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Abstract. We study a two-parameter family of nonautonomous ordinary differential equations
on the 2-torus. This family models the Josephson effect in superconductivity. We study its rota-
tion number as a function of the parameters and the Arnold tongues (also known as the phase
locking domains) defined as the level sets of the rotation number that have nonempty interior.
The Arnold tongues of this family of equations have a number of nontypical properties: they exist
only for integer values of the rotation number, and the boundaries of the tongues are given by
analytic curves. (These results were obtained by Buchstaber–Karpov–Tertychnyi and Ilyashenko–
Ryzhov–Filimonov.) The tongue width is zero at the points of intersection of the boundary curves,
which results in adjacency points. Numerical experiments and theoretical studies carried out by
Buchstaber–Karpov–Tertychnyi and Klimenko–Romaskevich show that each Arnold tongue forms
an infinite chain of adjacent domains separated by adjacency points and going to infinity in an
asymptotically vertical direction. Recent numerical experiments have also shown that for each
Arnold tongue all of its adjacency points lie on one and the same vertical line with integer abscissa
equal to the corresponding rotation number. In the present paper, we prove this fact for an open set
of two-parameter families of equations in question. In the general case, we prove a weaker claim: the
abscissa of each adjacency point is an integer, has the same sign as the rotation number, and does
not exceed the latter in absolute value. The proof is based on the representation of the differential
equations in question as projectivizations of linear differential equations on the Riemann sphere Q1
and the classical theory of linear equations with complex time.

Key words: ???

1. Introduction

1.1. Main results. We study the following family of ordinary differential equations on the
torus T

2 = S1 × S1, S1 = R/2πZ, with coordinates (x, t):

ẋ =
dx

dt
= ν sinx+ a+ s sin t, a, ν, s ∈ R, ν �= 0. (1.1)

This family of equations, which we call class J equations for brevity, models the Josephson effect
in superconductivity. The parameter ν is supposed to be fixed at an arbitrary nonzero value.

The period 2π flow mapping of the equation is a diffeomorphism

ha,s : S
1 → S1

of the spatial circle S1 = S1×{0}. In the present paper, we study its rotation number ρ = ρ(a, s) as
a function of the parameters a and s. (We use the following scaling convention: the rotation number
equals the rotation angle divided by 2π.) We say that the coordinate a-axis is horizontal (and refer
to the a-coordinate as the abscissa) and the s-axis is vertical (and refer to the s-coordinate as the
ordinate).

∗The present paper uses results obtained by I. V. Shchurov under the support of the project no. 11-01-0239
“Invariant manifolds and asymptotic behavior of slow-fast mappings” within the program “The HSE scientific foun-
dation” in 2012–2014. His studies were also supported in part by a grant from the Dynasty Foundation and by RFBR
grant no. 12-01-31241-mol a. The research of A. A. Glutsyuk was supported in part by French grants ANR-08-JCJC-
0130-01 and ANR-13-JS01-0010. The research of all the authors was supported in part by RFBR–CNRS joint grant
no. 10-01-93115 NTsNIL a and by RFBR grants nos. 10-01-00739-a and 13-01-00969-a.
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Definition 1.1. The rth Arnold tongue is the level set {(a, s) | ρ(a, s) = r} ⊂ R2 provided
that it has nonempty interior.

The rotation number of system (1.1) has the physical meaning of the mean voltage over a long
time interval. The segments in which the Arnold tongues intersect horizontal lines correspond to
the Shapiro steps on the voltage–current characteristic. It has been shown earlier that

• The Arnold tongues only exist for integer values of the rotation number ([4], [7], [8]).
• The boundary of each tongue ρ = r consists of two analytic curves, which are the graphs of

functions denoted by a = g−r (s) and a = g+r (s). (See [3]. Klimenko independently observed that
this fact readily follows from a symmetry argument∗ for class J equations; see [18].)

• Each of the functions g−r (s) and g+r (s) has the asymptotics of the rth Bessel function at
infinity, {

g−r (s) = r − νJr(−s/ν) + o(s−1/2),

g+r (s) = r + νJr(−s/ν) + o(s−1/2).
(1.2)

This was discovered numerically and justified on the level of physical rigor in [16]; see also [10,
Chap. 5], [13, Sec. 11.1], and [5]. Mathematically, this was proved in [18].

• Thus, each Arnold tongue is an infinite chain of adjacent bounded domains that go to infinity
in an asymptotically vertical direction. The adjacency points of neighboring domains not lying on
the horizontal axis s = 0 are called adjacencies.

Numerical experiments have revealed the following fact.

Experimental fact A. For each ν �= 0 and every r ∈ Z, all adjacencies of the rth Arnold
tongue lie on the same vertical line a = r ; see Fig. 1.
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Fig. 1. Arnold tongues 0–4. The adjacencies have integer abscissas
equal to the number of the corresponding tongue. As the figure sug-
gests, the intersection of the zeroth Arnold tongue with the line s = 0
is the closed interval∗∗ [−ν, ν].

The main result of the present paper is the following theorem, which partly proves the above-
mentioned experimental fact.

Theorem 1.2. Experimental fact A holds for each ν �= 0 with |ν| ≤ 1. For each ν �= 0,
all adjacencies have integer abscissas. The abscissa of each adjacency has the same sign as the
corresponding rotation number and does not exceed the latter in absolute value. The adjacencies
corresponding to the zero rotation number are exactly those lying on the axis a = 0.

