IOnnio CEPTEEBUYY MIIBbANIEHKO — ITO3JPABJIEHUSA
c 70-IETHUM IOBUJIEEM

DTOT BBIMYCK «TpyZioB MOCKOBCKOTO MaTeMAaTHYECKOTO OOIeCTBa» IOCBs-
IIEH WIeHy peAKOJ/UIETuH KypHasla, MHOTOJIeTHEMY Bulle-Ipe3nzieHTy Moc-
KOBCKOT'O MaTeMatudeckoro obmiectBa IOnuio CepreeBuuy WbsIieHKO,
KoTopoMy 4 Hos16ps 2013 roga ucnonHunock 70 set. YKemaem HOmuio Cep-
reeBUYy Z0OpPOro 3J0POBbS M JANTbHEHMIINX YCIIEXOB B €T0 JEeSATENbHOCTU
Ha 6y1aro MaTeMaTHKU U 06pa30BaHUs B Halllel CTpaHe.



I[IPEAVICIIOBUE PEJAKTOPOB BBIIIYCKA
B. A. KnenusiHA u WM. B. l[llyPoBA

FOmuro CepreeBudy VIbALIeHKO HeJaBHO UCIOMHWIOCH 70 Jet, u A Hac 06o-
ux OOJIbIIAsA YeCTh YIaCTBOBATH B IOATOTOBKE ToMa «TpyzoB MOCKOBCKOTO Mare-
MaTH4YEeCKOro 00IIecTBa», NOCBAMIEHHOIO 3TOMY 3aMeYaTebHOMY COOBITHIO.

MaremaTuueckue goctkenus 0. C. — HaxoxxgeHue omnboK B crpareruu [let-
poBckoro — JlaHauca U ykazaHue mpobena B MeMyape /ltoyaka, 0Ka3aTelbCTBO
WHIVBUYaJIbHON TeopeMbl KOHEeYHOCTH, cTparerus ['opozenxoro — VibAmmeHKo
IIOCTPOEHHUA NIPUMEpOB U T.J. LIMPOKO M3BeCTHHL. BMecTo ux nepevyucieHus Mbl
XoTenu OBl HECKONBKUMU IITpUxaMu nokasarh HOmusa CepreeBuya Kak «OTIa Ha-
YYHOT'O ceMeHCTBa», JOJITHe I'ofibl 3a00TAIIerocs 0 CBOUX YUeHHKaX.

Kaxxgoe seto 10.C. cobupaeT y4eHWKOB Ha JIETHIOIO IIKOJTY, U WHT€HCUBHAS
paboTa B Heli 3a4acTyro Ja€T 3a/ie/1 Ha BeCh CJIEAYIOMINIA T0/. DTH LIKOJIBI TPOXOAAT
B pa3HbIX MecTax — noj JlyoHoii, Ha COMOBEIKUX OCTpoBaX, B ropax ClIOBaKuu
wiy B anbliarepe besenru. KoHeuHo, 3aHATUA MaTeMaTUKOM HEMUHyeMO Iiepe-
MexaroTcs mporynkamu, kotopsie 0. C. oueHb JIIOOUT; K IPUMEPY, AUCCEPTAIIVS
N. 1. Hayanack ¢ OZHOI'O pasroBopa Ha 3akaTe B ropax, Ha BbicoTe 3000 M.

Bo BTOpOIif nosioBuHe 1990-x A. C. l'opogerikuii u IOnuit CepreeBud npejioKu-
JIU CTPATETHUIO TIOCTPOEHUS TUMMUYHBIX IIPUMEPOB KaKOT0-TMO0 MOBeAeHUs ANHA-
MUYECKUX CHUCTEM, 6OJIbIAA 4acTh 3TON paboThl ObUIA UMU IPUAyMaHa 3a OJHY
ZIONITYI0 3UMHIOIO IIPOTYJKY. A emé A. C. BCTOMUHAET, KaK K HeMy Ha ZleHb POX/e-
Hua npunu I0nuit Cepreesuy, ero :xeHa Enena HukosaeBHa U Becb ceMUHap —
U BCe ejle-ejie MMOMECTIINCh B BOCBMUMETPOBOM KOMHATKE B OOIIEKUTHH, U 3TO
OBUIO Y?KAaCHO TPOTaTEJIbHO.

[Onmuit CepreeBuu miefpo AenuTca WAEAMU CO CBOMMM ydyeHukamu. B.K. He
MOXXeT He BCIIOMHUTb, KaK IIpOUTpasl eMy Hay4yHBIHM crop: korza 0. C. mpezso-
KWI UJel0, JIETIIYI0 B OCHOBY paboT 0 Mepax ¢ HyJIeBBIM ITOKa3aTesieM JIAIyHOBA,
nepBoii peakiyeii B. K. 6bI0 — «HO 3TO jKe He MOXKeET cpaboTaTh!», O[HAKO MpaB
okasascs VnbAleHKo.

Mzl He nepecTaéM BOCXUIIAThCA aKTUBHOCTBIO FOnua Cepreesuya. Y. I1. Bero-
MMHaeT, Kak BO BpeMsaA KoMaHAupoBkU B KopHenbckuii yHuBepcuret 0. C. npu-
[JIaCUJI €r0 Ha MPOTYJIKY, 3aBepIINBIIYIOCA KyIIaHUEM 1107 BogonazoM. Jeno 6510
B KOHIIe OKTA6DA, U Kymascs Toabko Omuii Cepreesuy: U. I11. B 3TO BpeMs IBITAI-
s IOIUIOTHee YKyTaTbCsA B TEIUIYIO KYPTKY, cllacasch OT JeAIAHOro BeTpa. [Jlpyras
HUCTOPUS CBSI3aHA C y4yeOGHON HArpy3KOHM: OJHAXKABI, TMPHUAA HA TPAAUIMOHHBIN
IIATHUYHBINA CeMMHap IOocje KasaBllerocad eMy WU3HYPUTEIbHBIM TPYAOBOIO JHA
(Tpm mapsr), Y. I1I. cripocun FOmus CepreeBuda, CKOIBKO Map B IeHb €My TIPUXOAH-
Joch BecTtu. OKasanoch, YTO YeThIpe, IPU4EM coBceM HezaBHoO. M. 1. ycrbianica
¥ GoJbIlle HUKOMY He TOBOPUT, YTO OYEHB YCTaJ IOCTIe TPEX map.

C nHéM poxzaeHUs!
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[TouTu KOMILIEKCHBIE CTPYKTYPHI Ha YHUBEPCATbHBIX
HaKPBIBAIOUIVX CJIOEHUMN

A. A.lllepbakos

MeI paccMaTpUBaeM CJIOEHHUs Ha aHATUTUYECKHE KPUBBIE HAa KOMIIAKTHEIX KOMIUIEKCHBIX MHOT006pa-
3usX. VI3BECTHO, YTO €CJIM KacaTeIbHOE K CIOEHUIO IHHEHHOE PACCIOEHNE OTPUIATENBHO, TO, B CIIydae
061IIETO MTONOKEHNS, BCE CIOU SABTIAIOTCSA TUIIEPOOINYecKuMU. MHOroo6pasie yHUBEPCAIbHEIX HAKPHI-
BAaIOLINX CJIOEB, MPOXOJSALINX Yepe3 HEKOTOPYIO TPAHCBEPCAb, UMEET €CTECTBEHHYIO KOMILUIEKCHYIO
CTPYKTYpy. MBI IIOKa3bIBaeM, YTO B THIIMYHOM CJIydae 3Ta CTPYKTYpa MOXKeT OBITh OlpejeeHa Kak
[IazKast IOYTH KOMIUIEKCHAsl CTPYKTypa Ha MPOV3BeZileHUH 6a3bl ¥ eJUHUIHOTO KpyTa. JloKa3siBaeTcs,
YTO 3Ta CTPYKTYpa KBAasSMKOHPOPMHA HA CJIOSAX U i cooTBeTCTBYIOmMX (1, 0)-GopM U UX IPOU3BOJ-
HBIX [I0 OTHOLIEHUIO K KOOPAWHATaM B 6a3e U B CJIOSIX MMEIOTCS pAaBHOMEPHBIE OLIeHKU. [Ipou3BojHbIe
pacTyT He GHICTpee, YeM HEKOTOpas OTPULATENbHAs CTENeHb PACCTOSHUA O IPaHUIBI Kpyra.
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BBEZEHUE

[Tycts M — KOMILIEKCHOE MHOTOOGpasue. MbI TOBOpUM, 4TO Ha M ompezieieHO
cJI0eHue ¢ 0COGEHHOCTAMU &, eCJIU CYILECTBYET aHAIUTUYECKOe TOIMHOMXECTBO %
KOMIUIEKCHOM KOpa3MepHOCTH He MeHbllle 2 U UMeeTCs CJIOeHUE ero JOTOJTHEeHUA
Ha aHaJIUTH4YeCKHe KpHBBbIe, KOTOpOe Heslb3sd IPOJO/DKUTh B TOUKU 2. B TUnud-
HOM CJIy4ae CUHI'YJIAPHOE MHOXKECTBO Y. COCTOUT U3 U30JMPOBAHHBIX TOYEK.

CrioeHMe TakKe MOXET OBITh JIOKAJIbHO OIpesesIeHO TIPU MTOMOINY ToJIoMOopd-
HBIX BEKTOPHBIX ITosieit. TouHee, A 3aJaHUA CJIO€HUA & HY>XHO UMETh OTKPHITOE
nokpeitie {U;}, j € J, Ha6op roloMOPQHBIX BEKTOPHBIX Tonel V;, j €J, u Mymb-
TUILUIMKaTUBHBIN KOUMKI f;;, 1, j €J, TaKkue 4To:

(i) V; —ronmomopdHoe BexTopHOE 107IE Ha Uj,

(ii) ecmn U;NU; #Q, 10 f;; € 0*(U;NU;) m V; = f;V; Ha U;NU;.

Pa6ota 6buta mogzep:xana rpanrom POOU 10-01-00739 u rpanTom POPH-CNRS 10-01-93115-CNRS
HITHWJIa.

© A.A.lllepbakos, 2014



154 A.A.IEPBAKOB

KacamenwHoe paccnoenue cioeHus # — 3T0 TOJIOMOPHOe JIMHEHHOe pacciioe-
HHe, aCCOLMMPOBAHHOE C KOLUMKJIOM f;;. OHO ompeZieneHo Haj BceM M, a He TOJIb-
KO Hajl J0TIoNHeHNEeM K ocobeHHOCTAM. [logpo6Hee cM., Hampumep, [3]. Mbr 6y-
ZeM 0003HavaTh 3TO JMHEHHOe paccioeHue Ty U ABOMCTBeHHOE eMy — T .

HaxkpeiBatolliee MHOrooOpasue CI0€B cloeHus ObUTO ompezeneHo B [9, 10].
[Tycte & — ciioeHre ¢ 0COOEHHOCTAMMU Ha KOMIUIEKCHOM MHoroobpasuu M, u
IycTh B — TpaHcBepcanbHOe cedeHue. ITycTh (p, — CI0M, IPOXOAAIIUH Yepes To4-
Ky p €B, 1 IIycTb §,, — yHUBepcalbHad HaKPhIBAIOIad 3TOTO CJI0S C OTMEYeHHOMH
Toukol p. [lo onpezeneHuto, N

M=,

pPEB

B [9,10] 6bu10 TOKA3aHO, YTO IO KpaiiHel Mepe A cjoeHUA Ha apPuHHOM
MIPOCTPAHCTBe WiK, B Hoyee obiieM ciydae, Ha MHoroobpasuu IllTeliHa MOXKHO
OTIpEZIEJIUTh TOTIOJIOTHIO Y KOMILUIEKCHYIO CTPYKTYPY Ha 3TOM OOBbeJUHEHUU Tak,
YTO OHO OyZeT KOMIUIEKCHBIM MHOT006pa3uieM, CHaGKEHHBIM JIOKATbHO GUTOJIO-
MopdHO#t mpoexuueit 7: M — M 1 ronoMopdHbIM cederreM B — M, oGpaTHEM
crpaBa K ToloMOpHOI peTpakuuu 1: M — B. JUIa KaXzoro cios ¢ OTpaHU-
JeHUe 7T Ha {,, ABJIAETCA YHUBEPCATbHEIM HaKPBIBAOIIUM OTOOPaKeHHEM Ha ¢,.
s cmoenus Ha CP" MHOro0o6pasuie YHUBEPCATbHBIX HAKPHIBAIOUTNX MOXKET OBITh
He XaycgophOBBIM, HO B TUIIMYHOM CJIy4ae OHO xaycaopdoso (cMm. [4,5]). MoxHO
IIOCTPOUTH XaycZopdoBO YHHUBEPCAIbHOE HAKPHITHE /I IPOU3BOIBHBIX CIOEHUN
Ha KOMITAKTHBIX K3JIEPOBBIX MHOT000PAa3UsIX, €CJIM MBI BKJIIOUUM OCOOBIE TOYKH
B CJIOH B HEKOTOPBIX MCKIIOUUTENbHEIX ciydasx (cMm. [4,6]), HO 37iech MBI He pac-
CcMaTpUBaeM TaKUe CUTYaIlUH.

s tunuaHoro crnoenusa Ha C" win CP" KaXAbIH C/10H ABIAeTCsa runepbosu-
yeckuM (cm. [7] win [12]). [ia kaxzaoro ciost yHrudopMusyoiee oToGpaskeHre
€/IMHCTBEHHO C TOYHOCTBIO [0 aBTOMOPQU3MOB Kpyra, U IIOCIE€ HOpMaju3a-
1y (4TOGBI MOMYIUTh €JUHCTBEHHOCTb) BO3HHKAET BOIPOC: YTO MOXKHO CKa-
3aTh O 3aBUCHUMOCTH YHH(QOPMM3YIOUIETO OTOOpPa)KeHUA JJIA ¢, OT TOYKU p?
OKBUBAJIEHTHO, MOJKHO BBECTH Ha KaXKJOM CJI0€ METPHUKY IlyaHKape, TO eCTb
€/IMHCTBEHHYIO TIOJTHYIO 3PMHUTOBY METPUKY KPUBU3HBI, PaBHOH —1, U CIIPOCUTH
0 3aBUCHUMOCTH 3TOH METPUKH OT TOYKU p. ['MmoTe3a 06 OZHOBpEMEHHOM YHU-
dopMu3au YTBEPXKAAET, YTO TPU IMOAXOASIIEM BBIOOpE YHHU(DOPMUIYIOIIErO
oTobpakeH!sA ¢, Ha IOAXOAAILYI0 06/1acTh (3aBUCAIIYIO OT p) Ha PUMaHOBOH cde-
Pe, MOXKHO CZIeJIaTh 3TO OTOOpaKeHHE aHATUTHIECKHU 3aBUCIINM OT p. MI3BeCTHO,
YTO 3Ta TUIIOTEe3a HEBEpPHA A OOIIMX CJIOEHWH HAa MHOTOOOpa3usax pasMepHO-
¢ty Gosiblile 2 U Jake AJIT CJIOEHMM Ha OOIUX AByMepHBIX MHOroobpasusx [8].
HeunsBecTHO, BepHA JIM 3Ta TUIIOTE3a /I TUIMYHBIX c1oeHui Ha C? wiu CP2.

