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Abstract: We give an explicit formula for a quasi-isomorphism between the operads
Hycomm (the homology of the moduli space of stable genus 0 curves) and BV/� (the
homotopy quotient of Batalin-Vilkovisky operad by the BV-operator). In other words we
derive an equivalence of Hycomm-algebras and BV-algebras enhanced with a homotopy
that trivializes the BV-operator.

These formulas are given in terms of the Givental graphs, and are proved in two
different ways. One proof uses the Givental group action, and the other proof goes
through a chain of explicit formulas on resolutions of Hycomm and BV. The second
approach gives, in particular, a homological explanation of the Givental group action on
Hycomm-algebras.

0. Introduction

The main purpose of this paper is to describe a natural equivalence between the category
of differential graded Batalin-Vilkovisky algebras enhanced with the trivialization of
BV-operator and the category of formal Frobenius manifolds without a pairing (also
known under the name of hypercommutative algebras). The problem we are discussing
has an explicit topological origin. I. e., we are looking for an equivalence of the operad
of moduli spaces of stable curves and a homotopy quotient of the framed discs operad
by the circle action. Having in mind that both topological operads under consideration
are known to be formal we restrict ourselves to the corresponding relationship of the
homology operads. We suggest a pure algebraic solution of the problem accompanied
with an exact formula for the desired quasi-isomorphism.

Let us first briefly recall the definitions of two categories under consideration using the
language of operads. Consider the moduli spaces of stable genus 0 curves M0,n+1, n =
2, 3, . . .. A stable genus 0 curve is a nodal curve of arithmetic genus 0 with (n + 1)
pairwise distinct marked points in its smooth part, and it has at least three special points
(nodes or marked points) on each of the irreducible components. The points are labeled
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by the numbers 0, 1, . . . , n. There is a natural stratification by the topological types
of nodal curves. The strata of codimension one can be realized as the images of the
gluing morphism ρ = ρi : M0,n1+1 × M0,n2+1 → M0,n+1, n = n1 + n2 − 1, i =
1, . . . , n1, where the new nodal curve is obtained by attaching the zero point of a curve
in M0,n2+1 to the i th point of a curve in M0,n1+1. These morphisms define on the spaces
M0,n+1, n = 2, 3, . . ., the structure of a topological operad. Therefore, the homology of
the spaces M0,n+1, n = 2, 3, . . ., are endowed with the structure of an algebraic operad.
This operad is called the hypercommutative operad and we denote it by Hycomm. We
recall an explicit description of the hypercommutative algebra in Sect. 3.2. We refer
to [24] for details and to [18] for the description of the intersection theory on M0,n+1.
(Note that Manin uses in [24] the notation Com∞ for the operad of hypercommutative
algebras.)

Another important topological operad under consideration is the framed little discs
operad. The set of n-ary operations of this operad consists of configurations of the dis-
joint union of n small discs inside the unit disc, each inner disc has a marked point on
the boundary. It is equivalent to mark a point on the boundary of the circle or to fix a
rotation of the inner disc which gives an identification of the inner disc with a standard
disc of the same radius. The gluing of the outer boundary of the unit disc coming from
configuration of n1 small discs with the boundary of the i th inner disc of the configura-
tion of n2 small discs defines a configuration of n1 + n2 + 1 small pointed discs which
prescribes the composition rules in the operad. The homology of this operad is known
under the name of Batalin-Vilkovisky operad and has a very simple description in terms
of generators and relations. Namely, a (differential graded) Batalin-Vilkovisky algebra
is a graded commutative associative algebra with two operators, d of degree 1 and� of
degree −1, such that d2, �2, and d� +�d are equal to zero, d is a derivation and � is
a differential operator of the second order with respect to the multiplication.

These two algebraic structures, hypercommutative algebras and Batalin-Vilkovisky
algebras are known to be closely related. The hypercommutative algebra structure is the
most important ingredient of a formal Frobenius manifold structure. A typical appli-
cation of a relation between BV-algebras and hypercommutative algebras is that under
some conditions like Hodge property or some trivialization of the BV-operator � we
obtain a Frobenius manifold structure on the cohomology of a BV-algebra; we refer
to [2–5,7,8,17,22] for different aspects and different examples of this kind of corre-
spondence and relations between them. The topological origin of all these statements
looks as follows. The homotopy quotient of the framed little discs operad by rotations
is weakly equivalent to the operad of moduli spaces of stable genus 0 curves. This state-
ment was mentioned in [23] and written in details in [7]. We are focused on the algebraic
counterpart of this statement equipped with precise formulas.

In topology the homotopy quotient functor by the group G is a functor from the cat-
egory of G-spaces to the category of spaces which is defined as a left adjoint functor to
the trivial embedding: any topological space admits a trivial action of the group G. The
algebra over the homotopy quotient by G of a given operad P is an algebra over P where
the action of G is trivialized. We will show the equivalence of these two definitions in
the particular case G = S1 and P = BV.

In general, the condition on trivialization of the BV-operator � that one has to use
can be formulated in several different ways. First, we require that � is homotopically
trivial, that is, the full homotopy transfer of � on the cohomology of d is equal to zero.
Equivalently, we can say that the spectral sequence (if it exists) for (d,�) converges
on the first page. (See [5] for details of this approach.) We use the different but similar
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approach. Consider the bi-complex V [[z]] with differential d + z�, where z is a formal
parameter of homological degree 2, and consider a particular trivialization (homotopy)
for the action of �. Namely, we choose a particular automorphism of the space V [[z]]
which gives a quasi-isomorphism of complexes with respect to differentials d and d +z�.
The other possible way to say the same is that d + z� = exp(−φ(z))d exp(φ(z)), where
z is a formal variable, and φ(z) = ∑∞

i=1 φi zi is some series of operators. We consider
these extra operators φi , i = 1, 2, . . ., as a part of the algebraic structure we have,
and a BV algebra equipped with this extra trivialization data is a representation of the
homotopy quotient of the BV operad. We denote this model of the homotopy quotient
by BV/�.

The main result of this paper is an explicit formula for a quasi-isomorphism
θ : Hycomm → BV/�. This result summarizes the relations between hypercommuta-
tive algebras and Batalin-Vilkovisky algebras mentioned above. The equivalence of the
homotopy categories of Hycomm-algebras and homotopy quotient of BV-algebras was
given in [7] on the level of chains.

There are two ways to construct this map:
The first approach goes through a careful analysis of a system of relations between the

operads Hycomm, BV/�, the operad of Gerstenhaber algebras and the gravity operad.
It deals with different precise relationships between homotopy quotients and equivariant
(co)homology first discovered by Getzler in [10–12]. Theorem 4.1 summarizes these
relationships in main Diagram (22) of quasi-iso relating BV/� and Hycomm. We go
through Diagram (22) specifying the generating cocycles in the cohomology at each
step. As a result we get a formula for θ given in terms of summations over three-valent
graphs.

The second approach is a generalization of the interpretation of the BCOV theory
suggested in [30]. There is an action of the loop group of the general linear group on the
representations of Hycomm in a given vector space. It was constructed by Givental and
the action of its Lie algebra was studied by Y.-P. Lee, see [15,20]. We generalize this
group action to an action on the space of morphisms from Hycomm to an arbitrary oper-
ad. This way we can describe the map θ as an application of a particular Givental group
element to a very simple morphism from Hycomm to BV/�, the one that preserves the
commutative associative product and ignores all the rest. In this case the final formula
is given in terms of summations over graphs with arbitrary valencies of vertices.

We state that these two formulas for θ coincide, however, we prefer to omit the direct
proof of this statement and use the uniqueness arguments in order to explain the coin-
cidence. The Givental-style formula is simpler for applications and contains already all
cancellations, however, the homological approach is of its own interest. In particular,
it allows to give an additional point of view on the ψ-classes which we want to use
elsewhere. So far, we show how one can get the topological recursion relations using
this homological interpretation.

Finally, our result on an explicit quasi-isomorphism formula allows to give a new
interpretation for the Givental group action mentioned above. It appears that the action
of the Givental group on morphisms of Hycomm corresponds to the ambiguity of a
particular choice of a trivialization for � in BV/�.

0.1. Outline of the paper. We repeat once again that in spite of topological motivation
all proofs and all expositions are purely algebraic. All operads involved and algebras
over them are defined in pure algebraic terms of generators and relations.
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In Sect. 1 we formulate our main result on an explicit formula for the quasi-iso
θ : Hycomm → BV/�. Section 2 deals with the circle action. Namely, the categorical
definition of the homotopy quotient by � is given in 2.2 and the algebraic counterpart
of Chern classes is presented in 2.3.

In Sect. 3 we introduce notations and definitions for all operads involved in the main
chain of quasi-isomorphisms between Hycomm and BV/� (Diagram (22)). This part
is quite technical and is needed mainly to fix the notation.

Section 4 contains the main Diagram (22) of quasi-iso connecting Hycomm and
BV/�. We play around it in order to get an algebraic description ofψ-classes and a use-
ful dg-model of the BV-operad. In Sect. 5 we go through all these quasi-isomorphisms
specifying generating cocycles in the cohomology, and this way we obtain a direct map
θ : Hycomm → BV/�. In Sect. 6 we recall the Givental theory, apply it in order to get
a formula for θ from Sect. 1, and then use the existence of such a map in order to give a
new interpretation for the Givental theory.

Those readers who are interested more in the results rather than in the proofs may
skip the technical Sects. 3 and 5.

1. An Explicit Formula

In this section we give an explicit formula for a map Hycomm → BV/� that takes
Hycomm isomorphically to the cohomology of BV/�.

1.1. A Presentation of BV/�. The definition of a homotopy quotient given below is
more convenient for applications than the standard categorical definition. We discuss
the equivalence of these definitions in Sect. 2.2.

The algebras over the homotopy quotient BV/� are in one-to-one correspondence
with the BV-algebras where � acts trivially on homology and moreover one chooses
a particular trivialization for this action. I. e. the BV/� algebra on a complex (V

�

, d)
consists of commutative multiplication, differential operator � : V

� → V
�[−1] of

order at most 2 and an isomorphism of complexes

�(z) : (V �[[z]], d + z�) → (V
�[[z]], d), (1)

where z is a formal parameter of degree 2 and �(z) is a formal power series in z. I. e.
�(z) = ∑

i≥0�i zi .�i should be linear endomorphisms of the vector space V
�

of pure
homological degree −2i and �0 = I dV .

Our formulas below become simpler if we consider exponential coordinates for triv-
ialization. Namely, we represent �(z) as a series exp(φ(z)), φ(z) := ∑

i≥1 φi zi , that
is,

I dV +�1z +�2z2 + . . . = exp(φ1z + φ2z2 + . . .).

