contours is called the (topological) type of the interior value x € D° and
will be denoted by a monomial ail ‘e afc’“ in commuting formal variables a;, where t; is the number
of indices j such that deg(p|c;) = i. (Here af =1.)

A value x € D° is said to be regular if the restriction of ¢ to each connected component of the
preimage of a small neighborhood of x is a homeomorphism. All other z € D° are called interior
critical values. In other words, the interior critical values are all interior values of topological type
not equal to a¥. Any covering has at most finitely many interior critical values. The interior critical
values of type a’f_lag are said to be simple.

The preimage ¢ !(y) of a boundary point y € 9D also consists of n = n(y) < k points.
Consider a simple arc I C D with endpoints on 0D bounding a small neighborhood of y. Its
preimage ¢~ '(I) C € is a graph with & edges. The vertices of the graph split into two groups
corresponding to the preimages of the two endpoints of I. The endpoints of [ and the corresponding
groups of vertices are assumed to be ordered in the sense of the orientation of the boundary 9D. For
convenience, we say that one endpoint is left and the other is right, so that the positive orientation
of the disk boundary corresponds to moving in the neighborhood from left to right between the
endpoints. Accordingly, we distinguish between right and left vertices of the graph ¢ ~1(I).

Thus, the graph ¢~1(I) is bipartite. Its topological type is called the (topological) type of the
boundary value y € D [1]. The degree of every vertex of the graph does not exceed 2. Thus, the
connected components of the graph ¢ ~1(I) can be of the following types:
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e b; (a graph with 4 left and i + 1 right vertices).
e b; (a graph with i + 1 left and i right vertices).
° BZ (an open graph with 4 left and ¢ right vertices).
e b; (a closed graph with i left and i right vertices).

See Fig. 1 for the corresponding graphs with ¢ = 2.

Here is an example explaining the geometrical meaning of these invariants. The Riemann sphere
C = C U oo bears an action of the dihedral group G generated by the reflection z +— 2z and the
rotation z — €275z, The action defines a covering ¢: C — C/G; its critical points are 0 and oco.
The boundary values corresponding to these points have the type br. Consider the restriction %)
of the mapping ¢ to the disk {z € C : Imz > 0} U co. For k£ odd, the topological types of both

values ¢(0) and @(o0) are the same and equal to B(k+1)/2. For k even, one of the values has the
topological type Bk/g and the other, Bk/g.

Let us assign commuting formal variables 6i, ?92-, I_)Z', bz to the graphs Bi, Bi, Bi, bz In what
follows, we almost always denote graphs by the same symbols as the corresponding monomials. To
a union of graphs, we assign the product of the corresponding monomials. Thus, the topological
type of any boundary value is encoded by a monomial b = b‘il bi"b‘il e bfL"E‘fl L DEDS bff
where k=S 26+ 327 (25— 1)+ 227, 23+ 3.7 | 24;. Let Aut(b) be the automorphism group
of the graph corresponding to b, and let |Aut(b)| be the order of this group.

Reversing the order of the groups of Vertlces of the graph gives rlse to an involution b +— b* on
the set of monomials. In particular, b bz, b bz, b;" = b;, and b =b;.

A value x € 9D is said to be regular if the restriction of ¢ to each connected component of
the preimage of a small boundary segment containing x is a homeomorphism. All other boundary
values are called boundary critical values. In other words, boundary critical values are all critical
values of type other than be{ Any covering has at most finitely many boundary critical values.
Boundary critical values of types bllgfb{ and bll}fb{ are called simple boundary critical values and
will be referred to as aigu values and grave values, respectively.

We say that two coverings o1: 1 — D and ¢s9: 9 — D are equivalent if there exists a
homeomorphism ¢: Q; — Qg such that ¢1 = p2¢. The automorphism groups Aut(y;) of equivalent
coverings ¢; are isomorphic. We denote their order by |Aut(p;)|.

Example 2.1. A covering ¢: Q@ — D of the disk D = {z € C: Imz > 0} U oo has no critical
values if and only if its restriction to each connected component is either a homeomorphism or
is equivalent to a two-sheeted covering h: CUoo — {z € C : Imz > 0} U oo, where h(z) =
Re z +i|Im z|. Its automorphism group Aut(y) is isomorphic to Sy, X Sy, x (Z/2Z)™, where n and
m stand for the numbers of connected components of {2 on which ¢ is a homeomorphism or a
two-sheeted covering, respectively.

