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Abstract. A digraph G = (V, E) with a distinguished set T ⊆ V of
terminals is called inner Eulerian if for each v ∈ V − T the numbers
of arcs entering and leaving v are equal. By a T -path we mean a simple
directed path connecting distinct terminals with all intermediate nodes
in V −T . This paper concerns the problem of finding a maximum T -path
packing, i.e. a maximum collection of arc-disjoint T -paths.

A min-max relation for this problem was established by Lomonosov.
The capacitated version was studied by Ibaraki, Karzanov, and Nag-
amochi, who came up with a strongly-polynomial algorithm of complex-
ity O(φ(V, E) · log T +V 2E) (hereinafter φ(n, m) denotes the complexity
of a max-flow computation in a network with n nodes and m arcs).

For unit capacities, the latter algorithm takes O(φ(V, E) · log T +V E)
time, which is unsatisfactory since a max-flow can be found in o(V E)
time. For this case, we present an improved method that runs in
O(φ(V, E) · log T + E log V ) time. Thus plugging in the max-flow al-
gorithm of Dinic, we reduce the overall complexity from O(V E) to
O(min(V 2/3E, E3/2) · log T ).

1 Preliminaries

1.1 Introduction

Computing a maximum integer flow, i.e. a maximum packing of paths connecting
a given pair of terminals subject to edge capacities, is widely regarded as a
central problem in combinatorial optimization. This problem has myriads of
applications, both theoretical and practical.

Given a graph G = (V, E) (either directed or undirected) and arbitrary integer
capacities e : E → Z+, one of the best strongly-polynomial max-flow algorithm
[12] runs in O(V E log(V 2/E)) time. (Hereinafter, in notation involving func-
tions of numerical arguments or time bounds, we indicate sets for their cardinal-
ities.) More efficient methods are known for the special case of unit capacities.
The oldest one belongs to Dinic [3] and runs in O(min(E3/2, V 2/3E)) time (as
shown independently by Karzanov [17] and Even and Tarjan [5]). Better results
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were recently discovered conerning max-flows in undirected unit-capacitated net-
works. Karger proposed an M∗(V 3/2E2/3)-time randomized algorithm [14,15],
Goldberg and Rao gave an O(V 3/2E1/2)-time deterministic algorithm [11], and
finally Karger and Levine presented a deterministic O(V 7/6E2/3)-time algorithm
and a randomized M∗(V 20/9)-time algorithm [16] (here M∗(·) denotes expected
time with omitted polylogarithmic factors).

Multiflows are similar to usual flows but involve a set of terminals T that can
be arbitrarily large. Most versions of the maximum integer multiflow problem are
NP-hard. Still if the network is undirected and paths in a multiflow are allowed to
connect arbitrary pairs of (distinct) terminals then the problem is tractable [24].
(This case is sometimes referred to as a free multiflow.) For directed networks
one must additionally require capacities at all inner (non-terminal) nodes to be
balanced. Considering this version of the problem, Lomonosov derived a simple
min-max formula.

Ibaraki, Karzanov, and Nagamochi [13] applied a “divide and conquer”
approach (originally introduced by Karzanov [19]) and devised a strongly-
polynomial O(φ(V, E) · log T + V 2E)-time algorithm for T -path packing prob-
lem in a capacitated digraph (V, E). The latter algorithm incorporates an ar-
bitrary max-flow routine that runs in φ(n, m) time for a network with n nodes
and m arcs. Since φ(V, E) = O(V E log(V 2/E)) (as, e.g., in the algorithm of
Goldberg and Tarjan [12]), the term O(V 2E) becomes a bottleneck. This is-
sue was partially resolved in [1], where the total complexity was decreased to
O((φ(V, E) + V E) · log T + V E log(V 2/E)).

The present paper concerns unit-capacitated networks. For this case, the al-
gorithm from [13] takes O(φ(V, E) · log T +V E) time and since φ(V, E) = o(V E)
the second term remains a bottleneck.

We introduce a novel discrepancy scaling technique and prove the following:

Theorem 1. A maximum integer multiflow in an inner Eulerian digraph G =
(V, E) with terminals T ⊆ V can be found in O(φ(V, E) · log T + E log V ) time.