This allows us to describe the operad BV/� in the following way.
In order to homotopically resolve the operation� in the operad BV we have to add a

number of generators φi , i ≥ 1, degφi = −2i , and define a differential d that vanishes
on all generators of BV operad and such that � itself becomes an exact cocycle, while
the rest of the BV-structure survives in the cohomology (and no new cohomology cycles
appear). We rewrite the formula d exp(φ(z)) = exp(φ(z))(d + z�) as

�(z)−1d�(z) = exp(−φ(z))d exp(φ(z)) = d + z�, (2)
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and use the expansion of the left hand side of the latter equation in order to define a
differential that we denote by � ∂

∂φ
on the generators φi as an expression for [d, φi ].

That is, the formulas

� = [d, φ1],
0 = [d, φ2] +

1

2
[[d, φ1], φ1],

0 = [d, φ3] + [[d, φ1], φ2] + [[d, φ2], φ1] +
1

6
[[[d, φ1], φ1], φ1],

(3)

turn into

�
∂

∂φ
(φ1) = [d, φ1] = �

�
∂

∂φ
(φ2) = [d, φ2] = −1

2
[�,φ1]

�
∂

∂φ
(φ3) = [d, φ3] = −[�,φ2] +

1

3
[[�,φ1], φ1],

(4)

respectively.
We define the operad BV/� to be the operad obtained by adding to BV the generators

φi , i ≥ 0, with the differential � ∂
∂φ

equal to zero on BV and given by Eqs. (4). We use

the notation � ∂
∂φ

for the differential in order to point out that it decreases the degree in

φ by 1 and increases the degree in� also by 1 so looks like a differential operator� ∂
∂φ

.

1.2. A Formula for quasi-isomorphism. We construct a map Hycomm → BV/�. To
the generator mn ∈ Hycomm(n) given by the fundamental cycle [M0,n+1] we associate
an element θn of BV/�(n) represented as a sum over all possible rooted trees with n
leaves, where

• at the each vertex with k inputs we put the (k−1) times iterated product in the BV-alge-
bra. The iterated product m(x1, . . . , xk) is defined as m(x1, . . .m(xk−2,m(xk−1, xk))

. . . ), where m(x1, x2) denotes the usual binary multiplication from BV(2). Abusing
the notation we denote the iterated product by the same letter m.

• Each input/output e of any given vertex in a graph is enhanced by a formal parameter
ψe. I. e. a vertex with k inputs will be equipped with k+1 additional parameters. These
parameters will be used to determine the combinatorial coefficient of the graph.

• On each leaf e (an input of the graph) we put the operator exp(−φ(−ψe)), where ψe
is the defined above formal parameter associated to the corresponding input e of the
vertex where the leaf is attached.

• At the root (the output of the graph) we put the operator exp(φ(ψ)). Again, ψ is a
formal parameter associated to the output of the vertex, where the root is attached.

• At the internal edge that serves as the output of a vertex v′ and an input of a vertex
v′′ we put the operator

E := −exp(−φ(−ψ ′′) exp(φ(ψ ′))− 1

ψ ′′ + ψ ′ ,

where ψ ′ (respectively, ψ ′′) are attached to the output of v′ (respectively, the corre-
sponding input of v′′) in the same way as above.
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Each graph should be considered as a sum of graphs obtained by expansion of all involved
series in ψ’s, and each summand has a combinatorial coefficient equal to the product
over all vertices of the integrals

∫

M0,k+1

ψ
d0
0 ψ

d1
1 · · ·ψdk

k :=
{

(k−2)!
d0!d1!···dk ! , if k − 2 = d0 + d1 + · · · + dk;
0, otherwise,

(5)

where the degrees d0, d1, . . . , dk are precisely the degrees ofψ-classes associated to the
inputs/output of a vertex.

Note that after expansion of all exponents there are only finitely many monomials
in ψ’s that contribute in the total summand for θn . Consequently, θn is represented by a
finite sum of combinations of multiplications and φi ’s. In particular, the total degree of
each nonzero term is equal to 2 − 2n (recall that degm = 0 and degφi = −2i).

Remark 1.1. Here ψ-classes and their integrals over the space M0,k+1, as in Eq. (5),
should be understood as a formal notation for some combinatorial constants (multinomial
coefficients). However, in Sects. 6 and 5.2.1 we clarify the geometric meaning and the
origin of this formula.

Example 1.2. Explicit formulas for the θ2 and θ3.

θ2 (x1, x2) = m (x1, x2) ,

θ3 (x1, x2, x3) = φ1 (m (x1, x2, x3)) + (m (x1, x2, φ1(x3)) + m (x2, x3, φ1(x1))

+ m (x3, x1, φ1(x2)))− (m (x1, φ1 (m(x2, x3)))

+ m (x2, φ1 (m(x1, x3))) +m (x3, φ1 (m(x1, x2)))) .

Theorem 1.3. Using the Leibniz rule, the map θ defined on generators by θ : mn �→ θn
extends to a morphism of operads θ : Hycomm → BV/�. Moreover, θ is a quasi-iso-
morphism of operads.

We present two ways to prove this theorem.
The first proof uses computations with equivariant homology. It is presented in Sect. 5.

First, we give a sequence of natural quasi-iso connecting Hycomm and BV/�. Second,
a careful diagram chase allows us to obtain a formula for θ , and, in addition, a natural
homological explanation of the Givental group action on representations of Hycomm.

The second proof also consists of two steps. The first step is the same. We observe
that the cohomology of BV/� coincides with Hycomm. Second, we notice that the
expression for θk does not contain � and therefore θk /∈ I m(� ∂

∂φ
). Third, using a cer-

tain generalization of the Givental theory we show that θk are � ∂
∂φ

-closed. The degree
count implies that θ defines a quasi-isomorphism of operads. This proof is explained in
detail in Sect. 6.

1.3. Examples. There are natural examples of the BV/� algebras structures on the de
Rham complexes of Poisson and Jacobi manifolds. These examples are discussed in
detail in [5] from a different perspective.

In the case of a Poisson manifold, we consider its de Rham complex with the de
Rham differential dd R and wedge product, and the operator φ1 equal to the contraction

with the Poisson structure and φi = 0, i = 2, 3,
. . .. The operator � = [dd R, φ1]
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is a BV-operator, thus we have a natural structure of a BV/� algebra. In the case of
Jacobi manifold the BV/� structure exists on the space of basic differential forms, the
construction is very similar, and we refer to [5] for details.

In both cases, the explicit formulas for θk, k = 2, 3, . . ., gives a structure of the
Hycomm algebra on the cohomology in these examples. In fact, with these formulas it
is easy to see that in these cases the structure of a Hycomm-algebra gives rise to a full
structure of a Frobenius manifold, that is, we also have a scalar product and homogeneity
with all the necessary properties.

In [5] the structure of a Hycomm algebra is obtained in a different way, using a
general result of Drummond-Cole and Vallette in [8] on a homotopy Frobenius structure
on the cohomology of a BV-algebra, where the homotopy transfer of the BV operator
� vanishes. In fact this result in [8] is completely parallel to ours, as it is shown in [5],
though an exact match of the formulas will require more work.

2. Circle Action

In this section we compare our definition of a homotopy quotient with a categorical one
and show how this affects the Chern classes.

2.1. Homotopy quotient in topology. Consider a topological space X with a chosen
action of the group S1. If the action of S1 is not free then the quotient space X/S1 is not
well defined. Therefore in order to define the quotient one has to replace the space X
by a homotopy equivalent space X × E S1 with the free action of S1. Recall that E S1 is

a contractible space with the free S1-action. The corresponding bundle E S1 S1→ BS1 is
called the universal S1-bundle and its base BS1 is called classifying space and known
to coincide with CP∞. The homotopy quotient “X/S1” is defined as a factor X×E S1

S1 .
There is another categorical definition which we find useful to recall. Denote by

S1T op (resp.T op) the homotopy categories of topological spaces with (and without)
action of S1. There is a natural exact functor T rivS1 : T op → S1T op which assigns
a trivial action of S1 on any topological space. The left adjoint functor to the functor
T rivS1

is called the homotopy quotient by S1:

HomT op(X/S1,Y ) � HomS1T op(X, T rivS1
(Y )).

In particular, if X is isomorphic to the direct product Z × S1 the homotopy quotient
X/S1 is isomorphic to Z .

2.2. Homotopy quotient for algebraic operads. Replace the category T op by the cat-
egory dgOp of differential graded operads. The cohomology ring of the circle is the
Grassman algebra k[�] with one odd generator of degree −1 such that �2 = 0. The
category�dgOp of dg-operads with a chosen embedding of the Grassman algebra k[�]
replaces the category of S1T op of topological spaces with a circle action. An object of
the category �dgOp is a dg-operad with a chosen unary operation of degree −1, such
that its square is equal to zero. Any dg-operad Q admits a trivial map k[�] → Q with
� �→ 0. This defines a functor T riv� : dgOp → �dgOp.



704 A. Khoroshkin, N. Markarian, S. Shadrin

Definition 2.1. The homotopy quotient by� is the left adjoint functor to the enrichment
by trivial embedding of Grassman algebra: I. e. it is a functor ()/� : �dgOp → dgOp
such that for any pair of operads P,Q there exists a natural equivalence

HomdgOp(P/�,Q) � Hom�dgOp(P, T riv�(Q))

which is functorial in P and in Q.

In Sect. 1.1 we have already chosen a particular model of the homotopy quotient
by �. Let us show that this model indeed satisfies the adjunction property required by
Definition 2.1. First, let us repeat the construction from Sect. 1.1 in a general setting.

Any given operad Q with a chosen unary operation� ∈ Q(1) (such that�2 = 0) may
be extended by a collection of unary operations φi , i = 1, 2, . . ., of homological degree
degφi = −2i , and the differential prescribed by Eq. (2). We recall that the generating
series in z of the sequence of identities on the commutators [d, φi ] defines a differential:

exp(−φ1z1 − φ2z2 − . . .)d exp(φ1z1 + φ2z2 + . . .) = d + z�.

Note that the differential decreases the degree in φi ’s by 1 and increases the degree in
� by 1. We want to keep this property in the notation for the differential; therefore, we
denote it by � ∂

∂φ
and this notation should be understood just as a single symbol.

Proposition 2.2. The functor that sends an operad Q with a chosen squared zero unary

operation� to the dg-operad
(
Q 	 k〈φ1, φ2, . . .〉,� ∂

∂φ

)
gives a particular model of the

homotopy quotient Q/�. I. e. the twisted free product with φ’s is the left adjoint functor
to the trivial action of k[�].
Proof. Recall that k[�] is a skew commutative algebra with one odd generator�, where
the skew-commutativity implies the relation�2 = 0. This algebra is Koszul and its Kos-
zul dual is the free algebra k[δ] with one even generator of degree 2. The free product of
the Grassman algebra k[�] and the free algebra F generated by the augmentation ideal
of the Koszul dual coalgebra together with the Koszul differential is acyclic. We state
that φi ’s is just a one possible way to find generators in the free algebra generated by the
augmentation ideal of k[δ] and the differential � ∂

∂φ
is the corresponding description of

the Koszul differential.
Therefore, the free product k[�] 	 k〈φ1, φ2, . . .〉 is a factor of the free associative

algebra generated by� and φi , i = 1, 2, . . . by the unique relation�2 = 0. This algebra
is acyclic with respect to the differential � ∂

∂φ
, admits the natural splitting:

k
1 �→1
↪→

(

k〈�,φ1, φ2, . . .〉/(�2),�
∂

∂φ

)
�,φi �→0

� k (6)

and satisfies the following universal categorical property: For any dg-algebra (A, dA)

with a chosen dg-subalgebra (k[�A], 0) there exists a map of dg-algebras ϕA : (k[�] 	
k〈φ1, φ2, . . .〉,� ∂

∂φ
) → (A, dA) that sends� �→ �A and is functorial with respect to A.

