REMARKS ON CURVATURE IN THE TRANSPORTATION
METRIC
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ABSTRACT. According to a classical result of E. Calabi any hyperbolic affine hy-
persphere endowed with its natural Hessian metric has a non-positive Ricci tensor.
The affine hyperspheres can be described as the level sets of solutions to the “hy-
perbolic” toric Kahler-Einstein equation e® = det D?® on proper convex cones.
We prove a generalization of this theorem showing that for every @ solving this
equation on a proper convex domain 2 the corresponding metric measure space
(D?®, e®dx) has a non-positive Bakry—Emery tensor. Modifying the Calabi’s com-
putations we obtain this result by applying tensorial maximum principle to the
weighted Laplacian of the Bakry-Emery tensor. All of the computations are carried
out in the generalized framework adapted to the optimal transportation problem
for arbitrary target and source measures. For the optimal transportation of prob-
ability measures we prove a third-order uniform dimension-free a priori estimate
in spirit of the second-order Caffarelli’s contraction theorem.

1. INTRODUCTION

The toric Kéahler-Einstein equation
e *® = det D*® (1.1)

for a convex function ® : R” — R is a real analog of the complex Monge-Ampere
equation, which is instrumental in the theory of Kihlerian manifolds. Here, D?®
is the Hessian of the function ®. The equation (1.1) is also connected to convex
geometry. According to the standard classification, we distinguish between the
parabolic case a = 0, elliptic case a > 0, and hyperbolic case v < 0. The reader
should be not confused by the fact that according to the standard PDE terminology,
equation (1.1) is always (non-uniformly) elliptic.

Having in mind potential applications in analysis and probability we deal with
the Monge-Ampere equation of a more general type

eV = e WV det D?®. (1.2)

When the functions eV, e~ are densities of finite (probability) measures, the equa-

tion (1.2) is related to the optimal transportation problem ([3], [24]) and can be
analyzed using various functional-analytical and measure-theoretical methods. The
measures it = e~V dx, v = e"Wdx are called source and target measures respectively.
However, here we are interested in situations when the associated measures are not
always finite. An example is given by the hyperbolic case of (1.1), i.e. o < 0, where
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p = e *®dr and v is the Lebesgue measure on the set V®(R") which is typically
unbounded.

In this paper we extend the celebrated Calabi’s approach for affine spheres and
compute applications of a second-order differential operator to various geometric
quantities. Some on them can be estimated with the help of the maximum principle.
These computations, yet elementary, are tedious and admit non-trivial geometrical
interpretation. We try to present them in the most simple but general form, some-
times using associated diagrams. In our opinion the most natural object to study is
the so-called metric measure space

(h =D, ),

i.e. the space R" (or a subset of it) equipped with the Hessian metric

n
ij=1
and the mesure pr = e~Vdz. The reader can find explanations justifying this view-

point and motivating applications in [12], [13], [14], [15],[19]. The corresponding
second-order differential operator L is the weighted Laplacian

L=A,—=V,P- -V,

where V), is the Riemannian gradient, Ay is the Riemannian (Laplace-Beltrami)
Laplacian, and P is the potential of y with respect to the Riemannian volume:

eV = e PVdet D20,

Given a tensor T of any type one can always compute the corresponding weighted
Laplacian

LT = o (vpvqT - vavqT).
Our central technical result is the exact expression of LT for several important

tensors T" and arbitrary measures g and v. Our computations imply, in particular,
that for ® solving (1.1) the following differential inequality holds:

L(Ric,) > 4Ric, © g, (1.3)
where ® is symmetric product (see below), where
Ric, = Ric + V} P
is the Bakry—Emery tensor of (h, u), Ric is the standard Ricci tensor of h, and
Gij = @mb@?b-

The latter tensor was introduced by Calabi in [5]. It consitutes the most substantial
(non-negative) part of the Bakry—Emery tensor. Applying the maximum principle we
obtain from (1.3) that the largest eigenvalue of Ric,, is non-positive at its maximum
point. Therefore:

Theorem 1.1. Consider a proper, open conver domain €2 C R™. Let o be a negative
number and ® is the (unique) solution to (1.1) on ) satisfying lim, 5o P(x) = +00.
Then

Ric, < 0.
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In the case when € is a proper convex cone the unique solution ® to (1.1) must be
logarithmically-homogenous, i.e., ®(Az) = ®(x)+2(n/a)log A for any A > 0. It can
be easily verified (see Lemma 5.2) that every logarithmically-homogeneous ® = 2P
satisfies

Vid = 0.