∗A class J equation has the symmetry (x, t) �→ (π−x, π− t). It follows that a parabolic fixed point of the period
flow mapping can be only a fixed point ±π/2 of the symmetry; see [18]. An equivalent statement was proved in [15,
p. 30].

∗∗The family of equations (1.1) is often replaced by the renormalized two-parameter family of equations ẋ+sinx =
B+A cos(ωt) with fixed ω ∈ R. In the latter family, the intersection of the zeroth Arnold tongue with the line A = 0
is the closed interval [−1, 1] for every ω .
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Corollary 1.3. For any ν �= 0 and r ∈ Z, there exists an M = M(ν, r) > 0 such that all
adjacencies of the rth Arnold tongue with ordinates greater than M in absolute value lie on the
line a = r .

Corollary 1.3 follows from the integrality of the abscissas of the adjacencies (Theorem 1.2) and
the asymptotic formula (1.2) for the boundary of the Arnold tongue, by which the points of the
rth tongue with ordinates sufficiently large in modulus lie in the 1-neighborhood of the line a = r.

Remark 1.4. It is known that for each r ∈ Z \ 0 the Arnold tongue {ρ(a, s) = r} intersects

the horizontal axis s = 0 exactly at one point with abscissa
√
r2 + ν2 (see [8] and [3, Corollary 3]).

This point of adjacency of neighboring components of the tongue will be called a queer adjacency.

1.2. Idea of the proof and outline of the paper. The proof of Theorem 1.2 is given in
Section 3. It is based on the representation of the family of class J equations as a family of projec-
tivizations of linear differential equations on the Riemann sphere (obtained by various authors; see
also Section 2.2 below) and the classical theory of linear equations with complex time.

Definition 1.5. A nonsingular linear operator on a vector space is said to be projectively
identical if its projectivization is the identity as the induced map of the projective space.

The integrality of the abscissas of adjacencies for every ν �= 0 is proved in Section 3.1. The
linear equations corresponding to class J equations have two irregular nonresonant Poincaré rank
1 singular points, 0 and ∞, on the Riemann sphere (see Section 2.2). The adjacencies correspond
to the parameter values for which the monodromy of the linear equation is projectively identical.
It turns out that this is the case if and only if the following assertions hold:

• The germ of the linear equation in question at the irregular singular point 0 can be reduced
by an analytic change of variables to its formal normal form (a direct sum of one-dimensional
equations);

• The monodromy of the latter is projectively identical.
This can be derived from the classical results on the analytic classification of germs of linear
equations at nonresonance irregular singular points. The residue matrix of the normal form has
a unique nonzero eigenvalue, which is equal to the abscissa of the adjacency. It follows that this
abscissa is an integer.

Experimental fact A for |ν| ≤ 1 is proved in Section 3.2. An additional elementary differential
inequality (a refinement of [3, Lemma 4]) shows that for |ν| ≤ 1 the complement of the rth Arnold
tongue to the horizontal axis s = 0 lies strictly between the lines a = r±1. Thus, all its adjacencies
should lie on the line a = r.

The general case of arbitrary ν is treated in Section 3.3. It is easily seen that the abscissa of
an adjacency has the same sign as the corresponding rotation number. An additional argument
concerning the corresponding Riccati equations and using the argument principle for complex so-
lutions proves that the modulus of the abscissa of each adjacency does not exceed the modulus of
the rotation number. This proves the theorem.

Some preliminary material (rotation number, linear equations, Stokes operators, and mon-
odromy) is contained in Section 2.

2. Preliminaries

2.1. Rotation number of a flow on the torus and adjacencies. On the torus T2 = S1 ×
S1 = R

2/2πZ2 with coordinates (x, t), consider the flow given by the nonautonomous differential
equation

ẋ =
dx

dt
= f(x, t) (2.1)

with smooth right-hand side. The time t flow mapping is a diffeomorphism ht : S
1 → S1 of the

spatial circle. Consider the universal covering

R → S1 = R/2πZ
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over the spatial circle. The flow mappings of Eq. (2.1) can be lifted to the universal covering and
induce diffeomorphisms

Hq,t : R = R× {q} → R = R× {q + t}, Hq,0 = Id .

Recall that for any (x, q) ∈ R× S1 there exists a limit

ρ = lim
n→+∞

1

n
Hq,2πn(x) ∈ R, (2.2)

which depends neither on q nor on x and is called the rotation number of the flow of Eq. (2.1)
(e.g., see [1, p. 124]).

Now consider an (arbitrary) analytic family of equations

va,s : ẋ = g(x, t, s) + a, a, s ∈ R. (2.3)

Proposition 2.1. The rotation number ρ = ρ(a, s) of the flow of Eq. (2.3) is a continuous
function of the parameters (a, s) and a nondecreasing function of a. If, for some parameter values
(a0, s0), the flow mapping h2π = ha0,s0,2π : S

1×{0} → S1×{0} of Eq. (2.3) has a fixed point, then
the rotation number ρ(a0, s0) is an integer. In this case, if, in addition, the flow mapping h2π is
not the identity mapping, then there exists an interval I with endpoint a0 such that

• For each a ∈ I , the transformation ha,s0,2π has at least one fixed point.
• For each a ∈ I , the flows of all vector fields sufficiently C1-close to va,s0 have the same

rotation number ρ(a0, s0).