One should think about the dg-algebra (k[�]	k〈φ1, φ2, . . .〉,� ∂
∂φ
) as a noncommutative

algebraic replacement of the universal bundle E S1.
We will come back to the connection with the universal bundle in the next Sect. 2.3.

��
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For any given dg-operad (P, dP) we define the quasi-isomorphic inclusion of
dg-operads,

εP : (P, dP) →
(

P 	 k[�] 	 k〈φ1, φ2, . . .〉, dP +�
∂

∂φ

)

(7)

that sends P to P; and with any dg-operad (Q, dQ) with a chosen unary operation�Q ∈
Q(1) we associate the projection of S1dg-operads,

ηQ :
(

Q 	 k〈φ1, φ2, . . .〉 	 k[�], dQ + (�−�Q)
∂

∂φ

)

→ (Q, dQ) (8)

that sends identically Q to Q, � �→ �Q and φi maps to 0 for all i .

Lemma 2.3. The morphisms εP and ηQ are quasi-isomorphisms for all P and Q.

Proof. The proof follows from the acyclicity of the dg-algebra (k[�] 	 k〈φ1, φ2, . . .〉,
� ∂
∂φ
). ��

Let us also give one more explanation on why we call the data φi ’s by a choice of
trivialization of the action of S1. The action of S1 on a topological space X is encoded

in the fibration X × E S1 S1→ B. The trivialization of the S1 action is the isomorphism
of this fibration and the trivial one. I.e. is given via isomorphism � of the base B and
the product X × BS1. The algebraic counterpart of this isomorphism looks as follows:

� : T ork[�]
�

(V
�

,k)
∼=−→ V

� ⊗ T ork[�]
�

(k,k),

where V
� = C

�

(X). The trivial module k admits a Koszul resolution

(k[�] ⊗ k[z], z
∂

∂�
) → k,

and we end up with the following isomorphism of complexes:

� = �(z) : (V �[z], d + z�) → (V
�[z], d)

that is called the trivialization of the action of � (the trivialization of S1-action).

2.3. Chern character. Suppose that Q is a topological operad with a chosen embedding
S1 ↪→ Q(1). Note that the latter embedding gives, in particular, the action of (n + 1)
copies of S1 on the space of n-ary operations Q(n) via the substitution on inputs/output
of operations. It is possible to take a homotopy quotient with respect to the action on each
particular input/output on the space of n-ary operations of Q. We denote by Q/(◦i�) the
quotient with respect to the action of S1 on the i th slot. Moreover, the S1-action on each
particular input produces a canonical S1-fibration on the space of n-ary operations of the
entire quotient Q/�. It is simpler to describe the algebraic counterpart of this fibration
in order to define the first Chern class of this fibration which gives a canonical operation
on a factor. This description will be used later on to give another algebraic description
of the ψ-classes in the moduli spaces of curves.

We hope that the reader will not be confused about no difference in the notations
of the topological operad and the corresponding algebraic operad of its singular chains.
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From now on Q means an algebraic operad with a chosen unary odd operation � with
�2 = 0. Let (Q/�)εi be the subset of n-ary operations in Q/�, where we take the
augmentation map

ε : k〈φ1, φ2, . . .〉 � k

with respect to the i th input of operations. I. e. we consider only those elements of Q/�
which do not contain any nonconstant element from the algebra k〈φ1, φ2, . . .〉. The nat-
ural inclusion of complexes (Q/�)εi (n) → (Q/�)(n) gives the algebraic model of the
S1-fibration described above.

Let ∂
∂φ1

be the derivation of the algebra k〈φ1, φ2, . . .〉 that sends the generator φ1 to

1 and all other generators φi for i ≥ 2 to zero. Let ◦i
∂
∂φ1

be the derivation of the set of

n-ary operations Q/�(n) obtained by applying the derivation ∂
∂φ1

in the i th slot of the
operation.

Proposition 2.4. The derivation ◦i
∂
∂φ1

of the complex of n-ary operations Q/�(n) rep-

resents the evaluation of the first Chern class of the S1-fibration over Q/� associated
to the S1 action in the i th slot.

Proof. The Chern class is defined as a generator of the cohomology of the Eilenberg-
Maclein space BS1 (the base of the universal bundle). In order to switch to algebra we
have to reformulate the required categorical properties of the universal bundle in alge-
braic terms. First, let us formulate the desired property in the category of commutative
dg-algebras since the homology functor is the map from topological spaces to commuta-
tive algebras. The commutative dg-algebra (k[�, u],� ∂

∂u ) is an acyclic dg-algebra that
satisfies the universal property: for any commutative dg-algebra (A, dA) with a chosen
dg-subalgebra (k[�], 0) there exists a map of dg-algebras ϕA : (k[�, u],� ∂

∂u ) →
(A, dA) that sends � �→ � and is functorial with respect to A. The generator u is the
multiplicative generator of H

�

(BS1; k) and the derivation ∂
∂u coincides with the evalu-

ation of the first Chern class of the circle bundle. Second, we notice that the dg-algebra
(k[�]	k〈φ1, φ2, . . .〉,� ∂

∂φ
) is an acyclic dg-algebra satisfying the same universal prop-

erty, but in the category of noncommutative algebras. Now the generator φi corresponds
to the additive generators of H2i (BS1; k). There exists a natural quasi-iso projection
between these two algebras:

ab :
(
k〈�,φ1, φ2, . . .〉/(�2 = 0),� ∂

∂φ

)
�� �� (k[�, u],� ∂

∂u

)
, (9)

that sends � to �, φ1 to u and all other φi , for i ≥ 2 to 0. Moreover, the derivation
∂
∂φ1

of the left hand side of (9) commutes with the differential and is mapped to the

derivation ∂
∂u on the right and, therefore, coincides (on the homology level) with the

evaluation of the first Chern class. ��

3. Operads Involved: Definition and Notation

In this section we recall the definitions of algebraic operads that correspond to the topo-
logical operads of open and closed moduli spaces of curves of zero genus. We follow
the papers of Getzler [10,12]. Since we want to work with precise formulas, we specify
algebraic generators and relations in these operads.
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We also give definitions of the operads involved in Sect. 5 in the main commutative
diagram (22) used to derive the equivalence of Hycomm and BV/�.

We use the notation ◦l for the operadic compositions in the l th slot. I. e. for an operad
P and a pair of finite sets I, J the composition ◦l : P(I � {l}) ⊗ P(J ) → P(I � J )
is a substitution of operations from P(J ) into the slot l of operations from P(I � {l}).
The corresponding cocomposition map P∨(I � J ) → P∨(I � {l})⊗ P∨(J ) for the dual
cooperad P∨ will be denoted by μl or just by μ if the precise index becomes clear from
the context.

There are two standard ways to think of elements of an operad/cooperad in terms of
its (co)generators. The first way is in terms of tree monomials represented by planar trees
and the second one is in terms of compositions/cocompositions of operations presented
by formulas with brackets. Our approach is somewhere in the middle: in most cases,
we prefer (and strongly encourage the reader) to think of tree monomials, but to write
formulas required for definitions and proofs in the language of operations since it makes
things more compact. While using the language of operations/cooperations we always
suppose that the (co)operation that is attached to the root vertex is written in the leftmost
term.

3.1. BV and framed little discs operad. The space of configurations of the small little
discs without intersections inside the unit disc form one of the most well known topolog-
ical operads. The boundary of the unit disc is considered as an output and the boundaries
of the inner small discs are considered as inputs. This means that the composition rules
are defined by gluing the boundary of the inner disc of the outgoing operation with the
outer boundary of the incoming operation. Following May [26] we use the name Ed for
this operad where d is a dimension of the disc. We restrict ourself to the case d = 2. It is
also known that operad E2 is formal over Q (see e.g. [19,31]) and its homology operad
coincides with the operad of Gerstenhaber algebras.

Recall, that the operad Gerst of Gerstenhaber algebras is a quadratic operad gen-
erated by two binary operations: the commutative associative multiplication and the
Lie bracket of degree −1. The quadratic operadic relations consist of: the associativ-
ity of multiplication, Jacobi identity for the bracket and the Leibniz identity for their
composition:

[a · b, c] = ±[a, c] · b ± a · [b, c].
Moreover, the space of n-ary operations Gerst(n) form a coalgebra, such that the com-
position maps are compatible with comultiplications in these coalgebras. We will come
back later to this description of the Gerstenhaber operad in Sect. 3.4.

Let us mark a point on the boundary circle of each inner disk in a configuration
from E2(n). This leads to a description of the space of n-ary operations of the operad
of framed little discs which we denote by F E2. The composition rules in F E2 are also
defined by gluing the boundary of the inner disc of the outgoing operation with the outer
boundary of the incoming operation, but now the marked point of the inner circle should
be glued with the north pole of the outer circle. I. e. one has to rotate the incoming
configuration with respect to the angle prescribed by the marked point in the inner circle
of the outgoing configuration. This operad is also known to be formal ([14,29]) and
the homology operad coincides with the operad of Batalin-Vilkovisky algebras (shortly
denoted by BV).

The operad BV is generated by the binary commutative associative multiplication
and a unary operation� of degree −1 such that�2 = 0 and� is a differential operator
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of the second order with respect to the multiplication. The latter statement is equivalent
to the following so-called 7-term relation:

�(abc)− (�(ab)c +�(bc)a +�(ca)b) + (�(a)bc +�(b)ca +�(c)ab) = 0.

We omit the precise signs that come from the Koszul sign rule in the Z-graded settings.
Note that the topological description of the operad of framed little discs is presented

as a semi-direct product (or semi-direct composition) of the little discs operad E2 and
the group of rotations S1. The topological definition of the semi-direct composition of
a group and an operad is given in [28]. In our case, the group is S1, and the algebraic
counterpart consists of the semi-direct product of the Gerstenhaber operad with a free
skew-commutative algebra k[�] generated by a unique generator� of degree −1. This
leads to the following equality of operads:

BV = Gerst � k[�].