Our approach also extends to integer capacities as follows:

Theorem 2. A maximum integer multiflow in an inner Eulerian digraph G =
(V, E) with terminals T ⊆ V and integer capacities not exceeding C can be found
in O(φ(V, E) · log T + E log V log T + E log(V 2/E) log(V C)) time.

The latter improves the bound O(φ(V, E) log T + V E) from [1] provided that
φ(n, m) = o(mn) (e.g. if the weakly-polynomial algorithm of Goldberg and
Rao [11] is applied). In sense of capacity scaling, this improvement is ultimate
since for all currently known scaling max-flow algorithms the first term is dom-
inant.

1.2 Basic Notation and Facts

We shall use some standard definitions and notation. For a graph G, its set of
nodes and edges (or arcs) are denoted by V (G) and E(G), respectively. A similar
notation is used for paths and cycles.
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Let G be a digraph and X be a subset of nodes. Then G[X ] denotes the
subgraph of G induced by X . Also δin

G (X) (respectively δout
G (X)) denotes the

set of arcs entering X (respectively leaving X) and δG(X) := δin
G (X) ∪ δout

G (X).
When G is clear from the context, it is omitted. Also for X = {v} we write just
δin(v) and δout(v).

For an arbitrary real-valued function h : U → R and U ′ ⊆ U we write h(U ′)
to denote

∑
u∈U ′ h(u).

A digraph G = (V, E) with a distinguished subset T ⊆ V is said to be inner
Eulerian if for each v ∈ V −T the in-degree and out-degree of v are equal. Nodes
in T and in V − T are called terminals and inner nodes, respectively. A simple
path in G is called a T -path if its endpoints are distinct terminals and the other
nodes are inner.

By a network we mean a triple N = (G, T, c) consisting of a digraph G =
(V, E), a set of terminals T , and a non-negative function c : E → Z+ of arc
capacities. The notion of inner Eulerianess is extended to N in a natural way,
namely c(δin(v)) = c(δout(v)) should hold for all v ∈ V − T . In case of unit
capacities we omit c from notation and deal with the pair N = (G, T ).

A collection P consisting of T -paths Pi endowed with real weights αi ∈ R+

such that
∑

(αi : e ∈ E(Pi)) ≤ c(e) for all e ∈ E (1)

is called a free multiflow or a T -path packing (the adjective “free” is used to
emphasize that any pair of distinct terminals is allowed to be connected, i.e.,
the commodity graph in the corresponding multiflow problem is complete). The
value of P is the sum

val(P) := α1 + ... + αk

and P is called maximum if val(P) is maximum.
If all numbers αi are integers then P is called integer. Integer multiflows can

be viewed as multisets of T -paths. If c(e) = 1 for all e ∈ E then T -paths forming
an integer multiflow are arc-disjoint. This case will be our primary focus.

The maximum integer multiflow problem in inner Eulerian networks admits a
min-max relation, which is due to Lomonosov. (See also [18, Sec. 4], [8] and [25,
p. 1289].) For t ∈ T , call X ⊂ V a t-cut if X ∩ T = {t}. Denote by λout(t) the
minimum of c(δout(X)) over all t-cuts X .

Theorem 3 (Lomonosov (unpublished, 1978), Frank [8]). For N =
(G, T, c) as above, there exists a maximum integer directed multiflow P in N
with

val(P) =
∑

t∈T

λout(t).

For t ∈ T , let Xt be a t-cut with c(δout(Xt)) minimum. Note that inner Euleri-
anness of N implies

c(δout(X)) − c(δin(X)) = c(δout(t)) − c(δin(t)) for each t-cut X. (2)
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Thus the minima of c(δout(Xt)) and c(δin(Xt)) are obtained simultaneously. Also
note that ∑

t∈T

(
c(δout(t)) − c(δin(t))

)
= 0

and hence ∑

t∈T

c(δout(Xt)) =
∑

t∈T

c(δin(Xt)).

