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Abstract. We consider universal off-shell Bethe vectors given in terms of Drin-

feld realization of the algebra Uq(̂glN ) [10,12]. We investigate ordering prop-
erties of the product of the transfer matrix and these vectors. We derive that
these vectors are eigenvectors of the transfer matrix if their Bethe parameters
satisfy the universal Bethe equations [1].

1. Introduction

Algebraic Bethe ansatz for quantum integrable models with gl2 symmetry as well
as hierarchical Bethe ansatz for models with higher rank symmetries solves the
eigenvalue problem for the set of the commuting quantum integrals of motion.
The eigenvectors in these methods are built from the matrix elements of the mon-
odromy matrix which satisfies Yang–Baxter relation defined by the quantum R-
matrix. Quantum integrable models solvable by these methods correspond to the
different monodromy matrices and quantum R-matrices. Monodromy matrices can
be obtained by considering the different representations of the quadratic algebras
which have the same type of defining relations as monodromy matrices have. In
this case one can use the generating series of the elements of this quadratic alge-
bra as kind of the universal monodromy matrix and try to reformulate the Bethe
ansatz on the universal level without specification to any concrete representations
or concrete integrable model.

Such an approach to find the eigenvalues for the quantum integrable models
with different boundary conditions and symmetries was elaborated in [1] using
certain analytical assumptions on the structure of these eigenvalues. This method
is called analytical Bethe ansatz and by construction was unable to yield an infor-
mation on the structure of the corresponding eigenvectors. In case of the models
with glN symmetry the method to build the eigenvectors from the matrix elements
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of the monodromy matrices was designed in [15, 18–20] generalizing an approach
of the hierarchical Bethe ansatz formulated in [14]. Authors of these papers used
the universal monodromy which satisfies the commutation relations of the glN

Yangian or Borel subalgebra in the quantum affine algebra Uq(̂glN ) to construct
the universal Bethe vectors of the hierarchical Bethe ansatz in terms of the matrix
elements of the corresponding fundamental L-operators.

Quantum affine algebra and their rational analogs – the Yangian doubles –
have an alternative to the L-operator description [17] in term of currents [2, 5].
For the quantum affine algebras, it was proved in [11] that the modes of Drinfeld
currents coincide with Cartan–Weyl generators of these algebras constructed from
the finite set of Chevalley generators. One may address the question whether it
is possible to construct the universal Bethe vectors from the current generators
of the quantum affine algebra which serves as symmetry for some quantum inte-
grable models. This problem was investigated in [7] on a rather general level and it
was shown that in order to build the universal Bethe vectors from Cartan–Weyl or
current generators of the algebra one has to consider different types of Borel subal-
gebras in the quantum affine algebras. In this paper it was suggested to construct
universal off-shell Bethe vectors for arbitrary quantum affine algebra as certain
projections of products of the currents onto intersections of Borel subalgebras of
different types. The generating parameters of the currents become after this iden-
tification the Bethe parameters. The papers [12, 16] contain detailed analysis of
these projections for quantum affine algebra Uq(̂glN ). In particular, these projec-
tions are explicitly expressed via entries of the fundamental monodromy matrix
and are identified with off-shell Bethe vectors of the nested Bethe ansatz [14].

An algebraic Bethe ansatz always uses a special vector which is annihilated
by some ideal in the symmetry algebra (bare vacuum) and Bethe vectors are
obtained by the application of the universal Bethe vectors to this vector. From
the representation theory point of view we will call such bare vacuum a weight
singular vector. The Cartan–Weyl generators have a good property: their products
can be ordered in a natural way. If we are able to express the commuting integrals
as well as the universal Bethe vectors in terms of these generators, we may rise the
question: what is special in the universal Bethe vectors if their Bethe parameters
satisfy the universal Bethe equations. In this paper we address this question for the
quantum affine algebra Uq(̂glN ). We found that the Cartan–Weyl ordering of the
product of the universal transfer matrix and the universal Bethe vector produces
the same Bethe vectors modulo elements of the ideal which annihilates the bare
vacuum if the Bethe parameters satisfy the universal Bethe equations from [1].

All our calculations are performed on the level of generating series and the
main technical trick which helps us to perform the ordering calculations is the
identity (3.30) which is a particular case of more general relations between off-
shell Bethe vectors obtained in the paper [13] using the technique of the generating
series.

The paper is composed as follows. In Section 2, all necessary statements for
the different realizations of the quantum affine algebra Uq(̂glN ) are given and the
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main assertion of the paper is formulated as the Theorem 1. Section 3 collects
propositions which describe the ordering of the generating series of the Cartan–
Weyl or current generators. There, an identity (3.30) is formulated: it is a new
type of hierarchical relation between universal off-shell Bethe vectors expressed in
terms of the current generators. Section 4 is devoted to the inductive proof of the
main Theorem 1.

2. Basic algebraic structures

2.1. Uq(̂glN ) as a quantum double

Let q be a complex parameter not equal to zero or to a root of unity. Let Eij ∈
End(CN ) be a matrix with the only nonzero entry equal to 1 at the intersection
of the i-th row and j-th column. Let R(u, v) ∈ End(CN ⊗ C

N ) ⊗ C[[v/u]],

R(u, v) =
∑

1≤i≤N

Eii ⊗ Eii +
u − v

qu − q−1v

∑

1≤i<j≤N

(Eii ⊗ Ejj + Ejj ⊗ Eii)

+
q − q−1

qu − q−1v

∑

1≤i<j≤N

(uEij ⊗ Eji + vEji ⊗ Eij)
(2.1)

be a trigonometric R-matrix associated with the vector representation of glN .
We will consider an associative algebra Uq(̂glN ) with unit as a quantum

double [4] of its Borel subalgebra generated by the modes L+
i,j [k], k ≥ 0, 1 ≤

i, j ≤ N of the L-operators L+(z) =
∑∞

k=0

∑N
i,j=1 Eij ⊗ L+

i,j [k]z−k, L+
j,i[0] = 0,

1 ≤ i < j ≤ N subject to the relations

R(u, v) ·
(

L+(u) ⊗ 1
)

·
(

1 ⊗ L+(v)
)

=
(

1 ⊗ L+(v)
)

·
(

L+(u) ⊗ 1
)

·R(u, v) (2.2)

with a standard coproduct

Δ
(

L+
i,j(u)

)

=
N
∑

k=1

L+
k,j(u) ⊗ L+

i,k(u) . (2.3)

We denote this subalgebra Uq(b+) ⊂ Uq(̂glN ) and call it a standard Borel subal-
gebra of Uq(̂glN ). In (2.2) 1 =

∑N
i=1 Eii.

According to the general theory [4] the whole algebra Uq(̂glN ) is generated
by the modes of the L-operator L+(z) and by the modes of the dual L-operator
L−(z) =

∑−∞
k=0

∑N
i,j=1 Eij ⊗ L−

i,j [k]z−k, L−
i,j [0] = 0, 1 ≤ i < j ≤ N . The dual

Borel subalgebra Uq(b−) has the same algebraic and coalgebraic properties (2.2)
and (2.3) with L+(z) replaced by L−(z) everywhere. The commutation relation
between opposite Borel subalgebras

R(u, v) ·
(

L+(u) ⊗ 1
)

·
(

1 ⊗ L−(v)
)

=
(

1 ⊗ L−(v)
)

·
(

L+(u) ⊗ 1
)

·R(u, v) , (2.4)

can be calculated using the non-degenerated pairing between these subalgebras.
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The standard description of the quantum affine algebra Uq(̂glN ) with dropped
gradation element and at vanishing central element can be obtained from the
algebra Uq(̂glN ) by imposing one more relation

L+
i,i[0]L−

i,i[0] = 1 i = 1, . . . , N . (2.5)

Here we shall not assume this restriction. We shall require only invertibility of the
zero modes of the diagonal matrix elements of L-operators.

2.2. Current realization of Uq(̂glN )

To obtain the current realization of the algebra Uq(̂glN ) [5] one has to introduce,
according to [2], the Gauss coordinates of the L-operators. There are two different
ways of introducing Gauss decompositions of L-operators. Each of these two pos-
sibilities leads to hierarchical relations for the universal Bethe vectors given by the
hierarchical Bethe ansatz. One type of hierarchy occurs when the smaller algebra
L-operator is embedded in the upper-left corner of the bigger algebra L-operator.
The second type corresponds to the embedding in the down-right corner [16, 20].
In this paper we will use the latter embedding. Then, Gauss coordinates F±

b,a(t),
E±

a,b(t), b > a and k±
c (t) are given by the decomposition:

L±(z) =

(

1 +
N
∑

a<b

F±
b,a(z)Eab

)

·
(

N
∑

a=1

k±
a (z)Eaa

)

·
(

1 +
N
∑

a<b

E±
a,b(z)Eba

)

(2.6)

that is to say

L±
a,b(t) = F±

b,a(t)k+
b (t) +

∑

b<m≤N

F±
m,a(t)k+

m(t)E±
b,m(t) , a < b , (2.7)

L±
b,b(t) = k±

b (t) +
∑

b<m≤N

F±
m,b(t)k

±
m(t)E±

b,m(t) , (2.8)

L±
a,b(t) = k±

a (t)E±
b,a(t) +

∑

a<m≤N

F±
m,a(t)k±

m(t)E±
b,m(t) , a > b . (2.9)

Considering the linear combinations of the Gauss coordinates

Fi(t) = F+
i+1,i(t) − F−

i+1,i(t) , Ei(t) = E+
i,i+1(t) − E−

i,i+1(t) (2.10)
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and diagonal Gauss coordinates k±
i (t) one can obtain the defining relations [2, 5]:

(q−1z − qw)Ei(z)Ei(w) = Ei(w)Ei(z)(qz − q−1w) ,

(z − w)Ei(z)Ei+1(w) = Ei+1(w)Ei(z)(q−1z − qw) ,

k±
i (z)Ei(w)

(

k±
i (z)

)−1 =
z − w

q−1z − qw
Ei(w) ,

k±
i+1(z)Ei(w)

(

k±
i+1(z)

)−1 =
z − w

qz − q−1w
Ei(w) ,

k±
i (z)Ej(w)

(

k±
i (z)

)−1 = Ej(w) , if i �= j, j + 1 ,

(qz − q−1w)Fi(z)Fi(w) = Fi(w)Fi(z)(q−1z − qw) , (2.11)

(q−1z − qw)Fi(z)Fi+1(w) = Fi+1(w)Fi(z)(z − w) ,

k±
i (z)Fi(w)

(

k±
i (z)

)−1 =
q−1z − qw

z − w
Fi(w) ,

k±
i+1(z)Fi(w)

(

k±
i+1(z)

)−1 =
qz − q−1w

z − w
Fi(w) ,

k±
i (z)Fj(w)

(

k±
i (z)

)−1 = Fj(w) , if i �= j, j + 1 ,
[

Ei(z), Fj(w)
]

= δi,j δ(z/w)(q−q−1)
(

k+
i (z)/k+

i+1(z)−k−
i (w)/k−

i+1(w)
)

and the Serre relations for the currents Ei(z) and Fi(z)

Symz1,z2

(

Ei(z1)Ei(z2)Ei±1(w) − (q + q−1)Ei(z1)Ei±1(w)Ei(z2)

+ Ei±1(w)Ei(z1)Ei(z2)
)

= 0 ,

Symz1,z2

(

Fi(z1)Fi(z2)Fi±1(w) − (q + q−1)Fi(z1)Fi±1(w)Fi(z2)

+ Fi±1(w)Fi(z1)Fi(z2)
)

= 0 .

(2.12)

The generating series Fi(z), Ei(z) and k±
j (z) are called total and Cartan currents

respectively. Formulae (2.11) and (2.12) should be considered as formal series
identities describing an infinite set of relations between modes of the currents.
The symbol δ(z) entering these relations is the formal series

∑

n∈Z
zn.