B pa6ote [13] 6bL10 TIOKA3aHO, YTO I TUMUYHOTO ciaoeHus Ha CP" B cosx
CYILIECTBYET KBa3UKOHGOPMHAs CTPYKTYpa, IIaZAKO 3aBUCAIIASA OT TOUYKHU 6asbl p
(em. [13, memma 2]). TouHee, [jiA TUIUYHOTO CIOEHUS MHOT0OOpa3ue yHUBED-
caJIbHBIX HaKpBIBaIOIIUX ¢ 6a30ii B 6uromomopdHo mpousBegenuio B x D (D —
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eIVHWYHBINA JUCK), CHAOKEHHOMY IOYTH KOMIUIEKCHOM CTPYKTYPOM, KOTOpas Jio-
KaJIbHO 110 6a3e MoXkeT GBITh onpezeneHa popmamu tuma (1, 0):

d¢={d¢;}, j=1,...,n—1, w=dw+udw+{(c,dl).

3zech {j — koopAuHaTH B 6ase B, w — KapTa Ha cioe, ¢ = {¢;} —mazkaa (C*)
BekTop-pyHKIUA, {c, d{) — cKanApHOe mpousBeaeHue ¢, dly +...+¢pq dlp, h—
rmazkas GyHKIMS, YAOBIETBOPSIOIIas oleHKe |u| < b < 1. B BhIIIEyIOMAHYTOM
cTaThe U3 TOCTeAHEr0 HepaBeHCTBA ObUI C/le/IaH BBIBOJ, YTO YHUGDOPMUIYIOIIee
oTobpaxkenue (Win, SKBUBAJIEHTHO, MeTpuKa [lyaHkape) mIaZKo 3aBUCUT OT TOY-
KM p. DTO 3aKiIioueHue HeBepHO. YHUOpMU3yIollee 0ToOpakeHHe YAOBIETBO-
psieT ypaBHeHMIO BenbTpamu ¢ KO3GQUIMEHTOM U, U pellleHre, ToMeoMOpPHO
oTobpaxatomiee D Ha D, TIAaZKO 3aBUCUT OT {, TOJBKO €CJIU JAJIS MPOU3BOAHBIX
byHKIMY U BAOIb 63l UMeeTCs OlleHKa, paBHOMepHas Ha crosx (cum. [1]). Ha ca-
MOM Jieie, Kak mokasan B. JlepyaH, MeTpuka [lyaHkape MOXeT ObITh HeIaAKOM
B OKPECTHOCTH THIIEPOOIMYECKOI 0COO0M TOUKH.

Tem He MeHee Gosee c1aboe MPEAOIOKEHHE, UTO CYIIECTBYET OTOOpAKEHHE,
[IaJIKO 3aBUCAIIEE OT CJIOI U OUroIOMOpPPHO OTOOpaskarolee KasKIbIM CIIOM
Ha HEKOTOpyIo obsacTh B C, HENPEPHIBHO 3aBUCAIIYI0 OT CJIOS, MOXET OBITh
BepHBIM. JJif TOTO YTOOBI [TOJIyYaTh PE3YABTATHl TAKOTO THUIIA, TPEOYETCS HEKOTO-
PBIF KOHTPOJIb HaZl TIPOU3BOAHBIMU GYHKIMU . Jpyrve mpobieMbl, CBA3aHHbBIE
C 3TUMHU BOIIPOCAMU, — 3TO AHATUTHUIECKOE MPOAOLKeHUe oTobOpaxkenus IlyaH-
Kape, win mpobsemMa COXpaHeHUs IUKIOB. MOXHO MPEACTAaBUTh OTOGPaKEHME
[TyaHkape Kak HEKOTOPBIH GUrosioMopbH3M TpaHCBepcaie, M BOSHUKAET BOIIPOC
O CyIIEeCTBOBAHWM M CBOMCTBAX I'PAHUYHBIX 3HAYEHHN TAaKUX TOJIOMOPOU3MOB.
[Toxoxke, YTO JJISI TOrO YTOOBI MOJYYUTh KaKHWe-TO PEe3y/JbTaThl B DTOM HaIlpas-
JIEHUH, TPeOYIOTCA TaKXKe OLIEHKHU A KO3pPUIMEHTOB GOPM, ONPEAeIOIUX
KOMIUTEKCHYIO CTPYKTYPY Ha MHOTOOOpa3vy YHHUBEPCATbHBIX HAKPHIBAIOIINX.

B HacTosiIel cTaTbe MBI MCCIEAYEM ITOYTH KOMIUIEKCHYIO CTPYKTYPY Ha 3TOM
MHOT000pasuy U JaéM OIEHKU BCEX MPOM3BOAHBIX GYHKIMMA U ¥ ¢. OCHOBHOM
pe3y/bTaT — 3TO CJIEAYIONIAsi TeopeMa.

Teopema 1. [Iycmb M — koMnakmHoe KOMILIEKCHOe MHO2000pasue u F — aua-
Jiumuueckoe cjoeHue ¢ ocobenHHocmsamu Ha M. IIpednosoxcum, umo Ha Kacamesib-
Hom paccaoeHuu Ty cywecmeyem mempuka ompuyameibHol Kpusushsl. IIpedno-
JIONCUM Makdice, 4mo 0coboe MHONCECMBO ¥ COCMOUM U3 U30JUPOBAHHBIX MOYUEK,
amu 0cobble MOUKU HeBbIPONCOEHHbL U 8eKMOPHOe NoJie, JIOKAIbHO Onpedesisito-
wee F 8 kaxnc0oil ocoboil mouke, AHAAUMUYECKU JUHEAPU3YeMO, d JUHellHas
yacmos duazonanusupyema. ITycms M — MH02006pa3ue YHUBEPCANbHBIX HAKPbLEA-
rowux ¢ 6asoil B. Toeda komniekchas cmpykmypa Ha M 6uzonomop@Ho skeu-
BAIEHMHA NOUMU KOMNJIEKCHOU cmpykmype Ha npousgedeHuu B X D, 10KanbHO
no 6ase onpedenéHHol opmamu

d¢ ={d¢;}, j=1,...,n—1, w=dw+udw+{c,dl).
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30ecb U u c— 2nadkue PyHKYUSL U BeKmMOp-PYHKUUS cooma8emcmaeHHo HA B x D.
Ans dyHkyuu U 8binoHAEMCS OUeHKa

lul<b<1, 0.1)

Zna nob6ozo myavmuundexca (k) = (ky,, kz), |kl =k, + kg, estnonnsemes oyerka

a\k\‘u
okww okwip

Jna a106020 mynbmuuHoexkca

<C(—|w|) 7, (0.2)

(k) = (ky, ..., kn_1, k1, ...  kneq, k), ki),
k| =ky+...+kpq+ki+...+k,q+ky,+ki,
BbINOJIHAMCA OUEHKU
okl
Pag, . kel kg, L ekl dkww okwin

<SMQA—|w|)~ @D (0.3)

alklc
g, L. ok, Rl Lokl dRew gkoin

<SM(1—[w)=AWHD, (0.4)

Ouenku (0.1)-(0.4) pasromephst Ha B x D, koncmanwmst C, M 3a8ucsim moJsbko
om (k), A ne zasucum om (k).

B yC/IIOBUSIX TEOPEMBI CJIOU CIOEHUS SABJAIOTCA rurepbonmueckumu (cm. [12],
JIOCTAaTOYHO, YTOOBI O0COOBIe TOYKM OBLTM HEBBIPOXKJEHHBIMU U Ha Ty MMeJach
METpPUKA OTPULIATENBHONH KPUBU3HEI). YTBEp)K/JEHNE TEOPEMBI JIOKATBHO 10 6ase,
U B JaJbHeHIIeM MbI OyZieM cYUTaTh 6a3y MOJHUAUCKOM.

B 0Ka3aTeNbCTBE TEOPEMBI UCIIOJIb3YIOTCS HEKOTOPHIE PE3Y/IBTAThl CTaThu [13].
Taxk Kak IVIaBHBIH pe3y/bTaT, chOpMyIMpPOBaHHEIH B [13], HEKOpPEKTEH, MBI IIPE/I-
MOYMTAEM JIaTh 37leCh He3aBUCHUMOe uaoxeHue B §§1 u 2. [l1aBHoe ominuue B § 1
B TOM, YTO MBI pacCMaTPUBAEM 37IeCh CJIOEHHUs C OTPUIATEIbHBIM KacaTelbHBIM
paccioeHVeM Ha KOMITAaKTHBIX MHOroo6pasusx, a He Toiabko Ha CP". B §2 Ml
ZaéM OLIEHKH BCEX MTPOU3BOJHBIX BAOJb CJI0EB A K0addHUIlreHTa U, a He TONbKO
OLIEHKY ero Moayis. [Tocie aToro, B §8§ 3 u 4, MBI JOKa3bIBaeM OLIEHKU /IS TIPOU3-
BOZHBIX K02GOUINEHTOB GOPM, OTPEAETAIONIUX TOYTH KOMILIEKCHYIO CTPYKTYPY,
B HalpaBJIeHUAX, TPAHCBEPCATIBHBIX CJIOSIM.

§ 1. METPUKU HA CJAOEHHUAX

[lycTh & — aHaNMUTHYECKOe CJI0eHMe Ha KOMIUIEKCHOM MHoroobpasuu M.
[Tycts T4 — KacaTeIbHOE paccjioeHue AJIA dTOTO CJIOeHWA U IycTb T4 — ABOU-
CTBEHHOe paccyioeHue. Il HEKOTOPBIX eCTeCTBEHHBIX KJIACCOB C/IoeHUH Ha Ty
HMMeeTcsl METPUKA OTPHUIATENTbHON KpUBU3HEL Takas MeTpUKa MHAYIMPYeT MeT-
PUKY OTpHIATeNbHOM KPUBM3HBI Ha CJIOAX CIOEHUA. DTO BEpHO, HalpuUMep,
ecmu T; obuieH, U B 4acCTHOCTH, AJA cioeHuit Ha CP". YTo6Bl 0OBACHUTD, KaK
ompeziesiAeTcs Takasd MeTPUKa, Mbl PAaCCMOTPUM IOCAeAHUN CTydail.
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[IycTs X, ..., X, — OAHOPOAHBIE KOOpAUHATE HA CP" n
X X,
==, ..., z, =2
Xo Xo

— koopauHaTH B adpdunHoi obmactu {x,# 0}. Croenune xiacca %By Ha CP" —
9TO CJIOEHHE, KOTOpOe B KakAoi adpdUHHON KapTe ONpesessieTcss BEKTOPHBIM
mojieM crereHu He Bbime d, d = 2. B wactHocTH, B obiactu {x; 7 0} oHO ompe-
JeJISIeTCS BEKTOPHBIM ITOJIEM

9 il
X = X(O) +X(1) +... +X(d—1) +X((d—1)*) (21 a +... +Zn£) , 1y

rae Xy — k-a omHOpOAHAs KOMIIOHEHTA oA X U X((a-1) — ONHOPOJHBIN MHO-
rowieH crerneHu d — 1. DKBUBAJIEHTHO, 3TO CJIOEHHE MOXKHO OIIpeJe/IUTh KaK paju-
albHYI0 MPOEKIMIO cIoeHns Ha C™1| omnpeseéHHOro OJHOPOAHBIM BEKTOPHBIM

nosieM crenedu d —1: 5 5
Y=H0(x)a—xO+...+Hn(X)a. (1.2)

B kapre z = x/x, kK03bPUIIreHTH BEKTOPHOTO TIONA X, 33/Iaf0IIEro 3TO CIOEHUE
Ha C", paBHHI
P,(2) = H;(1, 2) —2;Hy(1, 2).

B atom ciyuae Ty = (d —1)H, rae H — auBu3op runepiuiockoctd Ha CP". Mer
OTIpeJieIUM METPUKY OTPHUIATEThbHON KPUBU3HBI HA CJIOAX SIBHBIM 0OPa3oM.