Proof. The first and second claims can be found in [1, pp. 130–133]. Let us prove the third
claim. Assume that the flow mapping h = ha0,s0,2π is not the identity mapping and has a fixed
point O ∈ S1 . This is an isolated fixed point by analyticity. Let J = [P,O] ⊂ S1 be a closed interval
with right endpoint O containing no other fixed points. Then h(J) �= J , and either h(J) ⊂ J or
h(J) ⊃ J . Without loss of generality, we consider only the first case, ha,s0,2π(J) ⊂ J for a = a0 .
There exists an interval I = (c, a0) ⊂ R such that the last inclusion holds for each a ∈ I and is
strict, ha,s0,2π(J) ⊂ Int(J), because the function a �→ ha,s,t(x) is continuous and strictly increasing
for any given s, t, and x. Thus, for each a ∈ I the mapping ha,s0,2π takes the interval J into
itself and hence has a fixed point on J and the integer rotation number equal to ρ(a0, s0). The last
inclusion survives under any C0-small perturbations of the mapping ha,s0,2π . This, together with
the continuity of the rotation number, proves Proposition 2.1.

Now consider the family (1.1) of class J equations. For any parameter values (a, s), by

ha,s = ha,s,2π : S
1 × {0} → S1 × {0} (2.4)

we denote the period 2π flow mapping of the corresponding equation. Let

ρ(a, s) be the corresponding rotation number. (2.5)

Proposition 2.2. The rotation number ρ(a, s) is a continuous function of the parameters
(a, s) and a nondecreasing function of a. The adjacencies of Arnold tongues and queer adjacencies
(see the Introduction) correspond exactly to the parameter values for which the corresponding flow
mapping ha,s is the identity mapping.

Proof. The first claim of Proposition 2.2 follows from the first claim of Proposition 2.1. Let
us prove the second claim. Assume the contrary: the flow mapping corresponding to one of the
adjacencies (a0, s0) (true or queer) is not the identity mapping. Its rotation number is an integer,
and hence it has a fixed point. Consequently, there exists an interval I ⊂ R adjacent to a0 such
that for each a ∈ I the transformation ha,s0 has a fixed point and the interval I ×{s0} ⊂ {s = s0}
lies in the interior of the Arnold tongue {ρ(a, s) = ρ(a0, s0)} (Proposition 2.1). At the same time,
the line s = s0 cannot meet the interior of the tongue. Indeed, otherwise a close parallel line
would meet at least two distinct components of the tongue (by the definition of adjacency), which
contradicts the monotonicity of the rotation number as a function of a. This contradiction proves
that the flow mapping is the identity mapping. Conversely, assume that the flow mapping is the
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identity mapping. Then the point (a0, s0) belongs to an integer Arnold tongue. It cannot lie in
the interior of the tongue. Indeed, for given s = s0 the images of all points x ∈ S1 under the
flow mapping move in the positive (respectively, negative) direction with increasing (respectively,
decreasing) parameter a. In particular, the perturbed flow mapping has no fixed points (because
the unperturbed mapping is the identity mapping). Thus, the point (a0, s0) of the horizontal line
R×{s0} is an isolated point of intersection of this line with the Arnold tongue {ρ(a, s) = ρ(a0, s0)}.
Consequently, it is an adjacency (true or queer). The proof of the proposition is complete.

2.2. Reduction of class J equations to Riccati equations. The results of this section
were earlier obtained in slightly different terms in [6], [8], and [14].

Proposition 2.3. The change of variables

p = eix, τ = eit (2.6)

reduces the family of class J equations to the family of Riccati equations

dp

dτ
=

1

τ 2

(
ν(1− p2)

iτ

2
+

(
aτ +

is(1− τ 2)

2

)
p

)
. (2.7)

The latter is the projectivization of the following family of linear ordinary differential equations:

ż =
A(τ )

τ 2
z, z = (z1, z2) ∈ C

2, A(τ ) =

(
0 iντ

2
iντ
2

is
2 (1− τ 2) + aτ

)
, p =

z2
z1
. (2.8)

Proof. By substituting the change of variables (2.6) into Eq. (1.1), we obtain

sinx =
1

2i
(p− p−1), sin t =

1

2i
(τ − τ−1),

ṗ =
dp

dt
= ipẋ =

νp

2
(p− p−1) + iap+

s

2
(τ − τ−1)p, τ̇ =

dτ

dt
= iτ.

Consequently,
dp

dτ
=
ṗ

τ̇
=

1

τ 2

(
iντ

2
(1− p2) + apτ +

is

2
(1− τ 2)p

)
,

and hence we arrive at Eq. (2.7). The latter is a Riccati type equation and hence the projectivization
of the linear equation

ż =
dz

dτ
=
B(τ )

τ 2
z, z = (z1, z2) ∈ C

2, p =
z2
z1
. (2.9)

Equation (2.9) is determined uniquely up to normalization, because the corresponding vector func-
tion z(τ ) is determined by the solution p(τ ) of the Riccati equation uniquely up to multiplication
by a scalar function of τ . Let us find the coefficients of Eq. (2.9). By substituting it into the formula
p = z2/z1 and by differentiating the latter, we obtain

dp

dτ
=

1

τ 2
((B22(τ )−B11(τ ))p+ B21(τ )− B12(τ )p

2).

A comparison of the last equation with Eq. (2.7) gives

B22(τ )−B11(τ ) = aτ +
is

2
(1− τ 2), B21(τ ) = B12(τ ) =

iντ

2
.

Every matrix function B = (Bij)(τ ) satisfying these relations defines a linear equation correspond-
ing to the Riccati equation (2.7). The function B11(τ ) can be chosen arbitrarily, and its choice
determines the matrix B(τ ) uniquely. By setting B11 ≡ 0, we obtain the matrix function A(τ ) in
(2.8). The proof of the proposition is complete.