The algebra Uq(̂glN ) in its current realization can be also obtained in the
framework of the quantum double construction choosing another type of the Borel
subalgebra. It can be constructed as the quantum double from the subalgebra UF

generated by the modes of the currents Fi[n], k+
j [m], i = 1, . . . , N−1, j = 1, . . . , N ,

n ∈ Z and m ≥ 0. One may easily see from the commutation relations (2.11) that
this is an subalgebra in Uq(̂glN ), but for the quantum double construction one has
to choose for this subalgebra a coalgebraic structure different from (2.3) [5]:

Δ(D)
(

Fi(z)
)

= 1 ⊗ Fi(z) + Fi(z) ⊗ k+
i (z)

(

k+
i+1(z)

)−1
,

Δ(D)
(

k+
i (z)

)

= k+
i (z) ⊗ k+

i (z) .
(2.13)

We call UF a current Borel subalgebra of Uq(̂glN ).



518 L. Frappat et al. Ann. Henri Poincaré

The dual current Borel subalgebra UE ⊂ Uq(̂glN ) is generated by modes of
the currents Ei[n], k−

j [−m], i = 1, . . . , N − 1, j = 1, . . . , N , n ∈ Z and m ≥ 0 with
coalgebraic structure

Δ(D)
(

Ei(z)
)

= Ei(z) ⊗ 1 + k−
i (z)

(

k−
i+1(z)

)−1 ⊗ Ei(z) ,

Δ(D)
(

k−
i (z)

)

= k−
i (z) ⊗ k−

i (z).

In the L-operator formulation of Uq(̂glN ) we do not use the restriction (2.5).
In the current realization of the same algebra we shall not assume the relations

k+
i [0]k−

i [0] = 1 , i = 1, . . . , N . (2.14)

The latter relations are standard in the realization of the quantum affine algebra
Uq(̂glN ) through a quantum double construction [5]. This realization of the quan-
tum affine algebra Uq(̂glN ) can be obtained from Uq(̂glN ) by imposing the relation
(2.14).

2.3. Cartan–Weyl generators of Uq(̂glN )

The current realization of Uq(̂glN ) uses currents corresponding to the simple roots
of glN only. The modes of these currents can be identified with a part of the
Cartan–Weyl generators of this quantum affine algebra. Instead of the rest Cartan–
Weyl generators we will use the generating series introduced for the first time in [3]
where they were called the composed currents.

Denote by UF an extension of the current Borel subalgebra UF formed by the
linear combinations of series, given as infinite sums of monomials ai1 [n1] · · · aik

[nk]
with n1 ≤ · · · ≤ nk, and n1 + · · ·+nk fixed, where ail

[nl] is either Fil
[nl] or k+

il
[nl].

Analogously, denote by UE an extension of the dual current Borel subalgebra UE

formed by the linear combinations of series, given as infinite sums of monomials
bi1 [n1] · · · bik

[nk] with n1 ≤ · · · ≤ nk, and n1 + · · ·+nk fixed, where bil
[nl] is either

Eil
[nl] or k−

il
[nl].

First we define the composed currents Fj,i(t), i < j as the series with co-
efficients in UF . The definition of the composed currents may be written in the
analytical form

Fj,i(t) = − res
w=t

Fj,a(t)Fa,i(w)
dw

w
= res

w=t
Fj,a(w)Fa,i(t)

dw

w
(2.15)

for any a = i + 1, . . . , j − 1. It is equivalent to the relation

Fj,i(t) =
∮

Fj,a(t)Fa,i(w)
dw

w
−
∮

q−1 − qt/w

1 − t/w
Fa,i(w)Fj,a(t)

dw

w
,

Fj,i(t) =
∮

Fj,a(w)Fa,i(t)
dw

w
−
∮

q−1 − qw/t

1 − w/t
Fa,i(t)Fj,a(w)

dw

w
.

(2.16)

In (2.16) we set
∮

dw
w g(w) = g0 for any formal series g(w) =

∑

n∈Z
gnz−n.
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Using the relations (2.11) on Fi(t) we can calculate the residues in (2.15) and
obtain the following expressions for Fj,i(t), i < j:

Fj,i(t) = (q − q−1)j−i−1Fi(t)Fi+1(t) · · ·Fj−1(t) . (2.17)

For example, Fi+1,i(t) = Fi(t), and Fi+2,i(t) = (q − q−1)Fi(t)Fi+1(t). Formulas
(2.17) prove the consistency of the defining relations for the composed currents
(2.15) or (2.16), since they yield to the same answers for all possible values i <
a < j.

Calculating formal integrals in (2.16) we obtain the following presentation
for the composed currents:

Fj,i(t) = Fj,a(t)Fa,i[0]−q−1Fa,i[0]Fj,a(t)+(q−q−1)
∑

k<0

Fa,i[k]Fj,a(t) t−k , (2.18)

Fj,i(t) = Fj,a[0]Fa,i(t)−qFa,i(t)Fj,a[0]+(q−q−1)
∑

k≥0

Fa,i(t)Fj,a[k] t−k . (2.19)

Composed currents Ei,j(t) are defined analogously as the series with coeffi-
cients which belong to the completed current Borel subalgebra UE .

The fact that current generators for the quantum affine algebras form the
part of the Cartan–Weyl basis in these algebras was proved in [11]. There exists
a natural ordering in the Cartan–Weyl basis. If the generator eγ corresponds to
a positive root γ = α + β, where α and β are the roots, then these generators
are ordered either in a way eα ≺ eγ ≺ eβ or in the way eβ ≺ eγ ≺ eα. An
important property of the Cartan–Weyl basis of a Borel subalgebra is that the
q-commutator of any two generators from this subalgebra, say eα and eβ , is a
linear combination of monomials which contain only the products of generator eγi

which are ‘between’ eα and eβ : eα ≺ eγi
≺ eβ or eα 	 eγi

	 eβ . An important
application of this property is that using it one can order arbitrary monomials of
the generators.

The ordering on the Borel subalgebra can be extended to the ordering of the
whole set of Cartan–Weyl generators corresponding to the positive and negative
roots such that the same ordering property is valid. This ordering is called ‘circular’
or ‘convex’ and it allows to order arbitrary monomials in the whole algebra [7].
For the goals of our paper we will need the following specialization of this circular
ordering of the current generators in the algebra Uq(̂glN ).

Define the intersections of the different type Borel subalgebras in Uq(̂glN ):

U−
E = UE ∩ Uq(b−) , U−

f = Uq(b−) ∩ UF ,

U+
F = UF ∩ Uq(b+) , U+

e = Uq(b+) ∩ UE . (2.20)

Let Uf and Ue be subalgebras of Uq(̂glN ) formed by the modes of the currents
Fi(z) and Ei(z) respectively. Subalgebras U−

E and U+
F can be also decomposed

into subalgebras U−
e , U−

k and U+
f , U+

k , where

U−
e = Ue ∩ U−

E , U+
f = Uf ∩ U+

F (2.21)
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Uq(b−)
︷ ︸︸ ︷

Uq(b+)
︷ ︸︸ ︷

�

U−
E

�

�

�

�

U−
e

U−
k

U−
f

U+
e

�
�

�
	Ue

U+
f

�
�

�
	Uf

U+
k

�

�

�

�
U+

F

. . . . . . . . . . . . . . . . . ..
...

...
...

. . . . . . . . . . . . . . . . . . . . . . . .

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

}

UE

⎫

⎪

⎪

⎬

⎪

⎪

⎭

UF

Figure 1. Subalgebras of Uq(̂glN ). Vertical dotted line separates
standard Borel subalgebras. Horizontal dotted line separates cur-
rent Borel subalgebras. Horizontal solid axis shows increasing of
the modes of the current generators. Ovals signify different sub-
algebras in the standard and current Borel subalgebras of
Uq(̂glN ).

and U±
k are defined by the isomorphisms

U+
f ⊗ U+

k → U+
F = U+

f ·U+
k , U−

e ⊗ U−
k → U−

E = U−
e ·U−

k .

Different relations between these subalgebras are represented schematically in Fig-
ure 1.

We fix a ‘circular’ ordering ‘≺’ on the generators of Uq(̂glN ) (see [7]), such
that:

· · · ≺ U−
k ≺ U−

f ≺ U+
f ≺ U+

k ≺ U+
e ≺ U−

e ≺ U−
k ≺ · · · . (2.22)

Definition 2.1. We will call an element W ∈ Uq(̂glN ) normal ordered and denote it
as : W : if it is presented as the linear combinations of the products the elements
W1 ·W2 ·W3 ·W4 ·W5 ·W6 such that

W1 ∈ U−
f , W2 ∈ U+

f , W3 ∈ U+
k , W4 ∈ U+

e ,

W5 ∈ U−
e , W6 ∈ U−

k . (2.23)

We may consider standard Borel subalgebras as ordered with respect to the
circular ordering (2.22):

Uq(b−) = U−
e ·U−

k ·U−
f , Uq(b+) = U+

f ·U+
k ·U+

e .

Analogous statement is valid for the current Borel subalgebras:

UF = U−
f ·U+

f ·U+
k , UE = U+

e ·U−
e ·U−

k .
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2.4. Projections and universal off-shell Bethe vectors

It was proved in [10] that the subalgebras U−
f and U+

F are coideals with respect
to the Drinfeld coproduct (2.13)

Δ(D)(U+
F ) ⊂ Uq(̂glN ) ⊗ U+

F , Δ(D)(U−
f ) ⊂ U−

f ⊗ Uq(̂glN ) ,

and that the multiplication m in Uq(̂glN ) induces an isomorphism of vector spaces

m : U−
f ⊗ U+

F → UF .

According to the general theory presented in [7] we define projection operators
P+

f : UF ⊂ Uq(̂glN ) → U+
F and P−

f : UF ⊂ Uq(̂glN ) → U−
f by the prescriptions

P+
f (f− f+) = ε(f−) f+ , P−

f (f− f+) = f− ε(f+) ,

for any f− ∈ U−
f , f+ ∈ U+

F .
(2.24)

It was also proved in [7] that
(1) projections (2.24) can be extended to the algebra UF ;
(2) for any f ∈ UF with Δ(D)(f) =

∑

i f ′
i ⊗ f ′′

i we have

f =
∑

i

P−
f (f ′′

i ) ·P+
f (f ′

i) . (2.25)

Analogously, we may define projections of the dual current Borel subalgebras UE :
P−

e : UE → U−
E and P+

e : UE → U+
e .

Let n̄ = {n1, n2, . . . , nN−2, nN−1} be a set of non-negative integers. Denote
by t̄[n̄] the set of formal variables:

t̄[n̄] =
{

t11, . . . , t
1
n1

; t21, . . . , t
2
n2

; . . . . . . ; tN−2
1 , . . . , tN−2

nN−2
; tN−1

1 , . . . , tN−1
nN−1

}

. (2.26)

The variable tak is of type a. If na = 0 for some a, then the variables of type a
are absent in the set (2.26). Denote by WN (t̄[n̄]) the universal weight function
associated with the set of variables (2.26):1

WN (t̄[n̄]) = P+
f

(

FN−1(tN−1
nN−1

) · · ·FN−1(tN−1
1 ) · · · F1(t1n1

) · · ·F1(t11)
)

. (2.27)

By definition, the universal weight function (2.27) is a formal Laurent series
of all variables 1/tai , the ratios tbk/tcl with b < c and tai /taj with i < j taking values
in the completion UF :

WN (t̄[n̄]) ∈ A[[{1/tam, tbk/tcl |b<c, t
d
i /tdj |i<j}]][{tem}] , A = UF .

The calculations made in [12] show that it is indeed a formal power series in the
variables 1/tai , tbk/tcl with b < c and tai /taj with i < j taking values in UF .