Jlanee MbI o603HaYaeM (X, y) CKaJAPHOE MIPOU3BEAECHUE X1 V] + ... + X, Y, WIK
XoYo+ ...+ X,Y, B 3aBUCUMOCTH OT KOHTeKCTa. [IycThb ¥ — MHOXKECTBO OCOOBIX
TOYEK CIoeHUs. B ciryyae o61ero nojoeHus ¥ — AUCKPETHOE MHOXKECTBO TOYEK.
BBegém Ha CP"\ X ciezyrolnyio METPUKY (34€Ch X — OAHOPOAHBIE KOOPAUHATEI):

|2(dx, dx) — {x, dx){x, dX)
|X|Z<Y5 ?> - <f7 Y> <X', ?>

g =F(x)X (1.3)

3zech F — BelllecTBEHHAs IMOJNOXKUTENbHAsA QYHKIWSA Ha JOMOJHEHWH B cntl
K poo6pasy oco6oro MHOXKECTBA 2. DTa GYHKIUA He paBHA HY/IIO HUTZE, KPOME
Havajia KOOpAWHAT, ¥ 061ajaeT CIEAYIONIMM CBOMCTBOM:

F(ax) = |a|*9=2F(x). (1.4)
B KapTe 2 MeTPHKa g UMeeT BUJ,

1+1z»){dz, dz) —(z, dz){(z, dz)

g=f(2) (1.5)

3mech f(2)=F(1, ). Eciu mbl BBegéM popmy
h = (1+21*)(dz, dz) — (2, dz)(z, dz),

MBI CMOXKeM 3amucath MeTpuky (1.5) B Buze

g=f (2)%. (1.6)
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KpuBu3Ha 3TOM MeTPUKH, Cy’KEHHOU Ha CJIOHN, paBHA

_ 2
Ko(©) = 05 2 In f(O)], (1.7)

rae t — JIOKaJbHasA rooMopdHas KOOpAWHATA Ha CJIOE.
MpbI HaKJIaAbIBAEM CIIEAYIOlIee YCIOBre Ha GpyHKIMIO F:
a) ona kaxcdoil adgunnoil kapmut U; coomeemecmeyrowyasn gyHKyus
Xy
fi(®) =F(z1,...,1,...,2,), Z=—

Xj

5

maxosa, umo @ynxyusa In f; cmpozo naropucybzapmoruuHa.
B aTOM ciyuae kpuBu3sHa (1.7) oTpulaTenbHa.
ITpumep. TMonoxum npu d = 3

n n
F(x) =) Il ) 1=, (1.8)
j=0 j=0
[TpoBepka ycioBus a). B kapTe z cooTBeTCTByIoOIAasA GyHKIMA f UMeeT BUJ
f2) = A+0LE)A+1(2),
rae
n
L(z) =22 Lz =) s P
j=1

j
Ilycts L, — dpopma Jlesu dynkuuu ¢. Toraa

Ly = f2(fLy—0f of) =
= f2{A+1)A+L)[(1+1)L;, +2Re(8l;dly) + (1 +1)L, ] —
— (A +1)al; + (1+1))aly)*} =
=f2 {(1"'11)(1"‘12)[(1"‘12)1’11 +(1+04)L,] —|(1+lz)3l1|2—|(1+11)312|2} .
Mgs1 ImosydyaeM C IIOMOIIBbIO HEPpABEHCTBA I_HBapua:
(1 +1L (@)L, () =0l () (D = L+ =212C* = 1EDI? = ¢¢.

AHaJIOTU4YHO

(14 LENL ) () — LG QR =
= @=97 (DGR YR Y - Y 1) >
=1 =1 =1 =1
> (d—3)2 ) 121 g1,
=1

TaKKe 10 HepaBeHCTBY IIIBapIia, Tak KaK MoC/IeHee claraeMoe — 3TO CKaJIApHOe
npoussesienre Bektopos (2473, ...,2973) u (2§7%¢q, ..., 2974L,). O
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Termepb MBI BO3BpalljaeMcsi K 001eMy CIy4daio CJIOEHUH ¢ OTPUIIATEIbHBIM Kaca-
TeJNbHBIM paccioeHueM. Cieyroiias TeopeMa — 3TO HEKOTOPOE YIIy4IlleHHE TIaB-
HOTO pe3ysbrarta craThul [12]. Mbl MoauUIMPYEM METPUKY B OKPECTHOCTH OCO-
OBIX TOUYEK ¥, TaK, YTO KPMBU3HA CTAHOBUTCS OTAENEHHOM OT HyNA. B cienyromieit
TeopeMe, B JIOMOJTHEHNE K 3TOMY, METPHUKA SBIAETCS [VIaJKOM, U KPUBU3HA PaB-
HOMEpPHO OTpaHUYeHa.

Teopema 2. [Iycmb y HAC uMeemcsl cloeHUe F HA KOMNAKMHOM KOMNJIEKCHOM
MHo20006pasuu M. IIpednonoxcum, umo Ha Ty uMeemcsi Mempuka ompuyamens-
Holl kpususHbl. IIpednonosxcum, umo ece ocobvle MOUKU F HeBbIPOHCOEHHDBL, UMO
8exmopHoe nose X,,, onpedessujee CI0eHUe 8 OKPeCMHOCMU 0c0b0il mouku p, aHa-
JUMUYecKU JIUHeAPpU3yemo U Wmo e20 JuHeliHas uacms duazoHanudupyema. Tozoa
cywecmgyem C%-znadkas mempuka G Ha M\ X, makas umo 0ns a060il ocoboti
mouku p 8 HeKomopoii eé okpecmrocmu V,, ona umeem 6uod

G= eXP(u)f(w)%, (1.9)

20e h — Hexomopas apmumosa Mempuka HA M, u— NIOPUCYO2aAPMOHUUECKAS
pynxyua na V,, u gynkyusa f umeem euo
n
fw) =" ot (110)
2107 ()
20e W — Kapma, AUHeapu3yruas 6eKmopHoe nose X, 6 mouke p.

Oma mempuka obaadaem cgoticmeamu:

1) cywecmayrom koncmaumsl Cy <0, C; > —o maxue, umo C; < Kz < Cy <0,
20e K; — Kpusu3Ha Ha c104X,

2) G nosHa HA C0AX.

Jlanee Mbl He mumeM uHAEKC p y U, wmm V,, Korga paccMaTpUBaeM OKpecT-
HOCTb 0c000# ToukU p. Ham HyxHO onpezenenue ([12]).

Omnpegenenue 1. [Iyctb U — OKpECTHOCTb TOYKU P Ha HEKOTOPOM KOMILIEKC-
HOM MHOTroo6pasuu M, u MyCTh g — HEMPePHIBHAS 3PMUTOBA MeTpuka Ha U\ p.
MsbI TOBOpPUM, YTO METpPUKa g TOJHA B P, €CHU 000U HENpephIBHBINA IyTh
y: [0,1] = U, takoit uto y[0,1) CU\p u v(1) =p, uMeer 6ECKOHEYHYIO AIUHY:

L(y) = | §/?=w.
Y

OrmeTuM, 4TO MeTpuKa G Ha M \ X mojHa TOrZa U TOJABKO TOTIZa, KOTZa OHa
II0JIHA BO BCEX TOYKAax 2.

PaccMOTpUM JIOKQIBHYIO cuTyanuio. ITyctb X — romomMopdHoe BEKTOPHOE TIOJE,
3azatoliee cnoeHue Ha B, :={w € C": |w| <r}, w —okanbHas romomMopdHas
KapTa B OKpecTHOCTU Touku p, w(p) = 0. Ilpegnonoxkum, uto O € B, sABIseTCAS
eIMHCTBEHHOM 0c060ti Toukol oy X B B,., 3Ta ocobas Touka HEBHIPOXKAEHHA, TI0-
Jie X B HyJle aHaIUTUYECKU JIMHeapru3yeMo U JIMHelHasa 4acTh JuaroHaausrupyeMa.
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[yctb a4, ..., d,, — COOCTBEHHBIE BEKTOPHI 3TOM JIMHEWHOM YacTU. B fambHelIeM
MBI TIpeAIIoNaraeM, YTo COOCTBEHHBIE BEKTOPHI HAIPaBJIeHbl BJOJb KOOPAWHAT-
HbIX ocett u uto (0,0,...,1,...,0) (1 Ha k-if mo3uIMK) — COGCTBEHHBIN BEKTOP
¢ COGCTBEHHBIM 3HaYe€HUEM Ay, TO ecTb X = A wy +o(|w|)). Ilycth h — rmagkas
3PMUTOBA METpPHKa Ha B, W u— IwtopurapMoHuydeckas ¢pyHKuus Ha B,.. [lycTb
t — ronomopdHas KoopauHaTa Ha cioe, w(t) — perenue ypaBHeHusa dw/dt =
=X[w(t)]. KpuBusHa cnoés ans metpuku (1.9) paBHa

2
Ko(w) = — ooz ool f(w)]. (1)
KpuBusHa oTpunarenbHa, eciau GyHKIUA In f cTporo mwiopucyobrapMoHUYHa.
Jlemma 1. IIpednosioxcum, umo gekmopHoe nojie X aHaiumuuecku auHeapusye-
MO U JUHeUHas uacmsb oudzoHarusupyema 8 ocobotl mouke. ITycms w — 0udazoHa-
ausupytowas kapma. [Iycms y nHac umeemcsi mempuxka guoa (1.9), u nycms f(w) —
coomeemcmeytowas gyHkyus uz (1.9). Paccmompum dea cayuas.
Cnyuati 1:
fw) = fiw) = s (112)
B amowm cryuae ¢yrxyus In f; cmpozo nopucybzapmoHuuHa 8 npoKoJI0MoMm uiape
0 <|w| <1 u coomgemcmayrowas mempuxka umeem OmMpuyamenbHy KpueusHy.

Cnyuati 2: n
fw) = folw) = Z m (1.13)

i=1
Toz20a gynkyus In f, cmpozo nuopucybzapmonuuta 0t makux w # 0, dns komo-
poix |w;| <1 dns ecex i, u KpuBU3HA €08 8 MempuUKe |4 PABHOMEPHO OmoeseHd
om HynsL u om —o g 6ol obaacmu suda 0 < |w|<r, 0<r<1. Mempuka s6:s-
emcst noaHol 8 HyJte.
JokazaTenbeTBo. O603HaunM v; = |w;|?, v =|w|?. Jna dyaxuun f(vy, ..., v,)
3HavueHue Gopmel JleBu dyHKIMU In f Ha BeKTOpe Y paBHO

IR OWA T WAL

+22fuiu,.Re[(u7iij7j)]—f‘1 2). (1.14)

Z fui ini
i£j i
Ananornuto g ¢yakiuu f(v) sHaueHue GopMbl JIeBU paBHO
1 _ _ _
Lips(w)(Y) = ;(fv|Y|2+fuz|<w, V)= S (@, Y)I?). (1.15)

Paccmotpum ciay4ait 1. na ¢ynkiuu (1.12) mpu 0 < |w| < 1 BeIpaskeHue B CKOOKax
B paBeHcTBe (1.15) paBHO

4 rp 4 [(w,Y)P 20 Koy 16 [w V)’ _
*(lwP) [wP =~ In*(wP)  (wl* n®(wP) W (wP)  wl
4 lw|Y|*—|(w, Y)|* 4 (w,Y)P

RN (TR] Jw* In®(lw?)  wl*
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(MbI McIONb30BaIM HEpaBeHCTBO |w| < 1 B mociegHeMm mepexoze.) dta dopma
BCerza TOJIOKNTeIbHA U3-3a HepaBeHcTBa lIBapna |w|?|Y |2 —|(w, Y)|?>=>0.

PaccmoTpuM Tenephb caydaii 2. O6osHaunm x; = 1/In(|w;|?). Beraucias dopmy
B ckobOkax B paBeHcTBe (1.14) ama yuxmuu (1.13), monydaem

_2Zx3|Y||2+22 3|w +6Z 4|w 4(i 12)(_1)
i=1
n 12 n (=D
:*gﬁﬂfﬂZﬁ)

n 2

3 Y

Xi -
w.

i=1
2y, 2y
. 1
Hepasenctso IlIBapiia, MpuMeHEHHOE K BeKTOpaM (X, ..., X,) ¥ ( ;U yeees —) 5

i=1 .
JaéT: n , -
IS
" . [w]
i=1 i=1

CrefoBaTenbHO, BhIpaskeHue B ckoOKax B (1.14) He MeHbIIlle, yeM

n — 2
Sl =
"l

i=1

2
3 Y
L w,

Taxkum o6pasom, ¢yukuus (1.13) crporo mwiropucybrapmonudna mpu |w|>0 u
|wl'| <1.
Ouenum kpuBn3Hy MeTpuku (1.9) ¢ f = f,. Boruncium dopmy JleBr Ha BEKTOpE

X=(Xy,...,X,), tae X; = A;w;. [[puarmas Bo BHuMaHue (1.16), MbI moaydaem
Al xH Al
12 l=21 4 1;

— — <K (w) <— —_—.
@ o g SR S oy a1
(Z X; ) (Z X; )
i=1 i=1
CyI.L[eCTBOBaHI/Ie paBHOMepHOfI OLI€HKHN KPI/IBI/IBHBI HOJIy‘{aeTCﬂ 3 CJIe,Z[yIOH.[I/IX
O4YEeBUAHBIX HepaBeHCTB:

ZX4|A |2

2

min |A; |2
2n (ZX )

Teneps JokaxeM nocjiefHee yTBep:kAeHue JeMMEl. CyliecTByeT KOHCcTaHTa C <1,
Takas 4YTO JUIl KaXKZI0ro BekTopa V BepHO HepaBeHcTBO C V|2 <h, (v) <C|v|?,
rae h,, — aTo MeTpuKa h B Touke w. Kak cieacTBue, mosydyaeM

< max |A;]2.

h, (V) [v|?
= > —
Gu(V) = exp(u) Z In 2(|w| ) b (X(w)) w2 In? [w]
2
751 Hekotoporo b > 0. MeTpuka ldw] MOJIHA B HYyJIE. O

lw|? In? |w|
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Tenepsb MBI 3aZiaIM METPUKY Ha M \ X, Takyio 4TO €€ orpaHUYeHUe Ha CJIOU
VMeeT OTPULIATETbHYIO KpUBU3HY. [Tociie 3TOro Mbl CKJIEUM 3Ty IMI06ATIBHO OIIpe-
JENEHHYI0 METPUKY C JIOKaIbHBIMU MeTpukamu (1.9), onpeseé HHBIMU B OKPECT-
HOCTSIX 0COOBIX TOUEK. B 3TOM KOHCTPYKLUUHU MBI ciiefiyeM paboTe [12] ¢ HekoTo-
PBIMU MOAUGUKAIVAMU.

[Tyctb h — HekoTOpasa ¢ukcrpoBaHHasa C*-mIagkas 3pMUTOBA MeTpUKa Ha M.
[Iycth v Takke C*-1aZikasi METPUKA OTPUIIATETbHON KPUBU3HEI Ha Ty . 3adUKCH-
pyeM OTKpHITOe MOKphiTHe U; MHOroo6pasusa M u Habophl BEKTOPHBIX Mosel X;
u dyHkIuit f;;, U;NU; #0, Takue 4To:

1) X; — ronomop¢Hoe BeKTOpHOE 10Je Ha Uj, 3ajatomee cioerne 7 |y,

2) ecmn U;NU; #0, T0 f;;€ 0*(U;NU;) u X; = f;;X; Ha U;NU;.