2.3. Irregular singular points of linear differential equations: the Stokes phenome-
non and monodromy. All results in the present section are classical and can be found in [2], [9],
[12], [17], and [19].
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Consider the germ of the linear ordinary differential equation

ż =
B(τ )

τ 2
z, z = (z1, z2) ∈ C

2, (2.10)

in a neighborhood of the nonresonance irregular singular point τ = 0 of rank 1. By definition, this
means that B(τ ) is a 2× 2 matrix function holomorphic at zero and the matrix B(0) has distinct
eigenvalues λ1 and λ2 . Without loss of generality, we assume that B(0) is diagonal,

B(0) = diag(λ1, λ2), λ2 − λ1 ∈ iR+.

One can always ensure this by appropriate linear changes of the variables z and τ .

Definition 2.4. Two germs of equations of the form (2.10) are said to be analytically (respec-
tively, formally) equivalent if there exists a change z = H(τ )w of the variable z , where H(τ ) is
a holomorphic invertible matrix function (respectively, a formal invertible power series in τ with
matrix coefficients), taking one equation to the other.

The analytic classification of irregular nonresonance germs of linear equations (2.10) and the
results given in this section were obtained in the classical papers [12], [17], and [19] and also
presented in [2] and [9]. It turns out that every equation germ (2.10) is formally equivalent to a
unique direct sum of one-dimensional equations of the form⎧⎪⎨⎪⎩

ẇ1 =
b10 + b11τ

τ 2
w1,

ẇ2 =
b20 + b21τ

τ 2
w2,

b20 − b10 ∈ iR+, (2.11)

which is called a formal normal form; here bj0 = λj . The corresponding normalizing series H(τ ),
z = H(τ )w, is unique up to multiplication by a constant diagonal matrix on the right. As a rule,
the normalizing series diverges. At the same time, there exists a cover of a punctured neighborhood
of zero by two sectors S0 and S1 with vertex at zero on the complex line of the variable τ with the
following property. Over each sector Sj , there exists a unique change of variables z = Hj(τ )w that
transforms (2.10) into (2.11), where Hj(τ ) is an analytic invertible matrix function on Sj that has

a C∞ continuation into the closure Sj and whose asymptotic Taylor series at 0 exists and coincides
with the given normalizing series. The preceding assertion on the existence and uniqueness of a
sectorial normalization hold in an arbitrary good sector (see the next definition); the cover consists
of good sectors.

Definition 2.5. We say that a sector in C with vertex at 0 is good if it contains only one of
the real semiaxes R± and if its closure does not contain the other semiaxis (see Fig. 2).

We assume that S0 contains the positive real semiaxis and S1 contains the negative real semi-
axis; see Fig. 2. Set S2 = S0 .

The standard decomposition of the normal form (2.11) into a direct sum of one-dimensional
equations defines a canonical basis in its solution space (uniquely up to multiplication of the basis
functions by constants) with diagonal fundamental matrix

W (τ ) = diag(w1, w2).

This matrix, together with the normalizing changes of variables Hj in Sj , defines canonical bases
(fj1, fj2) in the solution spaces of Eq. (2.10) in the sectors Sj with fundamental matrices

Zj(τ ) = Hj(τ )W (τ ), j = 0, 1, 2, (2.12)

where for each j = 0, 1 the (j + 1)st branch of the fundamental matrix W (τ ) on Sj+1 is obtained
from the jth branch on Sj by analytic continuation counterclockwise. The second branch of W on
S2 = S0 is obtained from the zeroth branch by right multiplication by the monodromy matrix of
the formal normal form (2.11). In a connected component of the intersection Sj ∩ Sj+1 , there are
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two canonical bases of solutions, one taken from Sj and one taken from Sj+1 . As a rule, they do
not coincide, and the transition between them is defined by a constant matrix Cj ,

Zj+1(τ ) = Zj(τ )Cj . (2.13)

The transition operators (respectively, the matrices Cj ) are called the Stokes operators (respectively,
matrices). (See the above-mentioned literature.) The nontriviality of the Stokes operators is an
obstruction to the analytic equivalence of Eq. (2.10) to its formal normal form (2.11) and is known
as the Stokes phenomenon.

S0S1

Z1 = Z0C0

Z2 = Z1C1

Fig. 2. The sectors S0 and S1 and the Stokes operators C0 and C1 over their intersections

Remark 2.6. The Stokes matrices (2.13) are uniquely determined up to simultaneous conjuga-
tion by the same diagonal matrix. The Stokes matrices are unipotent. The matrix C0 corresponding
to the upper component of the intersection of the sectors is lower triangular, and the matrix C1 is
upper triangular,

C0 =

(
1 0
c0 1

)
, C1 =

(
1 c1
0 1

)
. (2.14)

Theorem 2.7 ([2], [9], [12], [17], [19]). Equation (2.10) is analytically equivalent to its formal
normal form (2.11) if and only if it has trivial Stokes operators. Two equations (2.10) are analyti-
cally equivalent if and only if they have the same formal normal forms and the same pairs of Stokes
matrices (up to the above-mentioned simultaneous conjugation by a diagonal matrix).

Let γ : [0, 1] → C \ 0 be a closed path on the punctured complex τ -line going around zero once
counterclockwise. Recall that the monodromy operator of Eq. (2.10) is the linear operator that acts
on the space of local solutions in a neighborhood of the point γ(0) and takes each solution to the
result of its analytic continuation along γ .