In particular, the Ricci and Bakry—Emery tensors coincide in this case and Theorem
1.1 immediately implies

Corollary 1.2. (Calabi [5], see also Fox [12], Loftin [21] and Sasaki [23]). Consider
a proper open convex cone 2 C R™. Let a be a negative number and ® is the (unique)
solution to (1.1) on Q satisfying lim,_,gq ®(r) = +o0o. Then

Ric <0

and moreover the Ricci tensors of the level sets of ® (hyperbolic affine spheres)
endowed with the metric h are non-positive.

Using the same approach we prove third-derivatives analog of the so-called con-
traction theorem (L. Caffarelli). According to this theorem every (see more general
statement in Section 5) optimal transportation mapping V® pushing forward the

1
(2m)2
is a contraction provided D?W > Id. This result is important in probability theory
because it implies that the isoperimetric properties of p are comparable (not worse)
with the isoperimetric properties of v. Contractivity of the optimal mappings cor-
responds to the following uniform estimate

D?*®(z) < Id, Vx € R™.

2
. _‘11‘ *7* —
standard Gaussian measure p = e~ 2 dx onto probability measure v = e=Wdx

We prove that a similar estimate (global, dimension free, uniform) for 3"¢-order
derivatives of ® holds under natural assumptions for the second and third-order
derivatives of V and W.

2. NOTATIONS, DEFINITIONS, AND PREVIOUSLY KNOWN RESULTS

It will be assumed throughout that we are given a smooth (at least C®) convex
function ® on R"™ such that its gradient V® pushes forward the measure

w=-e"Vdr

onto the measure

_Wd

Vv=e Z.

The potentials V, W are assumed to be sufficiently regular (at least C®). Equiva-
lently, ® solves the corresponding Monge-Ampére equation (1.2).

Sometimes we assume that p is supported on a convex domain §2. The domain {2
is called proper if it does not contain a complete affine line.

The function ® can arise as a solution to any of the following problems:

(1) Optimal transportation problem: given probability measures p, v find the
(unique up to a set of p-measure zero) function ® solving (1.2). We refer
to [3], [24], where the reader can find comprehensive information about the
solvability, uniqueness, and regularity issues.
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(2) Given a probability measure v satisfying [adv = 0 find a solution to the
elliptic Kahler-Einstein equation

e~ ® = e WE®) Jet D@,

The existence and uniqueness results are presented in [2, 7, 25].
(3) Given a proper open convex domain {2 C R" find a solution to the hyperbolic
Kahler-Einstein equation

e? = det D*®. (2.1)
on ) which satisfies lim, 50 ®(z) = 400.
The existence and uniqueness of a solution to (2.1) was obtained by Cheng and

Yau, who continued the investigations of Calabi and Nirenberg. The formulation
below is taken from [12].

Theorem 2.1. (S.Y. Cheng, S.T. Yau, [8], [9], [10]) For every proper open convex
domain Q C R™ there exists a unique convex function ® solving (2.1) and satisfying
lim, pq ®(z) = +oo. The Riemannian metric h = D*® is complete on 2.

We assume throughout that we are given the standard Euclidean coordinate sys-
tem {z'}.The interior of Q = supp(u) is equipped with metric

h = hyda'da? = ®;;da'da’ = (8§ixj<l>)da:idxj
and with the measure p. The Legendre transform

U(y) = 21615(<x,y> — ®(x))

defines the dual convex potential ¥, satisfying V®o VW (y) = y and pushing forward
v onto p.

We give below a list of useful computational formulas, the reader can find the
proof in [19]. It is convenient to use the following notation:

Vi=0.,V, Viy=82, V. Vi =, .V

T;TjT

W= (0, W) oV, W9 = (82, W)oVd, W= (32, W)oV.

TiTjT
We follow the standard conventions of Riemannian geometry (i.e., ®% is inverse to
®,;, Einstein summation, raising indices etc.).