It was proved in [7, 10] that this projection satisfies the comultiplication
properties of the off-shell Bethe vectors of the hierarchical Bethe ansatz [14].
In [9], a method of calculation of the projection (2.27) based on the ordering

1In contrast to the paper [13], here we will not normalize the universal weight function by the
product of factorials.
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property (2.25) was proposed. Then in [12, 16], this method was applied to the
quantum affine algebra Uq(̂glN ). It was proved there that the calculation of the
projection (2.27) produces the same hierarchical relations for the universal off-shell
Bethe vectors as were found in [20] using combinatorial methods in the framework
of the standard hierarchical Bethe ansatz.

We call a vector v a weight singular vector if it is annihilated by any positive
mode Ei[n], i = 1, . . . , N − 1, n > 0 and is an eigenvector for k+

i (t), i = 1, . . . , N

E+
i,i+1(t) · v = 0 , k+

i (t) · v = λi(t) v , (2.28)

where λi(t) is a meromorphic function, decomposed as a power series in t−1. The
L-operator (2.6), acting on a weight singular vector v, becomes upper-triangular

L+
ij(t) v = 0 , i > j , L+

ii(t) v = λi(t) v , i = 1, . . . , N . (2.29)

Definition 2.2. We note J the left ideal of Uq(b+), generated by all elements of
the form Uq(b+) ·Ei[n], i = 1, . . . , N − 1, n > 0 (equivalently, by all modes of
Uq(b+) ·E+

i,j(t), 1 ≤ i < j ≤ N).
Equalities in Uq(b+) modulo element from the ideal J we denote by the

symbol ‘∼J ’.

It is clear that W · v = 0 for any element W ∈ J and arbitrary weight singular
vector v.

We call a (universal) transfer matrix the trace of L-operator

TN (t) =
N
∑

i=1

L+
i,i(t) =

N
∑

i=1

⎛

⎝k+
i (t) +

N
∑

j=i+1

F+
j,i(t) k+

j (t) E+
i,j(t)

⎞

⎠ . (2.30)

The Gauss coordinates F+
j,i(t), E+

i,j(t) coincide with the projections of the corre-
sponding composed currents and can be expressed through modes of the currents
from subalgebras U+

f and U+
e (see section 3.1). Note that the presentation (2.30)

of the transfer matrix TN (t) is normal ordered according to the circular ordering
(2.22) and TN (t) ∼J

∑N
i=1 k+

i (t).

Definition 2.3. Let B be the left ideal of Uq(b+), generated by all elements of the
form U+

F · b, where b are the modes of the series

bi
j(t̄[n̄]) =

k+
i (tij)

k+
i+1(t

i
j)

−
ni
∏

m=1
m �=j

q − q−1tim/tij
q−1 − qtim/tij

ni−1
∏

m=1

1 − ti−1
m /tij

q − q−1ti−1
m /tij

ni+1
∏

m=1

q−1 − qti+1
m /tij

1 − ti+1
m /tij

.

(2.31)
Here i = 1, . . . , N − 1, j = 1, . . . , ni. Equalities in Uq(b+) modulo elements from
the ideal B we denote by the symbol ‘∼B’. We call this ideal the Bethe ideal and
equations for the set of the Bethe parameters {tij}

bi
j(t̄[n̄]) = 0 , i = 1, . . . , N − 1 , j = 1, . . . , ni , (2.32)

the universal Bethe equations.
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The main statement of this paper is

Theorem 1. A formal series identity with coefficients in Uq(b+)

TN (t) ·WN (t̄[n̄]) −WN (t̄[n̄]) · τN (t; t̄[n̄]) ∼J,B 0 (2.33)

is valid modulo elements from the ideals J and B. Here

τN (t; t̄[n̄]) =
N
∑

i=1

k+
i (t)

ni−1
∏

j=1

q − q−1ti−1
j /t

1 − ti−1
j /t

ni
∏

j=1

q−1 − qtij/t

1 − tij/t
(2.34)

is an eigenvalue of the universal transfer matrix.

One may understand the universal Bethe equations (2.32) as a relation be-
tween Bethe parameters t̄[n̄] with coefficients in the commutative subalgebra U+

k ⊂
Uq(b+) generated by the modes of the commuting Cartan currents k+

i (t). In a rep-
resentation with a generating singular vector v these modes are being replaced by
the corresponding eigenvalues of v.

Proving the statement of Theorem 1 we will try to present the product
TN (t) ·WN (t̄[n̄]) in the normal ordered form according to the ordering given in
Definition 2.1. After performing this ordering we will observe that subtraction of
the ordered product WN (t̄[n̄]) · τN (t; t̄[n̄]) results only in the terms which belong
either to the ideal J or to the ideal B.

For any weight singular vector v, let wN
V (t̄[n̄]) = WN (t̄[n̄]) v be the weight

function taking value in the Uq(̂glN )-module V generated by v and

wN
V (t̄[n̄]) = β(t̄[n̄])

N
∏

a=2

na−1
∏

�=1

λa(ta−1
� ) wN

V (t̄[n̄]) (2.35)

be the corresponding modified weight function [10]. Here

β(t̄[n̄]) =
N−1
∏

a=1

∏

1≤�<�′≤na

q − q−1ta� /ta�′

1 − ta� /ta�′
.

According to [10, 12, 20] we call the modified weight function (2.35) universal off-
shell Bethe vector. The Theorem 1 has obvious

Corollary 2.4. Universal off-shell Bethe vector is an eigenvector of the universal
transfer matrix

TN (t) ·wN
V (t̄[n̄]) = wN

V (t̄[n̄]) ·

⎛

⎝

n
∑

i=1

λi(t)
ni−1
∏

j=1

qt − q−1ti−1
j

t − ti−1
j

ni
∏

j=1

q−1t − qtij
t − tij

⎞

⎠

if Bethe equations of Uq(̂glN ) hierarchical Bethe ansatz are satisfied:

λi(tij)
λi+1(tij)

=
ni
∏

m �=j

qtij − q−1tim
q−1tij − qtim

ni−1
∏

m=1

tij − ti−1
m

qtij − q−1ti−1
m

ni+1
∏

m=1

q−1tij − qti+1
m

tij − ti+1
m

.
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3. Proofs

We will prove the Theorem 1 by induction over N . First, we check that the state-
ment of the theorem is valid in the simplest case N = 2. Then, assuming the
correctness of the statement for the algebra Uq(̂glN ) we will prove it for the alge-
bra Uq(̂glN+1). The L-operator of the smaller algebra Uq(̂glN ) will be embedded
into right down corner of the L-operator for the bigger algebra Uq(̂glN+1). This
embedding is in accordance with the Gauss decomposition (2.6). The main tech-
nical tool will be a special presentation of the universal weight function based on
the main property of the projections (2.24). This allows to reduce the calculation
of the ordering to the commutations of the Gauss coordinates and total currents,
which is much simpler than the exchange relations of these coordinates with the
projection (2.27).

3.1. Relation between Gauss coordinates and the currents

In order to perform the proof of the main theorem we need to establish a precise
relation between all Gauss coordinates and the currents. This was done partially
in [10] and here we repeat this calculations for the sake of completeness. Note that
the paper [2] yields these relations only for currents corresponding to simple roots.

Set SA(B) = BA− q−1AB. Projections of composed currents can be defined
using q-commutators with zero modes of the currents Fi(t), i = 1, . . . , N − 1. We
will call the operators SFi[0] ≡ Si the screening operators.

Proposition 3.1. We have

P+
f

(

Fj,i(t)
)

= Si

(

P+
f

(

Fj,i+1(t)
)

)

,

P−
f

(

Fj,i(t)
)

= −q Sj−1

(

P−
f

(

Fj−1,i(t)
)

)

, i < j − 1 . (3.1)

Proof. We apply the projection P+
f to both sides of the relation (2.18) with a =

i+1 and the projection P−
f to both sides of the relation (2.19) with a = j−1. The

modes Fi[k] with k < 0 belong to U−
f and the modes Fj−1[k] with k ≥ 0 belong to

U+
f . Hence, due to formulae (2.24), the projections P±

f both kill the semi-infinite
sum in the right hand side of (2.18) and (2.19), and we get

P+
f

(

Fj,i(t)
)

= P+
f

(

Fj,i+1(t)Fi[0] − q−1 Fi[0]Fj,i+1(t)
)

= P+
f

(

Si

(

Fj,i+1(t)
)

)

= Si

(

P+
f

(

Fj,i+1(t)
)

) (3.2)

and
P−

f

(

Fi,j(t)
)

= −q P−
f

(

Fj−1,i(t)Fj,j−1[0] − q−1Fj,j−1[0]Fj−1,i(t)
)

= −q P−
f

(

Sj−1

(

Fj−1,i(t)
)

)

= −q Sj−1

(

P−
f

(

Fj−1,i(t)
)

)

.
(3.3)

To get the last equalities we use the fact proved in [9] that the projection P±
f

commutes with the screening operators Si: P±
f

(

Si(W )
)

= Si

(

P±
f (W )

)

for any
W ∈ Uf . �
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The screening operators also relate the Gauss coordinates of the L-operators.

Lemma 3.2. We have

(q − q−1)F±
j,i(t) = Si

(

F±
j,i+1(t)

)

, i < j − 1 . (3.4)

Proof of this lemma was given in [10]2 and is based on the commutation relation
between matrix elements L+

i,i+1(s) and L±
i+1,j(t). One should consider the coeffi-

cients at the zero power of the spectral parameter s in these relations and take
into account that L+

i,i+1[0] = Fi[0]k+
i+1[0] and L+

i+1,i+1[0] = k+
i+1[0]. �

Proposition 3.1 and Lemma 3.2 imply the following

Proposition 3.3. We have

P+
f

(

Fj,i(t)
)

= (q − q−1)j−i−1F+
j,i(t) , i < j − 1 , (3.5)

P−
f

(

Fj,i(t)
)

= −(q − q−1)j−i−1

⎛

⎝F−
j,i(t) +

j−i−1
∑

�=1

(−1)�
∑

j>i�>···>i1>i

F−
i1,i(t) · · ·F−

j,i�
(t)

⎞

⎠ . (3.6)

Proof. First equality (3.5) was proved in [10] using induction with respect to j − i
from the formula P+

f

(

Fi+1,i(t)
)

= F+
i+1,i(t) [2]. Here we shall prove (3.6). We apply

the projection P−
f to both sides of the relation (2.18) to obtain

P−
f

(

Fj,i(t)
)

= Si

(

P−
f

(

Fj,i+1(t)
)

)

+(q−q−1) P−
f

(

Fi+1,i(t)
)

·P−
f

(

Fj,i+1(t)
)

. (3.7)

Using this relation recursively and the Lemma 3.2, we get

P−
f

(

Fj,i(t)
)

+ (q − q−1)j−i−1F−
j,i(t)

+
j−1
∑

�=i+1

(q − q−1)j−� F−
�,i(t) ·P

−
f

(

Fj,�(t)
)

= 0 . (3.8)

From the identity
P−

f

(

Fi+1,i(t)
)

= −F−
i+1,i(t) (3.9)

one proves that equality (3.6) is a solution of this recurrence relation, and coincide
with it for i = j − 1. �

Proceeding in analogous way, we may relate the projections of the dual
composed currents P±

e (Ei,j(t)) with Gauss coordinates E±
i,j(t), but here we shall

need only the relations between different dual Gauss coordinates or analog of the
Lemma 3.2 for E±

i,j(t). Set ŜA(B) = AB − qBA and denote ŜEi[0] ≡ Ŝi.

2See also the proof of the analogous Lemma 3.4 below.



526 L. Frappat et al. Ann. Henri Poincaré

Lemma 3.4. We have

(q − q−1)E±
i,j(t) = Ŝi

(

E±
i+1,j(t)

)

, i < j − 1 . (3.10)

Proof. Let us consider the commutation relations between the following matrix
elements of L-operators

(t − s)
[

L±
j,i+1(t),L

−
i+1,i(s)

]

= (q − q−1)
(

tL−
i+1,i+1(s)L

±
j,i(t) − sL±

i+1,i+1(t)L
−
j,i(s)

)

,

(qt − q−1s)L−
i+1,i+1(s)L

±
j,i+1(t)

= (t − s)L±
j,i+1(t)L

−
i+1,i+1(s) + (q − q−1)sL±

i+1,i+1(t)L
−
j,i+1(s) .