Lemma 2.8 [9, p. 35]. The monodromy matrices M of Eq. (2.10) and MN of its formal normal
form (2.11) and the Stokes matrices C0 and C1 introduced above satisfy the relation

M =MNC
−1
1 C−1

0 . (2.15)

Consider the projectivization of Eq. (2.10), that is, the corresponding Riccati equation for the
C-valued function p(τ ) = z2(τ )/z1(τ ) obtained from Eq. (2.10) with the use of the tautological pro-
jection C2 \0 → C = CP

1 . At the end of the paper, we use the following properties of projectivized
canonical basis solutions of Eq. (2.10).

Proposition 2.9. Assume that Eq. (2.10) is analytically equivalent to its formal normal form.
Then the projectivizations of its canonical basis solutions are the unique solutions p(τ ), holomorphic
in a neighborhood of zero, of the corresponding Riccati equation. Their values at zero are zero and
infinity, respectively, in the projective coordinate p = z2/z1 .
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Proposition 2.9 is well known to specialists and follows from the validity of itself for the formal
normal form.

Proposition 2.10. Under the assumptions of Proposition 2.9, let ψ1(τ ) and ψ2(τ ) be the
canonical solutions of the Riccati equation with ψ1(0) = 0 and ψ2(0) = ∞ mentioned there, and let

z = H(τ )w, H(τ ) =

(
h11 h12
h21 h22

)
(τ )

be a normalizing change of variables reducing the linear equation (2.10) to normal form. Then

ψj =
h2j
h1j

, j = 1, 2. (2.16)

Proposition 2.10 follows from the fact that the canonical fundamental solution matrix of the
normal form is diagonal.

3. Rotation Number and Monodromy: Proof of Theorem 1.2

3.1. Integrality of adjacencies. Consider the class J equations (1.1) and the corresponding
Riccati equations (2.7) and linear equations (2.8). The flow mappings ha,s : S

1 → S1 extend to

be Möbius transformations of the Riemann sphere C = CP
1 and coincide with the monodromy

transformations of the corresponding Riccati equations around the point 0 ∈ C by Proposition
2.3. Let Ma,s be the monodromy operator of the linear equation (2.8). By definition, the following
assertion holds.

Proposition 3.1. The extended flow mappings ha,s coincide with the projectivizations of the
monodromy operators Ma,s of the corresponding linear equations (2.8).

The germ of each of the linear equations (2.8) at 0 is irregular and nonresonance; more precisely,
it has the form (2.10). Its formal normal form is given by{

ẇ1 = 0,

ẇ2 = τ−2(is/2 + aτ )w2.
(3.1)

The monodromy operator MN,a,s of the corresponding formal normal form satisfies

MN,a,s = diag(1, e2πia). (3.2)

Proposition 3.2. A point (a, s) corresponds to an adjacency if and only if s �= 0 and the
corresponding monodromy operator Ma,s is projectively identical, that is, is the product of the
identity operator by a scalar factor.

Proof. A point corresponds to an adjacency if and only if s �= 0 and the corresponding period
flow mapping of the class J equation is the identity mapping by Proposition 2.2. This, together
with Proposition 3.1, proves Proposition 3.2.

Lemma 3.3. A point (a, s) corresponds to an adjacency if and only if a ∈ Z, s �= 0, and
the germ at zero of the corresponding linear equation (2.8) is analytically equivalent to its formal
normal form (3.1).

Proof. Assume that s �= 0, a ∈ Z, and Eq. (2.8) is analytically equivalent to its normal form.
Then the point (a, s) corresponds to an adjacency by Proposition 3.2, because the monodromy
(3.2) is the identity mapping. Let us prove that the converse is true as well. Let a point (a, s),
s �= 0, correspond to an adjacency. Then the operator Ma,s is projectively identical, and hence its
matrix in an arbitrary basis should have trivial super- and subdiagonal entries. On the other hand,
its matrix in the canonical basis of the solution space in the sector S0 (see Fig. 2) is the product of
the diagonal monodromy matrix (3.2) of the formal normal form by the inverses of the two Stokes
matrices (see (2.15)). The last two matrices are unipotent, one of them is lower triangular, and the
other is upper triangular. The product of these three matrices has trivial offdiagonal entries if and
only if so do the last two triangular matrices, which are then the identity matrices, because they
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are unipotent. This precisely means that the Stokes matrices are the identity matrices, and hence
the linear equation (2.8) is analytically equivalent to its formal normal form by Theorem 2.7. In
particular, the monodromy of Eq. (2.8) is given by the matrix (3.2), which is projectively identical
if and only if a ∈ Z. Thus, we have shown that the monodromy operator of Eq. (2.8) is projectively
identical if and only if the equation is analytically equivalent to its formal normal form and a ∈ Z.
This, together with Proposition 3.2, proves Lemma 3.3. The proof of the fact that the abscissas of
the adjacencies are integers is complete.

3.2. The case of |ν| � 1: the adjacencies of the rth tongue lie on the line a = r.
Thus, we have shown that all adjacencies lie on vertical lines with positive abscissas. Now let us
show that for |ν| � 1 the adjacencies of each individual Arnold tongue lie on a single integer vertical
line, more precisely, that

ρ(a, s) = a for each adjacency (a, s). (3.3)

Thus, we assume that |ν| � 1 in what follows.

Proposition 3.4. If |ν| � 1, then a − 1 � ρ(a, s) � a + 1 for any a, s ∈ R. Both inequalities
are strict except for the case in which s = 0 and a = ±1.

The inequalities in Proposition 3.4 are stated in [3, Lemma 4]. The proof given below that the
inequalities are strict reproduces that in [3] with a small addition.