The measure y has the following density with respect to the Riemannian volume
1
2
The associated diffusion generator (weighted Laplacian) L has the form

p=e "dvoly, P==(V+W(VP)).

Lf=09f; —W'f; = Apf — %(Vi + W fi,

where A}, is the Riemannian Laplacian.

The following non-negative symmetric tensor g plays prominent role in our anal-

ysis
gij = q)iabq)?b-

In order to distinguish between the (weighted) Laplacians of a tensor 7" and the
Laplacian of its component in the fixed Euclidean coordinate system we use for the
latter the square brackets. For instance (LT');; will denote the Laplacian of the
(0, 2)-tensor T" and

L[T3]
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denotes the Laplacian of the scalar function T;; with fixed indices 7, j. The proof of
the following lemma can be found in [19].

Lemma 2.2. The weighted Laplacians of the partial derivatives of ® for fixed i, j, k
satisfy the following relations:

L[] = =V; = =W + 9Dy (2.2)

L[®;;] = =Vij + Wi; + g (2.3)

L[®iji] = — Vige + Wijr + (WD, + Wy + Widyy)) (2.4)
+ (Pati®2p + Pap @Y + Py L) — 205,08,

Recall that for two tensors T;;, S;;, their symmetric product is defined as follows:
1
(T®S);= é(TmSJk + T]ka)

Finally, we give a list of formulas for the most important quantities.

(1) Connection

1
k q)k

(2) Hessian of f
1
Vifiy = fij — 5(1)ka-
(3) Riemann tensor
1

Rirji = 1

(Pita®y; — PijaPyy)-
(4) Ricci tensor

1 1
Ricij = 1 (@@ + @i (V> = WH)) = 2 (g3 + Qign(VE = WH)).
(5) Bakry-Emery tensor

. . 1 1 1 1
(Ric,):; = Ric;; + §V%L(V +W(V®));; = 1% + §Vij + 5”@

3. LAPLACIANS FOR TENSORS

This section is devoted to computations of the weighted Laplacian of several
important tensors. We stress that in this section we omit the subscript h for
the sake of simplicity, i.e. the symbols V,V? etc. are always related to the Hessian
metric h, but not to Eudlidean metric.

Given a tensor T we define its Laplacian as follows:

AT = oMV, V T.
Here V,T" is the covariant derivative, which means, in particular, that
V,®i; =0, Ad,;; =0.
Similarly
LT = AT — %(V’“ +WHV,T.
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Lemma 3.1. Let

for some function f. Then

vpfz fzp (I)zpfk

VoVpfi= (fip — %‘I)fpfk) - _(I)m(fmp 2 oy fr) — —q)m " (frni = 5P fr)

9 q sz

Taking the trace we get

Af; = q)pq(fz’p fk) -5 mp(fmp 2 mpfk) ( - W) (fml N 2 mlfk)

Rearranging the terms we ﬁnally obtain using Lemma 2.2

1 1 ™ m
Lfi= (I)pq(fipq o 2 zquk + Q(I)smq)%mpfk ka) pfmp gll'gf’f - (fmi -
1 1
= L[fi] + Wk fiy, — §<L[q)zk] + qu)ikp)f - <I>§”’“fmk + z_lgff’“ — W™ fri + §Wm<1>fmfk
1 3 1 1
= L[fi] - §L[‘Dik]fk + ngfk — 7 fre = LIfi] — O frr + §(Vik — W) f* + ngfk-

1 1
= " fik — O frr, — Wi fF + 5(‘/% — W) f* + ngfk

Corollary 3.2.
1 1
L& = 5 (Vix = W) ®* + i Fdy, — W

All the following calculations are essentially based on the next Lemma, which is
obtained by direct computations with the help of Lemma 2.2. The computation is
long and quite standard. See Section 4 for a graphical method for performing this
computation relatively quickly.

Lemma 3.3.

L(I)iab V;ab + Wzab + = ((Vm + Wm)qjmab + (‘/am + Wy)q)mzb + (‘/;)m + Wbm)q)mza)

1

1
2®lkq’ jOF + (gi Dpap + gE P, + g{fq’kia> .