On the disk D, let us fix finitely many interior points xi,...,x, € D° and finitely many

boundary points y1, ...,y € 0D numbered in accordance with the orientation of the boundary.
We also fix monomials a',...,a" in the variables a; and monomials b',...,b" in the variables b;,
bi, bi, bi.
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The Hurwitz number is defined as (a',...,a", (b}, ... b¥)) =" |Aut(p)|~!, where the sum is
over the equivalence classes of coverings having the values x1,..., %y, y1,...,ys of the respective
types a',...,a, b, ..., b" and no other critical values.

Example 2.2. ((05b3)) = (5,1)71(2%4,) L.

One can readily see that the Hurwitz number is independent of the position of the critical points.
It does not change under any permutation of the monomials a’ and under a cyclic permutation of
the monomials b’. The above-described correspondence between coverings and real meromorphic
functions permits one to interpret these Hurwitz numbers as a counterpart of the classical Hurwitz
numbers for real algebraic curves [1].

Lemma 2.1. The Hurwitz number ((c,b)) is nonzero only if ¢ = b*, and then ((b*,b)) =
|Aut(b)| L.
The Hurwitz number ((c, bbb, b)) is nonzero only in the following cases:
((b;d* blbmb’ln, b; d)) 2|Aut(d)| .
((bisjd*, blbmbT,b ;i d)> |Aut(d)|~L.
(b
(b

((bug s, biBT P bibyd)) = (1 — 30y Aut(d)| .

( Hj,ld*,blb{”bl Lbibjd)) = (1 — %&-j)\Aut(dﬂ_l.

The Hurwitz number ((c, z)ll_)iﬁl.){”, b)) is nonzero only in the following cases:
o ((bid, bib'0, bid*)) = | Aut(d)| 1.

. <(b b d, blbmbT,Bl+]d*)> |Aut(d)|~*.

o ((b; b d, blbmba”,blﬂd*)} =(1- %5ij)\Aut(d)|_1.

o ((bibjd, b0, by j—1d¥)) = (1 — $6;5)|Aut(d)| !

Proof. The first statement is obvious. Let ((¢, bib7b, b)) # 0. By definition, this means that
there exists a covering ¢: 0 — D with boundary critical values y1,y2,y3 € 0D of the respective
types ¢, 615?67{1, b and with no other critical values. Consider points z; € (y1,y2) and 22 € (y2,y3).
The preimage of z; consists of m points in a neighborhood of which ¢ is one-to-one (simple points)
and m + 1 points in a neighborhood of which ¢ is two-to-one (double points). The preimage of 2o
consists of m + 2 simple points and 1 double points.

Let p1,p2 € ¢ '(22) be the simple points corresponding to the graph by. Let q1 and ¢o be the
corresponding points of the graph b. Then one of the following cases takes place:

q1 and ¢o belong to the same connected component of type_ bi.
¢1 and ¢o belong to connected components of types b; and b
q1 and ¢ belong to distinct connected components of types b and b

q1 and ¢ belong to distinct connected components of types b; and b].

In the first case, b = b;d. Consider the restriction o — D of the covering ¢ to the connected
component containing the points q1 and go and the restriction ¢”: Q” — D of ¢ to the complement
Q" = Q\ Q. The covering ¢” has critical values y1,y3 € 9D of types d* and d. Therefore, the
covering ¢’ has critical values Y1,Y2,y3 € 0D of types bz, ble and b;. Thus, the covering ¢ has
critical values y1,y2,y3 € D of types bid* blbmbT, and b;d.

The equivalence class of the covering ¢’ (respectively, ¢”) contains all coverings having critical
values of the same types as ¢’ (respectively, ¢”) itself. Furthermore, Aut(p) = Aut(p’) x Aut(¢”).
Thus,

1 1 1 1 1
[Aut()] — [Aut()] [Aut(e”)] ~ [Aut(e)] [Aut(d)]”

The group Aut(y’) is generated by the involution transposing the points p; and po. Consequently,
<(bld*7 [;lgghb{n’ bld)) = %|Aut(d)’71 :

The other cases can be treated in a similar way. The main difference is in the properties of the
group Aut(¢’). It is nontrivial only for ¢ = j in the last two cases.