Here the semi-direct product Gerst � k[�] means the operad generated by the binary
commutative multiplication, Lie bracket and unary operation � subject to relations for
multiplication and bracket as in Gerst, �2 = 0 as in the skew-commutative algebra
k[�] and the following commutation relation between � and generators of Gerst:

{�, multiplication} = Lie bracket, {�, Lie bracket} = 0.

The patterned brackets denote the operadic commutator. In particular, the operadic com-
mutator of a unary operation � and an n-ary operation α(, . . . , ) mean the following
expression with n + 1 terms:

{�,α(, . . . , )} := � ◦ α(, . . . , )−
n∑

i=1
α(, . . . , ) ◦i �.

We will come back later to the precise description of the spaces of n-ary operations of
Gerst(n) and BV(n) in Sects. 3.4 and 3.7 respectively.

3.2. Closed moduli spaces of zero genus. The union of spaces of compactified moduli
spaces of curves of zero genus form an operad. This operad is formal. Its homology is
called Hycomm (the operad of hypercommutative algebras).

The algebraic description of the operad Hycomm looks as follows. The operad
Hycomm has one generator in each arity greater or equal to 2. The generator mk of
arity k is of degree (4−2k) and is given by the fundamental cycle mk := [M0,k+1]. The
generators satisfy the following quadratic relations (here a, b, c, x1, . . . , xn, n ≥ 0, are
elements of a Hycomm-algebra):

∑

S1�S2={1,...,n}
±m|S2|+2(m|S1|+2(a, b, xS1), c, xS2)

=
∑

S1�S2={1,...,n}
±m|S2|+2(a,m|S1|+2(b, c, xS1), xS2). (10)
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Here, for a finite set S = {s1, . . . , sk}, xS denotes for xs1 , . . . , xsk , and ± means the
Koszul sign rule. Let us define a family of binary operations mx (, ) on V parametrized
by the same space V :

∀x ∈ V let mx (a, b) :=
∑

n≥0

1

n!mn+2(a, b, x, . . . , x).

Then Eq. (10) is equivalent to the associativity of the multiplication mx (, ) for all x ∈ V .
This observation explains the relation between hypercommutative algebras and Frobe-
nius manifolds.

The first Chern class of the tangent bundle at the i th marked point on M0,n+1 is
usually denoted by ψi . Let md0d1...dn

n be the cycle corresponding to the evaluation of the
product of ψ-classes of corresponding degrees on the fundamental cycle of the space of
curves:

md0d1...dn
n := ψ

d0
0 ψ

d1
1 . . . ψdn

n [M0,n+1].
These classes satisfy the so-called Topological Recursion Relations that are quadratic
linear relations in the operadic sense:

m(d0+1)d1···dn + md0···di−1(di +1)di+1···dn =
∑

S1�S2�{0,i}
={0,...,n}

md0dS1 0 ◦|S1|+1 m0di dS2 ∀1 ≤ i ≤ n;

m(d0+1)d1···dn =
∑

S1�S2�{0,i, j}
={0,...,n}

md0dS1 0 ◦|S1|+1 m0di d j dS2 ∀1 ≤ i, j ≤ n.

Here we denote by dS, S = {s1, . . . , sk}, the sequence ds1 · · · dsk . We will come back
later to TRR equations in Sect. 5.2.1. For more details see [24].

3.3. Open moduli spaces of zero genus. The shifted homology of the union of spaces of
open moduli spaces of curves of zero genus also form a formal operad. The correspond-
ing algebraic operad is called Grav (the operad of gravity algebras). It was studied by
Getzler in [12], in particular, he proved that Grav and Hycomm are Koszul dual to each
other.

An algebra over Grav is a chain complex with graded anti-symmetric products

m̄n[x1, . . . , xn] : A⊗n → A (11)

of degree 2 − n that satisfy the relations:
∑

1≤i< j≤k

±m̄k+l−1[m̄2[ai , a j ], a1, . . . , âi , . . . , â j , . . . , ak, b1, . . . , bl ]

=
{

m̄l+1[m̄k[a1, . . . , ak], b1, . . . , bl ], l > 0,
0, l = 0,

(12)

for all k > 2, l ≥ 0, and a1, . . . , ak, b1, . . . , bl ∈ A. For example, in the case of k = 3
and l = 0, we obtain the Jacobi relation for m̄2[·, ·].

Once again, Getzler proved in [12] that Hycomm and Grav are Koszul dual oper-
ads. Moreover for all n ≥ 2 the generators mn ∈ Hycomm(n) and m̄n ∈ Grav(n) are
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Koszul dual generators in these operads.1 In particular, the associativity relation for the
commutative multiplication m2 ∈ Hycomm(2) is a relation Koszul dual to the Jacobi
relation for the Lie bracket m̄2 ∈ Grav(2).

Let us also mention another result due to Getzler which hints the desired connection
between Hycomm and BV. The space of cotangent lines at the i th marked point of
curves from M0,n+1 forms a line bundle over the open moduli space M0,n+1. Consider
the product of corresponding (n + 1) principal U (1)-bundles over M0,n+1, where the
factors are numbered by the marked points.

Statement 3.1 ([10]). The homology of the total space of the (S1)×(n+1)-bundle over
M0,n+1 (associated with the product of cotangent lines at the marked points of a curve)
coincides with the space of n-ary operations in the operad BV.

We give the algebraic counterpart of this statement in the next section.

3.4. Gerstenhaber and gravity operads. Getzler observed that the S1-equivariant
homology of the Gerstenhaber operad is isomorphic to the gravity operad. This state-
ment has very clear geometric background, see [10], since the Gerstenhaber operad
is the homology of the little disk operad. We recall the algebraic counterpart of this
isomorphism.

It is easier to compute the cohomology rather than homology of the space of little
disks (it was done by Arnold in [1]). This way we obtain a description of the cooper-
ad dual to the Gerstenhaber operad. The space of n-ary cooperations of the cooperad
Gerst∨ form a so-called Orlik-Solomon algebra:

Gerst∨(n) :=
k

[{
wi j

}
1≤i, j≤n, i �= j

]

(
wi j − w j i , wi jw jk + w jkwki + wkiwi j

) .

Here we mean that Gerst∨(n) is a quotient modulo an ideal of the free graded commu-
tative algebra generated by wi j , degwi j = 1.

The cooperad structure satisfies the Leibniz rule with respect to the product structure
in the algebra Gerst∨(n), n ≥ 2. Therefore, it is enough to define the cooperad struc-
ture μ : Gerst∨(I � J ) → Gerst∨(I � {∗}) ⊗ Gerst∨(J ) on the generators wi j . By
definition,

μ(wi j ) =

⎧
⎪⎨

⎪⎩

wi j ⊗ 1, if i, j ∈ I ;
wi∗ ⊗ 1, if i ∈ I, j ∈ J ;
1 ⊗ wi j , if i, j ∈ J.

(13)

There is an action of the circle S1 on the little discs operad via the rotation of the
outer circle. The corresponding coaction of the generator � of the first cohomology of
the circle S1 on the space Gerst∨(n) is given by the following operator:

∂

∂w
:=

∑

1≤i< j≤n

∂

∂wi j
. (14)

The action of the operator ∂
∂w

on Gerst∨ is dual to the action of the operator� on Gerst.

1 We are cheating a bit here because Koszul duality gives the duality between generators and cogenerators.
But there is no reason to separate generators and cogenerators in our particular situation because the corre-
sponding subspaces of homological degrees 2n − 4 and n − 2 in Hycomm(n) and Grav(n) respectively are
one-dimensional.



Hypercommutative Operad as a Homotopy Quotient of BV 711

Statement 3.2 ([10]). The action of the operator � is free on the Gerstenhaber operad
Gerst. The image of� coincides with its kernel and is isomorphic to the gravity operad.

Let us define a homotopy model for the gravity operad. We use standard manipu-
lations with equivariant homology. We consider the free polynomial algebra k[δ], δ is
even, as the Koszul dual of the algebra k[�].
Definition 3.3. By k[δ] ⊗ Gerst we denote a dg-operad with (k[δ] ⊗ Gerst)(n) :=
k[δ]⊗ (Gerst(n)) for n ≥ 2 and (k[δ]⊗ Gerst)(1) := Gerst(1) = k. The composition
is defined by

(δa ⊗ α) ◦ (δb ⊗ β) := δa+bα ◦ β for α, β ∈ Gerst(n). (15)

The BV-operator defines the differential δ� : δaα �→ δa+1�(α) on this operad.

Let us rephrase Statement 3.2 in the language of cooperads. We use the notation u
for the even variable linear dual to δ and k[u] ⊗ Gerst∨(n) for the space linear dual to
k[δ] ⊗ Gerst(n) for all n ≥ 2.

Lemma 3.4. The augmentation map of dg cooperads

ε : (k[u] ⊗ Gerst∨, ∂
∂u

∂

∂w
) �

(
Grav∨, 0

)
(16)

that maps u �→ 0 and Gerst∨ � Gerst∨/(I m ∂
∂w
) = Grav∨ is a quasi-isomorphism.

In particular, the map εmaps any basic elementwi j ∈ Gerst∨(n) to the unique n-ary
cogenerator m̄n of the gravity cooperad. The precise homological grading is discussed
in the next section.

3.5. Bar complexes. In this section we recall the general definition of cobar complex
and the precise formulation of Koszul self-duality for the operad Gerst and Koszul
resolution of Hycomm via a cobar complex of Grav.

Consider a cooperad P∨ with a cocomposition μ : P∨ → P∨ ◦ P∨. Let P∨
+ be the

augmentation ideal. In all our examples P∨(1) = k and the augmentation ideal P∨
+

is equal to ⊕n≥2P
∨(n). The cobar complex B(P∨) is a free dg-operad generated by

the shifted space P∨
+ [−1]. The cocomposition μ defines a differential of degree 1 on

generators. Using the Leibniz rule we extend it to the whole cobar complex B(P∨).
In [13] it is proved that the operad Gerst is Koszul self-dual up to an appropriate even

shift of homological degree. Pure algebraic proof of that fact was first given in [25]. Let
us specify the desired homological shift. Note that Getzler defined two different types of
grading on Grav in [10,12]. They differ by the even shift s2 on the Gerstenhaber operad
that we define now. By s2Gerst∨ we denote a quadratic cooperad whose nth space is
given by s2Gerst∨(n) = Gerst∨(n)[2n − 2]. In other words, we can define s2Gerst∨
as a quotient of a free cooperad generated by binary operations modulo an ideal exactly
in the same way as Gerst∨, but we shift by 2 the homological degree of the binary
generators.

The Koszul self-duality means that the natural projection of dg-operads

π :
(
B(s2Gerst∨), μ

)
� (Gerst, 0) (17)
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is a quasi-isomorphism. Here the map π interchanges the multiplication and the bracket.
In particular, under π ,

w12 ∈ Gerst∨(2) �→ multiplication,

1 ∈ Gerst∨(2) �→ Lie bracket, (18)

Gerst∨(k) → 0 for k > 2.