Paccnoenue Ty MOXHO OIpeAeuTh Kak ¢paKkTop:

Ty = U(U; xC) /=,
rae L 0603Ha‘{aeT HECBA3HOE O6’beﬂI/IHeHI/Ie U ~ — OTHOIII€HVE SKBUBAJIEHTHOCTU
Ha LI(U; x C):

P~y < (@) eUxC, (quy)<clxC,
p=q u v =f;(py.

Jnsa xaxzoro j onpeaenum f;: U;— (0, +) kak ¢ynximio fj(p) =v(p, 1;), rae 1;
obosHayaeT cedeHue Ty, KoTopoe B TpuBManusanuu U; x C pasHo 1;(p) = 1.
13 (1.17) cnenyet, yro mpu p € U; NU; Touka (p,1) € U; x C sKBUBajeHTHA
(p, fij(p)) €U; x C. 310 3Ha4uT, 4to 1;= f;;1; Ha U; N U;. MBI mOsTy4yaem

fi(p) = v(p, L(p)) = v(p, f5(P)L(P)) = If51*fi(P) = fi=If12h  (118)

Ha U; NU;. Temepb pacCMOTPUM 3PMUTOBY MeTPHKY Ha U; \ X, onpeZieIéHHYIO BEI-
paxeHueM

(1.17)

h
g = JSTX,) (1.19)

Tak kak X; = f;;X; Ha U;NUj, MBI IoTy4aeM, ucnosnb3ys (1.18):

h h
gj = |fl]|2fl h(fuxz) = ﬁh(Xl) =8&i

Ha U;NU;\ X. OTcroga ciefyeT, YTO MOXKHO CKJIEUTh JIOKaJbHEIE S3PMUTOBEI MeT-
PHKHM g ¥ TONyYUTb IIOOAIBHYI0 METPHKy g Ha M\ I, Takyoo 410 gly\x = g;-
HanoMHUM Tenepsk, YTO v MMeeT OTPHULaTebHyI0 KpUBU3HY. DTO 3HAYUT, UTO In f;
CTpOTO IUTIOpHCyOrapMOHUYeH Ipu Beex j (cM., HanpuMmep, [12]). MeTpuka (1.19)
umeet ¢popmy (1.9) B kaxxzoi obnactu U; 1, cornacHo (1.11), MMeeT oTpUIiaTehb-
HYIO KDUBU3HY.

Terepp MbI MOAUGUIMPYEM METPHUKY g B OKDECTHOCTH OCOGOM TOYKH p.
B oxpectHOCTH U TOYKH p MBI BRIGEPEM KOOPAMHATHYIO CUCTEMY W, B KOTOPOM p
cooTtBeTcTByeT Touke {w = 0}. IIycTh X — romomopdHOe BEKTOPHOE IT0JIEe, 3a/1a-

foiee |y, Tak uto g = f ") Ha U. ®yskiua f saeiasgerca C”-miagkoud, u In f
j



MOYTU KOMIIJIEKCHBIE CTPYKTYPBl HA YHUBEPCAJIbHBIX HAKPBIBAIOIUX CJAOEHUK 163

CTpPOro IUIOpUCyOrapMoHuyeH. TakuM 06pa3oM, B KOOPAUHATE W MBI MOXEM
HamycaTh

Inf(w) = v(w)+ L(w) +R(w),
rae v(w)=Inf(0)+p(w)+p(w) u p — HEKOTOPHI! KOMIUIEKCHBIM MHOTOWIEH CTe-
neHu 2, L uMeeT nonoxuTensHyio dopmy Jesu u R(w) = o(w?). Tocre, ecu Hyx-
HO, JIMHENHOM 3aMeHBbl KOOPAMHATHI, MOXKHO IIpeAroarath, uro L(w) = 2|w|?.
OmnpeiesIM APYIyIO KapTy W, B KOTOPOU Mmojie X AUaroHaJbHO, U ONPEeIeTUM

n

few) =c le m (1.20)

KoHCTaHTY ¢ MBI BEIGEPEM TTO3JHEE.
HaMm Hy>XHO CKJIEUTH METPUKY fcm Y I06albHYI0 METPUKY g. IIycTh

I,(w) =Inf(0)+¢e+2Re[p(w)] + %L(w) =Inf(0)+&+2Re[p(w)] + |w]|?.
1A KaXKZIoro IOCTaTOYHO Masoro € > 0 Hatigyresa 0 <r <1, <r3 <1 Takue, 4TO
Infw)>L(w) mpu < |lw|<r, u Inf(w) <l (w) mpu |w| <r. ()

MO>KHO BBEIOPATD 3TH I, 'y, I3 IPOU3BOJIBHO MaIbIMU, €C/IA € CTpeMuTcs K 0.
JokasatenbcTrBo. Tak kak R(w) =o(|w|?), cymectByeT 0 <13 < 1, Takoe 4TO
[R(w)| < |w|?/2 npu |w| < r3. [Tonoxum

S(w)=Inf(w)—I1,(w) = |lw|*+RWw)—e.
[pu |w| < r; momyyaem

: 2 2 3lw|?
— —e<|wPP—|Rw)|—e <o) < |w)*+|R(w)|—e < —— 5 &

Ec/i MBI BO3bMEM 1, =13/2 1 £ <12 /8, TO, IPH I, < |w| < I3, MBI MOIYYHM, 4TO

2
w T.
lwl? | —g = %
1o 3nauut, 9To In f(w) > I, (w) mpu ry, < |w| <r;. C APyroii CTOPOHHI, eciau
r < (2¢/3)2 <r,, To, IPU |W|<T1y:

6(w) = —e>0.

3 2
6(w) < lwl €<%—€<O
U, TakuM o6pasom, In f(w) < lg(w) BCIogy, T7e |w| <ry. O
Omnpeznenvm k(w) caegyromum o6pa3oMm:
exp(l: (w)), lw| <r,
k(w) = { max{exp(l.(w)), fW)}, n <|w|<n,
fw), le >

®yukuua k HempepbIBHA U In k cTporo mwitopucy6rapMoOHUYEH.
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Teneps dukcupyem 0 <1y <1 U ONpeAeTuM

e =0, p0u® =be () ) =be (555 )
Ty o

MsbI MokeM BeIGpaTh b, 6 u 0 < a <1 Tak, 4To

2
(Pb,a (rg) = el‘o >

Opalt) <et, ecmmrg <t

2+68, wu (%)
(pb,a (t 2

) <
)=elf, eumrg—6

2
JokasaTenbcTBo. ITycTb b >0 TakoBo, 4To by (1¥) =e™. 3amMeTuMm, 9To

2

r a
ona®) =9 (s ) ) =) = e
0

C ZpyToii CTOPOHBI,

/ _ bat*! , t®
Sob,a (t) - 2(a—1) (P 2(a—1) .
T‘O ro
CremoBaTesbHO,
#ha(13) = bag! () = ba e = bartos 0 () = €
) o n° ()| 15 InGrH)|
JTa BeJIMYMHA II0JIOKUTEIbHA, U €CIIU A [OCTATOYHO Maja, TO

4a
— < 1.
rZn(rd)|

__4a
rZ[In@r2)|’

CiegoBaTebHO,
0 < ¢f (r2)<erg:d—et
Sob,a 0 dt t:r2'
0
Orciozia ciefyer yTBepkaeHue (#x). O
OyHKIUA
oy b 1
Prallw?) = 773 ] (1.21)
r(a—l)/a
0

—9T0 QYHKIUA f; U3 JIeMMHI 1 ¢ TOYHOCTBIO Z[0 JIMHEHHOH 3aMeHb] IlepeMeHHBIX.
CnezoBaTenbHO, QyHKIHMA In ¢y, , CTPOTO IIIOPHUCYOrapMOHMYHA.
OmnpesenuM m TakuM 06pa3oM:

(w) exp(lwl?), r<|wl<n,
m(w) =
opa(w?), |w < .
OTa GyHKIMA HETpephIBHA, U
m(w) = max{exp(|w|?), b (W)},

ecmn g — 6 < |w|?> <r¢ + 6 ana Hexoroporo 3HadeHus 6 > 0. TakuM o6paszom,
byukma In m = max {lw 1%, 1n ¢y o (Jw |2)} TaKKe IUIIOPUCY6rapMOHUYHA.
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Teneps BOo3pMEM HeKOTOpoOe ¢ > 0 U ompeaennuM

q(w) = max{f.(w), m(w)}
npu |w| <r, rae f. ompexeneHa BBIPa)KEHHEM (1.20). ©Oyuxmua (1. 21) CTPEMUT-
cs K Hymo mpu |w| — 0 6eicTpee, ueM f.. CregoBatensHo, q(w) = f.(w) mpu
|w| < &1 ansa uexkoroporo &; > 0. Eciu ¢ JocTaTOuHO Mao, TO, BAOOABOK, HaM-
nércsa &4 > 61, takoe uto q(w) =m(w), ecmu Tonbko 6, < 6, < |w| < 1. KoH-
CTaHTHl 61, 65 MOXKHO CYUTATH MPOU3BOJIHHO MAJBIMH, €CJIH C ZIOCTATOYHO MAJIO.
B 4acTHOCTH, MOXKHO TIOJIOXKHUTD 04 < Iy. PYHKIMA ¢ HempephiBHA U GYHKIHA In g
IUTFOpUCYy OrapMOHUYHA.

Onpegennm
k(w), n<|wl<mn,
n(w) =
{ exp(e+v(w))qw), lwlsn
Ora GpYHKIMS HEMPEPHIBHA, TIOTOMY YTO
k(w) = exp(e +v(w)) exp(Jw|?) = exp(e +v(w))q(w)

mpu |w|=r;. Takxke dyukiws Inn(w)=¢e+v(w)+1nq(w) witopucybrapmoHuyHa,
TakK Kak QyHKIMA € + v(w) IWwiropurapMoOHUYHa.

B HEKOTOPO¥# OKPECTHOCTH TOYKHU P, COAepsKaliel map B,.,, ONpe/eiMm MeT-
puky G:

G—nm Ha B., G=g Ha M\B,,.

DTa MeTpuKa HellpepbiBHA, Tak Kak n(w) =k(w) = f(w) npu |w|=r,.

VI3 teMMbI 1 ctefiyeT, 9YTO TaKas MeTPHKa [ToJHA B OKPECTHOCTH HY/ISI U €€ KpH-
BU3HA OTpUIIaTeJIbHA U OTpaHUYeHa CBEPXY U CHU3Y HEKOTOPHIMU KOHCTaHTaMH
€1, C5 < 0. 3aMeTHM, YTO 3Ta METPUKA ABJAETCS [IAAKOH B HEKOTOPOI OKPECTHO-
CTH HyJs1, GaKTUYECKH B MPOKojIoTOM miape 0 < |w| < 6.

B mape B,, GyHKIMA N ABNAETCA IUIFOPUCYOGrapMOHUYECKOM, MO HalleMy Io-
CTPOEHUIO, U HENPEPHIBHOM, HO He 00s13aTebHO mIagkoil. OHa KyCOYHO IVIafKa
U CTPOTO ILTIOPUCYBrapMOHUYHA Be3Jie, T/le OHA IaZKa. Mbl IPUMEHUM CIIEAYIO-
MUY MEeTOZ CIIakuBaHusA. [IyCcTh 1) — IIafKas «IIaloYKa», C HOCUTENEM B €Ju-
HUYHOM IIape 1 f'r)(Z:) d{ =1. 3adpukcupyem HeKOTOphle 0 < p; < &1 <13 < s H,
mpHu P < |w |< p,, ONIpeseuM CrimakeHHy0 GYHKIHIO:

s = | In(n(w—54))n(¢) dl.

[pu 11060M W MHTErpaj 3aBUCUT TOJABKO OT 3HaueHuit ¢yHkumu In(w’) mis
|lw —w’| < 6. Tpu gocraTouno manoMm & yHKuuA fs(w) asngerca C2-6Mu3Kon
K Inn(w). Mbl MOXeM IJIaZIKO CKJIEUTh 1 U Inn BHyTpu mapa B, Tak, uTo mo-
nydeHHas GyHKUMA OyAeT coBmaZaTh c Inn mpu |w| < p; u npu |w|> p,. Mbt
noxyyuM QYHKIMIO, KoTopas OyZeT IMaJKoi U ILTIOPUCYOrapMOHUYECKON. Mel
aIIPOKCHMUPYEM eé CTPOro IUTIOPHCYOrapMoHndeckoit GpyHKIHed f, coBmazgao-
medt ¢ Inn pu |w| < p; u npu |w|> p,. O603HauUM Yepe3 $ GYHKIINIO eXp f
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MEeI poziesiaeM 3TO MOCTPOEHUEe BO BCeX 0COOBIX Toukax. TeM caMbIM ZioKa3a-

TEJIbCTBO TeOpPEeMBI 1 OKOHUYEHO. O
ITocTpoeHHas MeTPHKA B KaxJok obnactu U; MMeeT BUJ,
oh
G=—=.
h(X)

PaccMoTpuM Temephb orpaHUYeHMe Halllell MeTpUKU Ha ol cinoeHus. [Ipeamosno-
’KHM, 4YTO MBI paboTaeM B KapTe z Ha U, U 4TO z; — rojoMopdHas KoopAuHaTa
Ha CJIOAX B HEKOTOPOI OKPECTHOCTH TOYKHU D, TaK 4TO X;(z) # 0 B 3TOI OKPECTHO-
cTu. MBI MOXXeM OpeACTaBUTDb CJIOM KaK MHTErpaJIbHbIE KPHUBBIE CHCTEMBbI
dz; _ X (2)
dz — X(z)’

k=2,...,n.

Hna METPHUKHU G, OFpaHH‘{eHHOfI Ha CHOﬁ, MBI IIOJTYYUM BbIpaXKE€HHE
®(2) _
= m de de. (122)

7

Koaddunuent cBszHoctu I'= 1"11T (B OOBIYHBIX 0603HAUEHUAX) — ITO

_ 9 _ 2y _ 00(X) X (X)
r= oz (In®—In|X;|?) = % X (1.23)
3zecs 09 (X), 9X;(X) — oTo 3HaueHMA popm 0P, 0X; Ha BekTOpE X.
KpuBusHa paBHa
1X;1* or 2 = 2
K =25 = =5 L (X, D)= 92 (0 P), (1.24)

rae ®Ly — dpopma JleBu ¢yHknuy . KpuBusHa MHBapUaHTHA U He 3aBUCUT OT
KapTHl.

