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Abstract

We develop a dynamic model of monopolistic competition which sheds light on how

the interplay between the degree of product di�erentiation and intertemporal elasticity

of substitution a�ects the steady-state equilibrium. Consumers love variety and split

their labor endowment between wage labor, which brings immediate income, and pro-

ducing capital, which yields a rent in the future. The impact of the elasticity of substitu-

tion across varieties on the market outcome depends crucially on whether consumption

today and consumption tomorrow are gross substitutes or gross complements. The

case of Cobb-Douglas intertemporal utility is a borderline situation, when the market

outcome is invariant to the degree of product di�erentiation. We also fully characterize

the unique steady-state equilibrium path and show that the key dynamic properties of

the model, such as local stability and determinacy of equilibrium, also hinge mainly on

the interplay between the intra- and intertemporal elasticities of substitution.
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Introduction

Ever since Joan Robinson (1956, 2013), it has been widely acknowledged among economists

that the economic nature of capital is somewhat obscure. To put it bluntly, the sole feature

of capital most economists agree on is that capital accumulation is essentially a dynamic

process. As a consequence, taking into account the intertemporal nature of agents' decisions

is critical for understanding the implications of these decisions.

Two questions naturally arise in this respect. First, how can the intertemporal nature

of capital accumulation a�ect the market structure, i.e. the behavior of product variety and

toughness of competition on imperfectly competitive markets? Second, is there a feedback

e�ect of the market structure today on capital accumulation decisions tomorrow? To the

best of our knowledge, recent theoretical models that involve imperfect competition, prod-

uct di�erentiation and capital markets focus mostly on issues of international trade and

economic geography (Martin and Rogers, 1995; Bernard et al., 2007; Kichko et al., 2014).

These authors treat capital as a factor of production in its own right, whose endowment is

exogeneously given, just like that of labor. This is in the line with Hecksher-Ohlin tradition,

where this strand of literature eventually belongs. Although those settings are well-suited to

the purposes they pursue, they do not answer the two questions posed above. In this paper,

we delve deeper into this issue, and examine the implications of the Ricardian worldview, in

which labor is treated as the sole ultimate production factor, while capital �can be dissolved

into the units of labor� (Sandmo, 2011, Ch. 4).

To achieve our purpose, we propose a new dynamic model of imperfect competition,

which extends Dixit and Stiglitz (1977) by endogenizing capital formation. The way we

choose to model capital accumulation is as follows. In allocating their labor endowments,

variety-loving individuals face a trade-o� between wage labor , which brings immediate in-

come, and production of capital , which promises a rent in the future.4 This paper investigates

how the solution to this trade-o� is driven by the demand-side characteristics of the economy,

namely, by the interplay of consumers' love for variety with their intertemporal elasticity of

substitution.

Unlike numerous dynamic settings involving imperfect competition, where a homo-

geneous �nal good is typically produced by means of a di�erentiated intermediate good

(Grossman and Helpman, 1990; Romer, 1990; Benassy, 1987, 1993; Chou and Shy, 1991),

our model describes a one-sector economy with a di�erentiated �nal good5 This di�erence is

not accidental: that consumers are variety-lovers is an essential part of the story.

Our main �ndings can be summarized as follows. First and foremost, we provide clear-

cut comparative statics of the steady-state equilibrium with respect to the demand-side

characteristics. Namely, we show that an increase in substitutability across varieties supplied

at the same time period a�ects the equilibrium pattern in a more complex way than in the

4Thus, we treat the concept of capital rather loosely, without focusing on the speci�cities of �physical�
or ��nancial� capital. Improving labor quali�cation, i.e. investing in human capital, may also be viewed as
capital production.

5A recent example of using a similar approach is Bilbiie et al. (2012).
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static models of monopolistic competition. The key-factor is whether consumption today

and consumption tomorrow are gross substitutes or gross complements. In the former case,

a higher degree of product di�erentiation (i.e. poorer intratemporal substitutability) leads

to more �rms and smaller �rm sizes, as well as to a reduction in consumption expenditure

of the young agents, hence to a hike in investment and capital stock. In the latter case, all

these results are reversed. The case of Cobb-Douglas intertemporal utility is the borderline:

the market outcome is neutral to the degree of product di�erentiation. Thus, we �nd it fair

to say that care is needed in using the elasticity of substitution as a measure of toughness

of competition, as is typically done in the literature.

Second, we �nd that when the intertemporal utility is Cobb-Douglas, industry dy-

namics is plagued by severe structural instability. On the one hand, in this special case the

steady state is globally stable. On the other hand, however, an arbitrarily small perturbation

of the intertemporal elasticity of substitution triggers local instability (formally, the steady

state becomes a saddle). The intuitive reasoning for this goes as follows. Higher fraction of

consumers' time spent yesterday on producing capital invites more �rms to enter. Because

of love for variety, broader product range impels today's generation of consumers to allocate

more time for wage labor. This eventually reduces product diversity tomorrow. Moreover,

when intertemporal elasticity of substitution is in the vicinity of 1, this �pendulum e�ect�

becomes so strong that the equilibrium path comes to be generically unstable, even though

a one-dimensional locally stable manifold exists. This e�ect abruptly vanishes in the Cobb-

Douglas case, where the shares of labor spent for working at �rms and for producing capital

are constant.

Third, we provide a full characterization of the unique symmetric equilibrium path.

Dynamic equilibrium is locally determinate (i.e. it is a saddle) when consumption today

and consumption tomorrow are neither very good substitutes nor very strong complements.

When this condition fails to hold, the equilibrium is either fully unstable or indeterminate.

Furthermore, the corresponding threshold values of the intertemporal elasticity of substitu-

tion depend solely on the degree of product di�erentiation, hence they are independent of

the discount factor, as well as of the supply-side parameters. In other words, what really

matters for the behavior of the market outcome is the relationship between the two elasticities

of substitution: the intra- and the intertemporal.