Therefore every optimal P saturates the cuts δout(Xt) and δin(Xt) for t ∈ T .
We shall also rely on analogous facts concerning undirected networks. A net-

work N = (G, T, c) consisting of an undirected graph G = (V, E), a set of
terminals T ⊆ V , and integer capacities c : E → Z+ is called inner Eulerian if
c(δ(t)) is even for all t ∈ V − T . The notions of T -paths, t-cuts (t ∈ T ), and
free multiflows in N are defined similar to the directed case. For t ∈ T , let λ(t)
be the capacity of a minimum t-cut Xt. Lovász and Cherkassky, independently,
established the following min-max relation:

Theorem 4 (Lovász [22], Cherkassky [2]). For N = (G, T, c) as above,
there exists a maximum integer undirected multiflow P in N with

val(P) =
1
2

∑

t∈T

λ(t).

As above, every optimal multiflow P saturates cuts δ(Xt) for t ∈ T .

2 Algorithm

2.1 Outline

Modern efficient methods for computing maximum free multiflows rely on “di-
vide and conquer” approach, which was originally applied in [19] to find, in
O(φ(V, E) · log T ) time, a half-integer maximum multiflow in a undirected graph
G = (V, E) with integer edge capacities. Subsequently, this method was im-
proved and extended in [13] so as to find an integer maximum free multiflow in
an inner Eulerian undirected network in the same time O(φ(V, E) · log T ), and
in an inner Eulerian directed network in O(φ(V, E) · log T + V 2E) time.

Consider a directed unit-capacitated network N = (G, T ) with |T | ≥ 4. The
problem for N is recursively reduced to problems in two networks N ′ = (G′, T ′)
and N ′′ = (G′′, T ′′) such that |T ′| , |T ′′| ≤ 
|T | /2� + 1. First, fix an arbitrar-
ily partition {S′, S′′} of T into parts of almost equal sizes. Second, compute
an S′-cut X ′ (i.e. a subset X ′ ⊂ V (G) with X ′ ∩ T = S′) of minimum ca-
pacity c(δout(X ′)) by running a max-flow routine and considering nodes S′ as
sources and nodes S′′ as sinks. Form graph G′ by contracting X ′ in G into a
new composite node (denoted by t′). We identify arcs in graphs resulting from
contractions with their pre-images in original graphs. Define the set of terminals
in G′ as T ′ := {t′} ∪ S′′. Similarly N ′′ = (G′′, T ′′) is constructed by contracting
X ′′ := V (G) − X ′ in G into a new node t′′ and setting T ′′ := {t′′} ∪ S′.
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Remark 1. The complexity of this separation procedure is clearly dominated by
the min-cut computation. Note that in view of (2) (which holds for S′-cuts as
well) the requested minimum cut can be found by computing a max-flow in the
unit-capacitated underlying undirected graph (obtained from G by dropping arc
directions). This enables to use faster max-flows algorithms designed to handle
undirected graphs (e.g. [16]).

Next, the algorithm proceeds to N ′ and N ′′ recursively and computes op-
timal solutions P ′ and P ′′ to N ′ and N ′′, respectively. Finally, the ag-
gregation procedure combines P ′ and P ′′ into a maximum integer multi-
flow P in N as follows. We shall assume that P ′ and P ′′ are given ex-
plicitly, i.e. as collections of arc-disjoint T ′- and T ′′-paths, respectively. De-
fine P ′

0 := {P ∈ P ′ | t′ is not an endpoint of P} and, symmetrically, P ′′
0 :=

{P ∈ P ′′ | t′′ is not an endpoint of P}. By the maximality of P ′ and P ′′ and the
minimality of X ′, paths in P ′ − P ′

0 saturate the cut δG′(t′) and, symmetrically,
paths in P ′′ − P ′′

0 saturate the cut δG′′(t′′). This enables to recombine these
paths into a collection P1 of T -paths (connecting terminals in S′ with terminals
in S′′). The final packing P in N is defined as P := P ′

0 ∪P ′′
0 ∪P1. For the proof

of maximality of P and a more detailed exposition, see [13]. The aggregation
procedure runs in O(V + E) time, which, compared to the separation phase, is
negligible.

For |T | = 3, the above method is inapplicable (since it yields |T ′| = |T ′′| = 3)
so this basic case is handled separately, as explained below in Subsection 2.3.