§ 2. IlouTU KOMIIJIEKCHAS CTPYKTYPA
B TEOZIE3BMYECKUX KOOPIMHATAX

MEI paccMaTpuBaeM M — MHOroo6pasie yHHBEpCaTbHBIX HAKPHIBAIOIIHX CIIO-
6B c HEKOTOPOH TpaHCcBepcanbHOI 6a3oii B. [IpeamnonoxumM, 4to { — roaoMopo-
Hag KapTa Ha 3TOM TpaHCBepcaau U W = + iu — KOMIUIEKCHas KOOpAHWHATa Ha
ctosx (3Ta KoOpAMHATA He 00s3aTENbHO ABJSAETCS ronoMopdHOit). Tloutu Kom-
IUIEKCHYIO CTPYKTYPy Ha M MOKHO ompezeuts mpy momom (1, 0)-popm:

d¢=1{dg;}, j=1,...,n—1, (2.1)
w=dw+udw+(c,dl). (2.2)

IMycts t(u, v, {) — nokanbHaA romoMopdHas KoopauHata Ha cjiosx. Toraa dt —
ronomopoHas 1-popma:

dt = t, du+t, dv +(tz, d{) +(t;, ).

YTo6Bl CBECTH ITO PaBEHCTBO K BuAy (2.2), HY)KHO BBIYECTb TOCTEAHUM WieH
Y1 HOpMa/IU30BaTh KoapduiyeHT npu dw. Mbl oIyIuM
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ot tit,  ty
Tot,—it,

, (2.3)

r—rlr—r

g

2t5

Tt —ity,

ts
_ ¢ 1

Jlerxo BUZIeTh, 4TO QYHKIMH (4 U C; HE 3aBUCAT OT BEI6Opa roJoMOp$HOI KOOpAH-
HaTHI t.

Termeph MBI PacCMOTPUM CJIOEHUE, YAOBIETBOpsOIIee TeopeMe 1 ¢ MeTpu-
koii (1.9). 1o Teopeme Azamapa — Kapraua mbl umeeM Anddeomopduam yHUBEDP-
CaJIbHOTO HAKPHITHSA €051 Ha C TPy MOMOIIY 3KCIIOHEHIIMAIBHOTO OTOOPaKEHUS.
Onpezgenum (u, V) KaK reofiesudecKue «IIOJIApHBIe» KOODAWHATHL Ha CJI0E: U —
3TO JAJIMHA TEOE3UYECKOM C HavYajoM B HyJle, TO €CTh B TOYKE IepecedeHus
CJIOSI C TPAHCBEPCAIBIO B, ¥ U — apryMeHT eUHUYHOTO BEKTOPA, KacaTelbHOTO
K TeO0ZIe3UYeCKOl B Havase. ITOT BBIOOP KOOPAWHAT COIMIACOBAH ¢ OGBIYHOM OpH-
eHTalueli: B 3TOM CJIyYae COXpaHSIOIlee OPUEHTAIUI0 oToOpakeHue (v +iu) —
— (1—e™) exp(iu) nmepeBoaut obmacts LT ={0<u<2m, 0Sv <o} B e /MHUYHBIN
Kpyr. MBI [TOJIy4aeM IOYTH KOMIUIEKCHYIO CTPYKTYPY Ha IpousBeseHnu B x LT,

HamoMHMM Telepsh, YTO Halllel 3a/1aveii sABIsSETCA J0Ka3aTeIbCTBO TEOPEMEI 1
13 BBeZieHus. Kak TaM ye GBUTO yKa3aHO, €€ JOCTaTOYHO 0KA3aTh JIOKAIBHO I10
6ase. [ToaToMy B ZanbHeinieM Mbl OyZeM CUUTaTh, YTO B — m1ap, TpaHCBepCab-
HBIU cioeHuto, D C C — eJUHUYHBIN KPYT C KOOPAWHATOU w.

Ouenka (0.1) o3HavyaeT, YTO HaIlla TIOYTH KOMIUIEKCHAs CTPYKTYpa «KBa3UKOH-
¢dbopmHa» Ha c1osx. B aToM maparpade MbI JOKa)KeM CylIeCTBOBaHME TAKOH MOYTH
KOMIUTEKCHOM cTpyKTypel u oneHku (0.1), (0.2). B creayiomux maparpadax Mb
nmokaxkeM oreHku (0.3), (0.4).

CHayvaza MblI onipeZieluM Ko3GQUIMEHTH U U ¢; BeIpakeHui (2.3), (2.4) B reo-
Je3NYECKUX KOoopAWHaTax. MOKHO Ipefronarath, yTo 6asa B TpaHcBepcaibHa
K BEKTODY 9/3%;. B TeX TOYKaX, B KOTOPHIX Z; SIBJISETCS JIOKATbHOMN romoMopdHOMA
KOODJMHATOM Ha C/I0SIX, Mbl UMEEM ypaBHEHUE I Te0Je3NUECKHUX:

d?z, dz;\2
) +r(5) =0, (2.5)
20 =0, %) =en. (2.6)

3zech K03pPUIMEHT CBA3HOCTH [ OTHOCHUTCA K KOOpPAWHATE Z;. B gampHelmeM
MbI 6yZIeM HUCIIOIb30BaTh 0603HAYEHME

d dt
vV, = L4ré
b 7 dy dv’
rae t(v) — ronmomopdHas KOOpAUHATA «BAOJb» EOAE3UIECKUX U t, — KacaTellb-

HBIN BEKTOpP. YpaBHeHHe reofile3nuecKrux UMeeT BUJ

d?t dt\ 2
= +r(d—v) =V, t,=0. 2.7)



168 A.A.IIIEPBAKOB

3zech T oTHOCUTCA K KoopauHaTe t. Ham moHazo6utes Takxe oneparop V2 . [Tpu-
v
HMMasi BO BHUMAaHHe, YTO t,2 + 1“(tv)2 =0, MBI TTOJTy4aeM

dZ
Viy =92 eare, 2+ Iy )b (Tt +12(0,)2)y =
d d’y
d T2
PaccmoTpuM Temephb 2, — IMPOU3BOAHYIO KOODAMHATEHI 21 II0 HAYaJbHOMY YCJIO-
BUIO, WIN TPOU3BOAHYIO t, B 6ojee obiieM ciydae. MBI MOMYYNM «ypaBHEHHE
B BapuaInusx», Anbdepenrupys (2.5) mo u. 3To B TOYHOCTH ypaBHeHue AxoOu
JJI1 BapUallliy reo/|e3n4ecKux:

Vi t, + Tty (6t — Eyt,) = 0. (2.9)

+ 2Ft + (Tet, + 5t )L, Y. (2.8)

BeKTOpHI t,, U t,, OPTOTOHATLHEI B METPUKe G. DTa MeTprKa KOHGOPMHA Ha CJIOAX
Y, CJIEIOBATENBHO, t,t, + t,t, =0. DTO 3HAYUT, IYTO MBI MOKeM Teperucath (2.9)
TaKUM 06pa3om:

V2t + Tty (tF, + Bty — 26,t,) = Vi t, — 2Tt |*t, = 0. (2.10)

BekTop t, UMeeT eZIMHUYHYIO JJIMHY B Halllei MeTpuKe. EC/I MBI IPEACTaBUM 3Ty
MeTpHUKY B Buzie G = g(t) dt dt, To, yuutsiBast (1.24), Mbl MOJKEM HAaIKCATE:

2T;
2Tt > = ?t =—K,

rie K — xpuBu3sHa. TakuM 06pa3oM, MBI MOYKEM IepernucaTh ypaBHeHue xko6u (2.10)
B popme:

Vit +Kt, = 0. (2.11)
[IpezacTaBuM t, B BUIE

t, = ipt,. (2.12)

Tak KaK t,, OPTOTOHAJBHO t,,, IOJy4aeM, UTO (p — BellleCTBEHHAas CKasipHas QpyHK-
1. [To3gHee MBI MOKaXXeM, 4TO  (v) mojokuTenbHa mpu v>0. YpaBHeHue (2.11)
TIPUBOAUTCS K BUAY
o —k2yp (2.13)

dv? ’
rae k=|K|'/2. U3 ycosuii (2.6) MBI mOJydaeM HadalbHblEe YCIOBUA LA 21 0

dz,,

Zl,u (0) = 07 dv (0)

= {eit

DTO 3HAYMUT, YTO HAYATHHBIE YCIOBUS A Y UMEIOT BU/I:
d<p
¢(0) =0, o = L (2.14)
Ham Hy)XHO OIleHUTh pellleHre ypaBHeHus (2.13) ¢ HaYaIbHBIMM yotoBusaMu (2.14).
Creaytolee TpPeAJIOKEHHE — 3TO YTBEPXKAEHUE 3JIeMeHTapHON Teopuu audde-
PEHIMATbHBIX YPaBHEHUH.
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Ipegnoxenue 1. ITycms 8 ypasuernuu (2.13) gynxuyus k(v) pasHomepHo ozpa-
HUYeHa u pasHomepHo omdesiena om Hyast. Ecau ¢ (v) — pewenue ypasuerus (2.13)
¢ HauanbHbiMu yenosusmu (2.14), mo ezo moxcHo npedcmasums 8 hopme

e) =e®—1, (2.15)
U 011 S BbLINOHAIOMCA OUeHKU
O<C1<S_Z<C2<°° (2.16)

¢ HekomopbuMu ¢ < ¢y npu v >0. IMu OUeHKU 3a8UCAM MOJLKO Om 8epxHell U
HuxcHell epanuy ons gynkuyuu k.

Jloka3aTenbcTBO. 3aMeTuM, 4TO ¢ (v) > 0 ipu v > 0. JleHiCTBUTENBHO, MHOXKe-
ctBo {v > 0| p(v) > 0} OTKPHITO U HemycTo, cortacHo (2.14), v, 3HAUUT, BKIIOYAET
HeKoTOphIi uHTepBan [0, vy). U3 ypaBHenus (2.13) cmeayert, uto d2?¢/dv? >0
mpu v < v, (Tak kak do/dv(0) =1 comacHo (2.14)). CiemoBaTeNbHO, TaKXKe
u dp/dv>0 upu v <uvy, dyHKIMS @ Bo3pactaeT u ¢ (vy) > 0. Takum o6pasom,
MHOkecTBO {v > 0] ¢ (v) >0} Taxkke u 3amMmkHyTO. Terepb MbI HoTydaeM u3 (2.13),
gro d2¢/dv?>0u dy/dv >0 npu v > 0. Cref0BaTeIBHO, TAKKE U

dny) _ ¢7'dy
v dv
Taxkum 06pa3oM, MbI MOXKEM IIpe/CTaBUTD pelenue ¢ (v) B dopme (2.15), u A s
[IOJIyYatOTCsA CIEAYIONIMe HadyaabHble YCIOBHUA:

ds _ dp

> 0.

HepagsenctBo dy/dv > 0 mipu v > 0 Be4ér
ds(v)
T 0 mpuv>0.
Jlokaxkem Terepsb oreHKy (2.16). O6o3Hauum Y = j—ls} — k. [lpuHuMasn BO BHU-

MaHue HavajbHble yoroBus (2.17), MBI OTy4aeM CleAyIollee YpaBHEHUE s 1

v

d(delrjw) +(k+) + ki + k2 exp (— J k() +4 (1)) dt) =0. (2.18)

0

Jlokakem mpaByio oteHKy (2.16). Mbr 3Haem, uTo k < k,,, Ay HeKoToporo k,,, > 0.
[Mpeamonoxum, uro (k + ) (vy) > max{1, k,,}. Torma vy (vy) > 0, u, npuHUMas
BO BHHMMaHHWe BTOpOe HadajibHOe ycaoBue (2.17), MBIl BUAUM, YTO IIPOM3BOAHAS
d(k +)/dv gomxHa GBITH MOJOKUTENBLHOM MPU HEKOTOPOM 3HAYEHHH U < Up,
TakoM 4T0 1 (v;) > 0. Bce cnaraembie, Kpome 1epBoro, B (2.18) moI0KUTETbHBI
B TOYKE U;. DTO 3HAYMT, YTO IEPBOE CJIaraeMoe J0/KHO OBITh OTPUIATEIBHBIM —
mpoTuBopeure. TakuM o00pas3oM, IIpaBoe HepaBeHCTBO (2.16) Z0Ka3aHO AJIS IPO-
M3BOJIBHOTO €y > max{1, k,}.
Teneph ZOKa)keM JIEBYIO OIleHKY (2.16).
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YrBep:xkgenue 1. I[Tycmo

1

B (1
T ea+k? b=exp( 12(1+km)2)'

Toz0a k +1 >1/2 na ompeske [0, a] u

exp (—f(k—ﬂ/))(t) dt) <b
0

ons 1106020 v = a.

Joxka3arenbcrBo. Tak kak k +1) > 0, mpuHUMas BO BHUMaHUe, 4To k + ) <
<max{1, k,,}, k,,, =sup k, me1 monyuaem || <1+k,, k+|<1+k,,. Ciegosa-
TeJIbHO, ypaBHeHue (2.18) maér

d(k+
‘%( < 3(1+k,)>.

Tak xak (k+1)(0) =1, mbI oydaem, uto k +1) > 1/2 mo kpatiHeii Mepe Ha OT-
v

pe3ke [O . CiemoBaTebHO, f(k +1)(t)) dt Baonb 3TOrO OTpe3Ka 6OJIb-
0

N eEume

re, 4eMm Tak kak (k+1)(v) >0 npu v >0, MBI IOJlyIaeM YTBepPXKe-

12(1+k,,)?

Hue 1. O
YrBepikaenue 2. [Tycms a u b— maxkue, xak eviwe, u (1+b)/2 < a < 1. IIpeod-

nosoxcum, umo vy > a, Y (vy) < —ak(vy). Toeda d(k+)/dv >0 npu v =1y.
JlokasaTenbcTBO. M3 HepaBeHCTB ) <—ak, k-+1>0 ciexyet, uto ak < || <k.