((bid*, DB bid)) =
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By changing the orientation of the disk boundary, we find that ((a,b,c)) = ((c*,b*,a*)). Thus,
the second assertion of the lemma implies the third one. O

Whenever the difference between the graphs b; and b; is not important, we denote both graphs
also by b;. We define the length |b| of a connected graph b as the number of its edges. In particular,
b;| = 2i — 1 and |b;| = |b;| = |bs] = 2i. For an arbitrary graph b, let |b| be the maximum length of
its connected components.

Lemma 2.2. The Hurwitz number (a{"az, (¢,b)) is not zero only in the following cases:

o (af'az, (bibjd*,biv;d)) = (1 — 38i)|Aut(d)| "
5,1 | Aut(d)| .
|b;1 [Aut(d)| .
|bj|[Au

o <a71na2a(l:71'{_7jd*,6/i+j d)
(af"ag, (bibjd", biy;d)
(af"ag, (bibjd", biy;d)

[ ] (aTag,(bibjd*,bkbld)
(aT"az, ( )
(a1"az, ( )

1

)

)

) t(d)| "

) = O(i4j) ) [bi bA lzkbzl [Aut(d)|~".
)= 5(z+]+1)(k+l |bib;by.by| |Aut(d )ljl-

ai’as, b b d* bkbld > ( 51]5kl)5(7,+] k+1) ’b b bkbl| \Aut( )|_1.
) =

<a as, (blbjd*,bkbld) (1 — 51]5kl)5(7,+] k+1) ’b b; bkbl| \Aut( )|_1.

Proof. Let (af’as, (¢,b)) # 0. This means by definition that there exists a covering ¢: Q — D
with critical values x, y1, and y2 of types af*a2, ¢, and b, respectively, and with no other critical
values. Consider a simple curve I; C D having endpoints on 0D and bounding a small neighborhood
of the point y;. Consider the graphs ¢ = ¢~ 1(I1) and b = ¢ 1(l2) describing the topological types
of the points y;. Consider a segment | C D joining the /1 and Iy and passing through z.

The preimage ¢~ 1(I) consists of deg segments; exactly two of them meet. The intersection
is a critical point of ¢. The segments join the edges of the graphs b and c¢. Thus, the graph c*
is obtained from b by the following perestroika: one cuts two edges of the graph b and joins the
resulting half-edges differently.

Such a perestroika of bipartite graphs can be realized by a covering : {2 — D if and only if the
orientation of the edges induced by the ordering of the groups of graph vertices is consistent with
one of the orientations of the boundary 9. All pairs (b, ¢) satisfying these conditions are listed in
Lemma 2.2.

The number of coverings corresponding to a pair (b, c) coincides with the number of pairs of
edges of the graph b such that cutting and joining them gives the graph ¢*. This number, in turn,
depends on the number of edges in the connected components of b and ¢ to be cut and joined.

For b = Biﬂd and ¢ = i)il_)jd*, the number of coverings coincides with the number of se-
quences of ¢ successive edges of the graph Biﬂ-. There are exactly \Bj| such sequences. Thus,
<a71na2, (blb]d*, bl+jd)> = |bj‘ |Aut(d)|_1.

For b = Ekl;ld and ¢ = l_)iz)jd*, the number of coverings coincides with the number of pairs of

ai ag, 62) d* l_)kbld

edges such that one edge belongs to [_{k, the other to l;l, and after cutting and joining by these edges
the graph bibj arises. Thus, <a71"a2, (bibjd*, bkbld» = 5(i+j)(k+l)‘bibjbkbl’ ’Aut(d)‘fl.
The other Hurwitz numbers can be computed in a similar way. O

3. Simple Hurwitz Numbers of a Disk

We say that a boundary critical value p’ of a covering ¢ precedes a boundary critical value p”
of the same covering if the orientation of the disk boundary is from p’ to p” on the curve (p/,p”)
and if (p/,p”) contains no critical values.

Consider the set . (m,m,b) of equivalence classes of coverings with m simple interior critical
values, m simple boundary critical values, and a single critical value, not necessarily simple, of
type b. (This value is said to be special.) The set 7 (m, 1, b) splits into the subsets 7 (m, 1, m, b)
containing coverings with 1 aigu values and m grave values. The set . (m,1h,m,b) splits into
two subsets (m, 1, m,b) and A (m,1h,m,b). The first (respectively, second) of them contains
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coverings such that the special critical value is preceded by an aigu value (respectively, a grave
value).