Let T (n, m, k) denote the complexity of the algorithm in a network N with n
nodes, m arcs, and k terminals. Then for k ≥ 4

T (n, m, k) = T (n′, m′, k′) + T (n′′, m′′, k′′) + φ(n, m) + O(m + n), (3)

where (n′, m′, k′) and (n′′, m′′, k′′) denote analogous size parameters for networks
N ′ and N ′′, respectively, and φ(n, m) is the complexity of a max-flow routine
in a network with n nodes and m arcs. (As indicated earlier, the latter routine
can be assumed to deal with an undirected unit-capacitated graph.) Also, as we
shall show in Subsection 2.3, for k ≤ 3

T (n, m, k) = O(φ(n, m) + m logn). (4)

Assuming that φ(n, m) is “reasonable” one can solve (3) and (4) as follows (see
[13] for a detailed proof):

T (n, m, k) = O(φ(n, m) log k + m log n).

It remains to show how to solve the problem for a directed unit-capacitated
network N = (G, T ) with |T | ≤ 3 terminals in O(φ(V, E) + E log V ) time. For
this we shall need some terminology and basic facts concerning skew-symmetric
graphs (which were earlier introduced as a convenient tool for solving flow and
matching problems; see [10,1] for a survey).
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2.2 Skew-Symmetric Graphs

A skew-symmetric graph is a digraph G = (V, E) endowed with two bijec-
tions σV , σE such that: σV is an involution on the nodes (i.e., σV (v) �= v and
σV (σV (v)) = v for each v ∈ V ), σE is an involution on the arcs, and for each arc
e from u to v, σE(e) is an arc from σV (v) to σV (u). For brevity, we combine the
mappings σV , σE into one mapping σ on V ∪E and call σ the symmetry (rather
than skew-symmetry) of G. For a node (arc) x, its symmetric node (arc) σ(x) is
also called the mate of x, and we will often use notation with primes for mates,
denoting σ(x) by x′. Obviously δin(v)′ = δout(v′) and degin(v) = degout(v′) for
each v ∈ V .

We admit parallel arcs, but not loops in G. Observe that if G contains an arc
e from a node v to its mate v′, then e′ is also an arc from v to v′ (so the number
of arcs of G from v to v′ is even and these parallel arcs are partitioned into pairs
of mates).

The symmetry σ is extended in a natural way to paths, circuits, subsets etc.
Namely, two paths are symmetric to each other if the elements of one of them
are symmetric to those of the other and go in the reverse order: for a path
P = (v0, e1, v1, . . . , ek, vk), the symmetric path P ′ is (v′k, e′k, v′k−1, . . . , e

′
1, v

′
0).

2.3 Case |T | ≤ 3

Consider a directed unit-capacitated network N = (G = (V, E), T ) with |T | ≤ 3.
Adding an isolated terminal (if needed) one may assume that |T | = 3. The best
known algorithm that finds a maximum free multiflow in N runs in O(φ(V, E)+
V E) time [13] . We shall improve this to O(φ(V, E) + E log V ) as follows.

Stage 1: Define T = {t1, t2, t3} and let G be the underlying undirected graph
of G. Apply the algorithm for inner Eulerian undirected graphs from [13, Sec.2.1]
to find a maximum integer free multiflow P in N = (G, T ) (endowed with unit
capacities). This takes O(φ(V, E)) time.

Remark 2. The latter algorithm involves computing two max-flows, say g1 and
g2, where only g1 is undirected. Namely, g1 is a max-flow in G from t1 to {t2, t3},
and g2 is a max-flow from t2 to t3 in the residual network w.r.t. g1. Hence
the undirected max-flow algorithm of Karger [16] may seem inapplicable here.
Fortunately, Karger’s algorithm also works if a small number of edges is directed
(which is the case for the residual network since g1 is acyclic and hence uses few
edges, see [16]).

Stage 2: For reasons that will soon become clear, we need P to saturate all
edges of G. Let E0 be the set of edges in G that are not used by paths in P.

Lemma 1. degG0
(v) is even for all v ∈ V .