Tem cambIM, cortacHo (2.18):
v

LELY) _ dkfap] — k2 exp (—J(kﬂp(t))dt) S 2ak?—K2(140) > 0. O

0

Teneps MBI 3aKOHYMM /[I0Ka3aTeNbCTBO IpeJIoKeHUA. 3adUKCUpyeM HEKOTO-
poe @, KaK B yTBepxKAeHUH 2. Mbl yTBepKAaeM, YTO JeBas oleHKa (2.16) BhIMOJI-
HAETCA JJIA IIPOU3BOJIBHOI'O

< min{%, 1—a) infk} < min{%, %(1—b) infk}.

JleticTBUTENBHO, IYCTh QYHKIMA k + 1) MOHOTOHHA Ha KakaoM uHTepBaie (a, v;),
(v, 9), .-., (U, Vks1), -.. Ecma k + 1) Bospacraer Ha umuHTepBaie (a,v;), TO
k+1 > 1/2 uHa sToM uHTepBane mo yrBepxkaenuio 1. Ecim k + 1) yObiBaeT
Ha HeKOTopoM uHTepBane (Ug, Ury1), TO k+1 > (1 — a)k Ha aTOM HHTepBase MO
yrBepxzAeHuto 2. CiefoBaTenbHo, oeHka k + Y > (1 — a) inf k Taxke BBHIIOMHA-
eTcs Ha coceflHeM UHTepBaNe (Ugy1, Ucys), TA€E Y Bo3pacTaeT. YHUCIO UHTEPBAIOB
MOHOTOHHOCTH MOXKET OBITh GECKOHEYHBIM. B 3TOM CJIy4yae MBI MOJYIUM Tpebye-
MYIO OLIEHKY TI0 MHAYKITHH. O
HaM Hy>XHBI TaK)ke OIIEHKU MMPOU3BOAHBIX PYHKIINH .
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[Ipegnoxenue 2. [Tycmb @ =e® — 1 — pewenue ypasuenus (2.13) ¢ HauanbHbl-
mu yeaosusmu (2.14). Jns mobwix k, 1 (k=0, [=0)
akHS

m < Meks, (219)

20e M 3asucum mosawko om k, I.

JlokazaTeabCcTBO. YZIOOHO BBECTH HOBYIO QYHKIHUIO §, TaKylo 4TO e° =’ —1.
Ecii MBI JOKaXKeM OILIEHKY, aHaJOru4YHyto (2.19) 1A §, MBI JOKaXKeM €€ TaKKe
JJIS S,

JleicTBUTENBHO, IPEATIONOKUM, YTO ¥ HAC ecTh oneHku (2.19) mis Beex k, [,
k+1<m, u a"anoruuHble oreHkH s §. ITycTs k + [ =m. [TokaxkeM, 4YTO OIeH-
ku (2.19) A S ki1 U Sk, i1 SKBUBATEHTHBIL. MBI IMeeM:

e (§ukvl+1 + Z 531,1;11 el stks,vls) =e° (sukvm + Z szlkl,yll e S;sks’yls) s
(ki Uiy 7) (ki Uiy 7)
r7e cyMMbl GepyTes mo HekoTtopbiM Habopam ((kq,l;, 1), ..., (ks L, 15)), TaKUM
yro k; <k, [; <l gna Bcex k;, ; unk,+...+rks=k, nl; +...+rl,=101+1. Ilo un-
OYKIAYU MBI TIOTy4aeM
Sykpltl = egis§ukvz+1 + eE*SO(eks) + O(eks).

Tak kak e =1—¢e ™, MBI O/y4aeM 3KBUBAJE€HTHOCTb OLUEHOK (2.19) A 5k, 11

W Sy kyl+l.
AHaIoTU4HO
3 ~ ~T Iy T T
es (Suk+lul + E su}{l,vzl s Susks’vls) = es (Suk+lyl + E sulkl’yll cose Susks’yls) 3
(ki, 1, 1) (ki, 1, 1)
r7e cyMMbl GepyTes mo HekotopbiM Habopam ((kq,l;, 1), ..., (ks L, 15)), TaKUM

yro k; <k, |; <l gna scex k;, b unrnk,+...+rks=k+1, rnl; +...+rl =L Tlocine
3TOTO MBI IIPOZOIKAEM, KaK BBIIIE.

HauyunHas /0Ka3aTeNbCTBO OLEHOK /A §, MBI pacCMOTPUM CHavajga ciydad
k=0. V3 (2.13) MbI oTly4aeM ypaBHEHUE AJIA §:

§,2 =—K—52. (2.20)

OTcrozia cieayeT, 4To Ajist [ = 2
gvl = TR/y-2 +P,

rie P — MHOrowIeH OT IPOU3BOAHBIX 10 U GYHKUUU § MopAAKa He Bhimie [ — 1.
I[To MHAYKIMY, JOCTATOYHO JOKA3aTh CIEAYIONIEE

Yreepikaenue 3. /s 106020 [ = 0 npoussodnas K, pagHoMepHO 02paHuueHd
Ha M\ X.

JlokazareqbCTBO. 3aMETUM CHa4asla, YTO Mbl MOXKEM IIPEACTABUTh [IPOU3BOJ-
HyI0 K,1 KaK CyMMy cJIaraeMbIX BUZa

alo“'iOK all_gll_‘ alp+ip1—~ aml-%—mlf amq+ﬁqf (t )lu (E )iv
v v

a — ... - — ... — 2.21
atlogtlo gtligth ot gt At™at™ dt™agt™a ( )
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AJIl HEKOTOPBIX IeJbIX HEOTPUIATENbHBIX P, q,lo, ..., 1, my,...,mg, 1o, ..., 1,
my, ..., My, TAe UHAEKCH [y, ..., [, HeobA3aTeIbHO Bce pa3IuyHb (TO Xe camoe
BEPHO U1 MHAEKCOB my, i u M) v o+ +...+L,+my+...+mg+ o+ +...+
+hL+m+...+my+p+q=L+1,=L
DTO JIerKO IMOKasaTh IO WHAYKIMK, pacCMaTpPUBas IIPOU3BOJAHbBIE BhIpaXKe-
lo+lo

uus (2.21). I[pou3BogHAsA MHOKUTENT ——— paBHAa
atlo gtlo

lo+Hp+1 lo+Hp+1 B
AR S RS (Abhie
atlo*1 gtlo atlo grlo+1
i+ 1+ +1 1+ +1 B
(a E) - (a F)tv_'_(a _7F)tv.
atli atli ) atlitl gtli atli grlitt
HaxkoHeti,

[(tu)r]u = r(tu)r_ltv2 = _rr(tv)r+1 14 [(Ev)r]v = _rr(fv)r+1-

Ms&I nioyyaeM cyMMy ciaraembix Buza (2.21), rae | 3ameneno va [+ 1.

OueBU/IHO, YTO BeauunHa |K,:| paBHOMEPHO OrpaHMYeHa Ha JI060M KOMIIAKT-
HOM moAMHOXecTBe B CP"\ ¥, 1 HaM HY)KHO OIIEHUTh €€ TOJIBKO B OKPECTHOCTSX
0coOBIX To4eK. IIycTh p — Takas To4ka U V — e€ OKPeCTHOCTb, TaKasd YTO B Hel
CYIECTBYeT JIMHeapU3yoUas KapTa W, TO eCTh MBI MOXEM 3alucaTh 3ajaruiee
cJI0eHHe BeKTOpHoe mosie X B BUJe

AHa/JIOTU4YHO

Xin = AmWn,

rZie m HyMepyeT KOMIIOHEHTHI BEKTOPHOTO MOoJisA. MBI MOXXeM IOKPHBITh OKpecCT-
HOCTb V KOHEYHBIM 4YMCIOM obsacTeil V;, KOTOphle ABJIAIOTCA HACHIIIEHUAMHU
HEeKOTOpBIX obacTell Ha TpaHCBepCalbHbBIX TMIIEPIVIOCKOCTAX W; = CONSt Mocpes-
CTBOM CJIOEB.

B xaxzi01t Takoii o6mactu V; mociie, eciy Hy»XHO, lepeHyMepaliy KOMIIOHEHT,
MBI MOXXKEM HaITHiCaTh:

Wy =&Ejme?t, m<n—1, w,=CeMb. (2.22)

3zecy C; — KoHCTaHTa U &, — KOOpAUHATA Ha TPAHCBEPCAHU, UHJEKC j HyMepy-
eT obnactu V;. BBegéM B Kaxzoi Tako# obmactu kapty (&), t;), rae & — Kkapra
Ha TpaHCBepcand, t;—KapTa Ha cnoe u3 (2.22). Mel OyZeM HasbBaTh IOCIIE-
HIOIO Jlozapugdmuueckoll koopouHamotil Ha cjioe. PAacCCMOTPUM OJHY M3 TaKUX KapT
(&, t). Manee mbl Gygem omyckaTh MHAEKC j. V3 (2.22) creayert, 9To w,, — 0, Korga
Im(A,,t) — 4. Takum o6pa3oM, HaM HYKHO OLIEHWTb ciaraemble Buzga (2.21)
py GOJBINNX t.

MeTpuKa, orpaHrdeHHas Ha cjoi, uMmeeT Buz (Mbl ucnosibsyem (1.9), (1.10)
u (2.22)):

n—1
— 1 1 _
0=4(c.0| 2 RO G 07 acar
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31ech g — MOJIOXKUTENbHASA OrpaHMYeHHas (QYHKIMA C OrpaHUYEeHHBIMH IIPOU3-
BOZHBIMU 110 W;. B manbHelineM MBI 0603HAYaeM

= ' m=1,..,n-1 SR S
Im = 10 [—Im(A,0)’ s I = e Im(AL 0

Ms1 nMeeM

G=g(&, t)z 2 dt dt = @ dt dt,

Y, UCITO/Ib3YS (1.23) u (1.24), MBI IOTy4aeM

r=2(ne)=2 Z%Z%:zgan ) we  (2.29)
Anl2yt—4[3 A
K=—%Z—lj=— 2 9(ng) 62)’ 2 APy 4|Z mYim | ' (2.24)

g2 y2 otat g(zy )
3aMeTuM, YTO WIEeHHI, BKIIOYAIOI1e IIPOU3BOAHbIE GYHKIINU g, COAEPKAT MHOXKU-
TEJH, SKCIOHEHIMANBHO Masble mpu Im(A,,t) — . [lelictBuTenpHo, g v In g —
3TO magkue GYHKIWA OT W C OFPAHUYEHHBIMY NMPOU3BOAHBIMU. Kaxkzas mpowus-
BOZHAA II0 t ZaéT MHOXUTENU BUZA, HAIIpUMep,
ong) dwy _ i
aw, dr " )-
0603HaYMM BTOpOE cIaraeMoe B rmpaBoii yactu (2.23) yepes I'! u BTopoe cia-
raemMoe B mpaBoi yactu (2.24), yMHOXeHHOe Ha g,—depe3 K!. Ilyctb (q) —

gi1taz
ounHzeKC (41, 42), 191 =91+ qa, fig) =
4TO

360 gre” VHayKupeii 1o || MOXXHO yBUZETS,

p(3\Q\+3)(y) P(B\q\+6)(y)
T = oo 52 Kly="—775 ) (2.25)

rae PGla+3) i pBlal+6) _ onnopoamble MHOrOUIEHBI OT Y, CTeleHeil He GOJIbIIe
3|q| + 3 u 3|g| + 6 cooTBeTcTBEeHHO. JleICTBUTENBHO, eCT MbI AUPPEPEHITUPYEM,
HaIpuMep, epBoe ypaBHEHHUe IO t, MbI IIOTyIHUM

1 (3lal+3) pBlat3)
L= SP )‘qm Z (Pym —2(|ql +1)Wym AmYim:
Mer mosnyuaem (2.25) c |q] + 1 BmecTo |q|. Cnyuait ¢ K aHanoruyeH. CTermeHu
O/IHOPO/ZIHOCTH 10 Y TIPaBbIX YacTel B (2.24) paBHBI COOTBETCTBEHHO
3lgl+3—2(qg/+1) =lql+1 n 3|ql+6—2(Iq|+3) =lql.

[prHMMasi BO BHUMaHUe, YTO TPOU3BOHBIE TIEPBHIX caraeMbix B (2.23) u (2.24)
cozepKaT SKCIIOHEHIINAIbHO YOBIBAIONUIUE MHOKUTEIHN, MBI IIOJIy4aeM

rol<c(32) "™ kol<c(X2)" @2

C ApyTroli CTOPOHHI,
—1/2
tl=e2<c(Dly2) "
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CyMMMpys IO BCEM CTENEHAM CyMMbI Y, ¥ B (2.21), MBI MOJy4aeM Hamle yTBep-
JKJIeHue. O
Tenepb paccMoTpuM ciaydail k = 1. TIo MHAYKIMY MBI MOJy4aeM ypaBHEHUE
B BApMALUAX JJIA 8k i
dzguk’vl L d8k
dv?
rae P(5) — MHOTOWIEH OT IPOU3BOAHBIX GYHKINYU § CTENEHH 110 U MEeHbIIIe, 4eM k.
Ha camoMm gese, 3T0 cymMa OZHOYIEHOB BHUZa

= _Kuk’ ol P(§),

pSuke g -ee Sk (2.27)

a ukp, v'lp?

rze a, —uenoe, k; <k —1 gna moboro i, riky +...+n,k, < k. PyHxuusa § He onpe-
JeneHa npu v =0, 1 MBI MOXKEM B3fTh KaK HavyaJbHbIE YCIOBUA TpU U = 1 crexy-
fore: dS, x

u, v

§uk,vl(1) =a, T(l) =

34ech a u b zaBucar OoTumn C, HO ABJAIOTCA paBHOMEPHO OTrpaHUY€HHbIMU.

O6o3HaunM 6 = S;:} Y Ml MOJIly4aeM ypaBHEHUE
99 195,60 = K, 1 +P(3) (2.28)
¢ HavyabHBIM yenoBueM O (1) =b. PelleHue 3TOro ypaBHEHUs €CTh
v
O(v) = e 30 (b —f (Kye, i —P(3)) (1)eZ® dT) , (2.29)
1
u
v
Sk (V) = a+J 6(t)dr. (2.30)

1

Terneph MbI IPUHUMAaEM UHAYKTUBHOE MIPEAON0KEHHE:

A) Ouenka (2.19) BoimonusAeTcs mpu k <d —1.