Let H(m,m,b) (respectively, H(m,rn,m,b), H(m,m,m,b), or H(m,m,m,b)) be the sum of
Hurwitz numbers of coverings in the set .7’ (m,m,b) (respectively, J(m,m,m,b), jf(m, m,m,b),
or e%\”(m,m,m,b)). We extend the definitions of H(m,m,b), H(m,,m,b), H(m,m, m,b), and
H(m, 1h, ™, b) to the ratios b = b'/b? of monomials assuming all these numbers to be 0 unless b is
a monomial. We refer to all these numbers as the simple Hurwitz numbers of a disk.

Example 3.1. One can readily see that a covering cannot have exactly one critical value [1].
By comparing this with the previous examples, one finds that if H(0,0,b) > 0, then b = b7*b}" and
H(O, 0, Eilbil) = (51!)71(2‘{%1!)71 .

Lemma 3.1. Let b= b3 bi”bil . bfL"Bfl o bEB - b‘:l" Then

, b
Him,m+1,m,b) =Y i(s+1 H<m,m,m,bf>
( ) Z ( ) ;.

1 (2

_ bitj biv
+ E Si+; + 1)H m,m,m,b_\J)-l- Siyj+1 H(m,m,m,b”]>
. (( +j ) ( ) (Bit ) b,

1Y)

bit i
‘|‘(S,z+j1+1)H<m,7’;’L,T\)’L,b —Jrj— 1>>

Proof. Consider a covering ¢: Q — D in the set 2 (m,1h+1,m,b). Let y and ' be the special
critical value of the covering and the preceding boundary critical value, respectively. Consider a
segment [ C D with endpoints in dD separating y and 3’ from the other critical values. Let us
shrink [ into a point g;; then the disk splits into two disks, D’ and D”, and the covering ¢ splits
into two coverings, ¢': ' — D’ and ¢”: Q" — D”. The critical values of ¢’ are y;, 3/, and y.
By identifying D" with D, we see that ¢” € 5 (m,m,m,c) for some monomial c¢. By [1], this
implies that ﬂ(m,m +1,m,b) = qu H(m,m,m, () qu<(ﬁq,l;15?l.)?,b)>, where {3,} is the set
of all monomials, {F??} is the inverse matrix of {((8p,,))}, and the sum is taken over all pairs
of monomials. By Lemma 2.1, FP1 = 43, g- Aut(8p)|. Further, again by Lemma 2.1, the sum on
the right-hand side of the equation consists of four subsums, each of which is determined by the
respective form of the monomials b and 3, = 3;.

Let b = bid and (3, = b;d*. Then

. A .
[Aut(9,)] = [Aut(hid)| = |55 D) (205716 + 1! = 2| A5 + )
1)°*S;!
Moreover, (B, bibfb},b)) = ((bid*, 510757, bid)) = §|Aut(d)| ™' by Lemma 2.1. Thus, the first
subsum is 32 i(3; + 1)H(m, h, m, b2).
Let b= b;bjd and (3, = b;1jd*. Then
_ [Aut(d)]

§i+j!

|Aut ()] = [Aut (biy;d)] (Sivj + D! = [Aut(d)|(5i1; + 1).

Moreover, (B, bib7b, b)) = ((biyjd*, 0707, bibjd)) = |Aut(d)|~!. Thus, the second subsum is

Zi]’(siJrj + 1)H(’I7’L, T, m, b BZZ]J )
Let b= b;b;d and (3, = b;1jd*. Then
_ [Aut(d)|

28i+; (éi—&-j!

[Aut(8y)] = [Aut(biy ) 260 (31 + 1)1 = 2| Aut(d)| (315 + 1).
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Moreover, ((3q, 010707, )y = ((biyjd*, b1b7b, bib;d)) = (1—16;;)|Aut(d)|~'. Thus, the third subsum
is Y4, (3iy + DH(m, 10, i, bZ—Z)

Let b = bib;d and B, = bi4;_1d*. Then
|Aut(d)|
208i4i-1) 4,1 54!
Moreover, ((Bg, b1b7b7,b)) = ((bij—1d*, bib7b}, bib;d)) = (1 — 14;;)|Aut(d)|~". Thus, the fourth

subsum is

[Aut(8y)] = [Aut(bisj-1d)| = 261 (41 + 1)) = 2Aut(d)|(Sigjo1 + 1).