Choosing the coefficients at the zero power of the spectral parameter s in these
relations and taking into account that L−

i+1,i[0] = −k−
i+1[0]Ei[0] and L−

i+1,i+1[0] =
k−

i+1[0] we obtain

(q − q−1)L±
j,i(t) = Ei[0]L±

j,i+1(t) − qL±
j,i+1(t)Ei[0] = Ŝi

(

L±
j,i+1(t)

)

. (3.11)

In order to obtain (3.10) we shall use an explicit expression for the matrix elements
of the L-operator (2.9) in terms of the Gauss coordinates. The relation (3.11)
implies (3.10) for j = N due to the commutativity of k±

N (t) and Ei[0] for i =
1, . . . , N − 2. Next, the relations (3.11) for j = N − 1 and (3.10) for j = N imply
(3.10) for j = N − 1 due to the commutativity of the Gauss coordinates k±

N−1(t),
k±

N (t) and F±
N,N−1(t) with Ei[0] for i = 1, . . . , N − 3. The statement of the lemma

follows by induction over j. �

3.2. Basic notations

Let l̄ and r̄ be two collections of nonnegative integers satisfying a set of inequalities

la ≤ ra , a = 1, . . . , N − 1 . (3.12)

Denote by [l̄, r̄] a set of segments which contain positive integers {la + 1, la +
2, . . . , ra − 1, ra} including ra and excluding la. The length of each segment is
equal to ra − la.

For a given set [l̄, r̄] of segments we denote by t̄[l̄,r̄] the sets of variables

t̄[l̄,r̄] = {t1l1+1, . . . , t
1
r1

; t2l2+1, . . . , t
2
r2

; . . . ; tN−1
lN−1+1, . . . , t

N−1
rN−1

} . (3.13)

For any a = 1, . . . , N − 1 we denote the sets of variables corresponding to the
segments [la, ra] = {la + 1, la + 2, . . . , ra} as t̄a[la,ra] = {tala+1, . . . , t

a
ra
}. All the

variables in t̄a[la,ra] have type a. For the segments [la, ra] = [0, na] we use the
shorten notations t̄[0̄,n̄] ≡ t̄[n̄] and t̄a[0,na] ≡ t̄a[na].
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For a collection of variables t̄[l̄,r̄] we consider the ordered products of the
currents

F(t̄[l̄,r̄]) =
←−
∏

N−1≥a≥1

⎛

⎝

←−
∏

ra≥�>la

Fa(ta� )

⎞

⎠

= FN−1(tN−1
rN−1

) · · ·F1(t1r1
) · · ·F1(t1l1+1) ,

(3.14)

where the series Fa(t) ≡ Fa+1,a(t) are defined by (2.10). As particular cases, we
have F(t̄a[la,ra]) = Fa(tara

) · · ·Fa(tala+2)Fa(tala+1).
The product (3.14) is a formal series over the ratios tbk/tcl with b < c and

tai /taj with i < j taking values in the algebra UF .
Symbol

∏←−
a Aa (resp.

∏−→
a Aa) means the ordered products of noncom-

mutative entries Aa, such that Aa is on the right (resp. on the left) from Ab for
b > a:

←−
∏

j≥a≥i

Aa = Aj Aj−1 · · · Ai+1 Ai ,

−→
∏

i≤a≤j

Aa = Ai Ai+1 · · · Aj−1 Aj .

Consider the permutation group Sn and its action on the formal series of n
variables defined for the elementary transpositions σi,i+1 as follows

π(σi,i+1)G(t1, . . . , ti, ti+1, . . . , tn) =
q−1 − q ti/ti+1

q − q−1 ti/ti+1
G(t1, . . . , ti+1, ti, . . . , tn) .

The q-depending factor in this formula is chosen in such a way that each product
Fa(tn) · · · Fa(t1) is invariant under this action. Summing the action over all the
group of permutations we obtain the operator Symu = 1

n!

∑

σ∈Sn
π(σ) acting as

follows3

Sym t̄ G(t̄) =
1
n!

∑

σ∈Sn

∏

�<�′

σ(�)>σ(�′)

q−1 − q tσ(�′)/tσ(�)

q − q−1 tσ(�′)/tσ(�)
G(σt) . (3.15)

The product is taken over all pairs (�, �′), such that conditions � < �′ and σ(�) >
σ(�′) are satisfied simultaneously.

We call the operator Symu a q-symmetrization. The operator Symu is the
group average with respect to the action π, so that

Sym t̄ Sym t̄ ( · ) = Sym t̄ ( · ) . (3.16)

An important property of q-symmetrization is the relation

Sym(t1,...,tn) =
s!(n − s)!

n!

∑

σ∈S
(s)
n

π(σ) Sym(t1,...,ts)Sym(ts+1,...,tn) , (3.17)

3Normalization of the q-symmetrization used here differs from the one used in the papers [12,16]

by the combinatorial factor 1
n!

.
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where s ∈ [0, n] is fixed and the sum is taken over the subset

S(s)
n =

{

σ ∈ Sn | σ(1) < · · · < σ(s) ; σ(s + 1) < · · · < σ(n)
}

.

Denote by S[l̄,r̄] = S[l1,r1]×· · ·×S[lN−1,rN−1] the direct product of the groups
S[la,ra] permuting integer numbers la + 1, . . . , ra. The q-symmetrization over the
whole set of variables t̄[l̄,r̄] is defined by the formula

Sym t̄[l̄,r̄]
G(t̄[l̄,r̄])

=
∑

σ∈S[l̄,r̄]

∏

1≤a≤N−1

⎛

⎜

⎜

⎝

1
(ra − la)!

∏

�<�′

σa(�)>σa(�′)

q−1−q taσa(�′)/taσa(�)

q−q−1 taσa(�′)/taσa(�)

⎞

⎟

⎟

⎠

G(σ t̄[l̄,r̄]) ,

(3.18)

where the set σ t̄[l̄,r̄] is defined as

σ t̄[l̄,r̄] = {t1σ1(l1+1), . . . , t
1
σ1(r1)

;

t2σ2(l2+1), . . . , t
2
σ2(r2)

; . . . ; tN−1
σN−1(lN−1+1)

, . . . , tN−1
σN−1(rN−1)

} . (3.19)

We say that the series G(t̄[l̄,r̄]) is q-symmetric, if it is invariant under the
action π of each group S[la,ra] with respect to the permutations of the variables
tala+1, . . . , tra

for a = 1, . . . , N − 1:

Sym t̄[l̄,r̄]
G(t̄[l̄,r̄]) = G(t̄[l̄,r̄]) . (3.20)

The q-symmetrization G(t̄[l̄,r̄]) = Symt̄[l̄,r̄]
Q(t̄[l̄,r̄]) of any series Q(t̄[l̄,r̄]) is a q-

symmetric series, which follows from (3.16).
Let s̄ = {s1, . . . , sN−1} be a set of nonnegative integers satisfying la ≤ sa ≤ ra

for a = 1, . . . , N − 1. The set of integers s̄ divides the set of the variables t̄[l̄,r̄] into
two subsets t̄[s̄,r̄] ∪ t̄[l̄,s̄].

Using the property of the projections (2.25) we can present any product of
the currents in a normal ordered form (in the sense of Definition 2.1):

F(t̄[l̄,r̄]) =
∑

lN−1≤sN−1≤rN−1

· · ·
∑

l1≤s1≤r1

∏

1≤a≤N−1

(ra − la)!
(sa − la)!(ra − sa)!

× Sym t̄[l̄,r̄]

(

Zs̄(t̄[l̄,r̄]) P−
f

(

F(t̄[s̄,r̄])
)

·P+
f

(

F(t̄[l̄,s̄])
)

)

,

(3.21)

where

Zs̄(t̄[l̄,r̄]) =
N−2
∏

a=1

∏

sa<�≤ra

la+1<�′≤sa+1

q − q−1 ta� / ta+1
�′

1 − ta� / ta+1
�′

. (3.22)

Equality (3.21) was proved in [12] and the proof is based on the current coproduct
property (2.13) and the exchange relations between currents.
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3.3. Special presentation of the universal weight function

Let m̄ = {m1, . . . ,mN−1} be a collection of the non-negative integers satisfying
the admissibility condition

m1 ≥ m2 ≥ m3 . . . ≥ mN−1 ≥ mN = 0 . (3.23)

We define a series depending on the set of the variables t̄[m̄] of the form

X̃(t̄[m̄]) =
N−2
∏

a=1

V (ta+1
ma+1

, . . . , ta+1
1 ; tama

, . . . , tama−ma+1+1) , (3.24)

where the rational series V ( · ; · ) is given by the formulae

Ṽ (t2k, . . . , t21; t
1
k, . . . , t11) =

k
∏

m=1

(

1
1 − t1m/t2m

k
∏

m′=m+1

q − q−1t1m′/t2m
1 − t1m′/t2m

)

=
k
∏

m=1

(

1
1 − t1m/t2m

m−1
∏

m′=1

q − q−1t1m/t2m′

1 − t1m/t2m′

)

.

(3.25)

Define a normalized ordered product of the composed currents:

S̃m̄(t̄[m̄]) = X̃(t̄[m̄])
←−
∏

N≥a>1

⎛

⎝

1
(ma−1 − ma)!

←−
∏

m1−ma≥�>m1−ma−1

Fa,1(t1�)

⎞

⎠ . (3.26)

This ordered product was called the dual string in the paper [13]. Denote the
negative projections of the q-symmetrized dual strings (3.26) as follows

Em1,m2,...,mN−1(t̄[m̄]) = P−
f

(

Sym t̄[m̄]

(

S̃m̄(t̄[m̄])
)

)

. (3.27)

Denote by Dn1,...,nN−1(t̄[n̄]) the elements of U−
f defined by the recursive relations

Sym t̄[n̄]

⎛

⎜

⎜

⎜

⎝

∑

n1≥m1≥0

· · ·
∑

nN−1≥mN−1≥0

m1≥···≥mN−1

Zm̄(t̄[n̄])Dn1−m1,...,nN−1−mN−1(t̄[m̄,n̄]) · Em1,...,mN−1(t̄[m̄])

⎞

⎟

⎟

⎟

⎠

= 0 . (3.28)

It was proved in [13] that the coefficients Dn1,...,nN−1(t̄[n̄]) defined by (3.28) are
non-zero only iff n1 ≥ n2 ≥ · · · ≥ nN−1 ≥ 0 and can be defined uniquely by means
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of (3.28) from the initial condition D0,...,0(t̄[n̄]) = 1. In particular,

D 1,...,1
︸︷︷︸

m times

,0,...,0(t1, . . . , tN−1) = −E 1,...,1
︸︷︷︸

m times

,0,...,0(t1, . . . , tN−1)

= −
m−1
∏

a=1

1
1 − ta/ta+1

P−
f

(

Fm+1,1(t1)
)

. (3.29)

Denote by t̄[s̄′] the following collection of the formal variables

t̄[s̄′] = {t21, . . . , t2s2
; . . . ; tN−1

1 , . . . , tN−1
sN−1

} ,

excluding the variables of type 1. We formulate without proof the following

Proposition 3.5 ([13]). There is a formal series identity

WN (t̄[n]) =
∑

s̄

N−1
∏

a=1

na!
sa!

Sym t̄[n]

(

Zs̄(t̄[n̄])

×Dn1−s1,...,nN−1−sN−1(t̄[s̄,n̄]) ·WN−1(t̄[s′]) ·F1(t1s1
) · · ·F1(t11)

)

.

(3.30)

In this paper we will need the following corollary of this proposition. Let
t̄[n̄′]m be the following collection of formal variables

t̄[n̄′]m = {t21, . . . , t2n2−1; . . . ;

tm1 , . . . , tmnm−1; t
m+1
1 , . . . , tm+1

nm+1
; . . . ; tN−1

1 , . . . , tN−1
nN−1

} . (3.31)

Note that t̄[n̄′]1 ≡ t̄[n̄′].