Related literature. The prominent role of intertemporal substitutability / comple-

mentarity has been stressed in di�erent contexts. For example, Azariadis (1983) has shown

that, for non-trivial equilibria involving self-ful�lling prophecies to exist, leisure today and

consumption tomorrow must be gross complements. Similarly, Cazzavillan et al. (1998)

view capital-labor substitutability and labor supply elasticity as the key factors of endoge-

nous �uctuations. In our model, this dichotomy is crucial for the behavior of the economy.

Otherwise, however, we di�er from the above literature because we restrict ourselves to per-

fect foresight dynamics. This is done because the role of agents' beliefs, being one of the

keystones of the modern research agenda in macroeconomics, is outside the scope of this
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paper, which rather belongs to the domain of industrial organization.

Ferreira and Lloyd-Braga (2005, 2008) stress the role of variable markups and free entry

in oligopolistic settings with endogenous �uctuations. Unlike them, we �nd that dynamic

monopolistic competition may feature structural instability even under constant markups .

In this respect, we are closer to Seegmuller (2008), who investigates how taste for variety

triggers local indeterminacy in a dynamic model of monopolistic competition. Our main

novelty compared to these authors is that we provide a simple and complete characterization

of steady-state equilibrium behavior in terms of comparisons between the degree of love for

variety and intertemporal elasticity of substitution.

Viewing monopolistically competitive equilibrium as a steady state of a dynamic pro-

cess is a common feature of our model with Melitz (2003), Asplund and Nocke (2006) and

Bernard et al. (2007). However, these authors focus on intertemporal decisions of �rms

rather than consumers. Because in our model intertemporal decisions are taken on the con-

sumers' side, it is better suited to studying the impact of demand-side characteristics on the

market outcome.

We also di�er from Galor and Zeira (1993), for our model involves neither credit market

imperfections, nor intergenerational altruism. On top of this, we do not assume any het-

erogeneity across consumers, apart from coexistence of two generations of consumers each

period. Thus, it seems fair to say that �nding structural instability in a setting as simple

as ours singles out a new facet of the profound idea that �market mechanisms are inherently

dynamically unstable� (Boldrin and Woodford, 1990).

Finally, Gil Molto and Varvarigos (2012) study the impact of occupational choice and

enterpreneurship on industry dynamics in a setting similar to ours. The key ingredient of

their approach is that consumers choose whether to become a worker or to launch a �rm.6

A distinctive feature of our model is that there is no leisure: the main trade-o� households

face is between alternative allocations of labor. This allows us to obtain a characterization of

the market outcome in terms of solely demand side characteristics under perfectly inelastic

labor supply.

The model and preliminary results

We use a discrete-time dynamic framework, which traces the overlapping generations model

(Diamond, 1965). At each time t = 0, 1, 2... a continuum of varieties is supplied. This

model allows studying the interaction between endogenous capital formation and the degree

of product di�erentiation, which is driven by market interactions between consumers and

�rms.

6See also Behrens et al. (2014), for a static model of enterpreneurial self-selection based on related ideas.
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Consumers

At each time t = 0, 1, 2... the economy is endowed with L consumers. The population L is

assumed to be independent of t. Each consumer lives for two periods. As a result, during the

period (t, t+ 1] the total population involves L/2 old consumers and L/2 young consumers.

Young individuals, the only source of whose immediate income is wage labor, split their time

between working at a �rm and producing capital.7 In other words, for each t-consumer �

i.e. a consumer who is young at time t � the time constraint holds:

`t + κt ≤ 1, (1)

where `t, κt ≥ 0 are, respectively, the shares of time spent working at a �rm and producing

capital. We show later on that this way of modeling capital production at the individual

level essentially leads to the classical capital accumulation equation at the aggregate level.8

During her lifetime, each t-consumer also faces two budget constraints:

ˆ nt

0

pitx
i
tdi ≤ `t, (2)

and

ˆ nt+1

0

pjt+1z
j
t+1dj ≤ (1 + rt+1)κt. (3)

Here nt is the mass of varieties supplied at time t, xit (respectively, z
j
t+1) is the individual

consumption level of variety i ∈ [0, nt] (respectively, j ∈ [0, nt+1]) at time t (respectively,

t+ 1), pit is the price of variety i supplied at time t, while rt+1 is the price of capital.
9

The �children's� budget constraint (2) says that the expenditure of a young agent

cannot exceed her earnings, the wage rate being normalized to 1. The �parents� face the

budget constraint (3), which highlights potential incentives of producing capital: it can be

rented to �rms in the future, being the only source of income for old consumers.

Preferences of a t-consumer are described by her lifetime utility, which is given by the

following two-tier CES utility function:

Ut =
[
X

(θ−1)/θ
t + βZ

(θ−1)/θ
t+1

]θ/(θ−1)
, θ > 0, (4)

where θ stands for the intertemporal elasticity of substitution, β ∈ (0, 1) is the discount

factor, while Xt and Zt+1 are the CES consumption indices in the two neighbouring periods:

7Saying that consumers make �savings� would not be correct, for there is no money in our model, i.e. no
universal means to transfer part of labor income to the next period. For the same reason, inter-generational
borrowing and lending do not take place.

8See the discussion after equation (14).
9Several economic interpretations may be suggested for what we call �producing capital�. One possible

interpretation is that young consumers spend part of their time on learning, thus increasing their future
endowment of skilled labor, as opposed to the unskilled labor they supply to �rms when they are young. In
this context, rt+1 is the wage di�erential between skilled and unskilled workers.
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Xt ≡
[ˆ nt

0

(
xit
)(σ−1)/σ

di

]σ/(σ−1)
, Zt+1 ≡

[(
zjt+1

)(σ−1)/σ
dj
]σ/(σ−1)

, σ > 1. (5)

Two-tier CES intertemporal preferences described by (4) � (5) were introduced in a

di�erent context by d'Aspremont and Ferreira (1985), in a model of oligopolistic competition

that allowed for involuntary unemployment.