Proof of Proposition 3.4. Every solution x(t) of a class J equation satisfies the differential
inequalities

a+ s sin t− 1 � ẋ = ν sinx+ a+ s sin t � a+ s sin t+ 1. (3.4)

If sinx �≡ ±1, then these inequalities are strict for almost all t, namely, for all t such that sinx(t) �=
±1. Hence the increment of the solution x(t) on any interval I of length 2π lies between the integrals
over the same interval of the extreme sides of (3.4). (See Chaplygin’s comparison theorem [11].)
These integrals are equal to a−1 and a+1. This implies the inequalities stated in the proposition.
Now let sinx(t) �≡ 1. The inequalities (3.4) are strict for almost all t. It follows that the increment
in question lies strictly between the numbers a± 1 and is separated from these numbers uniformly
over all intervals I of length 2π. Thus, the rotation number lies strictly between the numbers a± 1
by definition and in view of this uniform separation. Now assume that one of the inequalities in
(3.4) is not strict. Then sinx(t) ≡ ±1 by the preceding, and hence x(t) ≡ π/2+πk, k ∈ Z. A class
J equation (1.1) has a constant solution x(t) with sinx(t) ≡ ±1 if and only if s = 0 and a = ∓1;
the rotation number is zero in this case. The proof of the proposition is complete.

Consider the Arnold tongue corresponding to a given integer rotation number r. Its complement
to the horizontal axis s = 0 lies strictly between the lines a = r ± 1 by the preceding proposition.
Its adjacencies do not lie on the horizontal axis (by definition) and have integer abscissas, as shown
above. Hence they lie on the line a = r. We have proved the first assertion of Theorem 1.2.

3.3. The case of arbitrary ν : the absolute value of the abscissa of an adjacency
does not exceed the absolute value of the rotation number. Here we prove the second
assertion of Theorem 1.2: for each given ν �= 0, the abscissa of each adjacency has the same sign
as the corresponding rotation number, and its absolute value does not exceed that of the rotation
number.

First, we prove the coincidence of signs, which readily follows from the fact that the entire
s-axis lies in the zeroth Arnold tongue. (See the next proposition.) Then we prove the inequality
stated above by using complex Riccati equations and the argument principle for their canonical
solutions.

Proposition 3.5. For a = 0 and any ν and s, Eq. (1.1) has zero rotation number. Thus, for
each ν �= 0 the entire s-axis lies in the zeroth Arnold tongue.

Proof. For a = 0, Eq. (1.1) has the symmetry (x, t) �→ (−x, t+ π).
Hence if x(t) is a solution, then so is x̃(t) = −x(t+ π). It follows that the involution x �→ −x

conjugates the flow mappings H0,2π : R × {0} → R × {0} and Hπ,2π : R × {π} → R × {π} of the
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lifted equation (1.1). Consequently, these mappings have opposite rotation numbers defined as the
limits (2.2). On the other hand, their rotation numbers are equal to the rotation number of the
flow (see Section 2.1). We see that the rotation numbers in question are simultaneously equal and
opposite. Hence the rotation number is zero. The proof of the proposition is complete.

Corollary 3.6. The abscissa of each adjacency has the same sign as the corresponding rotation
number provided that the latter is not zero.

Proof. The rotation number is zero for a = 0 and is a nondecreasing function of a. This proves
the corollary.

Fix some ν �= 0 and consider an arbitrary adjacency (a, s). Let ρ = ρ(a, s) be the corresponding
rotation number. Recall that the corresponding linear equation (2.8) is analytically equivalent to
the formal normal form of itself at zero (Lemma 3.3). It follows that the C-valued projectivized
canonical basis solutions of Eq. (2.8) are holomorphic in a full neighborhood of zero (Proposition 2.9)
and hence on the entire line C. We denote these projectivized solutions by ψ1(τ ) and ψ2(τ ) so that
ψ1(0) = 0 and ψ2(0) = ∞ (see Proposition 2.9). Set

S1
p = {|p| = 1} ⊂ C, S1

τ = {|τ | = 1} ⊂ C, T2 = S1
p × S1

τ , D1 = {|τ | < 1}.
Remark 3.7. The torus T2 is invariant with respect to the Riccati equation (2.7) restricted to

C× S1
τ . The functions ψ1 and ψ2 are distinct solutions of this equation, and hence ψ1(τ ) �= ψ2(τ )

for all τ ∈ C. The restriction of each of them to the unit circle S1
τ takes values that either all lie

on one side of the unit circle S1
p or lie on the circle itself. This follows from the invariance of the

torus T
2 .

The proof of the inequality |a| � |ρ| for the adjacencies in Theorem 1.2 is based on the following
formula for the rotation number ρ.

Lemma 3.8. Let |ψ1|
∣∣
S1
τ
� 1. Then

ρ = a− 2#(poles of the function ψ1|D1). (3.5)

Proof. For an arbitrary solution ψ of the Riccati equation (2.7) and any r > 0 such that
ψ|{|τ |=r} �= ∞, consider the variational equation along ψ. Note that the solution of the variational
equation is uniquely determined up to a multiplicative constant and is holomorphic in τ in a neigh-
borhood of the circle {|τ | = r}. This follows from the fact that the Riccati equation, as well as the
corresponding linear equation, has trivial monodromy (Proposition 3.2). Fix an arbitrary nonzero
solution v(τ ) of the variational equation. We equip the circle {|τ | = r} with counterclockwise sense
and introduce the index

χr(ψ) = the increment of the argument of the solution v(τ ) along the circle {|τ | = r}.
Proposition 3.9. One has χr(ψ1) = a for each sufficiently small r > 0.