bisi
> (Sisjr + DH{ m, i, i, b2 ). 0
— bib;

Lemma 3.2. Let b= b3 bfl"b‘il e b;"E‘fl o bEBY - b‘;" Then

. bi bib;
H(m, rh,m + 1,b) = ) (3 + 1)H (mmm bb) +)° (2(31» +1)(3 + DH (m,m,m,bE J )
) 1]
+2((3 +1)(8; + 1) + 6;5(5; + 1))H m,m,m,bb
itj
1, _ _ .. bibj
+ =((5 + 1)(5; + 1) 4+ 0;5(5; + 1))H| m, rir, ™, b= .
2 bitj-1

Proof. The lemma can be proved along the same lines as the preceding one; the proof uses the
second part of Lemma 2.1. o
If (B,, bbb}, b) = (bid*, bib*b", b;d), then
[Aut(3,)] = |Aut(bid)| = 2/Aut(d)|(3; + 1)

and
1 1

((Bg, b1bTBT b)) = ((bsd”, by BB, bidl)) = 2 TAut(d)] "
Thus, the corresponding subsum is ) ;(3; + 1)H(m, 1, mh, bZ—:)

If (By, b1070}, b) = (bibjd*, b1bT'bY", biyjd), then

|Aut(S,)| = |Aut(bib;d)| = 2|Aut(d)|(s; + 1)(3; + 1)
and
((Bg> b1bTDT, b)) = ((bibyd, bybT b, by jd)) = [Aut(d)| .
Thus, the corresponding subsum is
2> (5 +1)(3; + DH <m, 1h, ™, beﬂ >
r i+j
If (Bg, 1070}, b) = (bibyd*, bibTPb, by jd), then
|Aut(8)] = [Aut(bib;d)| = 4|Aut(d)[((3 + 1)(3; + 1) + 655(3: + 1))

and
., e s 1 1
bib;d*, b1bT b by id)) = |1 — =0 | ——— .
<( J 191 91 +J )> ( 2 ]) ]Aut(d)|
Thus, the corresponding subsum is

bib;
23 (3 +1)(35 + 1) + 6i;(3 + 1))H<m, 11, M, bt >
ij i+j
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If (/6(]7 Bll—)?b?7 b) = (BZB]d*a 2)15?%71%: 6i+j—1d)7 then
[Aut(By)| = |Aut(bibsd)| = [Aut(d)[((5; + 1)(5; + 1) + d(5; + 1))

and 5 1
BB ) = (g b s 1)) = (1 %
((Bg, 016707, b)) = ((bibjd, b1b1"bY", biyj—1d")) < >|Aut( d)|’

Thus, the corresponding subsum is

1 bib;
5 > ((5i+1)(5; + 1)+ 655(5 + 1)H <mmmb — 1). O
ij i+)—

The corresponding result for the interior simple critical points is as follows:
I:emlfna 3.3~. Le}ﬁ b= bfl e bflnb‘il e bfl"l_)‘il . l_)f%”b‘il e bfL" Then the following equation holds
for H=H and H=H:
H(m + 1,1, m, b)
= Z(z +7)(8i4;+1)H (m, 1, m, bﬁ) +2i5((5 +1)(5;+1)
ij )

) b\ ) 5,
+5ij(s'i+1))H<m7m,m,b. J) + |bj(si+j+1)H<m h, m, b= +]>

- bib b;
+2i|b;|(8; +1)(5; + 1)H( m, 12, m, bE j) +2|b; ](s,+]+1)H<m 1, 1, b +j>
Z+j

< bib;
. - b;
+ 4ilbj| (8 +1)($; + 1)H <m 1, m, b > +2|bj](<§i+j+1)H<m 1M, M, b +j>
Z+j bz‘bj
+4z]b|(52+1 (3 +1H < >
’L+j
_ , ~ bb
+ ) (20Bibsbibil(5: + 1)(55+ DH
i+j=k+l bkbl
bb
+2’ kbl|(81+1)(sj+1)H
bkbl
R \ . bib;
+ ) 2(1+ 6k)|bibjbby |(Si+1)(s]-+1)H<m 1, m, b= >
. brb;
i+j+1=k+1
1+5 ~ bb
b3 B+ 1+ 1)+ (s )R (i )
i+j=k+1+1 bkbl
1--- - B B ~ b; b
D (L) (L + 6k) | £ 1bibibrbi| ((5i + 1)(55 + 1) + 6i5(Si + 1) H( m, 1i0, i, b=
4 brb;
i+j=k+l
S , bib;
+ |b b bkbl’((si + 1)(Sj + 1) + 51‘3'(81' + 1))H
bkbl
S N bib;
+|bb bkbl|((si+1)(5j—|—1)+5ij(81'+1))H b b .
kb1