Proof. This is clear for v ∈ V − T since degG(v) is even, paths in P are edge-
disjoint, and every path in P uses an even number of edges incident to v. Consider
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t1

t2

t3

a

(a) Graph G

t1

t2

t3

a

t′1

t′2

t′3

a′

(b) Graph Ĝ

Fig. 1. Graph G with terminals {t1, t2, t3} and the corresponding graph Ĝ (directions
of auxiliarly arcs are not shown)

v ∈ T . Since P is maximum, by Theorem 4 there exist ti-cuts Xi such that P
saturates δG(Xi) (i = 1, 2, 3). Hence in G0[Xi] at most one node, namely ti, can
have odd degree. In every undirected graph the number of nodes of odd degree
is even, therefore degG0

(v) is also even, as claimed. 
�
By Lemma 1 the algorithm can decompose E0 into a collection of undirected
circuits and attach these circuits to arbitrary paths in P. This takes O(V + E)
time and ensures that P covers all edges of G, as desired.
Stage 3: Construct an auxiliary skew-symmetric graph as follows. First take a
disjoint symmetric copy V ′ := {v′ | v ∈ V } of V . For each arc (u, v) ∈ E add two
symmetric regular arcs (u, v) and (v′, u′). Adjust the endpoints of regular arcs
to ensure that each regular arc incident to t (t ∈ T ) leaves t and, symmetrically,
each regular arc incident to t′ enters t′. To this aim, replace every arc (x, t),
x ∈ V ∪V ′, by (x, t′) and, symmetrically, replace every arc (t′, x), x ∈ V ∪V ′, by
(t, x). Finally, for each v ∈ V − T add four auxiliary arcs: two (symmetric) arcs
(v, v′) and two (also symmetric) arcs (v′, v). Denote the resulting skew-symmetric
graph by Ĝ. An example is depicted on Fig. 1.

Remark 3. The need for adding two auxiliary arcs (v, v′) instead of just one is
dictated by the definition of skew-symmetric graphs and is thus purely technical.

Stage 4: Multiflow P in G gives rise to a certain weighted collection P̂ of directed
paths in Ĝ. Consider a path P ∈ P from, say, ti to tj (i �= j):

P = (ti = v0, e1, v1, . . . , el, vl = tj),

where vi ∈ V (G) (i = 0, . . . , l), ei ∈ E(G), ei connects nodes vi−1 and vi

(i = 1, . . . , l).
Since edge capacities are 1 and P is integer, P has weight 1. We transform P

into a directed path P̂ (also of weight 1) in Ĝ by taking appropriate regular arcs
(corresponding to edges ei) and inserting auxiliary arcs where needed. More
formally, for each edge ei = {vi−1, vi}, Ĝ contains a unique regular arc ai =
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(x, y), where x = vi−1 or x = v′i−1 and y = vi or y = v′i. Consider the sequence
(a1, . . . , al) and turn it into a directed path P̂ by inserting auxiliary arcs (x, x′),
x ∈ V ∪ V ′, between ai−1 and ai if ai−1 ends at x and ai starts at x′. Then P̂
consists of paths P̂ and their symmetric mates P̂ ′.

Note the following:

(5) (i) P̂ is symmetric, i.e. P̂ ∈ P̂ implies P̂ ′ ∈ P̂;
(ii) Each regular arc belongs to at most one path in P̂;
(iii) Each path P ∈ P̂ connects a node ti with a node t′j , where i �= j.

A collection P̂ of directed paths in Ĝ obeying (5) will be referred to as a integer
skew-symmetric multiflow. Suppose the following property holds for P̂ :

(6) Paths in P̂ do not contain auxiliary arcs.

Then such P̂ induces an integer multiflow P in G obeying val(P) = 1
2 val(P̂).

Indeed, consider pairs of symmetric paths {P̂ , P̂ ′} forming P̂ and let us show that
each such pair corresponds to a T -path in G and these T -paths are arc-disjoint.
Let us say that arcs e′, e′′ form a transit pair if e′, e′′ have a common endpoint v,
one of e′, e′′ enters x, and the other leaves v. Consider P̂ as a sequence of arcs
τ̂ = (ê1, . . . , êl). For each i = 1, . . . , l−1, arcs êi, êi+1 in Ĝ form a transit pair and
thus their pre-images ei, ei+1 in G also form a transit pair (as it follows from the
construction of Ĝ). Therefore either the sequence of pre-images τ = (e1, . . . , el)
or the reverse one τ−1 = (el, . . . , e1) gives rise to a directed T -path in G. These
paths are arc-disjoint by (5)(ii).