In order to give a similar construction for the resolution of the operad Hycomm, we
consider the cobar complex of the equivarient model of the gravity operad:

B(k[u] ⊗ s2Gerst∨)
ε
� B(Grav)

κ
� Hycomm. (19)

The differential d on B(k[u] ⊗ s2Gerst∨) is a sum of two parts. The first summand is
equal to the inner differential ∂

∂u
∂
∂w

. The second summand is given by cocomposition μ

defined by Eq. (13). For example, on a generator uk

k! f (wi j ), where f is a monomial in
wi j , 1 ≤ i �= j ≤ n, the differential is given by

d

(
uk

k! f (wi j )

)

= uk−1

(k − 1)!
∑

i, j

∂ f

∂wi j
+

∑

I�J=[n],|J |≥2,|I |≥1,
k1+k2=k

(−1)degw f I uk1

k1! f I ⊗ uk2

k2! f J .

Since f ∈ Gerst∨(n) is a monomial inwi j , for each decomposition I � J = [n] we have
a uniquely defined pair of monomials f I ∈ Gerst∨(|I | + 1) and f J ∈ Gerst∨(|J |). It
is important for Koszul sign rule in future computations to recall once again the degree
of a particular generator of the cobar complex:

deg(
uk

k! f (wi j )) = 2 − 2n + 2k + degw f + 1 = 3 − 2(n − k) + degw f.

3.6. Applying the homotopy quotient and the free product to gravity operad. Let us apply
the composition of functors we defined in Sect. 2.2 to the free dg-model of the operad
of hypercommutative algebras discussed in Eq. (19). I. e. in this section we describe the
dg-operad which is the homotopy quotient by � of the free product with k[�] of the
dg-operad B(k[u] ⊗ s2Gerst∨).

Consider first the image of the free product functor B(k[u]⊗s2Gerst∨)	k[�]. Note
that k[u] comes from the cohomology ring of BS1 and, therefore, it is natural to define
the differential which interacts with the action of � and u:

�ad ∂

∂u
: γ �→

{

�,
∂γ

∂u

}

= � ◦ ∂γ
∂u

−
n∑

i=1

±∂γ
∂u

◦i �.

That is, the operator ∂
∂u acts on n-ary operation γ and�ad ∂

∂u acts as the commutator of
∂γ
∂u and �. Note that operators �ad and ∂

∂u commute.
The following corollary follows directly from the proof of Proposition 2.2:
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Corollary 3.5. The natural projection that takes �,φ1, φ2, . . . to 0 is a quasi-isomor-
phism of dg-operads

(
B(k[u] ⊗ s2Gerst∨) 	 k[�]

�
,
∂

∂u

∂

∂w
+ μ +�ad ∂

∂u
+�

∂

∂φ

)

−→
(

B(k[u] ⊗ s2Gerst∨), ∂
∂u

∂

∂w
+ μ

)

. (20)

The operad B(k[u] ⊗ s2Gerst∨) 	 k[�] will be referred to as an equivariant cobar
complex. This operad is spanned by trees whose vertices are marked by elements of the
cooperad k[u] ⊗ s2Gerst∨ and some edges are marked by �.

3.7. BV and semi-direct composition of operads. In this section we recall the presenta-
tion of the BV operad in terms of the semi-direct composition. The topological definition
of the semi-direct composition of a group and an operad is given in [28]. In our case,
the group is S1, and the algebraic counterpart consists of the semi-direct composition
of the Gerstenhaber operad with a free algebra k[�] generated by a unique generator
� of degree −1. As we have already mentioned in Sect. 3.4, the circle acts by inner
rotations of the disc and the corresponding coaction is given by the operator ∂

∂w
defined

by Eq. (14).
We have already mentioned in Sect. 3.1 that the operad Gerst � k[�] coincides

with BV. Let us specify a bit the description of Gerst � k[�]. The space of n-ary
operations of Gerst � k[�](n) is equal to Gerst(n) ⊗ k[�1, . . . ,�n]. In particular,
Gerst � k[�](1) = k[�]. By definition, for any γ ∈ Gerst(n) we have:

γ ◦i � := γ ⊗�i ,

� ◦ γ :=
n∑

i=1

γ ◦i � +�(γ ),

where in the last summand we use the action of � on Gerst. These two formulas allow
to extend unambiguously the operadic product on Gerst to an operadic product on
Gerst � k[�](n). Moreover, the projection π : B(s2Gerst∨) � Gerst from Eq. (18)
is extended to a quasi-isomorphism of semi-direct compositions:

π : (B(s2Gerst∨)� k[�], μ) � (Gerst � k[�], 0) = (BV, 0). (21)

Lemma 3.6. The natural projection

ε :
(

B(k[u] ⊗ s2Gerst∨) 	 k[�], ∂
∂u

∂

∂w
+ μ +�ad ∂

∂u

)

�
(
B(s2Gerst∨) � k[�], μ)

that sends u �→ 0, � �→ �, and Gerst → Gerst, is a quasi-isomorphism of dg-oper-
ads.

Proof. First, we check that ε is a morphism of the dg-operad. Indeed, a direct compu-
tation follows that ε is compatible with the differentials. Since the cobar complexes are
free operads, we immediately get the compatibility with the operadic structures.

Then we consider a filtration by the number of internal edges in cobar complexes
both in the source and in the target of ε. The associated graded differential in the target
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is equal to 0, and the associated graded differential in the source dg-operad is equal to
∂
∂u

∂
∂w

+�ad ∂
∂u .

At that point it is possible to choose a filtration (or rather a sequence of filtrations)
in the source dg-operad such that the associated graded differential will simplify further
and is equal to �out ∂

∂u . Here �out is an operator defined by �out (γ ) = � ◦ γ , that is,
we create a new � only at the output of a vertex.

The cohomology of the complex (k[�] ⊗ k[u],� ∂
∂u ) is equal to k. Therefore, the

cohomology with respect to the differential�out ∂
∂u is generated by the graphs whose ver-

tices are decorated by u0 and there are no�’s on the outputs of the vertices. This means
that the whole graph is allowed to have only some�’s at the global inputs of the graph.
This kind of graphs span by definition the semi-direct composition B(s2Gerst∨) �

k[�]. ��

4. Main Diagram of Quasi-Isomorphisms

In this section we present the full diagram of quasi-isomorphisms that connects Hycomm
and BV/�. We show how ψ-classes appear in the picture and how one can get an alge-
braic model of the Kimura-Stasheff-Voronov operad.

In the forthcoming Sect. 5 we are going to move the generators mk of Hycomm,
through this diagram and this way we obtain a quasi-isomorphism θ : Hycomm →
BV/�.

Theorem 4.1. We have the following sequence of quasi-isomorphisms:

(
B(k[u] ⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ μ
)

ε

��

(
B(k[u] ⊗ s2Gerst∨) 	 k[�]/�,
∂
∂u

∂
∂w

+ μ +�ad ∂
∂u +� ∂

∂φ

)
j��

ε

��(
B(Grav∨), μGrav

)

κ

��

(
B(s2Gerst∨)�k[�]

� ,μ +� ∂
∂φ

)

π

��
(Hycomm, 0)

θ ��
(
BV/�,� ∂

∂φ

)
.

(22)

Proof. In Sect. 3 we give a detailed description of all the morphisms involved in Dia-
gram (22) and prove that they are quasi-isomorphisms, except for θ . Indeed,

κ: The morphism κ is a quasi-isomorphism because the operads Hycomm and Grav
are Koszul dual to each other, see Sect. 3.3.

ε: The equivariant model of the operad Grav is discussed in Sect. 3.4. We apply the
cobar functor to the quasi-isomorphism ε : (

k[u] ⊗ Gerst∨, ∂
∂u

∂
∂w

) → Grav∨
described in Lemma 3.4.

j : The morphism j is a special case of the composition of the free product functor and
the homotopy quotient functor discussed in Sect. 2.2, see Corollary 3.5.

ε: The existence of ε is discussed in Sect. 3.7. The quasi-isomorphism property of ε
is proved in Lemma 3.6 via a sequence of filtrations.
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π : The map π is obtained as a homotopy quotient of the quasi-isomorphism given by
Eq. (21). The latter one is obtained from the standard Koszul resolution of Gerst
(see Eqs. (17),(18)).

θ : Section 5 contains a careful description of θ together with the proof of quasi-iso
and commutativity of the diagram. We take the generators of Hycomm and move
the corresponding cocycles through the diagram above in a clockwise direction. We
will show that the resulting map of generators from Hycomm to BV/� defines a
morphism of operads and does not depend on particular choices of cocycles one
made in-between. In particular, the image of the map θ coincides with the intersec-
tion of the kernel of differential � ∂

∂φ
with the suboperad of BV/� generated by

multiplication and φi ’s. ��

Recall from Sect. 2.3 that any given S1-operad Q and a pair of natural numbers i < n
defines an S1-fibration over Q/�(n) associated with the S1-rotations in the i th slot. We
will apply this construction for the operad BV in order to have another description of the
line bundles over the moduli space M0,n+1 formed by the cotangent lines at the marked
point. Recall thatψ-classes are the first Chern classes of these line bundles. Theorem 4.2
below explains the algebraic counterpart of the action of ψ-classes in Diagram (22).

Theorem 4.2. The S1-fibration over the space of the n-ary operation of the homotopy
quotient by S1 of the framed little discs operad associated to the rotations in the i th slot
coincides with the S1-bundle over M0,n+1 coming from the line bundle of the cotangent
lines at the i th marked point.

The algebraic models of the evaluation of the first Chern class of S1-bundles under
consideration are underlined in the following refinement of commutative Diagram (22):

(23)

Each operator drawn as a loop near the appropriate complex defines an operator which
commutes with the differential in this complex and the vertical and horizontal arrows
map these derivations one to another. For example, the derivation ◦i

∂
∂u is the differenti-

ation by the u-variable in the vertex attached to the i th slot (input/output) of the element
in the cobar complex B(k[u]⊗ s2Gerst∨), and the differentiation ◦i

∂
∂φ1

means the non-
commutative differentiation by φ1 in the algebra k〈φ1, φ2, . . .〉 which is also attached
to the i th slot.

Proof. We omit the detailed proof of this theorem because the proof repeats the one
of Theorem 4.1 and is based on the results of Getzler mentioned in Statement 3.1.
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It is a direct check that the diagram commutes everywhere except the leftmost ar-
row. From Proposition 2.4 we know that the corresponding derivations drawn in the
loops represents the evaluation map with the first Chern class on the homology level.
Statement 3.1 finishes the coincidence of the corresponding bundles and Chern classes
respectively. ��

Recall that for any operad Q with a chosen S1-action we construct a functorial quasi-

iso projection ηQ :
(
(Q/�) 	 k[�], (�−�Q)

∂
∂φ

)
�→ Q (compare with Eq. (8)). We

want to apply the functor ηQ◦ (	k[�]) to the main Diagram (22). This operation is well
defined because all operads involved in Diagram (22) are quasi-iso to the image of the
functor of homotopy quotient by�. Moreover the composition of functors ηQ◦ (	k[�])
applied to the second column of Diagram (22) just removes the homotopy quotient. On
the other hand we show how this functor affects the differential if we apply the same
functor to the left column of Diagram (22). Indeed we have the following dg-model for
the BV-operad (the image of ηQ ◦ (	k[�]) to the left-top operad from Diagram (22)):

(

B(k[u] ⊗ s2Gerst∨) 	 k[�], ∂
∂u

∂

∂w
+ μ +�ad ∂

∂u

)

.