In equations (5), σ is the instantaneous elasticity of substitution across varieties con-

sumed within the same time period. When θ → 1, we obtain the Cobb-Douglas-over-CES

utility

Ut = ln

[ˆ nt

0

(
xit
)(σ−1)/σ

di

]
+ β ln

[ˆ nt+1

0

(
zit+1

)(σ−1)/σ
di

]
(6)

as a limiting case.

Combining (1) � (4) implies that the consumer's program may be stated as follows:

maximize utility (4) with respect to (xit)i∈[0,nt] and
(
zjt+1

)
j∈[0,nt+1]

subject to the intertemporal

budget constraint:

ˆ nt

0

pitx
i
tdi+

1

1 + rt+1

ˆ nt+1

0

pjt+1z
j
t+1dj ≤ 1. (7)

Solving this program yields the following Marshallian demands:

xit =
`t
Pt

(
pit
Pt

)−σ
, (8)

zjt+1 =
(1 + rt+1)(1− `t)

Pt+1

(
pjt+1

Pt+1

)−σ
, (9)

where Pt and Pt+1 stand, respectively, for the CES price indices at times t and t+ 1:

Pt ≡
[ˆ nt

0

(
pit
)1−σ

di

]1/(1−σ)
, Pt+1 ≡

[ˆ nt+1

0

(
pjt+1

)1−σ
dj

]1/(1−σ)
.

Recall that `t is the share of a t-consumer's labor endowment spent for wage labor,

while κt = 1− `t is time spent for producing capital. As shown in Appendix 1, we have

`t =
[(1 + rt+1)Pt/Pt+1]

1−θ

β + [(1 + rt+1)Pt/Pt+1]
1−θ , κt =

β

β + [(1 + rt+1)Pt/Pt+1]
1−θ . (10)

Several comments are in order. First, equation (10) shows that the only endogenous

variable relevant for consumers' decisions about allocating their labor endowment is the

�real interest rate� (1+rt+1)Pt/Pt+1, which is the in�ation-adjusted price of capital. Second,

when current consumption and future consumption are substitutes (θ > 1), the amount

of labor spent for producing capital increases with the price rt+1 of capital, which is fairly

intuitive. However, this result is reversed when current consumption and future consumption
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are complements (θ < 1). Finally, it is implied by (10) that κt (respectively, `t) always

increases with the discount factor β for a given real interest rate. This is also fairly natural:

the more consumers care for the future, the higher the amount of capital they produce.

When θ → 1, (10) boils down to `t = 1/(1+β) and κt = β/(1+β). In other words, the

consumer's choice between working at a �rm and producing capital no longer varies with the

real interest rate (1 + rt+1)Pt/Pt+1. It is only the discount factor β that remains relevant.10

Firms

At each time period, a continuum of �rms operates on the market. Firms are involved

in monopolistic competition. Each �rm produces a single variety (i.e. there are no scope

economies), and each variety is produced by a single �rm (i.e. each �rm enjoys certain

monopoly power).

Aggregate demands. The aggregate demand faced by a t-�rm i is obtained as the

sum of individual demands of all consumers for variety i. As the total population at time t

is composed by a mass L/2 of young t-consumers and a mass L/2 of old (t− 1)-consumers,

using (8) � (9) yields

qit =
LΩt

Pt

(
pit
Pt

)−σ
, (11)

where Ωt is the demand shifter given by

Ωt ≡
1

2
[`t + (1 + rt)(1− `t−1)] .

Two remarks are needed before proceeding. First, the market demands (11) are isoe-

lastic in price. Indeed, because each �rm is negligible to the market, it cannot strategically

manipulate the price index Pt, nor the demand shifter Ω(`t−1, `t). Second, equation (11) also

reveals the dynamic nature of competition in our model. Even though each �rm operates

during only one period, the demand schedule faced by a particular �rm is a�ected not only

by behavior of all the other �rms of the same generation, but also of those belonging to the

neighboring generations. Indeed, as implied by (10), the labor shares `t−1 and `t involve the

price indices Pt−1, Pt and Pt+1, and so does the demand shifter Ωt.

Production technologies are identical across �rms and exhibit increasing returns to

scale. Following Martin and Rogers (1995) and Kichko et al. (2014), we assume that each

�rm incurs a �xed capital requirement f > 0 and a constant marginal labor requirement

c > 0.11 Combining this with (11) implies that pro�ts of �rm i are given by

10It can be shown that this result still holds for a more general class of preferences given by Ut = lnX(xt)+
β lnZ(zt+1), where X(·) and Z(·) are non-speci�ed linear-homogeneous consumption indices.

11This cost structure treats labor and capital as perfect complements. To allow for substitutability between
production factors, we could use a Cobb-Douglas speci�cation of costs instead, as in Bernard et al. (2007).
This, however, makes the analysis more involved, while the key results remain qualitatively the same. Because
we are interested mainly in studying the impact of demand side on the market outcome, we choose to work
with the simplest possible cost structure.
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πit =
(
pit − c

) LΩt

Pt

(
pit
Pt

)−σ
− (1 + rt)f. (12)

Equation (12) highlights the inter-generational competitive linkages between �rms.

Using (12), it is readily veri�ed that the �rst order condition for pro�t maximization is given

by

pit =
cσ

σ − 1
. (13)

As immediately implied by (13), pro�t-maximizing prices are constant over time. This

simplistic feature of the model is well-known to be a by-product of using CES preferences

under monopolistic competition. Although working with more general preferences could

obviate this pitfall, this would make the analysis substantially more involved, and lead us

too much astray of the key insights of the paper. We therefore choose to work here with

a tractable CES model, which allows obtaining clear-cut results. We will postpone the

discussion of potential extensions in this dimension until the concluding section.