Corollary 3.6.

P+
f

(

F(t̄[n̄])
)

= P+
f

(

F(t̄[n̄′]1)
)

· F(t̄1[n1]
) −

N−1
∑

m=1

m
∏

a=1

(na) Sym t̄[n̄]

(

P−
f

(

Fm+1,1(t1n1
)
)

× P+
f

(

F(t̄[n̄′]m)
)

· F(t̄1[n1−1]) ·Zm(t̄[n̄])
)

+ W , (3.32)

where

Zm(t̄[n̄]) =
m−1
∏

a=1

⎛

⎝

1
1 − tana

/ta+1
na+1

na+1−1
∏

j=1

q − q−1tana
/ta+1

j

1 − tana
/ta+1

j

⎞

⎠

nm+1
∏

j=1

q − q−1tmnm
/tm+1

j

1 − tmnm
/tm+1

j

(3.33)
and the terms W in (3.32) are such that P+

f (: TN (t) ·W :) = 0.

Recall that F(t̄1[n1]
) = F1(t1n1

) · · ·F1(t11) and F(t̄1[n1−1]) = F1(t1n1−1) · · ·F1(t11).
The first term in the right hand side of (3.32) corresponds to the term with

all sa = na in (3.30). Each of the terms in the summation over m in (3.32)
corresponds to the following values of sm in the general formula (3.30): s1 =
n1 − 1, . . . , sm = nm − 1 and sm+1 = nm+1, . . . , sN−1 = nN−1. The corresponding
elements D1,...,1,0,...,0 are given by (3.29), which brings in (3.32) the product of the
rational factors (1 − tana

/ta+1
na+1

)−1. Other rational factors are given by the series
Zs̄(t̄[n̄]) for these particular values of s̄.
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The general structure of the terms W which are not presented explicitly in
the right hand side of (3.32) can be described as follows. The structure of the
coefficients Em1,m2,...,mN−1(t̄[m̄]) (3.27) implies that these terms will have on the
left the negative projections of the string S̃m̄(t̄[m̄]) which contains, at least, the
product of two currents Fc1,1 and Fc2,1 or the product of the several negative
projections of the strings of type (3.27). Since the projection of the string can be
always factorized to the product of the projection of the currents [12], the general
structure of the terms W will be W =

∑

P−
f (Fc1,1) ·P−

f (Fc2,1) ·W′. The elements
W

′ are some elements of UF and their exact structure is unimportant. The reason
why P+

f (: TN (t) ·W :) = 0 will be explained in the next subsection.
Note that the identity (3.30) can be proved directly using only the ordering

relations (3.21) and the rules of calculations of the negative projections from the
product of currents. Indeed, for an arbitrary product of currents F(t̄[n̄]), these
ordering relations can be written in the form

P+
f

(

F(t̄[n̄])
)

= F(t̄[n̄]) −
∑

P−
f (F ′) ·P+

f (F ′′) , (3.34)

where the number of currents in the product F ′′ is less than in the original product
F(t̄[n̄]). Thus, one can replace recursively the positive projection P+

f (F ′′) by the
right hand side of the relation (3.34) up to the obvious identity P+

f (Fi(t)) =
Fi(t)−P−

f (Fi(t)) valid for arbitrary simple current Fi(t). Calculating the negative
projections P−

f (F ′) to obtain the projections of the strings of type (3.27), we
can prove the identity (3.30) by brute force calculations. The technique of the
generating series developed in [13] yields more elegant way of proving this and
many other similar identities.

Example 3.7. Let us present an example of the general formula (3.30) in the case
N = 3, n1 = 2 and n2 = 2. To reduce the formula we will use shorthand notations
P±

f ( · ) = [ · ]±. We also denote t2i = si and t1i = ti and Sym below will be the
q-symmetrization over variables ti and si.
[

F2(s2)F2(s1)F1(t2)F1(t1)
]+ =

[

F2(s2)F2(s1)
]+

F1(t2)F1(t1)

− 2 Sym

⎛

⎝

[

F1(t2)
]−[

F2(s2)F2(s1)
]+

F1(t1)
2
∏

j=1

q−1t2 − qsj

t2 − sj

⎞

⎠

− 4 Sym
(

[

F3,1(t2)
]−[

F2(s1)
]+

F1(t1)
s2

s2 − t2

q−1t2 − qs1

t2 − s1

)

+

⎧

⎨

⎩

4 Sym

⎛

⎝

(

[

F1(t2)
]− [

F1(t1)
]− − 1

2
[

F1(t2)F1(t1)
]−
)

×
[

F2(s2)F2(s1)
]+

2
∏

i,j=1

q−1ti − qsj

ti − sj

⎞

⎠
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+ 4Sym

(

(

s2

s2 − t2

[

F3,1(t2)
]− [

F1(t1)
]− +

s2

s2 − t1

q−1t2 − qs2

t2 − s2

[

F1(t2)
]−

×
[

F3,1(t1)
]− − s2

s2 − t2

[

F3,1(t2)F1(t1)
]−
)

[

F2(s1)
]+

2
∏

i=1

q−1ti − qs1

ti − s1

)

+ 4Sym
((

[

F3,1(t2)
]−[

F3,1(t1)
]− − 1

2
[

F3,1(t2)F3,1(t1)
]−
)

× s1

s1 − t1

s2

s2 − t2

q−1t2 − qs1

t2 − s1

)

⎫

⎬

⎭

.

The terms in curly brackets correspond to the term W in (3.32).

3.4. The action of L+
a,b(t) onto P−

f (Fc,d(t))

Definition 3.8. Let I be the right ideal of Uq(̂glN ), generated by all elements of
the form Fi[n] ·Uq(b+) such that i = 1, . . . , N − 1 and n < 0. We denote equalities
modulo elements from the ideal I by the symbol ‘∼I ’.

Proposition 3.9. We have an equivalence

L+
a,b(t) ·F

−
c,d(s) ∼I δa,c

(q − q−1)s
s − t

L+
d,b(t) . (3.35)

One of our technical tools will be the rule of commuting the negative projec-
tions of the composed currents P−

f (Fc,d(t′)) with matrix elements of the fundamen-
tal L-operator L+

a,b(t). We need a result of this calculation only modulo elements
from the ideal I and call this as action of P−

f (Fc,d(t′)) onto L+
a,b(t). Due to the

relation (3.6), in order to calculate the action of the matrix elements L+
a,b(t) onto

P−
f (Fc,d(t′)) one has to calculate first the action of the matrix elements L+

a,b(t)
onto Gauss coordinates F−

c,d(t
′).

Proof of Proposition 3.9 will be done considering each fixed a.
Fix a and consider c < a. This case is simple. Formulas (3.6) can be inverted

to express the Gauss coordinates F−
c,d(s) in terms of the modes of the currents

Fd[nd], . . . , Fc−1[nc−1]. But the L-operator modes L+
a,b[n] simply commute with

these current modes and so L+
a,b(t) ·F

−
c,d(s) = F−

c,d(s) ·L
+
a,b(t) ∈ I.

The case when a = N is also simple. For this choice, we have also b = N and
L+

N,N (t) ≡ k+
N (t) commutes with the Gauss coordinates F−

c,d(s) for c = 2, . . . , N−1.
It means that L+

N,N (t) ·F−
c,d(s) ∼ 0 for c < N . Let c = N . Taking into account

that F−
N,d(s) = L−

d,N (s)L−
N,N (s)−1 and the commutation relation

L+
N,N (t)L−

d,N (s) =
qt − q−1s

t − s
L−

d,N (s)L+
N,N (t) − (q − q−1)s

t − s
L+

d,N (t)L−
N,N (s) (3.36)

we prove the statement of the proposition for a = N .
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Let a < N and c > a. First consider the case when b > c > a. We have

L+
a,b(t) ·F

−
c,d(s) = F+

b,a(t)F−
c,d(s)k

+
b (t) +

∑

j=b+1

F+
j,a(t)F−

c,d(s)k
+
j (t)E+

b,j(t)

due to the commutativity of the Gauss coordinates k+
b (t) and k+

j (t)E+
b,j(t) with

modes of the currents Fd[nd], . . . , Fc−1[nc−1] or with Gauss coordinates F−
c,d(s).

The statement of the proposition follows from the lemma.

Lemma 3.10. For b > c > d > a and b > c > a ≥ d

F+
b,a(t)F−

c,d(s) ∼I Fb,a(t)F−
c,d(s) ∈ I .

Proof is based on the commutation relations of the composed currents Fb,a(t) and
Fc,d(s). They are

t − s

qt − q−1s
Fb,a(t)Fc,d(s) =

q−1t − qs

t − s
Fc,d(s)Fb,a(t) , d < a ,

Fb,a(t)Fc,d(s) =
q−1t − qs

t − s
Fc,d(s)Fb,a(t) , d = a ,

Fb,a(t)Fc,d(s) = Fc,d(s)Fb,a(t) , d > a ,

and they take into account the Serre relations (2.12) (see details in Appendix A
of the paper [12]). The product Fb,a(t)Fc,d(s) has no pole for d ≥ a and has first
order pole at the point t = s in the case d < a, but the residue at this point of
this product is zero. It means that commuting negative projections of the current
P−

f (Fc,d(s)) through the total currents Fb,a(t) no higher currents will be created
and the result of commutation will belong to the right ideal I. Because of the
relation between negative Gauss coordinates and the negative projections of the
composed currents given by (3.6) the same statement will be true for the Gauss
coordinates. �

Next we consider the cases when c > a and c ≥ b. The statement of Propo-
sition 3.9 will be proved by a double induction over c starting from c = N
and over b starting from c. Let c = N and b = N . Then using again the fact
F−

N,d(s) = L−
d,N (s)k−

N (s)−1 and the commutation relations

L+
a,N (t)L−

d,N (s) =
t − s

q−1t − qs
L−

d,N (s)L+
a,N (t) +

(q − q−1)s
q−1t − qs

L−
a,N (t)L+

d,N (t) (3.37)

we obtain the inclusion L+
a,N (t)F−

N,d(s) ∈ I. Before considering other cases we
prove the following lemma.

Lemma 3.11. For b < c and arbitrary a < b and d < c we have

L+
a,b(t) ·L

−
d,c(s) +

(q − q−1)2ts
(t − s)2

L+
d,c(t) ·L

−
a,b(s) ∼I 0 , a �= d ,

L+
a,b(t) ·L−

a,c(s) ∼I 0 , a = d .
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Proof. The case of a = d follows from the relation

L+
a,b(t)L

−
a,c(s) =

t − s

qt − q−1s
L−

a,c(s)L
+
a,b(t) +

(q − q−1)s
qt − q−1s

L−
a,b(s)L

+
a,c(t) .

The case a < d follows from two relations
[

L+
a,b(t),L

−
d,c(s)

]

=
(q − q−1)

t − s

(

s L+
a,c(t)L

−
d,b(s) − t L−

a,c(s)L
+
d,b(t)

)

,

[

L+
a,c(t),L

−
d,b(s)

]

=
(q − q−1)t

t − s

(

L−
d,c(s)L

+
a,b(s) − L+

d,c(t)L
−
a,b(s)

)

.

The case a > d can be proved analogously. �

Return to the proof of Proposition 3.9. Keep c = N and consider b = N − 1.
Then

L+
a,N−1(t)F

−
N,d(s) = L+

a,N−1L
−
d,N (s)k−

N (s)−1

∼I − (q − q−1)ts
(t − s)2

L+
d,N (t)L−

a,N−1(s)k
−
N (s)−1

= − (q − q−1)ts
(t − s)2

L+
d,N (t)

(

F−
N−1,a(s)k−

N−1(s)

+ F−
N,a(s)k−

N (s)E−
N−1,N (s)

)

k−
N (s)−1 ,

(3.38)

where we used Lemma 3.11. Now the first term in the right hand side of (3.38)
belongs to the ideal I because the second index of L+

d,N (t) is bigger than the first
index of F−

N−1,a(s). The second term corresponds to the case c = b = N considered
above, and thus also belongs to I. Reducing b and using the Lemma 3.11 we proved
the statement for all b < N = c.