Theorem 4.2 says that the differential in the bottom of the column should replace the
operator ∂

∂u by the evaluation of the corresponding ψ-class. I. e. the image of the bot-
tom complex is (Hycomm 	 k[�],�ψ), where the differential “�ψ” is defined on the
generators by the following formula:

(�ψ) · mn =
n∑

i=0

(ψi mn) ◦i �−
∑

S1�S2={0,..,n}
m|S1|+1 ◦∗ � ◦∗ m1+|S2|.

The formulas have the same form whenever one uses the ψ-classes description of the
Hycomm-operad:

(�ψ) · ψd0
0 . . . ψ

di
i . . . ψdn

n [M0,n+1] =
n∑

i=0

ψi

n∏

s=0

ψds
s [M0,n+1] ◦i � +

−
∑

S1�S2={0,...,n}

∏

s∈S1

ψds
s [M0,|S1|+1] ⊗�

⊗
∏

s∈S2

ψds
s [M0,|S2|+1].

We finally end up with the following corollary which seems to be quite useful in order
to have a description of the Quillen homology and minimal resolution of BV-operad:

Corollary 4.3. There exists a commutative diagram of quasi-isomorphisms of operads:
(
B(k[u] ⊗ s2Gerst∨) 	 k[�],
∂
∂u

∂
∂w

+ μ +�ad ∂
∂u

)

κ◦ε
��

(
B(k[u] ⊕ k[u] ⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ μ
)j��

π◦ε
��

(Hycomm 	 k[�],�ψ) θ �� (BV, 0)
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Note that the operad (Hycomm 	 k[�],�ψ) is an algebraic model of the Kimura-
Stasheff-Voronov operad (see e.g. [16] for details). Moreover, the map θ becomes an
obviously defined projection that sends the operation m2 ∈ Hycomm(2) to the multi-
plication in BV, � to � and all other generators mk for k ≥ 3 of the operad Hycomm
are mapped to 0.

5. Diagram Chase

This technical section consists of the precise description of the inverse maps that appear
in Diagram (22). The aim is to get precise formulas for the cocycles in this Diagram. We
move our cocycles through Diagram (22) step by step in the clockwise direction starting
with the operad Hycomm.

5.1. The inverse of κ . The generators of the cohomology of
(
B(Grav∨), μGrav

)
that

project under κ to the cocycles mi , i = 2, 3, . . ., are m̄i described in Sect. 3.3, see
Eq. (11).

5.2. The inverse of ε. The complex
(
B(k[u] ⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ μ
)

has two differ-
entials. The quasi-isomorphism ε is the projection to the cohomology with respect to
the differential ∂

∂u
∂
∂w

.
Let us give the inductive procedure of writing an inverse map to ε. We will show how

one can increase the number of inputs in order to write down a sequence of representing
cocycles. The way we are doing that is not symmetric in the inputs; each cocycle will
depend on the ordering of the inputs, but different orderings will give homologous co-
cycles. The map that increases the number of inputs is defined as a linear combination
of some auxiliary maps that we introduce now.

Consider the natural embedding of the Orlik-Solomon algebras:

ιI,n : k[u] ⊗ Gerst∨(I ) → k[u] ⊗ Gerst∨(I � {n}),
ιI,n : wi j �→ wi j , ∀ i, j ∈ I,

ιI,n : u �→ u.

The meaning of this formula is the following. We just increase the number of inputs: the
set of inputs I is replaced by the set of inputs I � {n}.

We extend the map ιI,n to a derivation of the bar-complex B(k[u] ⊗ s2Gerst∨). It
is not well-defined for the operations of arity ≥ n, because in this case it might appear
that I � n. But we restrict the resulting map to the operations of arity n − 1. We denote
this extension by ιn : B(k[u] ⊗ s2Gerst∨)(n − 1) → B(k[u] ⊗ s2Gerst∨)(n).

Now we define a collection of derivations ςsn, s = 0, . . . , n −1, of the Bar-complex
B(k[u] ⊗ s2Gerst∨). Again, for this definition we need only in arity (n − 1), and it
doesn’t work in arity ≥ n. The map ςsn increases the set of inputs by the input n in the
same sense as ιn . Since ςs,n is a derivation, it is enough to describe what happens when
we apply it to a corolla γ . It produces a tree with one internal edge and two internal
vertices. One vertex coincides with the corolla γ and the remaining vertex corresponds
to a binary operation, that is, it has two inputs and one output. There are two cases,
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s = 1, . . . , n − 1, and s = 0. For s = 1,…,n − 1 we have a map:

ςsn : k[u]⊗Gerst∨(I ) → (
k[u] ⊗ Gerst∨(I � {∗} \ {s})) ⊗ (

k[u] ⊗ Gerst∨({s, n})) ;
uk

k! f (wi j ) �→
∑

k1+k2=k

uk1

k1! f (wi j )⊗ uk2+1

(k2 + 1)!wsn .

Note that in the first factor on the right hand side we identifywis andwi∗ as it is prescribed
by the cocomposition rules defined in Eq. (13). For s = 0 we have:

ς0n : k[u] ⊗ Gerst∨(I ) → (
k[u] ⊗ Gerst∨({∗, n})) ⊗ (

k[u] ⊗ Gerst∨(I )
) ;

uk

k! f (wi j ) �→ −
∑

k1+k2=k

uk2+1

(k2 + 1)!w∗n ⊗ uk1

k1! f (wi j ).

Lemma 5.1. The map ζn := ιn +
∑n−1

s=0 ςsn is a chain map of homological degree (−2)
between the subcomplexes spanned by operations of arity (n − 1) and n:

ζn :
(

B(k[u] ⊗ s2Gerst∨)(n − 1),
∂

∂u

∂

∂w
+ μ

)

→
(

B(k[u] ⊗ s2Gerst∨)(n), ∂
∂u

∂

∂w
+ μ

)

[−2].

Proof. The only thing that we have to check is that ζn commutes with the differential.
Since ιn and ςsn, s = 0, . . . , n − 1, as well as ∂

∂u
∂
∂w

and μ are all derivations of the
cobar complex, it is enough to check the compatibility on the generators.

First, observe that [ιn, ∂∂u
∂
∂w

] = 0, because they do not interact with the nth in-
put. Then we compute the image of the commutator [ιn, μ] applied to the monomial
uk

k! f (wi j ), where the indices i, j belong a given set K :

(ιnμ− μιn)

(
uk

k! f (wi j )

)

= ιn

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

I�J=K ,
|J |≥2,|I |≥1,

k1+k2=k

(−1)degw f I uk1

k1! f I ⊗ uk2

k2! f J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

(I�{n})�J=K�{n},
|J |≥2,|I |+1≥1,

k1+k2=k

(−1)degw f I uk1

k1! f I ⊗ uk2

k2! f J +
∑

I�(J�{n})=K�{n},
|J |+1≥2,|I |≥1,

k1+k2=k

(−1)degw f I uk1

k1! f I ⊗ uk2

k2! f J

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Since ιn increases the number of inputs in the operations but does not change the mono-
mial, the only summands that are not canceled in the difference above are the ones with
|J | = 1 or |I | = 0. Therefore,

[ιn, μ] ·
(

uk

k! f (wi j )

)

= −
∑

k1+k2=k

(
∑

s∈K

(−1)degw f uk1

k1! f ∗ ⊗ uk2

k2! 1s,n +
uk1

k1! 1n∗ ⊗ uk2

k2! f

)

.
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The monomial f ∗ is obtained from f by replacing the index s by an additional index ∗
that appears in the cocomposition.

Observe that [ςsn, μ] = 0, s = 0, . . . , n − 1, since μ vanishes on binary operations.
Meanwhile, for s = 1, . . . , n − 1 we have:

[

ςsn,
∂

∂u

∂

∂w

](
uk

k! f (wi j )

)

=
∑

k1+k2=k−1

uk1

k1!
∂ f

∂w
⊗ uk2+1

(k2 + 1)!w
sn − ∂

∂u

∂

∂w

⎛

⎝
∑

k1+k2=k

uk1

k1! f ⊗ uk2+1

(k2 + 1)!w
sn

⎞

⎠

=
∑

k1+k2=k−1

uk1

k1!
∂ f

∂w
⊗ uk2+1

(k2 + 1)!w
sn

−
∑

k1+k2=k

(
uk1−1

(k1 − 1)!
∂ f

∂w
⊗ uk2

k2!w
sn + (−1)degw f −1 uk1

k1! f ⊗ uk2

k2! 1sn
)

= (−1)degw f
∑

k1+k2=k

uk1

k1! f ⊗ uk2

k2! 1sn .

Here the sign (−1)degw f −1 comes from the Koszul sign rule. Similarly, for s = 0 we
have:

[

ς0n,
∂

∂u

∂

∂w

](
uk

k! f (wi j )

)

=
∑

k1+k2=k

uk1

k1! 1∗n ⊗ uk2

k2! f.

Finally, we see the cancellation:

[

ζn,
∂

∂u

∂

∂w
+ μ

](
uk

k! f (wi j )

)

= −
∑

k1+k2=k

(
∑

s∈K

(−1)degw f uk1

k1! f ⊗ uk2

k2! 1s,n +
uk1

k1! 1n ⊗ uk2

k2! f

)

+
∑

k1+k2=k

uk1

k1! 1∗n ⊗ uk2

k2! f +
n−1∑

s=1

∑

k1+k2=k

(−1)degw f uk1

k1! f ⊗ uk2

k2! 1sn

= 0.

��
We define a sequence of elements νn ∈ B(k[u] ⊗ s2Gerst∨)(n), n = 2, 3, . . .. We

set ν2 = w12 and define νi+1 := ζi+1(νi ), i = 2, 3, . . .. Lemma 5.1 implies that

Corollary 5.2. The elements νn are the cocycles that project to the generators of the
hypercommutative operad, n = 2, 3, . . .. That is, for all n ≥ 2 we have:

(
∂

∂u

∂

∂w
+ μ

)

νn = 0 and κ(ε(νn)) = mn .
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Remark 5.3. Any permutation σ of the inputs will provide another choice of a cocycle
given by

ζσ(n)(ζσ(n−1)(. . . (ζσ(3)(wσ(1)σ (2))) . . .)).

It is homologous to νn for any σ ∈ Sn .