YrBepxaenue 4. B npednosonceruu A umeem mecmo oyenka |[Kya i (v)] <Ce®W)
pasHomepHo Ha M \ & 05 Hekomopoil koHcmanmbt C > 0, 3asucaweii om L u d.

JloxazaTenbcTBO. MBI MOXeM IIPe/CTaBUTh TPOU3BOAHYIO K« ;i aHaJIOTMIHO
(2.21) xax cymMy ciaraeMbIX BUZa

610+ZOK alﬁ—ill—' alp+ipl—~ gmtmi T gmatmg T
atoatlo gthath  gelogtle AL™IL™ T gtMadt™a

(tu)lu (Ev)ly§uk0 o Sy gvu% .. .§l}uk;’ eks .

(2.31)
BLLECB HWHAEKCBbI — 3TO HEKOTOPbBIE LI€JIbIE HEOTPULIATEJIbHbBIE YMCIIA, HeobA3aTeNb-
HO BCe pasinyHble (TO €CTh MOTYT OBITh WAEHTUYHbIE MHOXUTENN), k; U ki He
6osbire, yem d—1, u lo+ll+...+lp+m1+:.+mq+lo+ll+...+lp+ﬁ1+...+
+ig+p+q=1L,+1,, ko+...+k.+ki+k, +k<d.



MOYTU KOMIIJIEKCHBIE CTPYKTYPBl HA YHUBEPCAJIbHBIX HAKPBIBAIOIUX CJAOEHUK 175

[Npeacrasnenvie (2.31) moKasbpIBaeTCA MO MHAYKIWH, aHajsoruduo (2.21). Ilpu
d =0 ot BBIpaXXeHUA coBHafaioT. Korza mbl audpdepeHnupyeM Mo u MHOXKH-
Tenb 9t K /(atl 9tl) win mEOXUTens 91 I T/ (9th 9E1), BOSHMKAET MHOKUTEND
t, =ie’t, WIu MHOXMTeNb f,, = —ie’t,, 1 aHaJOIrMYHOe HPOMCXOAUT C MHOXKUTE/IA-
MM, COAI€PKAIUMU IIPOM3BOAHbIE OT I. [IpousBoaHas MHoxuTens (t,) paBHa

[ (tv)l"_ltuv =il, (tv)l”_l (egtv)v =il, (tv)l"_l (guegtv —Teéf (tv)z) .

IIpousBOAHbBIE MHOXUTENCH Sy U S« PaBHBI Syk+1 M § i1 COOTBETCTBEHHO, U
(e5), =k5,e5. Bo Beex c1ydasx Msl HonyqaeM YJIEHBI BI/I,Z[a (2.31), rae B orpaHu-
YeHUAX Ha MHZAeKcH d 3aMeHeHo Ha d + 1.

YTBepKzIeHue 4 cieAyeT us npejcTabneHus (2.31) U MHAYKTUBHOTO IPEZAIOJIO-
KeHUA A, Tak Kak npousBefienue npoussogubix K, I', T u muoxwurens (t,)w (£,)%
OTrpaHUYeHo, KaK ObUIO MMOKa3aHO, KOTAA MBI paccMaTpUBaIM ciydail k =0 mpu
JIOKa3aTeIbCTBE YTBEP:KAEHUA 3. O

Temeppb MBI 3aKOHYMM JIOKa3aTENbCTBO Mpeaioxenus 2. U3 (2.29), mpeacras-
senus (2.27) MHOrowieHa P v yTBepKAeHUs 4 MBI TIOTy4aeM

v
0(v) < Mye W) J ek +2)3(7) g1
0

[UI1 HEKOTOPOTO M,y < . [I[ppHMUMasi BO BHUMaHue OleHKy (2.16), MBI oTy4aem

v

(k+2)5(7) 1 K+2)5(0) g <« L (k42)s(v) _
Je dt < (k+2) nfs, J(k#—z)s (m)e dt < (k+2)c1(e 1).

Takxum o6pasom, 0 (v) < MeX®) nna mexoroporo M, u us ypasHeHus (2.30) MbI
HoJy4aeM TpeOyeMyIO OLEHKY IS §. O

Temepb MBI TIEPEXOAUM K IIOYTH KOMILUIEKCHOU CTPYKTYpE Ha MPOU3BeAEeHUHU
BxD.

JlemMa 2. Paccmompum noumu komniekcHyrw cmpykmypy (2.1), (2.2), onpede-
JNéHHy10 Ha npoussederuu Bx Lt (B— 6asa, LT — nonynonoca {0<u<2m, 0<v})
U UHOYUUPOBAHHYIO KOMMIEKCHOU cmpykmypoil Ha YHUB8epcanbHOU HAKpblear-
wetl M. Cywecmagyem 2nadkas 3ameHa nepementwvix (r,u, {)— (v,u, ), 0<r<1,
0151 KOMOpPOUl 8bINONHEHO Cledytouiee.

Ha npousgedenuu B x D (D — eduHuuHblil 0ucKk) UHOYUUPOBAHHAA NOUMU KOM-
NJIeKCHAs. CMPYKMYypd JIOKAIbHO 1o 6ase 3adaémcst hopmamu

d¢=1{dg;}, j=1,...,n—1,

_ 2.32
w = dw; +u div, +{ct, dq). (2.32)

30ect wy =re™, r=1—e7@Y) y ;. ¢! onpedenenst cnedyrowum obpasom (6 apzy-
MeHMAax Mbl Onyckaem 3agucumocms om §):
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ITycmb u u ¢ — makue, kak 8 (2.2), 1 — obpamnas @yHxuyus om s(v), mo ecmo
v=n(s,u), v=gruw=nInl-r),u), h(,uw)=n(-In1-r),u),
20e 1), — npousgodHas om 1) no nepgomy apeymermy. Tozda

rh—r+i(1—r)g,

— p2iu
‘u‘l(rr u) =e rh+r_i(1_r)gu5 (2.33)
1 . 2relt -
ct(r,u) = RS P T s vy (c+ (1+,u)g§). (2.34)

30ecb U u ¢ paccmampusaromest kak gynxkyuu om r,u: u(g(r, u), u), c(g(r, u), u).

Zns uq evinonnsemesa oyenka |ui| <b <1 na D, 20e b— ¢ynkyus mouku 6asbl,

pasHomepHo omaoesiéHHAaA om 1 Ha KOMNAKMHBIX NOOMHONCECTNBAX.
JokaszaTtenscTBo. M3 (2.3), (2.12), (2.15) MBI MoTy4YaemM

_ttit,  1—¢p s
Tot—it,  1+e 1+2e.

Vcronb3ys obo3uavenue v =g(r, u, {), MOXHO npezacTaBuTh Gopmy (2.2) B Buze
= (1+u) (g dr+ (g, d¢) + (g7, d0)) + ((1+wg, +i(1—w)) du+
(e, d2) = 3 (U +wgr+r (A=) —ir ' (1+p)g,) (dr +ir du) +
+5(A+Wg—r A=) +ir (4 p)g,) [dr—ir du) +
(14 ) {gr, dO) + (e + (1+p)gg, dO).

Ecmu wy =re, To dw, = e (dr + ir du), div, = e ™(dr —ir du). Omyckas 4ieH
¢ d{, MBI BUAUM, uTO GOpMa w, OTpee/AIIasa IIOYTH KOMIIEKCHYIO CTPYKTYPY
B KapTe w;, 6yzeT 3ameHeHa popMoii

wy = dw, +py dwy +(c}, df),

rae
— 2 r(l+w)g,—(A—w) +i(1+wg, _ 2iu re*g,—1+e +ie°g, _ p2iu rg,+1—e’+ig,
M1 r(l+uw)g.+1—u—i(1+u)g, re*g.+1—e*—ie g, rg.—1l+es—ig,’
(= 2re* (c+(1+)g>)
r(l+wg+1-u—i(1+u)g, HEg)-

B cieAyomux BEIYUCIEHUSAX MBI OyZIEM OIyCKATh 3aBUCUMOCTE OT (. VI3 OI[eHOK
(2.16) u HavanpHBIX yotoBui (2.17) ciegyeT, 4TO CyllecTBYeT obpaTHas GyHKINA
v=n(s,u), n(0,u) =0. MsI nonoxum s =—In(1—r), To ecTb

v=g(r,uw=n(=In(1-r),u).
Ecii MBI 0603HAUMM 1) TIPOU3BOAHYIO 1) IO TIEPBOMY apryMEHTY, MBI ITOJYyIUM
crexpyroryto Gopmyny a1t KoapdumeHTa U :

o IMs—r+i(l=r)n,
=e - .
r,+r—i(1—r)n,

G} (2.35)



MOYTU KOMIIJIEKCHBIE CTPYKTYPBl HA YHUBEPCAJIbHBIX HAKPBIBAIOIUX CAOEHUN 177

V3 mpeayoxenus 1 cieayet, 4To GYHKIHSA 1), MOJIOKUTETbHA 1 PABHOMEPHO OTpa-
HudeHa. Tak Kak 1), =—0S, (NsSy+My=dn/du=0), 1—r=e™° u a4 s, y Hac
€CTb OlLIeHKa npeyioxeHus 2 npu k =1, Ml nonydaem 1, (1 —r) < M 1711 HEKOTO-
poro M < o, 1 3Ta OlleHKa TaKke paBHOMEPHA.

W3 (2.35) creayet, uro |uq| <1 u |uq]| <c(6) anst mekoToporo ¢ <1 BHe Jto-
6oro kpyra r < 6. Ham Hy)XHO TO/NBbKO paccMOTpeThb Wi Ipu r — 0. V3 (2.17) mbt
MoJTy4aeM HayalbHOE YCJIOBUE JJIS S,

s =0, &

MsI niosrydyaem

_ 1 _ — _
T’S(O) - SU(O) - 17 nu(O) - T’S(O)su(o) - 0'
Vicnionb3ys (2.36), MBI TIOJIy9aeM TaKKe

ds, ds, _ ds, 2
T W& T T

CrefoBaTeNnbHoO, %(O) =0 u MbI osry4aem us (2.35)
o(r)
M=o o(r)’
CnepoBarenbHo, U1 — 0 mpu r — 0, ¥ MBI JOKa3aau OLEHKY AJIT .

Teneps, UCIONMB3YS Te e PacCyA€HUs, MOXKHO YBUJETh, UTO Apobb B (2.34)
orpaHuY€eHa B HyJle U BEKTOP-QYHKIUA ¢! ABIAETCS BCIOAY ONpeeéHHOM U IIajl-
KoOil B B X D. O

Tenepb MbI oKaxkeM orleHKH (0.2).

Mpennoxenue 3. Ouenku (0.2) ebinonnsromes ona koagduyuenma Beavmpa-
mu (2.33) (Oanee mbL 0603HAUAEM €20 ).

JlokazarenbcTBo. Tak Kak w =re'!, MBI roJjy4aeM

o _el(n _iny o _et(d fd)
ow 2 \or roul’ ow 2 \or rou/’

OTO 3HAYMT, YTO AOCTATOYHO JOKA3ATh OIEHKY

P
d’r oku

9
ST

[peamonoxuM cHavaza, uto k =0. ludpdepeHnupys j pa3 mo v paBeHCTBO

glr,u) = g(1—e= W, u) = v, (2.38)

(2.37)

HOTyYrM o
(_1)J(su)1e_lsgrj = P(g> 5)’

rze P — MHOTOWIEeH OT IIPOM3BOAHBIX QYHKINN g U S, KOTOPHIM MBI MOXKEM IIpeJ-
CTaBUTh KaK CyMMY CJIAraeMbIX BUAA i - - . &yip Syit - - Spiq€ ', TP ITOM MIPOU3-
BoAHEIE OT g GepyTca B Touke (1—e™, u), i, <j—1 And Beex iy, [ =iy +...+10p.
[To MHAYKINY ¥ IPUMEHAA NIpeJIoKeHre 2, MBI [IoIydaeM

lgi| < Ce?s®) =C(1—r)7.
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Teneps, aAuddepeHiupys paBeHcTBo (2.38) j pa3 o v u k pas 1o u, noirydaem
(_1)j(5v)je_jsgrf, uk = P(g; S); (239)

rge P — MHOTOWIEH OT NMPOU3BOAHBIX GYHKIMHN g U S, KOTOPBII Ha 3TOT pa3 MBI
MOXXeM IIPeJICTaBUTh KaK CyMMY cjlaraeMbIX BUJa

e—Is

&riv,uk1 -+« &rio yko Spin yh - - Syda yla ,

TAE iy +kpyy < j+k 218 BCEX By, Ky, kpy Sk—1, I=11+...+i, uky +...+k, +1; +
+...+1; <k. Vicnonb3ys MHAYKIMIO U IPUMEHsAA NPeJJIOKeHHe 2, IoIydaeM

| g | < CeUths) = C(1—r)~U+h)
s Hekotoporo C > 0. Takke, anddepeHIINpysa paBeHCTBO
1=n,(s(v,uw),u) s,(v,u) = h(r,u)s, = h(1—e=@W y)s,,
IIocJie aHAJIOIMYHBIX PaCCy:KJeHUM MBI IIOIy4YUM OLIeHKY
Ry | < CeUtRs@) = ¢(1—r)=Uth),

U3 paseHctBa (2.39) nmomydaercs, uro r/uX-npoussoguasn or (1—r)g, uMeeT 1o-
pagok (1—r)~U+K), Onenxa (2.37) ciefyeT Temephb U3 BhIpakeHua (2.33) u mo-
JIydeHHBIX ceifuac oIleHOK (HallOMHMM, YTO 3HaMeHaTenb B (2.33) paBHOMEPHO
OTZE/IEH OT HYJIS). O

§ 3. [IPOM3BOJIHBIE B TPAHCBEPCAJIbHBIX HAIIPABJIEHUMSAX.
BBIUMC/IEHMSA B IOKAJIBHBIX KAPTAX

MsI nIprcTyIiaeM K goKasaTeabcTBy oreHok (0.3) u (0.4) teopemsr 1. Jlokasa-
TeJBbCTBO ITOXOXKe Ha ZI0KA3aTelbCTBO NPeAIOKeHUs 2, HO Tellephb CUTyalusa 6osee
CJIOKHAA.

Jlajiee U ¥ ¢ UMEIOT TO JKe 3HadeHue, uTo U B (2.3), (2.4). CHavasa MbI Oyzem
paccMaTpuBaTh UX KaK QYHKIINHU IeoZe3ndecKuX KOOPAUHAT U, U, a 3aTeM Iiepeii-
€M K KOOpAMHATaM T, U, KaK B JJeMMe 2.