Let now c = N − 1. For the negative Gauss coordinate F−
N−1,d(s) we can use

the formula

F−
N−1,d(s) =

(

L−
d,N−1(s) − L−

d,N (s)E−
N−1,N (s)

)

k−
N−1(s)

−1 . (3.39)

To prove that the product L+
a,N−1(t)L

−
d,N−1(s) ∈ I we can use the same arguments

as for the product L+
a,N (t)L−

d,N (s). The fact that L+
a,N−1(t)L

−
d,N (s) ∈ I was already

proved above. Continuing we check that L+
a,b(t)L

−
d,N−1(s) ∈ I for all b < N − 1.

For general c we have to use instead of the formulae (3.39) the relation

F−
c,d(s) = L−

d,c(s)k
−
c (s)−1 + L−

d,c+1(s)Xc+1 + · · · + L−
d,N (s)XN , (3.40)

where the explicit form of the elements Xj ∈ Uq(b−) is not important.
At last we have to check the case a = c < N . The case a = c = N was

considered above. According to (3.40) the consideration of L+
a,b(t)F

−
a,d(s) reduces

to the analysis of the product L+
a,b(t)L

−
d,a(s)k−

a (s)−1. We have

[

L+
a,b(t),L

−
d,a(s)

]

=
(q − q−1)

t − s

(

t L−
d,b(s)L

+
a,a(t) − s L+

d,b(t)L
+
a,a(t)

)

.



Vol. 10 (2009) Bethe Ansatz for the Universal Weight Function 535

Since L−
a,a(s)k−

a (s)−1 = 1+
∑N

j=a+1 F−
j,a(s)k−

j (s)E−
a,j(s)k

−
a (s)−1 and L+

d,b(t)F
−
j,a(s)

∈ I the statement of the Proposition 3.9 is proved. �

Corollary 3.12. We have an equivalence

L+
a,b(t) ·P

−
f

(

Fc,d(s)
)

∼I δa,c
(q − q−1)c−d−1s

t − s
L+

d,b(t) . (3.41)

Proof. Let us apply the matrix element L+
a,b(t) to both side of (3.6). The first

term gives the right hand side of (3.41). Other terms produce products of the
Kronecker’s symbols δa,i1 δd,i2 δi1,i3 · · · δi�−1,c which are zero due to the restriction
d < i1 < · · · < i� < c. If � = 1 then δa,i1 δd,c = 0 since d < c. �

Let us explain why P+
f (: TN (t) ·W :) = 0, where W are the terms not shown

explicitly in the right hand side of (3.32). Due to Corollary 3.12 the action of L+
a,b(t)

onto the product of two negative projections of the currents P−
f (Fc1,1) ·P−

f (Fc2,1)
is proportional to the product of delta-symbols: δa,c1δ1,c2 . But since c2 > 1 this is
zero modulo elements of the right ideal I, which obviously satisfies P+

f (I) = 0.

4. Ordering of the universal objects

The proof of main Theorem 1 consists of a detailed analysis of the circular ordering
of the product of the transfer matrix and of the universal Bethe vectors expressed
in terms of the current generators of the quantum affine algebra Uq(̂glN ). In the
next two subsections we will perform such an analysis to the case N = 2 and prove
main Theorem 1 for the algebra Uq(̂gl2). Then we go on by induction over N .

In what follows, besides the right ideal I and the left ideal J introduced in
Definition 3.8 and Definition 2.2, we will also use the following ideal K.

Definition 4.1. We denote by K the two-sided Uq(̂glN ) ideal generated by the
elements which have at least one arbitrary mode k−

i [n], i = 1, . . . , N , n ≤ 0, of the
negative Cartan current k−

i (t).
Equalities in Uq(̂glN ) modulo element of the ideal K are denoted by the

symbol ‘∼K ’.
Equalities in Uq(̂glN ) modulo the right ideal I, the left ideal J and the two-

sided ideal K will be denoted by the symbol ‘ ≈’.

4.1. Ordering for Uq(̂gl2)

The algebra Uq(̂gl2) is generated by the modes of the Gauss coordinates k±
1 (t),

k±
2 (t), E±

12(t), F±
21(t) in the L-operator realization or by the modes of the cur-

rents k±
1 (t), k±

2 (t), E1(t), F1(t) in the current realization. The standard quantum
affine algebra Uq(̂gl2) can be obtained from Uq(̂gl2) by imposing the restriction
k+

i [0] k−
i [0] = 1, i = 1, 2. To simplify further formulas we shall not use index of the

single simple root in the notation of the Gauss coordinates and the currents, that is
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we use the following identification: E±
12(t) ≡ E±(t), F±

21(t) ≡ F±(t), E1(t) ≡ E(t),
F1(t) ≡ F (t). Let ψ±(t) = k+

1 (t)k+
2 (t)−1.

The universal transfer matrix for Uq(̂gl2) is given by the relation

T2(t) = L+
11(t)+L+

22(t) with L+
11 = k+

1 (t)+F+(t)k+
2 (t)E+(t) , L+

22(t) = k+
2 (t) ,

while a universal weight function is a projection P+
f (F(t̄)) = P+

f (F (tn) · · ·F (t1)).
We avoid to use upper index in the notation of the formal variables tj .

Proposition 4.2. There is a formal series equality in the algebra Uq(̂gl2)

T2(t) ·P+
f

(

F(t̄)
)

≈ P+
f

(

F(t̄)
)

(

n
∏

i=1

q−1 − qti/t

1 − ti/t
k+
1 (t) +

n
∏

i=1

q − q−1ti/t

1 − ti/t
k+
2 (t)

)

+ n Sym t̄

(

F+(t)k+
2 (t)F (tn) · · ·F (t2)

(q−q−1)t1/t

1−t1/t
ψ+(t1)

)

− n Sym t̄

(

F+(t)k+
2 (t)F (tn−1) · · ·F (t1)

(q−q−1)tn/t

1−tn/t

)

. (4.1)

Proof of Proposition 4.2 is based on the special presentation of the universal weight
function given by the Corollary 3.6. In this case we have

P+
f

(

F(t̄)
)

= F (tn) · · ·F (t1)−n Sym t̄

(

P−
f

(

F (tn)
)

·F (tn−1) · · ·F (t1)
)

+W , (4.2)

where W are the terms which have on the left the product of at least two negative
projections of the currents F (t). Since P−

f (F (t)) = −F−(t) these terms can be
equally described as having on the left the product of at least of two negative
Gauss coordinates F−(t). As was explained above and as we will see explicitly
below, the terms W are characterized by the property that T2(t) ·F ∈ I.

We will order the product of T2(t) and each summand in the right hand side
of (4.2) separately. For the ordering of the first term we use the relation

[

E+(t), F (t1)
]

=
(q − q−1)t1

t − t1

(

ψ+(t1) − ψ−(t1)
)

,

so that
[

k+
1 (t) + k+

2 (t) + F+(t)k+
2 (t)E+(t)

]

·F (tn) · · ·F (t1)

= F (tn) · · ·F (t1)

(

n
∏

i=1

q−1t − qti
t − ti

k+
1 (t) +

n
∏

i=1

qt − q−1ti
t − ti

k+
2 (t)

)

+ n Sym t̄

(

F+(t)k+
2 (t) F (tn) · · ·F (t2)

(q − q−1)t1
t − t1

ψ+(t1)
)

− n Sym t̄

(

F+(t)k+
2 (t) F (tn) · · ·F (t2)

(q − q−1)t1
t − t1

ψ−(t1)
)

+ F+(t)k+
2 (t) F (tn) · · ·F (t1) E+(t) .

(4.3)
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Here we used the exchange relations of the Cartan currents k+
i (t) and the total

currents F (tj) and q-symmetrization in second and third terms of the right hand
side of (4.3) appears when commuting Cartan currents ψ±(ti) with total currents
F (tj).

Observe that the last term in (4.3) belongs to the ideal J and the next to
last term belongs to the ideal K. At this point we benefit from the absence of the
restriction (2.14) in the algebra Uq(̂gl2). Otherwise we would have to take into
account the zero modes of the currents ψ−(t1) if we were considering the standard
quantum affine algebra Uq(̂gl2).

According to (3.21)

F (tn) · · ·F (t1) ∼I P+
f

(

F (tn) · · ·F (t1)
)

and equality (4.3) implies the equivalence

[

k+
1 (t) + k+

2 (t) + F+(t)k+
2 (t)E+(t)

]

·F (tn) · · ·F (t1)

≈ P+
f

(

F (tn) · · ·F (t1)
)

(

n
∏

i=1

q−1 − qti/t

1 − ti/t
k+
1 (t) +

n
∏

i=1

q − q−1ti/t

1 − ti/t
k+
2 (t)

)

+ n Sym t̄

(

F+(t)k+
2 (t) F (tn) · · ·F (t2)

(q − q−1)t1/t

1 − t1/t
ψ+(t1)

)

. (4.4)

Consider now the ordering of the product T2(t)(P−
f (F (tn)) ·F (tn−1) · · ·F (t1)). To

perform this we will use the following specialization of the Proposition 3.9. For
arbitrary element X ∈ UF and m ≥ 1 we have

L+
11(t) ·P−

f

(

F (tm) · · ·F (t1)
)

·X ∼I 0 ,

L+
22(t) ·P−

f

(

F (tm) · · ·F (t1)
)

·X ∼I δm1
(q − q−1)t1/t

1 − t1/t
F+(t) k+

2 (t) ·X .
(4.5)

Applying (4.5) to the second term in the right hand side of (4.2) we obtain

T2(t) ·P−
f

(

F (tn)
)

·F (tn−1) · · ·F (t1)

∼I

(q − q−1)tn/t

1 − tn/t
F+(t) k+

2 (t) ·F (tn−1) · · ·F (t1) . (4.6)

Since any equality modulo ideal I implies the related equality modulo all the ideals
I, J and K, the relations (4.4) and (4.6) imply the statement of
Proposition 4.2. �
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Corollary 4.3. Relation (4.1) can be considered as the equality

T2(t) ·P+
f

(

F(t̄)
)

∼J P+
f

(

F(t̄)
)

(

n
∏

i=1

q−1 − qti/t

1 − ti/t
k+
1 (t) +

n
∏

i=1

q − q−1ti/t

1 − ti/t
k+
2 (t)

)

+ n Sym t̄

(

P+
f

(

F+(t)k+
2 (t) F (tn) · · ·F (t2)

) (q − q−1)t1/t

1 − t1/t
ψ+(t1)

)

− n Sym t̄

(

P+
f

(

F+(t)k+
2 (t) F (tn−1) · · ·F (t1)

) (q − q−1)tn/t

1 − tn/t

)

,

in Uq(b+) modulo elements of the ideal J . The sum of the last two terms in the
above equality belongs to the left ideal B (see Definition 2.3).

Proof. Left hand side of the equality (4.1) belongs to Uq(b+) while the right hand
side does not. We can imposing projection P+

f onto this right hand side to cancel
all the terms which belongs to the ideal I. �

4.2. Proof of Theorem 1 for Uq(̂gl2)
Let us compare the last two lines in (4.1). They contain so called ‘unwanted’ terms.
In order to cancel them we will use the following properties of q-symmetrization.
For any formal series G(t1, . . . , tn) on n formal variables ti we have

n Sym t̄ G(t1, . . . , tn)

=
n
∑

m=1

n
∏

j=m+1

q − q−1tm/tj
q−1 − qtm/tj

Sym t̄\tm
G(t1, . . . , tm−1, tm+1, . . . , tn, tm) (4.7)

and

n Sym t̄ G(t1, . . . , tn)

=
n
∑

m=1

m−1
∏

j=1

q − q−1tj/tm
q−1 − qtj/tm

Sym t̄\tm
G(tm, t1, . . . , tm−1, tm+1, . . . , tn) , (4.8)

where q-symmetrization in the right hand sides of this formal series identities runs
over (n − 1) variables t̄ \ tm = {t1, . . . , tm−1, tm+1, . . . , tm}. Note that formulas
(4.7) and (4.8) are particular cases of the property (3.17) for s = n and s = 1,
respectively.