4
Proposition 3.4.

Lgij = (_V;lab + VViab)(I)?b + (_‘/jab + Wjab)q)gb
1
+ 5 <(‘/zs + I/st)gj + (V}s + W]s)gf> + 2(‘/(1771 + Wam)q);zq)?b

1 aoc
+ 59k 95 + 2V, P30 VPP + 8Rian RI™.

In particular, if ® satisfies (1.1) then
Lgij = (grs(Ric,)¥ + gij(Ricy)¥) + 2V, 050, VPP + 8R;ap R,

which implies
Lg > 2g ® Ric,.

2 mz
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Proof. Applying L to g;; = q;mbq;?b’ one gets
L(gij) = (L®ap) P4 + 2V, P10y VPP + iy, (LDL).

Lemma 3.4 implies

a 1 m m m m m m a
(Lq)mb)q)jb - [_‘/iab T V[/iab + 5((‘/1 + Wz )(I)mab + (Va + Wa )(I)mzb + (‘/;) + Wb )q)mza)i| (I)jb
1 1
- §¢ik¢g}®§m¢?b + 1 <gf‘bkab + gsq)kib + g;lf@km) @‘;b.
The similar formula for (L®,,;)®?" is obtained by interchanging i and j. Using the

relations gFf @, @9 = gFgr; and gh® 5" — OL OTOF P9 = 8RiabCR?bc one gets

1
(Lq)iab)q)?b - [_V;ab + VViab + 5 ((‘/Zm + VVim)cI)mab + (‘/am + W:%>q)mib + (‘/bm + Wbm)q)mza)i| q)?b

]' aoc
+ 5909k + ARianc RS

and the claim follows. O

4. COMPUTATIONS WITH DIAGRAMS

Some of the computations of the previous sections are rather tedious, and some of
the formulas are not very pleasant to the eye. Consider, for example, the following
expression from formula (2.4):

~Vijkt Wigit (WA WO iAWy @i ) 4 (Pt @I+ Pty P+ P O ) — 205 DL D
We propose to replace it by the diagram in Figure 1.

R T7- 7 T

—1

—2

FIGURE 1

The diagram in Figure 1 is the weighted sum of five basic diagrams, the number
below each basic diagram is its coefficient. A basic diagram D consists of a set of
vertices V = V(D) and two collections of edges Ej,; = Fin(D) and Eepy = Eepy(D).
Each vertex is marked with a letter, which is usually either &,V or W. An internal
edge e € E;,; connects two vertices z,y € V. An external edge is connected only
to a single vertex. To each basic diagram D with L = #(FE,,;) there corresponds a
symmetric (0, L)-tensor constructed via the following mechanism:

(1) Associate a new index with any edge. Assume that the indices associated
with the external edges are 71, ..., and that those associated with internal
edges are tp11,...,%011/-

(2) Orient all of the internal edges in an arbitrary manner. For each vertex v,
let v"P (respectively, vgoun) be the set of all indices of edges arriving at v
(respectively, emanating from v). Let v, be the set of all indices of external
edges connected to v.
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(3) For a vertex v write S(v) for the letter with which it is marked. Write Sy, for
the collection of all permutations of {1,...,L}. For a permutation o € oy,
set 0 (Vext) = {io(j); 1j € Veat}-

(4) The resulting symmetric tensor is

1 v i1 i
i Z H S(0) oo (wenn) AT <+ dT". (4.1)

oeSy veV

We may also accommodate non-symmetric tensors, by marking the external edges
of the diagram with the indices i1, ...,4r. In this case, the tensor corresponding to
the diagram is constructed in the same way, except that in (4.1), we always take o to
be the identity permutation, i.e., there is no need for a sum and for the normalizing
1/L! factor. From our experience, after a bit of training it is easier to compute the
symmetric contraction product, the covariant derivative and the weighted Laplacian
of a tensor in terms of these diagrams.

We proceed to describe the contraction product of two basic diagrams, an example
is presented in Figure 2.

$ - % _ TC?
FIGURE 2. The tensor @V}, which is the symmetric contraction
product of ®;;;, and Vj;i,, where we contract two indices.