Timing. A natural way to specify timing of the game in our framework would be to

assume a sequential game, the reason being that t-�rms move after τ -�rms, where t > τ . To

be more precise, a t-�rm (i) observes the whole history of prices and takes it as given, and (ii)

accurately anticipates pro�t-maximizing behavior of �rms which are to be launched in the

future. However, because we work within a monopolistically competitive framework where

�rms are non-atomic, each �rm is well aware of being unable to alter the pro�t-maximizing

prices of future �rms by changing its individual behavior. As a consequence, things work as

if the game among all �rms were simultaneous.

Factor markets

Factor markets are assumed to be perfectly competitive. Capital produced by t-consumers

is used to launch �rms at time t + 1. Starting a �rm requires f units of capital, while the

number of young consumers at time t equals Lt(1 + g)/(2 + g). Hence, the capital market

balance condition is given by

L

2
κt = fnt+1. (14)

Equation (14) shows that our description of capital evolution is formally equivalent to

the standard equationKt+1 = It, whereK stands for capital stock, I is aggregate investment,

and the depreciation rate is 100%. Indeed, the left-hand side of (14) is the total amount of

labor spent for producing capital at time t, which can be treated as aggregate investment,

while the right-hand side of (14) is the total capital requirement in the economy at time

t+ 1.

Combining this with the time constraint (1) and the young consumer's budget con-

straint (2), which both hold with equality because preferences are non-satiated, we obtain
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L

2

(
1−
ˆ nt

0

pitx
i
tdi

)
= fnt+1. (15)

Labor supplied by t-consumers is used by �rms operating at time t. Hence, the labor

market balance condition is given by

L

2
`t = c

ˆ nt

0

qitdi, (16)

where qit is the level of output produced by t-�rm i.

Finally, the product market clearing conditions state that the volume of aggregate

demand for each variety i ∈ [0, nt] at each time t equals the supply volume:

qit =
L

2

(
xit + zit

)
. (17)

Using (2) and (17), the labor balance (16) may be restated as follows:

ˆ nt

0

pitx
i
tdi = c

(ˆ nt

0

xitdi+

ˆ nt

0

zitdi

)
. (18)

Symmetric free-entry equilibrium path

In this section, we provide the key result that highlights how the two elasticities of substi-

tution, σ and θ, jointly a�ect the market outcome. It will be shown that the impact of σ

on �rms' sizes and the mass of �rms at a symmetric equilibrium path hinges crucially on

whether present and future consumption are substitutes (θ > 1) or complements (θ < 1).

In the borderline case of Cobb-Douglas upper-tier utiltiy (θ = 1), σ a�ects neither �rm

sizes, nor the number of �rms. This result shows that the interpretation of σ as a measure of

toughness of competition needs care, for it disregards the nature of consumers' intertemporal

preferences.

Symmetric equilibrium conditions

We begin with a de�nition of an equilibrium path.

De�nition 1. An equilibrium path is a sequence (pt, xt, zt, qt, nt, rt, κt, `t)
∞
t=0, which

satis�es (1) � (3), (8) � (9), and (13) � (18).

In order to de�ne a symmetric free-entry equilibrium path, we denote by IS the indicator
function of S ⊆ R.

De�nition 2. A symmetric free-entry equilibrium (SFE) path is an equilibrium path

such that

(i) the price schedule, the demand schedules and the output schedule are symmetric at

each time t, i.e.

pt = ptI[0,nt], xt = xtI[0,nt], zt = ztI[0,nt], qt = qtI[0,nt]
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for some pt, xt, zt, qt ≥ 0, and

(ii) the zero-pro�t condition holds:

(pt − c)qt = f(1 + rt). (19)

At a symmetric outcome, factor-market balances (15) and (18) boil down to

nt+1 =
L

2f
(1− ptntxt) (20)

and

pt − c
pt

=
zt

xt + zt
. (21)

Equation (21) says that the pro�t-maximizing markup at time t must be equal to the

share of parents' consumption in the total consumption. In other words, a higher share of

GDP consumed by the older generation means higher monopoly power of �rms.

Furthermore, the product market clearing conditions (17) becomes

qt =
L

2
(xt + zt). (22)

Dividing (8) over (9) and taking into account that Pt = ptn
1/(1−σ)
t for all t, we obtain

the following �rst-order condition for a t-consumer's utility maximization program along a

symmetric equilibrium path:

x
−1/σ
t

pt

[
ntx

(σ−1)/σ
t

]
−(σ−θ)/(σθ−θ) = β (1 + rt+1)

z
−1/σ
t+1

pt+1

[
nt+1z

(σ−1)/σ
t+1

]
−(σ−θ)/(σθ−θ). (23)

Using symmetry, the �rst-order condition (13) for a t-�rm boils down to

pt =
cσ

σ − 1
. (24)

To sum up, a SFE path satis�es (19) � (24).

SFE path: existence, uniqueness, and comparative statics

Combining (24) with (19), we obtain the following relationship between the t-�rm's size qt

and the price of capital 1 + rt:

f(1 + rt) =
c

σ − 1
qt. (25)

The intuition behind (25) is easy to grasp: when capital is more costly, �rms have to

produce more to cover the �xed costs.

Combining (24) with (22) yields
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L

2
xt =

σ − 1

σ
qt,

L

2
zt =

1

σ
qt. (26)

Multiplying both parts of (23) by (L/2)−1/θ and using (25) � (26), we obtain a system

of two di�erence equations over the (qt, nt)-plane:

Θq
1/θ−1
t+1 nt+1

(σ−θ)/(σθ−θ) = q
1/θ
t nt

(σ−θ)/(σθ−θ), (27)

nt+1 =
1

f

(
L

2
− cqtnt

)
. (28)

The coe�cient Θ in equation (27) is time-invariant and is de�ned by

Θ ≡ f

cβ
(σ − 1)1−1/θ.

Equations (28) � (27) specify an autonomous dynamic system over the (qt, nt)-plane.