Stage 5: At this final stage we rearrange paths in P̂ while maintaining (5)
and preserving val(P̂) to get rid of auxiliary arcs. A similar subtask was earlier
addressed in [1]. The latter algorithm scans nodes v ∈ V − T one by one and
removes auxiliary arcs between v and v′. Handling each node involves computing
certain flow decompositions and takes O(V +E) time (assuming unit capacities),
which gives O(V E) in total. We choose a different way of dealing with auxiliary
arcs. Instead of processing inner nodes one at a time we apply certain global
transformations aimed to decrease the total flow on auxiliary arcs.

For 1 ≤ i, j ≤ 3, i �= j, combine all ti–t′j paths in P̂ and form an integer
ti–t′j flow fij (see Fig. 2). For a function h on E(Ĝ), define h′(e) := h(e′). The
symmetry of P̂ implies f ′

ij = fji for all 1 ≤ i, j ≤ 3, i �= j. This property will be
maintained throughout the iterations.

For each v ∈ V − T , define

α(v) := f1,2[v, v′], β(v) := f1,3[v, v′], γ(v) := f2,3[v, v′],

where fij [v, v′] is the flow between v and v′, i.e. the sum of fij-values on auxiliary
arcs (v, v′) minus the sum of fij-values on auxiliary arcs (v′, v).

Lemma 2. α(v) + β(v) + γ(v) = 0 for all v ∈ V − T .
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t′1 t′2 t′3

t1 t2 t3

f12

f13

f23

Fig. 2. Network Ĝ and flows f12, f13, and f23. Symmetric flows f21, f31, and f32 are
shown by dashed lines.

Proof. Consider a node v ∈ V − T . Since G is inner balanced, degin
G(v) =

degout
G (v). From the construction of Ĝ it follows that v has equal numbers of

incoming and outcoming regular arcs. Define g :=
∑

(fij : 1 ≤ i, j ≤ 3, i �= j).
Recall that P saturates all edges of G. Hence g saturates all regular arcs of
Ĝ and thus the total flow on incoming regular arcs equals the total flow on
outcoming regular arcs. Therefore g[v, v′] = 0 and thus α(v) + β(v) + γ(v) = 0.


�
Define the discrepancy at v by Δ(v) := |α(v)| + |β(v)| + |γ(v)| and the total
discrepancy by Δ :=

∑
(Δ(v) : v ∈ V − T ). Note that 2Δ is exactly the sum

of flows fij , 1 ≤ i, j ≤ 3, i �= j, on all auxiliary arcs (factor 2 comes from the
symmetry) and thus (6) is equivalent to Δ = 0.

The algorithm executes a series of scaling phases. Each phase decreases Δ by
at least a factor of 11

12 . Since Δ is integer and initially Δ ≤ E/2 = O(V 2) (recall
that G has unit capacities and each unit of discrepancy corresponds to an inner
node of a T -path in P) it follows that O(log V ) scaling phases are sufficient to
achieve Δ = 0. Flows fij are finally decomposed into an integer skew-symmetric
multiflow P̂ obeying (6).

A phase works as follows. Call a node v ∈ V − T active if |α(v)| ≥ |β(v)| ≥
|γ(v)|. By permuting terminals t1, t2, and t3 (and thus values α, β, and γ) one
can assume w.l.o.g. that

∑
(Δ(v) : v is active) ≥ 1

6
Δ. (7)

To decrease Δ, define h := f12 + f13 and cancel flows on oppositely directed
auxiliary arcs. Note that h is an integer t1–{t′2, t′3} flow in Ĝ and is thus de-
composable into a sum of a t1–t′2 flow h12 and a t1–t′3 flow h13. Computing h
and decomposing it into h12 and h13 takes O(V +E) time. The algorithm resets
(f12, f21, f13, f31) := (h12, h

′
12, h13, h

′
13) and then proceeds to the next phase.

To estimate the decrease of Δ on each phase consider an arbitrary node v ∈
V −T and let α′(v), β′(v), and γ′(v) (= γ(v)) be the corresponding values for the
updated triple flows fij . Clearly |α′(v)|+|β′(v)|+|γ′(v)| ≤ |α(v)|+|β(v)|+|γ(v)|.
The update also maintains the property given in Lemma 2.