Formally, assume that we are given two basic diagrams Dy and D,. Set L; =
#(Eert(D;)) for i = 1,2, and assume that Ly > k and Ly > k where £ > 1 is an
integer. The symmetric contraction product D; @, Dy is described as follows:

(1) For each subset A C E..;(D1) and B C E..;(Ds), both of size exactly k, and
for each invertible map f : A — B we construct a basic diagram. The weight
of this basic diagram is 1/n, where n = (L;!Ly!) /(k!(L1 — k)!(Ls — k)!) is the
number of all possible choices of A, B and f.

(2) The basic diagram corresponding to A, B and f, is the disjoint union of D;
and D,, except that for any e € A, we replace the pair of edges e € A and
f(e) € B by a single edge connecting the vertex of e and the vertex of f(e).

The integer k£ in the notation ©j is referred to as the order of the symmetric
contraction product. Recall that the contraction of two indices in a given tensor
corresponds to a symmetric contraction product with the tensor ®;;. We move on to
the description of covariant differentiation. The covariant derivative of a symmetric
tensor is not necessarily symmetric.

Here are the general rules for depicting the covariant derivative V, of the basic
diagram D:

(1) For each vertex v, we add a basic diagram D,, whose weight is +1. The basic
diagram D, is constructed from D by adding an external edge emanating
from v and marked by p.

(2) For each internal edge e, we add a basic diagram D, whose weight is —1.
The basic diagram D, is constructed from D by adding an external edge,
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(@) (@—©@

1 —3/2

FIGURE 3. The covariant derivative V,(®;;;) has turned out to be a
symmetric tensor.

marked by p, which is emanating from a new vertex, marked by ®, in the
middle of the edge e.

(3) For each external edge e we add a basic diagram whose weight is —1/2, which
is constructed exactly as in the case of an internal edge.

An internal edge e € FE;,; is called a loop if it connects a vertex to itself. The
Monge-Ampere equation (1.2) allows us to eliminate any loop which connects a
vertex marked by ® to itself. For example, by differentiating (1.2) we obtain

quz = -Vi+W,, @Zk ==V + Wi+ (I)fkq)?E + CI)ZW’C

Thus, we may replace a ®-vertex having a loop and additional £ edges by a certain
sum of basic diagrams. The rules for loop elimination in the case where k = 1,2,3
are depicted in Figure 4.

777
R-FTR R
BN AT

FIGURE 4. Loop elimination

Let us emphasize that when applying the loop elimination rules, we count all
the edges related to the loop. For example, if a ®-vertex has a loop, plus one
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external and one internal edge, then the second picture in Figure 4 is applicable.
The combinatorics of loop elimination for an arbitrary k& > 4 is not too complicated,
but it will not be needed here. We move on to the weighted Laplacian L. Here are
the rules for depicting the weighted Laplacian L of a basic diagram D:

(1) For a € V U Eep U Ejyy we denote

1 acV
w(a) = —1 a < Eint
—1/2 ac Ee:rt

(2) For any a,b € VU E.;; U E;,y with a # b we add a basic diagram D, ;, whose
weight is w(a)w(b). The basic diagram D, is constructed from D by adding
an internal edge connecting a and b. Note that when a is an edge, adding
an internal edge introduces a new vertex, marked by ®, in the middle of the
edge a.

(3) For any a € V U E.y U Eyyy we add a basic diagram whose weight is w(a)
which is obtained from D by adding a loop around a. Note that when a is
an edge, we add a vertex marked by ® in the middle of the edge a and a
loop around this vertex.

(4) For any edge e € F.;; U Eyyy we add a basic diagram that is obtained from
D by adding two vertices on the edge e and connecting one to the other via
an internal edge. The weight of this basic diagram is 2 if a € E;,, and is 3/4
ifa € Eepy.

Note that the basic diagram D,; in the first rule is the same as D, ,, hence it
appears twice in the resulting diagram. We urge the reader to verify the computation
of L®;;, in Figure 5 by applying the above rules. This establishes Lemma 3.3 in a
relatively painless manner.

Ot
L®y, = + + +
1 3/2 3/4

~1/2

FIGURE 5

In order to verify Proposition 3.4, one needs to compute the symmetric contraction
product of order two of the two tensors L®;;, and ®;;,. Again, this appears easier
to perform by using the diagrams, see Figure 6.