This system has a unique steady state (q∗, n∗), which is given by

q∗ =
f

cβ
(σ − 1)1−1/θ, n∗ =

L

2f

β

β + (σ − 1)1−1/θ
. (29)

Plugging q∗ into (25) implies that the equilibrium price of capital r∗ is such that

1 + r∗ =
1

β
(σ − 1)−1/θ. (30)

Finally, as implied by (14), the shares `∗ and κ∗ of the individual labor endowment

allocated for, respectively, wage labor and production of capital, are given, respectively, by

`∗ = 1− β

β + (σ − 1)1−1/θ
, κ∗ =

β

β + (σ − 1)1−1/θ
. (31)

Using (29), (30), and (31), we come to the following result.

Proposition 1.

(i) A unique symmetric equilibrium path (q∗, n∗, r∗) exists.

(ii) The equilibrium �rm size q∗ increases in σ if and only if θ > 1, increases in θ if

and only if σ > 2, and always decreases in β.

(iii) The equilibrium mass of �rms n∗ decreases in σ if and only if θ > 1, decreases in

θ if and only if σ > 2, and always increases in β.

(iv) The equilibrium share `∗ of consumers' labor endowment spent on wage labor in-

creases with σ if and only if θ > 1, increases in θ if and only if σ > 2, and always decreases

in β.

(v) The equilibrium price of capital r∗ always decreases in both β and σ, and increases

in θ if and only if σ > 2.

Several comments are in order. First, as shown by claims (ii) and (iii) of Proposition
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1, the impact of a higher σ on the market outcome is very di�erent in the cases of substi-

tutability and complementarity between present consumption and future consumption. The

reason for this is that �rms operating at time t compete, in a sense, with �rms operating

at time t+ 1, even though these two populations of �rms operate at di�erent time periods,

hence they never �meet� at the same market. Nonetheless, total consumers' budget splits

between two periods, which makes it legitimate to view �rms belonging to two subsequent

generations as indirect competitors, toughness of competition between them being measured

by means of the intertemporal elasticity of substitution θ. This dimension of competition

cannot be captured by the standard CES model of monopolistic competition, in which we

have q∗ = (σ − 1)f/c, n∗ = L/(fσ), hence a higher σ always leads to fewer �rms of larger

sizes (see, e.g., Combes et al., 2008, Ch. 3). Observe that these formulas can be obtained as

a very special limiting case of (29) when θ →∞ and β → 1. As a result, our model provides

a richer pattern of equilibrium behavior than the standard model.

Second, Cobb-Douglas upper-tier utility is the borderline case, in which the inverse

measure σ of product di�erentiation has zero impact on �rm size and the number of �rms

in equilibrium. Otherwise, the e�ect of an increase in σ depends on whether consumers'

preferences feature intertemporal substitutability or complementarity. This �nding runs

against the static models of monopolistic competition (see Combes et al., 2008, Ch.3, for an

extensive survey and discussion), where a higher σ unambiguously implies bigger �rms and

less �rms in equilibria. The reason why we obtain a very di�erent result is that we take into

account the intertemporal dimension of consumers' decisions.

Third, an increase in θ makes competition tougher or softer depending on whether σ

exceeds or not the threshold value σ = 2. This result, just like the previous one, highlights

the signi�cant role of the interaction between the two elasticities of substitution in molding

the properties of the market outcome.

In addition, claim (iv) of Proposition 1 describes the impact of the degree of product

di�erentiation on labor allocation. When intertemporal substitutability prevails (i.e. θ > 1),

the individuals are willing to work less for the �rms and more on their own when varieties

get more di�erentiated (i.e. when a drop of σ occurs). In other words, individuals agree to

consume less today, being rewarded by higher future consumption. If, on the contrary, pref-

erences show intertemporal complementarity, then the share of labor endowment allocated

for wage labor decreases.

Stability analysis

In this subsection, we show how endogenous �uctuations emerge in the vicinity of the steady

state (q∗, n∗).

Case 1: θ = 1. This case can be viewed as a borderline between the situations

of intertemporal substitutability and intertemporal complementarity, for present and future

consumption are neither substitutes nor complements. This is because, when θ = 1, we arrive

13



back to the Cobb-Douglas upper-tier utility described by (6).

Equation (27) boils down to

Θnt+1 = qtnt. (32)

Combining (32) with (28) pins down the equilibrium values of qt and nt:

qt = Θ, nt =
L/2

cΘ + f
for all t = 1, 2, ... (33)

As implied by (33), whatever the initial state (q0, n0) is, the system immediately

�jumps� into the steady state (29) and stays there forever. In other words, when θ = 1,

arbitrary initial conditions do not result in indeterminacy. The following Proposition is a

summary.

Proposition 2. When θ = 1, the SFE path (q∗, n∗, r∗) given by (29) � (30) is globally

stable.

Intuitively, Proposition 2 says that under θ = 1 the dynamics is fully determinate: no

equilibrium paths di�erent from (q∗, n∗) exist in the vicinity of (q∗, n∗).

Case 2: θ 6= 1. We now come to the case when present and future consumption are

either substitutes or complements. In this case, we can uniquely solve (27) � (28) in terms

of qt+1 and nt+1. This yieds the following discrete-time deterministic dynamic system over

the plane (qt, nt):

qt+1 = Θθ/(θ−1)
[

1

f

(
L

2nt
− cqt

)]θ(σ−θ)/[(σ−1)(θ−1)]
q
1/(1−θ)
t , (34)

nt+1 =
1

f

(
L

2
− cqtnt

)
. (35)

We start with a full description of (q∗, n∗) in terms of local stability.

Proposition 3.

(i) The steady state (q∗, n∗) is a sink if and only if the following system of inequalities

holds: 
θ > 1,

β >
1 + θ − σ
(σ − 1)1/θ

,

(2− θ)β < 2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
.

(36)

(ii) The steady state (q∗, n∗) is a saddle if and only if the following inequality holds:

(2− θ)β > 2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
. (37)
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(iii) Otherwise, (q∗, n∗) is a source.

Proof. The proof relies on the geometric technique of local stability analysis proposed

by Grandmont et al. (1998), which we apply to the dynamic system given by (34) � (35).