Using formulas (4.7) and (4.8) we may write the difference of unwanted terms
in (4.1) as a sum

n

n
∑

m=1

Sym t̄\tm

⎛

⎝F+(t)k+
2 (t) F (tn) · · ·F (tm+1)F (tm−1) · · ·F (t1)

(q − q−1)tm/t

1 − tm/t

⎛

⎝

n
∏

j=m+1

q − q−1tm/tj
q−1 − qtm/tj

ψ+(tm) −
m−1
∏

j=1

q − q−1tj/tm
q−1 − qtj/tm

⎞

⎠

⎞

⎠ .
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Applying to this equality the projection P+
f , as it was explained in the proof of

Corrolary 4.3, we obtain the elements from the left ideal B. Latter elements are
vanishing if the Bethe parameters satisfy the universal Bethe equations [1]

ψ+(tm) =
k+
1 (tm)

k+
2 (tm)

=
n
∏

j �=m

q − q−1tj/tm
q−1 − qtj/tm

, m = 1, . . . , n . (4.9)

Thus, Theorem 1 in the case N = 2 is proved. �

4.3. General case

4.3.1. Preliminary exchange relations. To consider the general case of Theorem 1,
we need the embedding Ψ : Uq(̂glN ) ↪→ Uq(̂glN+1), defined by the rule4

Ψ
(

L[N ]
i,j (t)

)

= Li+1,j+1(t) , i, j = 1, . . . , N . (4.10)

Let T ′
N (t) =

∑N+1
i=2 Lii(t) be the universal transfer matrix for the algebra

Uq(̂glN ) and W ′
N (t̄[n̄′]) be the universal weight function, where n̄′ is a set of the

positive integers {n2, . . . , nN} and t̄[n̄′] is an associated set of the formal variables:

t̄[n̄′] = {t21, . . . , t2n2
; . . . ; tN1 , . . . , tNnN

} .

Using the result of Corollary 3.6 we present the Uq(̂glN+1)-universal weight
function WN+1(t̄[n̄]) in the form

WN+1(t̄[n̄]) = W ′
N (t̄[n̄′]) · F(t̄[n1]) − S , (4.11)

where S contains the sum of terms as in the right hand side of (3.32) and the
redundant terms W such that : TN+1(t) ·W : ∼I 0.

We consider the product

TN+1(t) ·WN+1(t̄[n̄]) = TN+1(t) ·W ′
N (t̄[n̄′]) · F(t̄[n1]) − TN+1(t) · S . (4.12)

Since TN+1(t) = L11(t) + T ′
N (t) we rewrite the first term in the right hand side of

(4.12) modulo terms from the ideal I:

T ′
N (t) ·W ′

N (t̄[n̄′]) · F(t̄[n1]) + L11(t) · F(t̄[n̄]) . (4.13)

To obtain (4.13) we use the result of the following

Lemma 4.4.

L11(t) ·W ′
N (t̄[n̄′]) · F(t̄[n1]) ∼I L11(t) · F(t̄[n̄]) . (4.14)

4We omit writing explicitly superscript ‘+’ of the L-operator and their Gauss coordinate, assum-
ing that they are always from the standard positive Borel subalgebra Uq(b+).
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Proof. The universal Bethe vector W ′
N (t̄[n̄′]) for the algebra Uq(̂glN ) embedded

into Uq(̂glN+1) by (4.10) depends on the modes of the currents F2(t), . . . , FN (t)
and is given by the projection P+

f

(

F(t̄[n̄′])
)

of the product of these currents. Ac-
cording to the ordering rules (3.21) we may replace this projection by the product
of the total currents F(t̄[n̄′]) subtracting the terms which have on the left the neg-
ative projection of the currents P−

f (Fc,d(t)) with 2 ≤ d < c ≤ N + 1. According
to (3.41) the product L11(t)P−

f (Fc,d(t′)) ∼I 0. This proves the statement of the
lemma. �

Now we apply the result of Proposition 3.9 to the second term in the right
hand side of (4.12). We have

TN+1(t) · S ∼I Sym t̄[n̄]

(

N
∑

m=1

L1,m+1(t) ·P+
f

(

F(t̄[n̄′]m)
)

· F(t̄1[n1−1])

×
m
∏

a=1

(na)
(q − q−1)mt1n1

/t

1 − t1n1
/t

Zm(t̄[n̄])

) (4.15)

where the sets of the formal variables t̄[n̄′]m are defined by (3.31) and a rational
series Zm(t̄[n̄]) is defined by (3.33). We can simplify the right hand side of (4.15)
replacing the projection P+

f

(

F(t̄[n̄′]m)
)

by the product of the currents F(t̄[n̄′]m)
due to the following

Lemma 4.5.

L1,m+1(t) ·P+
f

(

F(t̄[n̄′
m])

)

∼I L1,m+1(t) · F(t̄[n̄′
m]) . (4.16)

Proof of this lemma is analogous to the proof of Lemma 4.4. �

Using the explicit form of the matrix elements L1,1(t) and L1,m+1(t) in terms
of the Gauss coordinates

L1,1(t) = k+
1 (t) +

N+1
∑

j=2

F+
j,1(t)k

+
j (t)E+

1,j(t) ,

L1,m+1(t) = F+
m+1,1(t)k

+
m+1(t) +

N+1
∑

j=m+2

F+
j,1(t)k

+
j (t)E+

m+1,j(t) ,

we can present the product in the left hand side of (4.12) as the sum of the terms
modulo ideal I

TN+1(t) ·WN+1(t̄[n̄]) ∼I T ′
N (t) ·W ′

N (t̄[n̄′]) · F(t̄[n1]) + k+
1 (t) · F(t̄[n̄])

+
N+1
∑

j=2

F+
j,1(t)k

+
j (t)

(

E+
1,j(t) · F(t̄[n̄]) − Aj−1 −

j−2
∑

m=1

E+
m+1,j(t) ·Am

)

,
(4.17)
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where

Am = (q − q−1)m
m
∏

a=1

(na) Sym t̄[n̄]

(

F(t̄[n̄′]m) · F(t̄1[n1−1]) ·Zm(t̄[n̄])
t1n1

/t

1 − t1n1
/t

)

.

(4.18)
Calculation of (4.17) modulo elements of the ideal I is useful since now to

continue ordering we have to exchange the Gauss coordinates E+
m+1,j with total

currents. These exchange relations are based on the formulae given by Lemma 3.4:

E+
m+1,j(t) = (q − q−1)m+2−jŜm+1 Ŝm+2 · · · Ŝj−2

(

E+
j−1,j(t)

)

, (4.19)

where the screening operators is defined as Ŝi(B) = Ei[0]B−qB Ei[0], the formulae

[

E+
i,i+1(t), Fj(t′)

]

∼K δi,j
(q − q−1)t′/t

1 − t′/t
ψ+

i (t′) , (4.20)

and
[

Ei[0], Fj(t′)
]

∼K δi,j(q − q−1)ψ+
i (t′) . (4.21)

Here ψ+
i (t) = k+

i (t) k+
i+1(t)

−1. Recall that the symbol ‘∼K ’ means an equality
modulo terms of the ideal K which composed from the elements of Uq(̂glN ) with
any mode of the negative Cartan current ψ−

i (t) = k−
i (t) k−

i+1(t)
−1.

The ordering of the first term for j = 2 in the right hand side of (4.17) can be
performed as in the case of the algebra Uq(̂sl2) since the Gauss coordinate E+

1,2(t)
does not commute only with the currents F1(t1�). This term is equal to (modulo
elements from the ideals K and J)

n1(q − q−1)F+
2,1(t)k

+
2 (t) Sym t̄[n̄]

⎛

⎝F(t̄[n̄′]1) · F(t̄1[1,n1]
)

t11/t

1 − t11/t
ψ+

1 (t11)

− F(t̄[n̄′]1) · F(t̄1[n1−1])
t1n1

/t

1 − t1n1
/t

n2
∏

j=1

q − q−1t1n1
/t2j

1 − t1n1
/t2j

⎞

⎠ . (4.22)

The ordering of the Gauss coordinates E+
m+1,j(t) with total currents is more

involved. To perform this ordering we have to use besides (4.19), (4.20), (4.21) also
the relation

Ŝi

(

ψ+
i+1(t)

)

= Ei[0]ψ+
i+1(t) − q ψ+

i+1(t)Ei[0] = (q − q−1)ψ+
i+1(t)E

+
i (t) . (4.23)

Fix the jth term of the sum in the right hand side of (4.17) and denote

Rj = E+
1,j(t) · F(t̄[n̄])− (q − q−1)j−1

Aj−1 −
j−2
∑

m=1

(q − q−1)mE+
m+1,j(t) ·Am . (4.24)

We will exchange the Gauss coordinates E+
m+1,j(t) with total current. As above

we will calculate modulo elements of the ideals K and J .
We will describe this calculation as the sequence of the steps.
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1. According to (4.19) the Gauss coordinate E+
m+1,j(t) is composed from the zero

mode of the currents Ei(t) with i = m+1, . . . , j−2 and the Gauss coordinate
E+

j−1,j(t). It means that this Gauss coordinate will have nontrivial commuta-
tion relations only with the currents Fa(tas) for a = m+1, . . . , j−1. The move
of the Gauss coordinates E+

m+1,j(t) through the total current Fa(tas) with
a = m + 1, . . . , j − 2 produces the terms which belong to the ideal J . These
terms appear after commuting zero modes Ea[0] with the current Fa(tas) and
can be neglected since we perform the calculation modulo elements of the
ideal J . The nontrivial terms, which we will consider, are created after ex-
changing the Gauss coordinate E+

m+1,j(t) with the currents Fj−1(tj−1
s ). At

the first step the Cartan currents ψ+
j−1(t

j−1
s ) together with a rational factor

(q−q−1)tj−1
1 /t

1−tj−1
1 /t

appear according to (4.20) after an exchange of E+
j−1,j(t) and

the total current Fj−1(tj−1
s ) in the place of the latter current. This Cartan

current should be moved to the right of the product of type j−1 currents. All
the terms resulting from the exchange relation of E+

j−1,j(t) and Fj−1(tj−1
s )

can be presented as the q-symmetrization over the type j − 1 formal vari-
ables of the single term which appears after commutation of E+

j−1,j(t) with
Fj−1(t

j−1
1 ). Due to properties (3.16) this q-symmetrization is absorbed into

‘global’ q-symmetrization entering into definitions of the elements Am (4.18)
producing factor nj−1 due to definition of the q-symmetrization. The prod-
uct of the current F(t̄[n̄]) in (4.24) can be also presented as the ‘global’
q-symmetrization over the set of the variables t̄[n̄].

2. The sequence of the screening operators Ŝm+1 · · · Ŝj−2 which enter the for-
mula for the Gauss coordinate E+

m+1,j(t) are applied according to equation
(4.23) to replace the Cartan current ψ+

j−1(t
j−1
1 ) on the right of the product

of j − 1-type currents by the factor ψ+
j−1(t

j−1
1 )E+

m+1,j−1(t
j−1
1 ).