5. NEGATIVITY OF RIC,

We are ready to prove Theorem 1.1. The existence of the unique solution to (1.1)
is established in Theorem 2.1. We will also apply the following lemma which is a
generalization of some classical facts proved already in the works of Calabi [5] and
Osserman [22]. Extension to the metric-measure space is based on the estimates for
weighted Laplacians of the distance (see, for instance, [1]). A more general statement
with the proof the reader can find in [12], Theorem 3.3.
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e

FIGURE 6. The tensor Lg;; — 2V, ;0 VPP — 8Riq RI™

Lemma 5.1. Let (M, g) be a complete Riemannian manifold equipped with a mea-
sure p = e~ dvol, with twice continuously differentiable density. Assume that its

generalized Bakry-Emery tensor Ric, y = Ric, — ﬁVV ® VV satisfies
Ric, vy > K
for some K € R and N > n. Let u € C*(M) be a non-negative function satisfying
Lu > Bu? — Au

for some A, B > 0 at every point x with u(x) # 0, where L = A — VV -V s the

weighted Laplacian. Then

Ssup <_
u .
_B

Proof of Theorem 1.1 According to Proposition 3.4
Lg > 2g © Ric,.
Taking into acount that g = 4Ric, — 2ach, we can rewrite it as
LRic, > 2Ric] — aRic,.

Let us estimate LA for arbitrary point xy, where A is the largest eigenvalue of
Ric,. One has \(xg) = (Ric,)ij(zo)n'n’ for some tangent unit vector n. Extend 7 in
such a way that

Vn=0,An=0

at xo (see, for instance, Theorem 4.6 of [11]). Next we note that the function A —
(Ric,)ijn'n? is non-negative and equals to zero at xg. Hence LA\— L((Ric,)ijn'n’) > 0
at zo. One obtains the following relation at xg

L) > L((Ric,)in'n’) = L(Ric,)n'n’ > 2X% — aA.

We will apply Lemma 5.1. Note that the completeness of the space follows from
Theorem 2.1. In addition, it is easy to check (see [19]) that tensor Ric, s, is non-
negative, thus Lemma 5.1 is applicable. We note that A= )— %a is the largest
eigemvalue of }l g, hence nonnegative. The above inequality implies

LA >2)\? + al.

By Lemma 5.1 A < —%, hence A < 0.
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5.1. Cone case. Let us analyse the case when (2 is a cone. Then & is logarithmically
homogeneous. This implies, in particular, the following relation:

;2 = 2(n/a)
Differentiating this relation twice we get

(I)ijl'j + (I)l = O
We obtain from the first identity 2/ = —®¥®;. Substituting this into the second
identity, we finally get

Lemma 5.2. If ® is logarithmically homogeneus (in particular, if ® solves (1.1) in
a cone for some negative o), then

Vid,; = o — %@’fcp,-jk =0.
This implies
ViP = %vi% =0
and
Ric = Ric,.
provided W s constant.

Proof of Corollary 1.2. The statement Ric < 0 follows immediately from
Theorem 1.1 and Lemma 5.2. To prove the statement for a level set M = {® = ¢}
we use the following formula (see, for instance Lemma 7.1 in [20])

Here 7 is the unit normal to M, 1), is the second fundamental form of M, and H
is mean curvature of M. Since Vi® = 0 and M = {® = c}, necessarily I, = 0.
Note that n = z/|z|, and

AR(i, 2, J, &) = Pige P, — Puza P,

Taking into account that ®;,, = —2®;, we easily get R(i,z,j,z) = V,Ql(bij = 0.
Hence Ricy; = Ric|ry < 0.

6. APPLICATION TO LOG-CONCAVE MEASURES

In this section we deal with probability measures

p=eVdr, v=e"dz

and the solution T' = V& of the corresponding optimal transportation problem.
The functions V, W, and ® are assumed to be sufficciently smooth (by the regu-
larity theory for the Monge-Ampere equation the smoothness of ® follows from the
smoothness of the potentials under additional assumptions).