The proposition follows from the fact that it is true for the Riccati equation obtained by
projectivization of the formal normal form (3.1) and that the linear equation (2.8) in question is
analytically normalizable.

Proposition 3.10. Let |ψ1|
∣∣
S1
τ
� 1. Then χ1(ψ1) = ρ.

Proof. Fix a τ0 ∈ S1
τ . The flow mappings C × {τ0} → C × {τ} of the Riccati equation along

the unit circle |τ | = 1 are Möbius transformations preserving the unit disk. The index χ1(ψ) of
any solution of the Riccati equation with ψ(τ0) ∈ D1 is independent of the choice of the solution
and is equal to ρ for ψ(τ0) ∈ S1

p . This proves the proposition.

Proposition 3.11. Consider an arbitrary Riccati equation. Let r2 > r1 > 0 be numbers such
that the Riccati equation is holomorphic in a neighborhood of the closed annulus Ar1r2 = {r1 �
|τ | � r2} and has a meromorphic solution ψ(τ ) in this neighborhood without poles on the boundary
of the annulus. Then

χr2(ψ) = χr1(ψ)− 2#(poles of the function ψ|r1<|τ |<r2).
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Proof. A nonzero solution v(τ ) of the variational equation along ψ is a function ranging in
the tangent bundle of the Riemann sphere, holomorphic in a neighborhood of the annulus Ar1r2 ,
and vanishing nowhere. Let p be a complex coordinate on C. It specifies the standard trivialization
of the tangent bundle TC over C. The function v(τ ) ranging in TC and written in the standard
trivialization is meromorphic, and we denote it by the same symbol v(τ ). Let us show that v(τ ) has
the same poles with the same multiplicities as ψ2(τ ). This, together with the argument principle,
will prove Proposition 3.11. Let τ ′ ∈ Int(Ar1r2) be a pole of ψ. Let V ⊂ C \ 0 be an arbitrarily
small neighborhood of infinity, more precisely, the complement of a large disk centered at zero, and
let D ⊂ Ar1r2 be a small closed disc centered at τ ′ such that ψ(D) ⊂ V . Consider the auxiliary
trivialization of TC over V specified by the chart with coordinate p̃ = 1/p. Recall that the TC-
valued solution of the variational equation is holomorphic on the closed disk D and is represented
by ṽ(τ ) = ψ−2(τ )v(τ ) in the new trivialization. By construction, the function ṽ(τ ) is holomorphic
and vanishes nowhere in D, and v(τ ) = ṽ(τ )ψ2(τ ). Consequently, v(τ ) has the same poles with
the same multiplicities as ψ2(τ ). The proof of Proposition 3.11 is complete.

Lemma 3.8 follows from Propositions 3.9, 3.10, and 3.11.

Lemma 3.12. Suppose that the function ψ1|S1
τ
and ψ2|S1

τ
either take values lying on different

sides of the unit circle S1
p or ψj(S

1
τ ) ⊂ S1

p for some j = 1, 2. Then the rotation number of the class
J equation in question is equal to the abscissa of the adjacency, ρ = a.

We will derive Lemma 3.12 from Lemma 3.8 and the following proposition.

Proposition 3.13. Under the assumptions of Lemma 3.12, one has

|ψ1|
∣∣
D1

� 1, |ψ2|
∣∣
D1

� 1. (3.6)

Proof. Consider the function φ = ψ1/ψ2 . It is meromorphic on C and has the following
properties:

φ �= 1, φ(0) = 0; either |φ|∣∣
S1
τ
� 1 or |φ|∣∣

S1
τ
> 1. (3.7)

Properties (3.7) follow from the assumptions of Lemma 3.12 and Remark 3.7. First, we analyze the
case in which |φ|∣∣

S1
τ
� 1, and then we show that the second case in which |φ|∣∣

S1
τ
> 1 is impossible.

Consider the difference φ(τ )− 1. It is meromorphic and vanishes nowhere on C, and the increment
of its argument along the circle S1

τ is zero, since φ(S1
τ ) ⊂ D1 . Consequently, the function φ− 1 has

no poles in the unit disk. Hence |φ|∣∣
D1

� 1 by the maximum principle, because the last inequality

holds on the boundary of the disk by assumption. Thus, |ψ1| � |ψ2| on the unit disk. On the other
hand, on the unit disk we have one of the inequalities |ψ1| � 1 � |ψ2| and |ψ2| � 1 � |ψ1| by the
assumptions of Lemma 3.12. It follows that the first inequality holds on the entire closed unit disk,
and the proof of Proposition 3.13 in the first case is complete. Now assume that the second case
holds, |φ|∣∣

S1
τ
> 1; i.e., |φ−1|∣∣

S1
τ
< 1. The difference φ−1(τ )−1 is meromorphic and vanishes nowhere

on C, and the increment of its argument along S1
τ is zero, just as before. At the same time, this

difference has a pole at zero, which contradicts the argument principle. This contradiction shows
that the second case is impossible and completes the proof of Proposition 3.13.

Proof of Lemma 3.12.One has |ψ1|D1 � 1 (Proposition 3.13). This, together with Lemma 3.8,
implies the desired assertion of Lemma 3.12.

Lemma 3.14. Assume that the inequalities |ψ1|, |ψ2| � 1 hold on the unit circle S1
τ . Then

ρ � a < 0, where a is the abscissa of the adjacency in question.

Proof. The inequality ρ � a follows from Lemma 3.8. It suffices to show that ρ < 0; then
a < 0 by Corollary 3.6.