Proof. Consider a covering ¢: 2 — D in the set %(m + 1,7, m,b). Let y be the special
critical value of ¢, and let x be an interior critical value of ¢. Consider a segment | C D with
endpoints on the boundary separating y and x from the other critical values of the covering and
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shrink it into a point 1;; then the disk D splits into two disks, D’ and D”, and the covering ¢ splits
into two coverings, ¢': Q' — D’ and ¢”: Q" — D”. The critical values of ¢’ are y;, y, and z. By
identifying D" with D, we see that ¢ € J#(m,1h,m, ¢) for some monomial c. By [1], this implies
that H(m + 1,7, m,b) = qu fi(m, mh, m,ﬁp)qu«ﬁq,l;lE?b?,b)). By Lemma 2.2, the right-hand
side contains fifteen subsums. (To every case in the lemma except for the last, there correspond
two subsums.) Each subsum can be computed by the scheme used in the proofs of Lemmas 3.1
and 3.2. O

Lemmas 3.1, 3.2, and 3.3 permit one to find all numbers H(m,m,m, b) and H(m,m,m,b)
starting from H(0,0,b).

4. Differential Equations for the Generating Functions

Consider the algebra of formal power series in the commuting variables p;, p;, pi, pi. To each
monomial py = pi* - PPyt - pIpY - Py Pyt - - Pyt in this algebra, we assign the monomial
b=0b" b5 BB DD B

Consider the generating functions

, . am M m
H(O‘»ﬁ77|p1»p1a171ap17p2,~--): Z ml h! ™ |ZH mmm b)pba
m,ri,m >0
N am /Bm m .
H(Ohﬂvfy‘pl?plaﬁlvplapQw"): Z WW%ZH(mun%n/%b)pbv
m, im0 b
where the inner sums are over all monomials b. In particular, H(0,0 | ...) = H(0,0 | ...) =
exp(p1 + p1/2) according to Example 3.1.
Theorem 4.1. The equation
OH
g o &
ap "

holds, where
0 0 0
Lg= ZZPZ + Z (pzp] s -+ DiDj m— o, + DiP;j 8p7,+]1>

Proof. Assume that b — bil.--bgﬁbil--.b;hz‘ﬁl.--z}f;ﬁbil--.b;h, where 7 = A(b), $ — %(b),
By Lemma 3.1,

8H o™ @m m
% = Z ’I?’L' oy m‘ Z mam+17m7b)pb

m,m,m >0

m Qm .m

o vy = b;
- Z m!M!m!zb:izlz(si—i—l)H(mmmbe)pb

m,rh,m >0
o™ B A . big
SIS L= 3 %) SRR G
m,m,m >0 i= 1] 1 ()
a™ h m H o bZ)iJrj
Ly o m,zzzm] 0222
m,m,m >0 = 1] 1 e}
DI zzzs 1+ DR (m, o, o255 )
m! 1! m' ks " bib;
m,m,m >0 i=1 j=1
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%

b = pebt = Pighe($i + 1)1, Thus,

i 0
zb:;z(si—i-l)H(mmmb > ZZszmma)plai,

c =1

where the sum is over all monomials c.