5.2.1. The topological recursion relation In this section we show how the formulas for
νn, n = 2, 3, . . ., imply the topological recursion relations.

Lemma 5.4. The following two cocycles are homologous:

νn ◦1
∂

∂u
and

∑

|S1�S2|=n−2

νS1�{2,∗} ⊗ νS2�{1}.

Similarly, the cocycle ∂
∂u ◦0νn is homologous to the sum

∑
|S1�S2|=n−2 νS1�{∗}⊗νS2�{1,2}.

Proof. Recall that the meaning of the derivation ◦i
∂
∂u is to take the partial derivative

with respect to the variable u attached to the i th input (or, in the case of i = 0, output)
of the element in the cobar complex (cf. Theorem 4.2). A direct computation similar to
the one we made in the proof of Lemma 5.1 shows that the commutator [◦i

∂
∂u , ζn] acts

on the monomial generator uk

k! f (wi j ) by the following formula:
[

◦i
∂

∂u
, ζn

](
uk

k! f (wi j )

)

=
[

◦i
∂

∂u
, ςin

](
uk

k! f (wi j )

)

= uk

k! f ∗ ⊗ win . (24)

Here f ∗ is obtained from f by replacing the index i with the index ∗ corresponding to
the coproduct.

Note that two cocycles are homologous if and only if they have the same image under
the morphism κ ◦ε, since this morphism is a projection on the homology. Recall that the
augmentation map ε annihilates all positive powers of u and, in particular, ε ◦ ςsn = 0.
This implies the following sequence of identities:

ε

(

νn ◦1
∂

∂u

)

= ε

⎛

⎝
n∑

j=3

ζn . . . [◦1
∂

∂u
, ζ j ] . . . ζ3w12

⎞

⎠

= ε

⎛

⎝
n∑

j=3

ιn · · · ι j+1

[

◦1
∂

∂u
, ς1 j

]

ι j−1 · · · ι3(w12)

⎞

⎠

= ε

⎛

⎝
n∑

j=3

∑

S1�S2={ j+1,...,n}

⎛

⎝

⎛

⎝
∏

s∈S1

ιs

⎞

⎠ ι j−1 · · · ι3(w2∗)

⎞

⎠ ⊗
⎛

⎝
∏

s∈S2

ιs(w1 j )

⎞

⎠

⎞

⎠

= ε

⎛

⎝
∑

S1�S2={3,...,n}
νS1�{2,∗} ⊗ νS2�{1}

⎞

⎠ .

The second statement of Lemma 5.4 deals with the derivation ∂
∂u ◦0 with respect to the

variable u attached to the output. The proof is absolutely the same. ��
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These homologous properties of the cocycles νn implies the topological recursion
relations.

Corollary 5.5. We have:

ψ
d0
0 ψ

d1+1
1 ψ

d2
2 · · ·ψdn

n [M0,n+1] =
∑

S1�S2={3,...,n}

∏

s∈S1�{0,2}
ψds

s [M0,|S1|+3]

⊗
∏

s∈S2�{1}
ψds

s [M0,|S2|+2]. (25)

Similarly,

ψ
d0+1
0 ψ

d1
1 · · ·ψdn

n [M0,n+1] =
∑

S1�S2={3,...,n}

∏

s∈S1�{0}
ψds

s [M0,|S1|+2]

⊗
∏

s∈S2�{1,2}
ψds

s [M0,|S2|+3]. (26)

Proof. It follows from Theorem 4.2 that we can use the partial derivation with respect
to u attached to the i th input (respectively, to the output) instead of taking ψ-class in the
i th marked point (respectively, to the 0th marked point). Therefore,

ψ1

∏

s∈{0,...,n}
ψds

s [Mn+1] = κ ◦ ε
((

∂

∂u
◦0

)d0 n∏

s=1

(

◦s
∂

∂u

)ds

◦i
∂

∂u
νn

)

= κ ◦ ε
⎛

⎝
(
∂

∂u
◦0

)d0 n∏

s=1

(

◦s
∂

∂u

)ds ∑

S1�S2={3,...,n}
νS1�{2,∗} ⊗ νS2�{1}

⎞

⎠

=
∑

S1�S2={3,...,n}
κ ◦ ε

⎛

⎝
(
∂

∂u
◦0

)d0 ∏

s∈S1�{2}

(

◦s
∂

∂u

)ds

νS1�{2,∗}

⎞

⎠

⊗κ ◦ ε
⎛

⎝
∏

s∈S2�{1}

(

◦s
∂

∂u

)ds

νS2�{1}

⎞

⎠

=
∏

s∈S1�{0,2}
ψds

s [M0,|S1|+3] ⊗
∏

s∈S2�{1}
ψds

s [M0,|S2|+2].

The proof of the second statement of the corollary is exactly the same. ��
Remark 5.6. The symmetric group acts on the cocycles νn changing them to the homolo-
gous one. Therefore, one can change the indices 1, 2 in the statement of Lemma 5.4 and
Corollary 5.5 to any other pair of indices i, j ∈ {1, . . . , n}. This completes our algebraic
proof of the topological recursion relations.

In particular, Eqs. (25) and (26) imply combinatorially that in the case d0 + · · ·+dn =
n − 2 the product of ψ-classes evaluated on the fundamental class coincides with the
iterated multiplication up to a multinomial coefficient:

ψ
d0
0 . . . ψdn

n [Mn+1](x1, . . . , xn) = (n − 2)!
d0! . . . dn !m(x1, . . . , xn). (27)

This formula explains the factors used in the definition of the map θ and, in particular,
in Eq. (5).
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5.3. The inverse of j . In this section we construct the cocycles in the complex

(

B(k[u] ⊗ s2Gerst∨) 	 k[�]/�, ∂
∂u

∂

∂w
+ μ +�

∂

∂u
+�

∂

∂φ

)

(28)

that represent there the generators mn, n = 2, 3, . . ., of Hycomm.
The construction uses the definition of the homotopy quotient. Recall that the defining

Eq. (1) implies the following two identities:

(d +�
∂

∂φ
)�(z) = �(z)(d + z�), �(z)−1(d +�

∂

∂φ
) = (d + z�)�(z)−1.

Therefore, the adjoint action of � on the complex (28) given by �ad(z) : γ �→
�(z)γ�(z)−1 satisfies the following equation:

(

d +�
∂

∂φ

)

�ad(z)(γ ) = �ad(z)(dγ + z[�, γ ]). (29)

We use �(z) as a group-like element. This means that we want �ad(z) must preserve
the operadic composition, that is, �ad(z)(α ◦ β) = (�ad(z)α) ◦ (�ad(z)β), where z is
an operator acting on corollas.

Lemma 5.7. Let ν be a cocycle in
(
B(k[u] ⊗ s2Gerst∨), ∂

∂u
∂
∂w

+ μ
)
. The cochain

�ad( ∂
∂u )ν is a cocycle in the dg-operad

(
B(k[u] ⊗ s2Gerst∨) 	 k[�]/�, ∂

∂u
∂
∂w

+ μ

+�ad ∂
∂u +� ∂

∂φ

)
. Moreover, j (�ad

(
∂
∂u

)
ν) = ν.

Proof. Equation (29) implies that

(
∂

∂u

∂

∂w
+ μ +�

∂

∂φ
+�ad ∂

∂u

)

�ad
(
∂

∂u

)

ν

= �ad
(
∂

∂u

)(
∂

∂u

∂

∂w
+ μ +�ad ∂

∂u
−�ad ∂

∂u

)

ν = 0.

Since j annihilates φi , i = 1, 2, . . ., the second statement of the lemma is obvious. ��
Therefore, cocycles representing the generators mn, n = 2, 3, . . ., of Hycomm in

the dg-operad (28) can be given by the formula

�ad
(
∂

∂u

)

νn = �ad
(
∂

∂u

)

ζn · · · ζ3(w12). (30)

5.4. The projection π ◦ ε. In this section we apply the projection π ◦ ε to the cocycles
given by Eq. (30).

Recall that the projection ε from Sect. 3.7 maps u to 0. The projection π given by
Eqs. (21) and (18) annihilates all non-binary trees in the cobar complex. In particular, π
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vanishes on all contributions of the operators ιn for the formulas νm for all 3 ≤ n ≤ m.
Therefore,

θn := π ◦ ε
(

�ad
(
∂

∂u

)

· νn

)

= π ◦ ε

⎛

⎜
⎜
⎝�

ad
(
∂

∂u

) ∑

(i3,...,in):∀s 0≤is≤s

ςinn · · · ςi33(w12)

⎞

⎟
⎟
⎠ .

(31)

Finally we are able to state our main result:

Theorem 5.8. The map θ : Hycomm → BV/� defined by θ : mn �→ θn is a quasi-iso-
morphism of the dg-operad. It makes the diagram (22) commutative.

Proof. Theorem 4.1 implies that the cohomology of
(
BV/�,� ∂

∂φ

)
is isomorphic to

Hycomm.
We denote by Q ⊂ BV/� the intersection of the kernel of � ∂

∂φ
with the suboperad

of BV/� generated by multiplication and φi ’s. Observe that the suboperad Q ⊂ BV/�
belongs to the cohomology. Indeed, by definition Q doesn’t intersect the image of � ∂

∂φ

and belongs to the kernel of � ∂
∂φ

. Note that � does not appear in the representing co-

cycles�ad( ∂
∂u )νn and, therefore, θn also does not contain� in its presentation in terms

of the generators. This implies that the cocycles θn belong to Q, n = 2, 3, . . ..
The same is true if we apply the diagram chase for any element of Hycomm. There-

fore the full cohomology of
(
BV/�,� ∂

∂φ

)
is equal to Q, and the map mn �→ θn, n ≥ 2,

defines the isomorphism between Hycomm and Q. ��
We finish this section with a diagram that summarizes our chase of cocycles in Dia-

gram (22):

νn ∈ B(k[u] ⊗ s2Gerst∨)

κ◦ε
��

�ad
(
∂
∂u

)
νn ∈ B(k[u]⊗s2Gerst∨)	k[�]

�

j��

π◦ε
��

mn ∈ Hycomm θ �� θn ∈ BV/�

5.5. Examples for n = 2 and 3. In this section we compute Formula (31) for n = 2
and n = 3 and show the coincidence of the two morphisms (one via Givental graphs,
another via diagram chase) for n = 2, 3. A direct computation for n = 2 gives that

θ2 = π ◦ ε
(

�ad
(
∂

∂u

)

(w12)

)

= π (w12) = m2,

which is exactly the formula for θ2 described in Sect. 1.2.
In the case of n = 3, we have:

θ3 = π ◦ ε ◦�ad
(
∂

∂u

)

(ς03(w12) + ς13(w12) + ς23(w12)) .
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By definition,

ς03(w12) + ς13(w12) + ς23(w12) = −(uw3∗) ◦∗ w12 + w2∗ ◦∗ (uw13) + w1∗ ◦∗ (uw23).