See Appendix 2 for details. �

Proposition 3 provides a complete characterization of dynamics described by the system

(34) � (35) in the vicinity of (q∗, n∗). However, revealing the economic implications of (36)

� (37) requires further analysis. Scrutinizing condition (37) shows that (q∗, n∗) is a saddle

when θ is in the vicinity of 1. To be precise, the following proposition holds.

Proposition 4. Assume that θ 6= 1. Then, given the static elasticity of substitution

σ, there exist threshold values θ(σ) and θ(σ) of θ, satisfying

0 < θ(σ) < 1 < θ(σ),

and such that the steady state (q∗, n∗) is a saddle when θ(σ) < θ < θ(σ).

Proof. The sketch of the proof is as follows. When θ → 1, (37) boils down to β > −1,

which is always true. Hence, by continuity, (q∗, n∗) is a saddle if θ is in the vicinity of 1.

This completes the proof. The closed-form solutions for θ(σ) and θ(σ), as well as the details

of the proof, are given in Appendix 3. �

Two comments are in order. First, the economic intuition behind Proposition 3 can be

formulated as follows: if present and future consumption are neither very close substitutes

nor very strong complements, then the steady state (q∗, n∗) is locally determinate. To put it

bluntly, when θ is close enough to (but di�erent from) 1, a unique equilibrium path exists

in the vicinity of (q∗, n∗), which converges to (q∗, n∗) as t→∞ (see Grandmont et al., 1998,

for precise de�nitions). On the contrary, if present and future consumption are either close

substitutes or strong complements, i.e. if θ di�ers considerably from 1, then (q∗, n∗) may be

locally indeterminate. We will see below when this holds true.

Second, it is worth noting that θ(σ) and θ(σ) are independent of the discount factor β.

In other words, what is crucial for the result of Proposition 4 is solely the interplay between

the degree of product di�erentiation and intertemporal substitutability/complementarity, i.e.

between σ and θ, while the degree of consumers' �patience� measured by β plays no signi�cant

role.

Structural instability. Comparing Propositions 2 and 4 leads to a curious insight on

the nature of preferences described by a CES lower-tier utility nested into a Cobb-Douglas

upper-tier utility. Such preferences are given by (6). Both when θ = 1 and when θ is close

to (but di�erent from) 1, there is no indeterminacy. However, the reasons for this are very

di�erent in each of the two cases. In the former case, indeterminacy does not occur because,

regardless of how far away from (q∗, n∗) the pre-determined initial state (q0, n0) ∈ R2
+ is,

the system �jumps� into the steady state (q∗, n∗) at t = 1, and remains there further. What

rules out indeterminacy in the latter case is the existence of a one-dimensional locally stable

manifold in the vicinity of (q∗, n∗). Therefore, Cobb-Douglas over CES preferences may be
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viewed as structurally unstable, in the sense that an arbitrarily small variation of θ changes

the type of dynamics (see Grandmont, 2008, for details).

What happens when θ is distant from 1? In this case, (q∗, n∗) may become unstable.

To be more precise, the following result holds.

Proposition 5. There exist threshold values θ˜(σ) and θ̃(σ) of the intertemporal elas-

ticity of substitution θ, satisfying

0 ≤ θ˜(σ) < θ(σ), θ(σ) < θ̃(σ),

and such that (q∗, n∗) is a source when either θ < θ˜(σ), or θ > θ̃(σ).

Proof. See Appendix 4. �
In other words, Proposition 5 states that, when present and future consumpions are

either very close substitutes or very strong complements, the system tends to be unstable.

Indeterminacy zone. Propositions 4 and 5 describe the local properties of the steady

state (q∗, n∗) when θ is either very close to 1 or very di�erent from 1. In these two cases, it

turns out that what matters for the nature of (q∗, n∗) is solely the interplay between σ and

θ. What happens in the intermediate cases?

Proposition 6. (i) Assume that (a) σ satis�es 2 < σ < σ0 ≈ 3.4489, and (b) θ

satis�es θ(σ) < θ < θ̃(σ). Then, there exists a lower bound β(σ, θ) ∈ (β0, 1) of the discount

factor β, where β0 ≈ 0.8945, such that (q∗, n∗) is a sink if and only if β > β(σ, θ).

(ii) If at least one of the assumptions (a) and (b) does not hold, the equilibrium is

either a saddle or a source.

Proof. See Appendix 5. �
Figure 1 illustrates the results of the above stability analysis for (q∗, n∗).
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Fig. 1. Stability analysis.

Figure 1 represents our main �ndings on the dynamic properties of the steady state,

which may be summarized as follows. First, the key-factor of both (non-)stability and

(in)determinacy of the equilibtium path (q∗, n∗) is the interplay between σ and θ, whereas

the role of the discount factor β is rather limited. Second, the equilibrium tends to be locally

stable and determinate when consumption today and consumption tomorrow are neither very

good substitutes nor very strong complements; otherwise, the equilibrium path tends to be

unstable. The white zones of Figure 1 contain the bifurcation loci, the exact shape of which

depends on the value of the discount factor β. Finally, indeterminacy takes place solely in

a bounded region (the red zone on Figure 1) of the unbounded (σ, θ)-plane. This region

satis�es two simultaneous properties: (i) the values of σ and θ are relatively close to each

other, and (ii) both σ and θ are neither too high nor too low. In other words, indeterminacy

occurs only when vareties are moderate substitutes. Qualifying the case of 2 < σ < 3.4489 as

�moderate substitutability� can be justi�ed by appealing to the calibrated value of σ = 3.79

obtained by Bernard et al. (2003), as well as empirical estimates of σ derived by Anderson

and Van Wincoop (2004) from a gravity model of trade and suggesting 5 < σ < 10. On

top of that, indeterminacy might only arise under very high (higher than 0.89) values of

the discount factor β. Thus, we may safely conclude that indeterminacy is not a plausible

outcome in our model.