Proposition 3.15. Under the assumptions of Lemma 3.14, the rotation number ρ is equal to
the increment of the argument of the difference ψ2 − ψ1 along the unit circle.

Proof. Recall that ψ1(τ ) �= ψ2(τ ) for all τ ∈ C. Consider the flow mappings H1,τ : C ×
{1} → C × {τ} of the Riccati equation (2.7) for τ ∈ S1

τ . The transformations H1,τ are conformal
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automorphisms of the unit disk, and H1,τ (ψj(1), 1) = (ψj(τ ), τ ) for j = 1, 2, because the ψj are
solutions of Eq. (2.7). It follows that the geodesic of the Poincaré metric on D1 joining ψ1(1) and
ψ2(1) is taken to the geodesic γτ joining ψ1(τ ) and ψ2(τ ). Each of the ends of γτ runs over the
unit circle and makes ρ full rotations as τ goes around the unit circle S1

τ in the positive sense. This
follows from the definition of rotation number. On the other hand, the increment of the argument
of the unit direction vector of the geodesic γτ at the point ψ1(τ ) is equal to the increment of
the argument of the straight-line vector directed from the point ψ1(τ ) to the point ψ2(τ ) on the
Euclidean plane R

2 = C ⊂ C. This follows from the fact that the angle between these vectors is
smaller than π for all τ . Thus, the increment of the argument of the function ψ2(τ )−ψ1(τ ) is equal
to the rotation number. The proof of Proposition 3.15 is complete.

Proposition 3.16. Under the assumptions of Lemma 3.14, the increment of the argument of
the difference ψ2 − ψ1 along the unit circle is negative.

Proof. Consider the matrix function H(τ ) of a normalizing change of variables reducing the
linear equation (2.8) to the normal form (3.1), z = H(τ )w. The function H(τ ) is holomorphic on
C and ranges in the set of invertible matrices. Recall that ψj = h2j/h1j for j = 1, 2 by Proposition
2.10. Thus,

ψ2 − ψ1 =
h11h22 − h21h12

h11h12
.

The numerator on the right-hand side in the last equation is the determinant of the invertible
matrix function H , and hence it vanishes nowhere on C. Hence the increment of the argument of
the difference in question is minus the sum of numbers of zeros (with regard to multiplicities) of the
functions h11 and h12 in the unit disk. The last sum is positive, because h12(0) = 0. Consequently,
the desired increment of the argument is negative. The proof of Proposition 3.16 is complete.

End of proof of Lemma 3.14. The inequality ρ < 0 follows from Propositions 3.15 and
3.16. This, together with the argument at the beginning of the proof of Lemma 3.14, proves the
lemma.

End of proof of Theorem 1.2. We have already proved that the abscissas of the adjacencies
are integers. Recall that for each adjacency each of the corresponding functions ψj |S1

τ
, j = 1, 2,

takes values either on one side of the unit circle or on the unit circle itself. One of the following
three cases holds:

(i) The functions ψj |S1
τ
, j = 1, 2, take values on different sides of the unit circle; here we also

include the case in which |ψj |
∣∣
S1
τ
≡ 1 for some j = 1, 2.

(ii) |ψj |
∣∣
S1
τ
< 1 for all j = 1, 2.

(iii) |ψj |
∣∣
S1
τ
> 1 for all j = 1, 2.

In the first case, ρ = a by Lemma 3.12. In the second case, ρ � a < 0 by Lemma 3.14.
The third case can be reduced to the second by the change of variables (x, t) �→ (−x, t + π) (or
(p, τ ) �→ (p−1,−τ ) in the coordinates (p, τ )). The last change of variables takes a class J equation
to the same equation but changes the signs of the parameter a and the rotation number. This,
together with the preceding assertion, implies that the inequality 0 < a � ρ holds in the third case.
For a = 0, we have ρ = 0 by Proposition 3.5. This proves Theorem 1.2.

3.4. Experimental fact A in the general case: state of the art. Experimental fact A
claiming that ρ = a for every adjacency has been proved for |ν| � 1 (Theorem 1.2). It is expected
to be true for every ν �= 0.

Theorem 3.17. The difference ρ− a is even for each adjacency. If it is nonzero, then either
ρ < a < 0 or 0 < a < ρ.

Theorem 3.17 follows from Lemma 3.8 and Theorem 1.2.
Let (ν, a, s) be an adjacency. Let ψ1 and ψ2 be the solutions, holomorphic at zero, of the

corresponding Riccati equation (2.7) in Proposition 2.10.
As is shown below, one has ρ = a under the following condition:



13

Condition (∗) on the Riccati equation (2.7). Either ψ1(τ ) has no poles in the unit disk
and |ψ1|

∣∣
S1
τ
� 1, or ψ2(τ ) has no poles in the unit disk and |ψ2|

∣∣
S1
τ
� 1.

Lemma 3.18. Let (ν, a, s) be an adjacency (s �= 0). Then ρ = a if and only if the corresponding
Riccati equation satisfies condition (∗).

Lemma 3.18 follows from Lemma 3.8, whose counterpart remains valid for the case in which
|ψ2|

∣∣
S1
τ
� 1, with ψ1 replaced by ψ2 and the number of poles replaced by the number of zeros.

Conjecture C. Condition (∗) holds for every adjacency.

Experimental fact A is equivalent to Conjecture C by Lemma 3.18.

The authors are grateful to V. M. Buchstaber, E. Ghys, Yu. S. Ilyashenko, A. V. Klimenko,
and O. L. Romaskevich for helpful discussions.
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