3. The Gauss coordinate E+
m+1,j−1(t

j−1
1 ) should be moved through the total

currents of type j−2 to produce q-symmetrization over variables of the same
type and the factor ψ+

j−2(t
j−2
1 )E+

m+1,j−2(t
j−2
1 ) on the right of the product of

this type current accompanied with a rational factor (q−q−1)tj−2
1 /tj−1

1

1−tj−2
1 /tj−1

1
. Note

that the factor nj−2 appears also due to definition of the q-symmetrization.
4. After moving all Gauss coordinates E+

m+1,a(ta1) to the right we are left with
a product of total currents where all the currents Fa(ta1) have been replaced
by the Cartan currents ψ+

a (ta1) with a = m + 1, . . . , j − 1 together with the

rational factors na
(q−q−1)ta

1/ta+1
1

1−ta
1/ta+1

1
. Then, we have to move all these Cartan

currents to the right of all total currents producing the rational factors of the
Bethe parameters.
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These calculations result to the following exchange relations of the Gauss
coordinate E+

m+1,j(t) and the product of the currents F(t̄[n̄′]m) · F(t̄1[n1−1])

E+
m+1,j(t)F(t̄[n̄′]m) · F(t̄1[n1−1])

∼J,K (q − q−1)j−m−1

j−1
∏

a=m+1

(na) Sym t̄[n̄]

(

F(t̄N[nN ]) · · · F(t̄j[nj ]
)

×F(t̄j−1
[1,nj−1]

) · · · F(t̄m+1
[1,nm+1]

)F(t̄m[nm−1]) · · · F(t̄1[n1−1])

× tj−1
1 /t

1 − tj−1
1 /t

Ym(t̄[n̄])
j−1
∏

a=m+1

ψ+
a (ta1)

)

,

where a rational series Ym(t̄[n̄]) is defined by the relation

Ym(t̄[n̄]) =
j−2
∏

a=m+1

(

ta1/ta+1
1

1 − ta1/ta+1
1

na
∏

k=2

q − q−1tak/ta+1
1

1 − tak/ta+1
1

)

nm−1
∏

k=1

q − q−1tmk /tm+1
1

1 − tmk /tm+1
1

.

(4.25)
Recall that the notation t̄a[1,na] means the collection of the variables {ta2 , . . . , tana

}.
We get finally the following presentation of the product TN+1(t) ·WN+1(t̄[n̄]):

TN+1(t) ·WN+1(t̄[n̄]) ≈ T ′
N (t) ·W ′

N (t̄[n̄′]) · F(t̄[n1])

+ WN+1(t̄[n̄]) · k+
1 (t)

n1
∏

i=1

q−1 − qt1i /t

1 − t1i /t

n2
∏

i=1

q − q−1t2i /t

1 − t2i /t

+
N+1
∑

j=2

(q − q−1)j−1

j−1
∏

a=1

(na) F+
j,1(t)k

+
j (t) ·Rj , (4.26)

where the symbol ‘≈’ means an equality modulo the ideals I, J and K (see Defi-
nition 4.1). The elements Rj have the structure

Rj = Sym t̄[n̄]

(

F(t̄N[nN ]) · · · F(t̄j[nj ]
)F(t̄j−1

[1,nj−1]
) · · · F(t̄1[1,n1]

) Y0(t̄[n̄])
tj−1
1 /t

1 − tj−1
1 /t

j−1
∏

a=1

ψ+
a (ta1)−F(t̄N[nN ]) · · · F(t̄j[nj ]

)F(t̄j−1
[nj−1−1]) · · · F(t̄1[n1−1]) ·Zj−1(t̄[n̄])

t1n1
/t

1−t1n1
/t

−
j−2
∑

m=1

(

F(t̄N[nN ]) · · · F(t̄j[nj ]
)F(t̄j−1

[1,nj−1]
) · · · F(t̄m+1

[1,nm+1]
)F(t̄m[nm−1]) · · · F(t̄1[n1−1])

×
t1n1

/t

1 − t1n1
/t

tj−1
1 /t

1 − tj−1
1 /t

Zm(t̄[n̄]) Ym(t̄[n̄])
j−1
∏

a=m+1

ψ+
a (ta1)

))

. (4.27)

The series Zm(t̄[n̄]) is defined by the relation (3.33).
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4.3.2. Proof of Theorem 1. The following proposition generalizes Proposition 4.2
and serves as a main statement which is proved by induction over N .

Proposition 4.6. There is a formal series equality in the algebra Uq(̂glN )

TN (t) ·WN (t̄[n̄]) ≈ WN (t̄[n̄]) ·
(

N
∑

a=1

k+
a (t)

na−1
∏

k=1

q − q−1ta−1
k /t

1 − ta−1
k /t

na
∏

k=1

q−1 − qtak/t

1 − tak/t

)

+ Sym t̄[n̄]

⎛

⎝

N
∑

j=2

j−1
∏

a=1

(na)

(

(q − q−1)j−1 F+
j,1(t)k

+
j (t) · F(t̄N−1

[nN−1]
) · · · F(t̄j[nj ]

)

× F(t̄j−1
[nj−1−1]) · · · F(t̄1[n1−1]) ·Zj−1(t̄[n̄])

tj−1
nj−1

/t

1 − tj−1
nj−1/t

)

×
(

ψ+
1 (t1n1

)
n1−1
∏

k=1

q−1 − qt1k/t1n1

q − q−1t1k/t1n1

n2
∏

k=1

1 − t2k/t1n1

q−1 − qt2k/t1n1

− 1

)

⎞

⎠

∼B WN (t̄[n̄]) ·
(

N
∑

a=1

k+
a (t)

na−1
∏

k=1

q − q−1ta−1
k /t

1 − ta−1
k /t

na
∏

k=1

q−1 − qtak/t

1 − tak/t

)

(4.28)

if the set {tij} of the Bethe parameters satisfies the set of the universal Bethe
equations, i = 2, . . . , N − 1, j = 1, . . . , ni:

k+
i (tij)

k+
i+1(t

i
j)

=
ni
∏

m �=j

q − q−1tim/tij
q−1 − qtim/tij

ni−1
∏

m=1

1 − ti−1
m /tij

q − q−1ti−1
m /tij

ni+1
∏

m=1

q−1 − qti+1
m /tij

1 − ti+1
m /tij

. (4.29)

Proof. We will proof this proposition by induction over N taking as the base of the
induction the statement of Proposition 4.2. We assume that the equality (4.28) is
valid for the algebra Uq(̂glN ) embedded into Uq(̂glN+1) by the relation (4.10) and
prove from the relation (4.26) that (4.28) is valid also for the algebra Uq(̂glN+1).

First we rewrite the induction assumption (4.28) for the algebra Uq(̂glN )
embedded into Uq(̂glN+1) by (4.10). It takes the form

T ′
N (t) ·W ′

N (t̄[n̄′])

≈ W ′
N (t̄[n̄′]) ·

(

N+1
∑

a=2

k+
a (t)

na−1
∏

k=1

q − q−1ta−1
k /t

1 − ta−1
k /t

na
∏

k=1

q−1 − qtak/t

1 − tak/t

)

+ Q (4.30)
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where in ‘unwanted’ terms

Q = Sym t̄[n̄]

⎛

⎝

N+1
∑

j=3

(

(q − q−1)j−1

j−1
∏

a=2

(na) F+
j,2(t)k

+
j (t) · F(t̄N[nN ]) · · · F(t̄j[nj ]

)

× F(t̄j−1
[nj−1−1]) · · · F(t̄2[n2−1]) ·Zj−1(t̄[n̄′])

tj−1
nj−1

/t

1 − tj−1
nj−1/t

)

×
(

ψ+
2 (t2n2

)
n2−1
∏

k=1

q−1 − qt2k/t2n2

q − q−1t2k/t2n2

n3
∏

k=1

1 − t3k/t2n2

q−1 − qt3k/t2n2

− 1

)

⎞

⎠ (4.31)

parameters t̄an̄a
with a = 3, . . . , N satisfy the universal Bethe equations (4.29) for

i = 3, . . . , N while parameters t̄2n̄2
are free.

We substitute (4.30) into (4.26). First term in the right hand side of (4.30)
together with the second term in (4.26) produces ‘wanted’ terms

WN+1(t̄[n̄]) ·
(

N+1
∑

a=1

k+
a (t)

na−1
∏

k=1

q − q−1ta−1
k /t

1 − ta−1
k /t

na
∏

k=1

q−1 − qtak/t

1 − tak/t

)

.

The terms in the right hand side of (4.30) which belongs to the ideal J will be
again in the same ideal after multiplication to the right of T ′

N (t) ·W ′
N (t̄[n̄′]) by the

product of the first type currents F(t̄[n1]) (see (4.26)). This is because the currents
Ea(t) commute with the current F1(t′) for a = 2, . . . , N .

Fix parameters t̄2n̄2
from the condition that the ordered product : Q · F(t̄1[n1]

) :
of the unwanted terms and the currents of the first type F1(t1k) belong to the
ideal B. This results into Bethe equations

k+
2 (t2k)

k+
3 (t2k)

=
n2
∏

m �=k

q − q−1t2m/t2k
q−1 − qt2m/t2k

n1
∏

m=1

1 − t1m/t2k
q − q−1t1m/t2k

n3
∏

m=1

q−1 − qt3m/t2k
1 − t3m/t2k

(4.32)

for the set of parameters t̄2n̄2
.

Now we will examine the structure of the terms Rj given by (4.27) by the
conditions that parameters t̄an̄a

with a = 2, . . . , N are bounded by the universal
Bethe equations (4.29) and (4.32). We replace in Rj the Cartan currents ψ+

a (ta1),
a = 2, . . . , j−1 by the right hand sides of the universal Bethe equations. Each Bethe
equation introduces the factor

∏na

�=2
qta

1−q−1ta
�

q−1ta
1−qta

�
under q-symmetrization. This allows

to use the following property of the q-symmetrization, which is a consequence of
(4.7) and (4.8):

Sym t̄

(

G(t1, t2, . . . , tn)
n
∏

�=2

q−1 − qt1/t�
q − q−1t1/t�

)

= Sym t̄

(

G(tn, t1, . . . , tn−1)
)

(4.33)

for arbitrary formal series G of the formal variables (t1, . . . , tn). The variables
{ta1 , ta2 , . . . , tana

} are replaced by the permuted sets {tana
, ta1 , . . . , tana−1} for a =



546 L. Frappat et al. Ann. Henri Poincaré

m + 1, . . . , j − 1. Using an identity

1
t − tj−1

nj−1

j−2
∏

a=1

1
ta+1
na+1 − tana

− 1
t − t1n1

j−2
∏

a=1

1
ta+1
na+1 − tana

− 1
t − tj−1

nj−1

1
t − t1n1

j−2
∑

m=1

j−2
∏

a=m+1

1
ta+1
na+1 − tana

m−1
∏

a=1

1
ta+1
na+1 − tana

= 0 ,

and the explicit forms of the series Zm and Ym we observe that the element Rj

has the structure

Rj = F(t̄N[nN ]) · · · F(t̄j[nj ]
) · F(t̄j−1

[nj−1−1]) · · · F(t̄1[n1−1]) ·Zj−1(t̄[n̄])
tj−1
nj−1

/t

1 − tj−1
nj−1/t

×
(

ψ+
1 (t1n1

)
n1−1
∏

k=1

q−1 − qt1k/t1n1

q − q−1t1k/t1n1

n2
∏

k=1

1 − t2k/t1n1

q−1 − qt2k/t1n1

− 1

)

belongs to the Bethe ideal B (see Definition 2.3). This proves the statement of the
Proposition. �

The statement of Theorem 1 follows from Proposition 4.6. The element Rj

vanishes if we impose one more universal Bethe equation for the set of the param-
eters {t̄1[n1]

}
k+
1 (t1j )

k+
2 (t1j )

=
n1
∏

m �=j

q − q−1t1m/t1j
q−1 − qt1m/t1j

n2
∏

m=1

q−1 − qt2m/t1j
1 − t2m/t1j

. (4.34)

Since the left hand side and first term in the right hand side of (4.28) belong to the
standard Borel subalgebra Uq(b+) in Uq(̂glN ) the equality between them is valid
modulo elements of the ideal J and the Bethe ideal B. This finishes the proof of
Theorem 1. �
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Luc Frappat and Éric Ragoucy
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