The contraction theorem of L. Caffarelli has numerous applications in probability
and analysis. It can be stated in the following form (see [17], [18]): under the
assumption

D*V < C, D*W > ¢,

where ¢, C are positive constants, the potential ® satisfies

D%g,/g.
C
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In this section we prove a kind of extension of this result to the third-order deriva-
tives.
Given a quadratic form @) we denote by ||Q||; its Riemannian norm:

1@l = sup Q(v,v).

v:h(v,w)=1
Let us recall that
Vij =07, V, Vije = 0500,V
] iLjLE

but

TaTpTe' "

Wi = 0udy; - 02, W, Wi =Y 0400y - 0, W.
a,b

a,b,c

Proposition 6.1. Assume that the matriz whose elements are Vi; + W;; is positive
semi-definite (this holds, in particular, when both measures are log-concave). Then
the following inequality holds

[H]ln + 2Ll glln > llgll7 (6.1)
where
Hy =T | [(V + W)@ (v = W) (D%0) (v = )P
(V — W)Z(g), (V + W)@ are the matrices with the entries Vigy — Wiay, Vap + Wap

respectively.

Proof. With some abuse of notation, when we write V;; > 0 we mean that the
symmetric matrix (V;;)7';=; is positive semi-definite. According to Proposition 3.4

Lgsj 2 (=Viap + Wiap) ®5" + (=Viap + Wiap) 25

1 S S m a 1

First we note that
2(Viay = W)@ = 2T [(D*0) (V= W)P(D*0) "D, |, (62)

2(Vam + Wan) @502 = 2Te[(D20) 7 (V + W)@ (D20) 4], (63)
where A; is the matrix with the entries ®;,.®$,. We apply the Cauchy inequality
ATr(XY) <ATr(QX?) + Tr(Q'Y?)
which is valid for non-negative symmetric matrices @), X, Y. Setting
X = (D*®)"'2D%*, (D*®) Y2 v = (D*®)" (v — W)P (D) 1/2,
Q = (D*®)"V2(V + W) (D2®)~1/2
one gets
Ty [(D2<1>)‘1(V . W)ES)(D2<I>)‘1D2®61}
< %Tr[[(DQq))—I/Q(V i W)(Q)(DQQD)_I/Q] _1((D2<I>)_1/2(V _ W>Z(3)(D2q))—1/2)2]
+ 2Tr[[(D2c1>)—1/2(v +W)D(D2P) /2] ((D2<I>)‘1/2D2<I>ei(D2<I>)‘1/2)2] .
Taking into account (6.2), (6.3) we rewrite this relation as follows:
1

2(‘/;(117 — Wiab)q);‘lb S 2(‘/am + ngfﬂ)@gg@gb + §Hab-



14 BO’AZ KLARTAG AND ALEXANDER V. KOLESNIKOV

(@—()

X Y Q X?

FIGURE 7. We let the reader guess the meaning of these operator-
valued tensors.

This readily implies the following inequality:
Hij + 2Lgi; > (Vis + Wis) g + (Vis + Wis) gl + grig)-

The differential inequality for the corresponding norm |[|g|| can be obtained in the
same way as in the proof of Theorem 1.1. It remains to note that given the eigen-
vector v of g which corresponds to the largest eigenvalue A one has H,, < || H||,
((‘/zs + Vst)gj) (U7 U) = A(‘/vv + va) > 0. O]

Lemma 6.2. Assume that measure p has full support and V;;+W;; > 0. Assume, in
addition, that there exists p > 2 such that the Euclidean operator norm ||(D*®)~!||
of (D*®)~" belongs to LP (u) with p' > p. Then

sl < [ a1 a

Proof. Set for brevity A = ||g||n. Take a compactly supported smooth nonnegative
function &. Multiply (6.1) by £AP~2 and integrate over p.