Observe that Propositions 4-6 do not involve the supply-side parameters of the model,
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c and f . The dynamic features of the steady state are fully driven by characteristics of the

demand side. This result concurs with the recent �ndings of theoretical studies on static

monopolistic competition under variable elasticity of substitution (Behrens and Murata,

2007; Zhelobodko et al., 2012; Kichko et al., 2014), sending a message that the demand side

is crucial for understanding the market outcome.

Concluding remarks

We have developed a two-factor dynamic model of monopolistic competition, in which pro-

duction of capital is endogenous and requires a labor input. The model shows how the

relationship between the degree of product di�erentiation within each period, on the one

hand, and intertemporal elasticity of substitution, on the other hand, shapes the market

outcome and determines the fundamental dynamic properties of the economy near the equi-

librium path. We have also seen that the interplay between consumers' love for variety

and their decisions about labor endowment allocation may trigger cyclical movements in the

economy and renders the equilibrium path unstable.

At least three potential lines of further inquiry seem to be relevant. First, it might

be interesting to study the impact of strategic interactions on the equilibrium path and the

labor-capital trade-o�. This may be achieved by assuming a �nite number of di�erentiated

varieties produced by �rms competing either a lá Cournot or a lá Bertrand. Moving in this

direction could bridge our results with d'Aspremont et al. (1996) and d'Aspremont and

Ferreira (2015), who work on multi-sectoral general-equilibrium oligopoly models and �nd

that the market outcome is mainly driven by the interplay between intra- and intersectoral

elasticities of substitution. Second, following the lines of Zhelobodko et al. (2012), it may

be possible to develop a model revealing the dynamic consequences of introducing variable

markups. Such a model would be potentially helpful in understanding better the role of

variable elasticity of substitution in monopolistic competition. Finally, extending our model

to the case where �rms operate for more than one period might also be interesting. This

extension may lead to producers' behavior similar to that of multi-product �rms, the reason

being that �rms' future demand can cannibalize their current demand.
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Appendix

Appendix 1: Derivation of equations (10).

The consumer's upper-tier problem is given by:

max
Xt,Zt+1

[
X

(θ−1)/θ
t + βZ

(θ−1)/θ
t+1

]θ/(θ−1)
(38)

s.t.

PtXt +
Pt+1

1 + rt+1

Zt+1 = 1. (39)

The �rst order condition of (38) � (39) is as follows:(
Xt

βZt+1

)−1/θ
= (1 + rt+1)

Pt
Pt+1

.

Combining this with (39) yields the following expressions for the expenditure shares:

Pt+1Zt+1

1 + rt+1

=
1

1 + β
[
(1 + rt+1)

Pt
Pt+1

]1−θ ,

PtXt =
β
[
(1 + rt+1)

Pt
Pt+1

]1−θ
1 + β

[
(1 + rt+1)

Pt
Pt+1

]1−θ .
Using `t = PtXt and (1 + rt+1)κt = Pt+1Zt+1, we obtain (10). �

Appendix 2: Proof of Proposition 3.

Evaluating the the Jacobi matrix

J(qt, nt) ≡


∂qt+1

∂qt

∂qt+1

∂nt

∂nt+1

∂qt

∂nt+1

∂nt


in the steady state (q∗, n∗) yields:

∂qt+1

∂qt
=

1

1− θ

(
1 + θ

c

f

σ − θ
σ − 1

q∗
)

=
1

1− θ

[
1 +

θ

β

σ − θ
(σ − 1)1/θ

]
, (40)

∂qt+1

∂nt
=

4f 2

2Lcβ
· θ

1− θ
· σ − θ

(σ − 1)1/θ
·
[
1 +

1

β
(σ − 1)1−1/θ

]2
, (41)

∂nt+1

∂qt
= − Lc

2f 2

β

β + (σ − 1)1−1/θ
, (42)

21



∂nt+1

∂nt
= − 1

β
(σ − 1)1−1/θ. (43)

Using (40) � (43), we obtain the following expressions for the trace trJ(q∗, n∗) and the

determinant detJ(q∗, n∗) of the Jacobi matrix:

trJ(q∗, n∗) =
1

1− θ
+

1

β
(σ − 1)−1/θ

[
θ

1− θ
(σ − θ) + (1− σ)

]
, (44)

detJ(q∗, n∗) =
1

β
(σ − 1)−1/θ(1− σ + θ). (45)

(i) The steady state (q∗, n∗) is a sink if and only if the following system of inequalities

holds (Grandmont et al., 1998):|trJ(q∗, n∗)| − 1 < detJ(q∗, n∗),

detJ(q∗, n∗) < 1.
(46)

Using (44) � (45), we �nd that (46) amounts to

β > 1+θ−σ
(σ−1)1/θ ,∣∣β(σ − 1)1/θ − θ2 + (2σ − 1)θ + 1− σ

∣∣ < |1− θ| [β(σ − 1)1/θ + θ + 1− σ
]
.

(47)

Assume �rst that that θ < 1, and that (47) holds. Then, the second inequality of (47)

implies

β(σ − 1)1/θ − θ2 + (2σ − 1)θ + 1− σ < (1− θ)
[
β(σ − 1)1/θ + θ + 1− σ

]
,

which can be equivalently written as follows:

θ(σ − 1)
[
1 + β(σ − 1)(1−θ)/θ

]
< 0.

This is at odds with our assumptions about the parameters: θ > 0, β > 0, and σ > 1.

Thus, assuming that (47) holds when θ < 1 leads to a contradiction. Hence, when present

and future consumption are complements, the steady state is never a sink.

Assume now that θ > 1. Then, (47) boils down to the following system:


β > 1+θ−σ

(σ−1)1/θ ,

1− 1
β
(σ − 1)−1/θ [θ2 − (2σ − 1)θ + (σ − 1)] < (θ − 1)

[
1 + 1+θ−σ

β
(σ − 1)−1/θ

]
,

1
β
(σ − 1)−1/θ [θ2 − (2σ − 1)θ + (σ − 1)]− 1 < (θ − 1)

[
1 + 1+θ−σ

β
(σ − 1)−1/θ

]
.