118 M.A. Babenko, K. Salikhov, and S. Artamonov

Now suppose that v is active. Note that α(v) + β(v) = α′(v) + β′(v). Also
α(v) and β(v) are of different signs (since α(v), β(v), and γ(v) add up to zero,
and α(v) has the largest magnitude) while α′(v) and β′(v) are of the same sign
(since h12 and h13 come from a decomposition of h and thus use auxiliary arcs
of the same direction). Therefore

(|α(v)| + |β(v)| + |γ(v)|) − (|α′(v)| + |β′(v)| + |γ′(v)|) =
|α(v) − β(v)| + |α′(v) + β′(v)| =
|α(v) − β(v)| + |α(v) + β(v)| =
2 |β(v)| .

Since |β(v)| ≥ 1
2 |α(v)| ≥ 1

4Δ(v) (which follows from α(v) + β(v) + γ(v) = 0 and
|α(v)| ≥ |β(v)| ≥ |γ(v)|) the total discrepancy decreases by at least

∑ (
1
2
Δ(v) : v is active

)

≥ 1
12

Δ.

This concludes the proof of Theorem 1. 
�

3 General Capacities

The above approach also extends to the case when arc capacities are integers in
range [0, C] and leads to a weakly-polynomial o(V E)-time algorithm, as claimed
in Theorem 2. The detailed proof is rather technical so we shall only give a brief
sketch here.

During the course of the algorithm we maintain each multiflow P as a col-
lection {(A1, B1, f1), . . . , (Aq , Bq, fq)}, where for i = 1, . . . , q, Ai ∩ Bi = ∅,
Ai, Bi,⊂ T , and fi is an acyclic integer Ai–Bi flow. Flows fi are kept in a
compact form, i.e. as lists {(e, fi(e)) | fi(e) �= 0}. As in [13], such a representa-
tion of P additionally obeys q = O(log T ) and occupies O(E log T ) space. To
merge a pair of such representations on each recursion level we solve O(log T )
flow decomposition problems (each taking linear time due to acyclicity), extract
flows corresponding to P ′ −P ′

0 and P ′′ −P ′′
0 , merge these flows, and finally de-

cycle the result (which takes O(m log n) time [26]). Totally all aggregations take
O(E log V log T ) time. Separations require, as earlier, O(φ(V, E) · log T ) time.

It remains to deal with leaf subproblems (those corresponding to |T | ≤ 3). Fix
a leaf subproblem with n nodes and m arcs. Computing a maximum multiflow
P in the underlying undirected network N takes O(φ(n, m)) time; the resulting
P is then turned into a collection of three integer flows f ij , 1 ≤ i < j ≤ 3, in
O(m log(n2/m)) time with the help of the fast flow decomposition routine [1].
Residual edge capacities (those corresponding to slacks in (1)) are Eulerian (cf.
Lemma 1). Similar to the unit-capacitated case one can compute (in linear time)
a weighted collection of additional cycles (not necessarily simple) that exhaust
the residual capacities and attach these cycles to an arbitrary component of P .
Each f ij is turned into a pair of symmetric integer ti–t′j and tj–t′i flows fij and
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fji in Ĝ. The latter does not require explicit path-packing representations of f ij

and can be done in linear time. The algorithm from Subsection 2.3 is applied to
get rid of flows on auxiliary arcs; this requires O(log(n val(P))) = O(log(nC))
scaling phases. The resulting flows are finally decycled in O(m log n) time [26].

From the above estimates it follows that for a network N = (G = (V, E), T, c)
the new algorithm takes O(φ(V, E)·log T +E log V log T +E log(V 2/E) log(V C))
time. This concludes the proof of Theorem 2. 
�
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24. Mader, W.: Über die Maximalzahl kantendisjunkter A-Wege. Archiv der Mathe-
matik (Basel) 30, 325–336 (1978)

25. Schrijver, A.: Combinatorial Optimization. Springer (2003)
26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.

Sci. 26(3), 362–391 (1983)
27. Tutte, W.T.: Antisymmetrical digraphs. Canadian J. Math. 19, 1101–1117 (1967)


	An Improved Algorithm for Packing T-Paths in Inner Eulerian Networks
	Preliminaries
	Introduction
	Basic Notation and Facts

	Algorithm
	Outline
	Skew-Symmetric Graphs
	Case | T | 3

	General Capacities
	References