Jtlnr-zan 2 [ w2 = [evan
Integrating by parts we get

[ 11872 6dn—2 (9,6, 918000 2> [ enrdpaio-2) [ear2vialan
Next

p—2 2Ap—3 1 thgHi p—1
This estimate yields

_ 1 IVRélln «hn
HIl, AP~2¢d AP~ d APdu.
/n In €u+2(p_2)/ : MZ/€ "

For every € > 0 one gets by the Holder inequality
1 IVAElIR \p-1 / / Vi€ |2

AP dp < | eANPEdp + c(e, p ‘— £
Y / : 7 p+ c(e,p) e I

Finally, one has for every ¢ > 0

(=) [envau<cten) [| 52| eanr [ 1m1nr-2en

< o) |28 e ([ 1mifean)’ ([ wvea) ™
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It remains to show that there exists a sequence of non-negative smooth compactly
supported functions {&,} with the properties

&, 1 pointwise, lim / ‘

Vién 12
nn e = 0.
6 I

Estimating
[Viali, < I(D*®) | VEI?

and applying Holder inequality we get that it is enough to have

Vén

&, 1 pointwise, lim/) ;

for any (or sufficiently big) m > 2. To solve this problem in dimension one we find
a non-negative compactly supported function n with the properties

1'(x) ‘m
n(x)

The construction of such a function is standard. To obtain the desired sequence set
fy(Ll)(a:) = 1 provided |z| < n and () = n(|lx| —n + 1) provided |z| > n. In the
multidimensional case set &,(z) =[]}, ﬁy(Ll)(a:i). O

A

Nlialel<1y = 1, n(=x) = n(z), supn(r) < Cp, < 00, Ym > 0.

Letting p to oo we get

Corollary 6.3. Assume that p and v are log-concave, p has full support, and the
Euclidean operator norm ||(D*®)7|| of (D?*®)~! is integrable in any power. More-
over, assume that

IH|ln < K

for some constant K > 0. Then
lglln < VE.

Corollary 6.4. Assume that there exist positive constants c,C, B such that
c<D*V<C, c<DW<C,
sup Tr[D?V,]" < B, sup Tr[D*W,]” < B
e:le|=1 e:le|=1

(here | - | is the Fuclidean norm).
Then there ezists a constant D(c,C') such that

sup Tr[D*®,.]” < DB.

e:le|=1

Proof. First we note that by the contraction theorem

\/g <D*® < \/g (6.4)

Thus the metric A and the Euclidean metric are equivalent up to factors depending
on ¢,C. In particular,

C C
sup Tr[D2q>e}2 < sup —Tr[D*® - D2<I>€}2 = sup —g(e,e)
e:le|=1 elel=1 € elel=1 C

< s (9) gtww) = (5 ol

hijulp=1\ C



16 BO’AZ KLARTAG AND ALEXANDER V. KOLESNIKOV

According to Corollary 6.3 one needs to estimate uniformly (in Euclidean or Rie-
mannian norm) the matrix

Hi =T [[(V 4+ W)@V = W) (D%0) (v = )P | = (X, X),
here (A, B) = Tr(A'B) and
X = [(V+W)O] (v —w)® (D) 12,
It follows from (6.4) and assumptions of the Theorem that
a < (V+W)® <,
where c1, ¢o depends on ¢, C. Thus by the standard arguments

Hy < (X0 X,) < (V4 WP = W), [V + W) @12 - w) )

< (W = WO = W),

e

Hence the Euclidean operator norm is controlled by the Euclidean operator norms
of the following matrices

Aij = <D2‘/Ii7D2‘/CUj>? B;; = <D2(I) - D*W,, - D*®,D*® - DQWIJ. -DQ(I>>.

The desired estimate follows immediately from the assumptions of the Theorem and
(6.4). OJ

Corollary 6.5. Assume that D*V > ¢ > 0 and v = cge %@ dzx is Gaussian. Then

lolf < s )l < 20 sup w0y (020w

z,e€R™:|e|=1

provided the right-hand side is finite.

Proof. According to the contraction theorem D?*® > HTC?H In particular, this
implies
|H|l, = sup  Hy,<  sup  Hy, < Il IH]||.
v (D2Pv,w)<1 v |of2< /@ C

One has W, = 0, W;; > 0. This implies

H,; < MTr[(DQV)l . D%V, - D2vej]

c

and the claim follows. 0J

Remark 6.6. The results of Corollaries 6.4, 6.5 are dimension-free and have natural
analogues for infinite-dimensional measures. For instance, some natural estimates
of this type holds for the potential ¢ of the optimal transporation T'(z) = x + V()
pushing forward g -~ onto a (infinite dimensional) Gaussian measure vy, where Ve
is understood as a gradient along the Cameron-Martin space of v (see [16], [3], [4]
and the references therein).
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