Let us make the change of variables ¢ = b2t in the second summand. Then pe = ppliti
i0j pipj
Po = pcp pj = piﬁj%(gi—i-j +1)~1. Thus,
0
3233 (s + DM 08 = 35S o i
b i=1 j=1 c i=1 j=1 Pi+j
Likewise,
o0 (o] a
)3) I ICHRRE NI VD b B SRS o
b =1 j=1 c =1 j5=1 Pi+j
and
[o.¢] o a
Z Zszﬂ-_l—I—l)H(mmmb%ﬂ 1) ZZZHmmmezpja
b =1 j=1 c =1 j=1 z+31
Hence % = LgH.
Theorem 4.2. The equation
OH
— =L,H
Oy
holds, where
(o)
0 0? 0? 1 0?
L, = )i —— 2 2
vy ;pzapi+%:(pz+]a a +pl+]a 8 +2pz+] 18 .0p )
Proof. By Lemma 3.2,
D Wﬁﬁz“ m, i, 4 1, D)y
17,120
m Qi Am > b
= Z a—ﬁ,—L Zsﬁ-l m, 1, m, b— |py
m! ! m! b,
m,rh,m 20 b oi=1 i
a™ B A S bib;
=9 Z WW—ZZZ 5+ 1)(35 +1)H<m ™, m bb1+j)pb
m,rh,m >0 b i=1j=1
2 ) Wﬁﬁzz i 1)(3 1) + 83+ 1>>H< bm)m

m,rh,n 0

- ,yfn 0o

+% > %,L LS Y (i D5+ 1) + s 1))H<m,m,m,b

myn,m>0 b i=1

Let us make the change of variables ¢ = b% in the first summand. Then
Di pi Ipe
pe=py— and pp,=pc =pio (5
. Di o

Di i

—|—1)

%

Let us make the change of variables ¢ = bg—i in the first summand. Then p. = pb% and

and

b;b;
7 J )pb.
bitj—1
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Thus,

b =1

where the sum is over all monomials ¢. Likewise,

33 G 5]+1>H( “)

b =1 j=1

Let us make the change of variables ¢ = b

ZZ(sz—i—l) <m 1, m bZ )pb ZZH m, 1, m, c)pzap

c =1 apl

D —ZZZHmmmcpH]

c =1 j=1

in the third summand. Then p. =

+1)(35 + 1)+ 6;5(3 + 1)

bib;
+ 1))H<m,’rﬁ,m,b, J >pb

i+j—1

bib;
i+j—1
S 52
o= Pl — P (3,
< iy T opiop;
Thus,
o 0
ZZZ 5+ 1)(3 + 1) +0i5(3
b i=1
[e.e] o
L. d%p
=D D Hlm, i, i, e)pigj1mm
c =1 j=1 PiOp;
Likewise,

ZZZ((3i+1)(8j+1)+5ij(3i+1))H(m v, 1, b b»bj )pb
i

i+j—1

oo o anc
= Z Z Z H(m, mh, m, C)pz‘ﬂ'—lﬁ .
c i=1j=1 Piop;
Hence % =L, H.
Theorem 4.3. The equations
of . OH .
— =L,H — =L,H
Oa e Oa ¢

hold, where
]

0 0?
La = Z (Z + ])pzpj a + 2ijl+_] a a

0 0?
+ 2‘[7 ’pzpja +4Z’b ‘pl‘Ha 8

0 0?
‘b |p2p]a +Z|b ‘pH—Ja af

0 0?
|b ‘pip]a + Z‘b ’pz+]8 8 >

S d? - 82
+ > 2<|bibjbkbl PRI 5= + [bibsbibi|Pry >

e OpiOp; OpiOp;

R 52 1 B

+ Z 2(1 + 0g)[bibsb bz|pkpl6 o > 5 (1+35)[bi b;bibu|Brp

itj+1=k+1 it j=kti+1

1 - _ _ 2
1 i) (1 — DLD

b3 s o) (b

i+j=k+lI

2
+ 1bib;br b | prr

0 Anoa oA 0?2
+ |b; b by, .
5505, + | bi|Prp >

apzapj

v

2

9?pe
IpiOp;
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and



The proof uses Lemma 3.3 but otherwise follows the same scheme as the proofs of Theorems
4.1 and 4.2.

Let us conclude with the following observation due to the referee. Just as the classical cut-and-
join equation, the equations in Theorems 4.1-4.3 are quasihomogeneous if the weight |b] is assigned
to the variable pp. The initial conditions for these equations are given in Example 3.1. Therefore,
the equations in Theorems 4.1-4.3 theoretically permit one to compute the generating function
H by the scheme used in [7] for the classical simple Hurwitz numbers. To this end, one should
consider the restriction of the operators to the finite-dimensional subspace of quasi-homogeneous
polynomials of given degree and find the eigenvalues and eigenfunctions of this restriction. As was
already noted, Lemmas 3.1-3.3 permit easily writing a computer algorithm for the straightforward
computation of each Hurwitz number.
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