(48)

The third inequality of (48) can be shown to be equivalent to
[
1 + (θ − 1)(σ − 1)1/θ

]
β+
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θ(σ − 1) > 0, which holds for all values of θ that exceed 1. The second inequality of (48)

amounts to

(2− θ)β < 2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
.

Hence, (48) is equivalent to (36).

(ii) The steady state (q∗, n∗) is a saddle if and only if

[trJ(q∗, n∗)]2 > [detJ(q∗, n∗) + 1]2 . (49)

Plugging (44) and (45) into (49), we �nd that (49) is equivalent to

[
1

1− θ
+

1

β
(σ − 1)−1/θ

(
θ

1− θ
(σ − θ) + (1− σ)

)]2
−
[

1

β
(σ − 1)−1/θ(1− σ + θ) + 1

]2
> 0,

the equivalence of which to (37) can be established by means of direct calculation.

(iii) Finally, when neither (36) nor (37) hold, the only remaining possibility is that

(q∗, n∗) is a source.

Appendix 3: Proof of Proposition 4.

We consider two cases.

Case 1: θ < 2. In ths case, (37) takes the form:

β >
2θ2 − (3σ − 1)θ + 2(σ − 1)

(2− θ)(σ − 1)1/θ
. (50)

When does (50) hold for all β ∈ (0, 1)? Clearly, this is true if and only if the right-hand

side of (50) is negative, or, equivalently, when the following inequality holds:

2θ2 − (3σ − 1)θ + 2(σ − 1) < 0. (51)

This inequality holds for θ such that θ(σ) < θ < θ1(σ), where θ(σ) and θ1(σ) are the

roots of the quadratic function of θ in the left-hand side of (51):

θ(σ) ≡ 1

4

(
3σ − 1−

√
9σ2 − 22σ + 17

)
,

θ1(σ) ≡ 1

4

(
3σ − 1 +

√
9σ2 − 22σ + 17

)
.

It can be shown that (i) 0 < θ(σ) < 1 < θ1(σ), (ii) θ1(σ) is an increasing function of σ,

and (iii) θ1(2) = 2. We conclude that, when θ < 2, the steady state (q∗, n∗) is a saddle for

all β ∈ (0, 1) if and only if either σ ≤ 2 and θ(σ) < θ < θ1(σ), or σ > 2 and θ(σ) < θ < 2.

Case 2: θ > 2.

In this case, (37) takes the form:
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β <
−2θ2 + (3σ − 1)θ − 2(σ − 1)

(θ − 2)(σ − 1)1/θ
. (52)

When does (52) hold for all β ∈ (0, 1)? This is true if and only if the right-hand side

of (52) exceeds 1, or, equivalently, when the following inequality holds:

(σ − 1)1/θ − 3θ − 2

θ − 2
(σ − 1) + 2θ

θ − 1

θ − 2
< 0. (53)

For any θ > 2, the expression in left-hand side of (53) describes a bell-shaped function

of σ−1, which is positive when σ = 1 and goes to −∞ as σ →∞. Hence, by the intermediate

value theorem, there exists a single-valued function σ(θ) > 1, such that (53) holds if and

only if σ > σ(θ). Moreover, it can be shown that σ(θ) is a strictly increasing function, and

that σ(2) = 2, i.e. it maps bijectively [2,∞) onto itself. Hence, σ(θ) has an inverse over

[2,∞), which we denote by θ2(σ). As a consequence, (53) holds if and only if θ < θ2(σ).

Finally, as σ(2) = 2, we also have θ2(2) = 2.

Setting

θ(σ) ≡

θ1(σ) for σ ≤ 2,

θ2(σ) for σ > 2

completes the proof. �

Appendix 4: Proof of Proposition 5.

As implied by Proposition 3, (q∗, n∗) is a source if and only if one of the two systems

of inequalities holds: either
θ > 1,

β <
1 + θ − σ
(σ − 1)1/θ

,

(2− θ)β < 2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
,

or 
θ < 1,

(2− θ)β < 2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
.

When is (q∗, n∗) a source for all β ∈ (0, 1)? This holds if and only either
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
θ > 1,
1 + θ − σ
(σ − 1)1/θ

> 1,

2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
> max{0, 2− θ},

(54)

or 
θ < 1,

2θ2 − (3σ − 1)θ + 2(σ − 1)

(2− θ)(σ − 1)1/θ
> 1.

(55)

Solving numerically (54) and (55), we obtain the dashed zones on Figure 1.12 Setting

θ˜(σ) and θ̃(σ) to be the boundary curves of the hatched zones completes the proof. �

Appendix 5: Proof of Proposition 6.

As implied by Proposition 3, (q∗, n∗) is a sink if and only if (36) holds. When is (q∗, n∗)

a sink for at least some β ∈ (0, 1)? Using (36), we �nd that the answer is
θ > 1,
1 + θ − σ
(σ − 1)1/θ

< 1,

2θ2 − (3σ − 1)θ + 2(σ − 1)

(σ − 1)1/θ
< max{0, 2− θ}.

(56)

Solving (56) numerically, we obtain the red zone on Figure 1. The intersection points of

the boundary curves of the red zone are (2, 2) and (σ0, θ0), where σ0 ≈ 3.4489, θ0 ≈ 3.7210.

It remains to compute the lower bound β0 for the threshold value β(σ, θ) of the discount

factor. Clearly, β0 = infS B(σ, θ), where

B(σ, θ) ≡ max

{
1 + θ − σ
(σ − 1)1/θ

,
2θ2 − (3σ − 1)θ + 2(σ − 1)

(2− θ)(σ − 1)1/θ

}
,

while S ≡ (2, σ0] × (2, θ0]. Minimizing numerically B(σ, θ) over S, we obtain β0 ≈ 0.8945.

This completes the proof. �

12The Maple 17 codes for all numerical procedures are available from the authors upon request.
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