Using that

�ad
(
∂

∂u

)

((uw3∗) ◦∗ w12) = φ1 ◦ (w3∗ ◦∗ w12)−(w3∗ ◦3 φ1) ◦∗ w12−w3∗ ◦∗ φ1 ◦∗ w12,

�ad
(
∂

∂u

)

(w2∗ ◦∗ (uw13)) = w2∗ ◦∗ φ1 ◦∗ w13−w2∗ ◦∗ w13 ◦1 φ1−w2∗ ◦∗ w13 ◦3 φ1,

�ad
(
∂

∂u

)

(w1∗ ◦∗ (uw23)) = w1∗ ◦∗ φ1 ◦∗ w23−w1∗ ◦∗ w23 ◦2 φ1−w1∗ ◦∗ w23 ◦3 φ1,

it is then straightforward to compute the final expression for θ3 that appears to be a
summation of 7 terms and coincides with the formula for θ3 described in Example 1.2.

The fact that we finally obtain the same formula for all n ≥ 0 as in Sect. 1.2 is based
on Lemma 5.4 and in particular on the topological recursion relations considered in
Theorem 4.2. An easier proof is given in the next section using a uniqueness argument.

5.6. Uniqueness. In order to get the coincidence of morphisms θ (first defined via sum-
mation of Givental graphs in Sect. 1.2 and second via diagram chase in formula (31)) we
just explain in the lemma below that there is no big freedom in the possible morphisms
from Hycomm to BV/�.

Proposition 5.9. Any graded automorphism of the operad Hycomm is defined by arbi-
trary dilations of m2 and m3. I. e. for a given pair λ2, λ3 there exist a unique automor-
phism of Hycomm given by formulas mn �→ λ2λ

n−2
3 mn with n ≥ 2; moreover, any

automorphism belongs to this system.

Proof. Indeed, note that for all n ≥ 2 the subspace of Hycomm(n) of homological
degree 4 − 2n is one dimensional and is generated by the generator of Hycomm operad
denoted earlier by mn . Therefore any graded automorphism of Hycomm should be of the
form mn �→ λnmn . The quadratic equations

∑
i+ j mi ◦ m j = 0 in the operad Hycomm

implies that the product λiλ j should depend only on the sum i + j . By induction this
follows that λn = λ2λ3

n−2. ��
Corollary 5.10. The morphism θ : Hycomm → BV/� given by Formula (31) via
summation over binary trees coincides with the morphism θ described in Sect. 1.2 via
summation of Givental graphs.

Proof. In the proof of Theorem 5.8 we explained that the suboperad Q ⊂ BV/� that
is the intersection of the kernel of the differential � ∂

∂φ
and the suboperad generated by

multiplication and φi ’s is isomorphic to Hycomm. Two maps θ that we have constructed
defines two particular (iso)morphisms from Hycomm to Q. We checked that these two
morphisms coincide for m2 and m3. Therefore, our uniqueness Proposition 5.9 implies
that they are the same for all mk . ��
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Remark 5.11. It is possible to show the coincidence of two formulas for θ without using
uniqueness arguments. The proof we know is technical and is based on the generalization
of Lemma 5.4.

6. Givental Theory

In this section prove Theorem 1.3 using the Givental theory of a loop group action on the
morphisms from Hycomm to an arbitrary operad. In fact, the action of the loop group
on the Hycomm-algebras has also a homological explanation. It comes from the action
on trivializations of the BV-operator, and we explain this at the end of this section.

6.1. Lie algebra action on morphisms of Hycomm. Consider an arbitrary operad P. We
consider morphisms of operads Hycomm → P. We are going to introduce an infinites-
imal action of the Lie algebra g := P(1)⊗C[[z]] on the space of morphisms, where z is
a formal variable and P(1) is considered as a Lie algebra with respect to the commutator
[x, y] = xy − yx, x, y ∈ P(1).

In order to fix a morphism of Hycomm to P, we consider a system of cohomology
classesαn ∈ H

�

(M0,n+1,C)⊗P(n). These classes must satisfy the following condition:

• For any map ρ : M0,n1+1 × M0,n2+1 → M0,n+1, n1 + n2 = n − 1, that
realizes a boundary divisor in M0,n+1 and induces the operadic composition
◦i : Hycomm(n1)⊗ Hycomm(n2) → Hycomm(n), we have:

ρ∗αn = αn1 �i αn2 , (32)

where by �i we denote the simultaneous product of cohomology classes and the
◦i -composition in P.

The infinitesimal action of the Lie algebra g is given by the explicit formulas. Consider
an element r�z� ∈ g for some � ≥ 0. We have:

r�z
�.αn := r� ◦1 ψ

�
0αn + (−1)�+1

n∑

m=1

ψ�mαn ◦m r�

+
∑

I�J=[n]

∑

i+ j=�−1

(−1)i+1ρ∗
(
ψ i

1α|I |+1 ◦1 r� �1 ψ
j

0α|J |
)
. (33)

Here in all cases ◦m denotes the operation in P; ψm denotes the ψ-class in the cor-
responding moduli space (M0,n+1 in the second summand or M0,|I |+2 and M0,|J |+1
in the third summand), that is, the first Chern class of the line bundle with the fiber
T ∗

xm
C over the curve (C, x0, x1, . . . , xk) ∈ M0,k+1 (k is then equal to n, |I |, and |J | + 1

respectively). Moreover, we always assume that the “output” marked point is x0, and, in
the third summand, we assume that the map ρ attaches the output point of M0,|J |+1 to
the first input (that is, the point x1) of M0,|I |+2.

Example 6.1. In the case � = 0 we simply have r0z0.αn = [r0, αn] in the sense of
commutation of operadic compositions in P.
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The formula for the g-action is a generalization of the formulas considered in [15,
20,30,32], and we refer the reader to these papers for a more detailed introduction to
the Givental theory.

Lemma 6.2. For any r = ∑∞
�=0 r�z� ∈ g and any system of classes αn ∈

H
�

(M0,n+1,C)⊗ P(n), n ≥ 2, that satisfies the factorization condition (32), the clas-
ses αn + ε · r.αn ∈ H

�

(M0,n+1,C)⊗ P(n) also satisfy the factorization condition (32)
in the first order in ε.

Proof. It is a straightforward generalization of Proposition 6.9 in [32]. ��
It follows from Lemma 6.2 that for any morphism g : Hycomm → P and an

arbitrary sequence of elements r� ∈ P(1), � = 1, 2, . . ., we obtain a new morphism
exp(r.)g : Hycomm → P, r = ∑∞

�=1 r�z�, by exponentiation of the infinitesimal Lie
algebra action defined above. This means that we define an action of the Lie group
G = {M(z) ∈ O(1)⊗ C[[z]],M(0) = 1} on the space of morphisms Hycomm → P.

6.2. Application to the BV-operad. We consider the morphism θ0 : Hycomm → BV
that sends the generator mk to the iterated multiplication m(), k ≥ 2. In terms of the
infinitesimal Givental action the condition that � is the second order operator with
respect to the multiplication can be written as

(�z1).θ0 = 0 (34)

(it is proved in a bit different terms in [30, Prop. 1]).
The same map θ0 can be also considered as a map to BV/�. In this case, in addition

to Eq. (34) we also have

(

�
∂

∂φ
z0
)

.θ0 = 0 (35)

(abusing a little bit the notation we think of � ∂
∂φ

as an element of BV/� such that the
differential is given by the commutator with this element).

Consider the map θ : Hycomm → BV/� defined by exp(φ(z).)θ0. There are several
observations. First of all, just by construction, θ is a morphism of operads. Second, we
want to show that θ is a morphism of dg-operads, that is, (� ∂

∂φ
z0).θ = 0. This follows

from the following computation:

(

�
∂

∂φ
z0
)

.θ =
(

�
∂

∂φ
z0
)

. exp(φ(z).)θ0 = exp(φ(z).)

(

�
∂

∂φ
z0 +�z1

)

.θ0 = 0.

Here the first equality is the definition of θ , the second one is a consequence of Eq. (2),
and the third equality follows from Eqs. (34) and (35).

Thus we see that θ(Hycomm) ⊂ Q ⊂ BV/�, where Q is the suboperad considered
in the proof of Theorem 5.8, that is, Q is the intersection of the kernel of � ∂

∂φ
with the

suboperad generated by the multiplication and φi ’s, i = 1, 2, . . ..
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In the proof of Theorem 5.8 we observed that Q is isomorphic to Hycomm. Moreover,
a simple degree count shows that the map θ : mk �→ θk, k = 2, 3, . . ., preserves the
degrees. Therefore, θ maps generators to generators, and it is an isomorphism between
Hycomm and Q.

The last observation is that θ is exactly the map constructed in Sect. 1.2 in terms
of graphs. This can be observed by an explicit exponentiation of the formula (33), and,
for example, it is also explained in [32, Sect. 6.14] and [6]. This completes the proof of
Theorem 1.3.

6.3. Homological origin of the Givental action. In this section we explain how the
Givental group action emerges naturally via the loop group action on trivializations
of �.

Consider a finite-dimensional Hycomm-algebra V with zero differential. Let V̄ be
the corresponding differential graded BV-algebra with the differential d, and we denote
by φi the corresponding additional operators coming from the structure of BV/� on V̄ .

Consider an arbitrary sequence of endomorphisms αi ∈ End(V ). Since the cohomol-
ogy of V̄ coincides with V , we can define a sequence of endomorphisms ᾱi ∈ End(V̄ )
such that they commute with the differential on V̄ and their restrictions to the cohomol-
ogy coincide with αi , i = 1, 2, . . ..

We have:

exp

(

−
∞∑

i=1

ᾱi z
i

)

d exp

( ∞∑

i=1

ᾱi z
i

)

= d.

Therefore,

exp(−φ(z)) exp

(

−
∞∑

i=1

ᾱi z
i

)

d exp

( ∞∑

i=1

ᾱi z
i

)

exp(φ(z)) = d + z�.

Thus we see that the sequence of operators φ′
i given by the formula

φ′(z) =
∑

φ′
i z

i : = ln(exp(ᾱ(z) exp(φ(z)))

defines a new BV/�-algebra structure on (ς(V ), d). This structure induces a new
Hycomm-algebra structure on V = H•(V̄ , d).

Theorem 6.3. The new Hycomm-algebra structure on V coincides with the one ob-
tained by the Givental group action of the element exp

(∑∞
i=1 αi zi

)
applied to the orig-

inal Hycomm-algebra.

Proof. It is easier to compare the infinitesimal deformations. Indeed, assume that∑∞
i=1 ᾱi zi = r�z� and we consider the first order deformation in r�. In this case

φ′(z) = φ(z) + r�z�. Then it is just a tautological observation to see that the cor-
responding deformation of the formulas for θk in Sect. 1.2, k ≥ 2, is given by
Eq. (33). ��
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