Ham Hy»>KHO IIOJTyIUTh OLIEHKH 3TUX QYHKIMH 10 OTHOUIEHUIO K JJTHHE reofe3u-
yeckol v. Jlist aToro HaM TpebyeTcs OIeHUTh IIPOU3BOHbIE JJOKAIBHO ONIpe/ieIEéH-
HBIX QYHKIMH t, U t,. B fanpHeilimeM Mbl HHOIZA OyZeM OIycKaTh MHAEKCH Y KO-
OpZAWHAT Ha TpaHcBepcanu {,, WIN Y KOOPAUHAT Ha JIOKAJIBHOU TpaHcBepcaiu &,
U [IMCaTh, HAIPUMED, tz, UMeA B BU/Y IPOU3BOJHYIO II0 OAHOW U3 KOOPAUHAT & p,.

s (2.3), (2.4) crexyer, 4TO
2[‘5

- b = b (3.1)

o t
1 Hu 1t

v tl)



MOYTU KOMIIJIEKCHBIE CTPYKTYPBl HA YHUBEPCAJIbHBIX HAKPBIBAIOIUX CAOEHUN 179

DTO 3HAYMT, YTO HAM HYXKHO OIIEHUTH ¢ =t, /t,, Y =t E/ ty, Y* =ty /t, U UX IPOU3-
BoziHbIE. [IpM 3TOM OLleHKU QYHKIMHU ¢ =e°— 1 U €€ MPOU3BOAHBIX BAOJIb CIOEB
yKe ZlaHbl B IpeAJIoKeHuAX 1 u 2.

[Ipu ZoKa3aTeIbCTBE MBI CHavasa MOMYYUM OIEHKU B JIOKAJIbHBIX TOJIOMOpPd-
HBIX KapTax, UCIOJb3ys ypaBHeHue (2.5). Takke HaM HOTPe6YIOTCS OLIEHKU TIpe-
06pa3oBaHMii, KOTOPHIM IOZIBEPTAIOTCS JIOKAIbHO OMpeZAenéHHble GYHKINU MPU
3aMeHe KapThl. Tak Kak ( MHBapHWAHTHO IPU TOJOMOPQHBIX IPeo6pa3oBaHUAX
KOODJMHAT U ¢ 3aBUCUT TOJBKO OT KapThl { Ha TPaHCBEpPCAIbHOM Oa3e, MOIydeH-
HBIE Pe3y/IbTaThl TAKXKe He OYyyT 3aBUCETh OT HUCIIOIb30BAaHHBIX KapT.

Iycts V;, j=1,..., k, — HEKOTOpblE OKPECTHOCTH OCOOBIX TOYEK, B KOTOPBIX
MeTpuka umeeT ¢popmy (1.10). Mel mokpoem ocTanbHOe MHOXecTBo M \ (UV}) ko-
HEYHBIM YUCJIOM OTKPBITBIX MHOXKECTB Uy, TAKUMH 4TO Ha KaXKA0M Uy CylecTByeT
kapta (&g, ti), JTOKaIbHO rooMOopdHO BHIIpAMIIAOIIas ciaoeHue. C APyroi cTo-
POHBI, MBI TIpe/IIOJIaraeM, 4To B KaX/Joi obrmactu V; uMeeTca JTHHeapU3ykomasg
KapTa w, TO eCTh Mbl MOXXEM 3alMcaTh BEKTOpHOe Mojie X, 3ajalollee CJIOeHUE,
B BUE X, = ApWy,. 3A€Ch M HyMepyeT KOMIIOHEHTH BEKTOPHOTO TIOJS, X MBI
OITYCTH/IM UH/EKCHI, HyMepyIolire 0cobble TOYKH U KapThl. Kak 3T0 GbUIO yiKe cie-
JIAHO TIPY /IOKA3aTeNbCTBE MPEAJIOKEHUS 2, MBI MOJKEM TIOKPHITh KAXKAYI0 OKPECT-
HOCTb V; KOHEYHBIM 4HCIOM obacTeil Vi, KOTOpBIe ABJIAIOTCA HACBHIICHUAMH
obsiacTell Ha TPAaHCBEPCAJIBHBIX TMIIEPILVIOCKOCTSX Wy = CONSt CIOSAMH CJIOEHUS.
Tak ’Ke Kak MpHU [I0Ka3aTeJIbCTBE MPEJIOKEHUs 2, B 3TUX 00IaCTsIX MbI OyzemM
HCIIONB30BaTh KapTHl BUAA iy, tj, TAe &j — KOOPAMHATEI Ha TPAHCBEPCAIH U t; —
sorapudMuYecKas KOOpAUHATa Ha CI0sAX. Ilocsie, ecid HY)KHO, TlepeHyMepauu
KOMIIOHEHT, MbI MOJKEM HATIMCATh:

W = Epme™b, m<n, w,=Cyetb. (3.2)
3zech Cj — KOHCTaHTHI, MHZIEKC j HyMepyeT 0COoOble TOUKH, k — KapThl.

[Tycts (&, t) — ofiHa M3 OMMCAHHBIX KapT. B fanbHelieM Mbl GyZE€M UCITOIb30-
BaTbh 0OO3HAYEHUS ) = te [t, uPp* =t /t, Ana GyHKIMH, BKIIOYAIONINX IPOM3BOZ-
HBIE TT0 JIOKAJIBHBIM [IEPEMEHHBIM, a KOT/Ia MbI OyZIeM paccMaTpUBaTh [IPOU3BOJ-
HbIE TI0 «abCOMIOTHBIM» TTepeEMEHHBIM ¢, MbI OyzieM mucath Y* u YP**¢. OyHKIUN
t, ¢,y =tg/t, v ApyIue, KOIZA pacCMaTPUBAIOTCSA B JIOKAJIBHBIX KapTax, 3aBUCAT
OT v, & M HavYaJbHBIX 3HaYeHUH ty =t(vy), t, o =1t, (V). DTa 3aBUCUMOCTb OT Ha-
YaNbHBIX 3HAYEHUH 3aMeHseT 3aBUCUMOCTh OT u mpu v = 0. MbI GyZeM TaKke
paccmarpuBath GyHKUMU p =tz [t,, p* =ty /by, p' =t; /by, p* = te,,/ty- O]
GYHKITMY TaKKe 3aBUCAT OT TOJIOMOPPHOM KapThl. MBI 6yleM MCIIONIb30BaTh 060-
3Ha4YeHWEe YaCTHBIX MPOU3BOAHBIX JJI MPOU3BOAHBIX 3TUX (YHKIUI 1O CBOUM
MepeMeHHBIM U HIDKHUMU MHAeKcaMu OyzeM 0603HavYaTh MOIHbIE IPOU3BOAHbIE
GYHKIMI B TOYKaX Ha reo/ie3NvecKuX.

[Tycts (k) — MyIBTUHUHAEKC:

(k) = (kp, -y kno, ks o K1y ks ks keps ks ki),
k| =ky+...+kpq+ki+...+kyq+k,+ke+ke+ke+ke.
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B panbHetimeM Mbl 6yeM 0603HaYaTh

alklf

FIE . a1 g, aRE . aFE L dRvw dkity akwt, o Rty 9FvE,

BBeséM HEKOTOphIe TIOHATHUSA, CBA3aHHBIE C TPOM3BOAHBIMU GYHKINIM 1 U Y*.
VX yno6HO paccMaTpUBaTh COBMECTHO ¢ QYHKIMAMU p, p’, p*, p*'. Mb Gyzem
HCIIOb30BaTh obo3HaveHue V;, j=1,...,n+1, ana mo6oit dyukimu ¥, p, p’
u ¥ s moboit yHKImu ¥, p*, p*’. IHOrza MBI Gy/ieM HCII0Nb30BaTh 3TH 060-
3HaYeHusA 6e3 MHEKCOB U IHcaTh, Harpumep, P (¥, ¥*), umes B BuAy GyHKIUIO P,
3aBUCAIIYI0, BO3MOXHO, OT BCEX (byHKuHﬁ W, ¥ ¥ MX IPOM3BOAHBIX. TarKe MbI
6yaeM HCIOIb30BaTh 0603HaueHne W, Korja 6yLLeM MMETh B BUAY JMo6yI0 GYyHK-
nuto W, U*, U, U*, My/JBTUMHAEKCHI TPOU3BOAHBIX GYHKIIHI T Janee Mbl IIHIIEM
BHU3Y B c1<o61<ax.

Omnpezenenue 2. IlepemenHsle &, tg, t, o U UX CONPSKEHHBIE MBI Oy/ZleM Ha3bl-
BaTh CyI[ECTBEHHBIMU. J[JI1 MPOMU3BOJHOM, COOTBETCTBYIOIIEl MynbTHHHAEKCY (k),
monoxum |k|, = |k| —k,. Mbl GyZieM HasbIBaTh CYIECTBEHHBIM IOPSIIKOM IIPOU3-
BozHo# uucio |k|.s =|k|+ |k|.. CyliecTBeHHBIH MOPAZOK WieHa, He COAeP)Kalero
byHKIMA T, 6yzeM cuurtaTh paBHBIM —1. Mynstuuszgekc (1) = (I, ..., l,,) 6yaem
Ha3bIBaTh COOGCTBEHHBIM NOAMYIbTUHHZAeKcOoM MynbrunuHgekca (k) = (kq, ..., ky),
ecma Iy <k, ..., l, <k, U He Be3/le UIMeeTCs PaBEHCTBO.

Omnpegenenue 3. OfHOWIEH, ABIAIONIMACA MpOUsBeAeHUeM QyHKIMMA U;, W,
U;, U] 1 MX MPOM3BOAHBIX C KO3OOUIMEHTOM, 3aBUCAIIMM OT &, t U t,, MbI Oy-
ZeM HasbBaTh AuddepeHIINaNbHEIM ofHOoWwIeHOM. JluddepeHIaabHBIM MHOTO-
WIeHOM Mbl 6yzieM HasblBaTh cymMMy AuddepeHInanbHbIX OJHOWIEHOB. s aAnd-
¢dbepeHIMANTBHOTO OHOWIEHA

n+l L L
l

;
l_[ l_[ rﬂ l_[ J, (k) l_[ *rﬂ*z*) @jr(lz#)

j=1 1=1 =1 r=1 =1

ﬂk

MBI OTIpEJETUM
— nauddepeHITNaTbHYIO CTENEHb:
max _ (Ikyl, kg, ke, i1,
JL LU, jl
— CTemeHb pocTa:
- s =k
n+l , b [ L L
(Dol 0+ rlkgle+ 1+ 5 el + 1+ D (ko4 1) ).
j=1 “i=1 i—1 =1 1
T Tk
B aTux BeIpaxkeHuAx (kj), (k‘i) (k) (k .f*) — MyJAbTUMHIEKCH, UHAEKCEI [, [, [*, [
AJIA KOKAOTO j HyMEPYeT 3TU MYJIbTUMHAEKCHL, Ty, I, T+, Ty — HEOTPHLIATEbHbIE
1IeJTble YKCIa — MOoKa3aTenu cTeneHei. JluddepeHiiranbHas CTeneHb CBOOOHOTO
wieHa (He cofgeplKalnero HUKakou GpyHKIMHU ¢ win 1, Y*) paBHa —1 10 ompe-
ngenenuto. udpdepeHnmaapHas CTeleHb U CTEeHb pocTa AuddepeHITnaIbHOTO
MHOTOWIEHA — 3TO MaKCUMYM COOTBETCTBYIOUIMX CTENEHel BXOAAIIUX B HETO
OZIHOWIEHOB.
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Ipeanoxenue 4. IIpednonoxcum, umo (&,t) — 00Ha u3 kapm, onpedesiéHHbLX

8 Hauase 3mozo napazpada, mo ecmb KApMd, JIOKAJIbHO BbINPAMASIOWAS Cl0e-

Hue, unu ozapugdmuueckasn kapma 6 ocoboil mouxe. Kaxcdaa napa gynkyuit W; (),
* o
W ) YOosIemeopsiem cucmeme ypasHeruil

v 1 1, -
oo~ 3K + 5K = P(T, ¥, T, TY), (3.3)
dﬁf,(k) L g g — pry v T T oy
2 2K% 0 T K = PP, V0, ). (3.3)

30ecb P, P* — dugpdpepeHyuanbHble MHO2oUIeHbL OUPPepeHUUANbHOL cmeneHU He
golute |k| u cmenenu pocma we ewtwe |k|, + 1. Cywecmeennbiii nopsdok 6x00suux
8 HuX NpousBodHbIX Pyrkyuil ¥ He vute |k|os — 1. Koa@@uyuenmobt P — smo mHo-
20uneHvl om t, ¢ kKoagduyuenmamu, seasrowumucs gyukyusmu om &,t, u amu
MHO20UIEHbL 02DAHUUEHDL.

JlokasaTesbcTBO. [lonyunM cHavasna ypaBHeHue s ¢yakiuu Y (v) (ykasa-
HUS Ha OCTaJIbHbIE IEpEMEHHbIE MbI OIyCKaeM /ISl KpaTKoCTH). IIycTs £ — oaHa
U3 mepeMeHHbIX &,,. IuddepeHiypya ypasHeHue (2.7) 1o mepeMeHHOMH &, MbI
MOTyINM tz dt; )
oz T 2Tt g +Te(0) e + Te(t)*E + Tz () = 0.

C apyroii croponsl, anddepeHIUpPys TO Ke caMoe YpaBHEHHUE TI0 IEpEMEHHOM U,
MOy INM
tys + 2Tt b2 + T (t,)3 + T3, (t,)% = 0.
Tak kak
tg = 1:btv: Eg = Q-/)*Ev;

n3 AByX IOCIEAHUX y‘paBHeHHﬁ BbITEKaeT

a2 _dip dop _
ot A2 T ety +2Te, (Tt e ) +T(6) Y +Te(6,) 26 +T5 (2,)? =
d? _ o
= %tv_rftv (tv)zw + rf(tv)ztvlp* + rg(tu)z =0.
Tak kak
- K
1—‘ftutv = _5:
MBI [IOJTy4aeM
Cb 1y L = 1 (3.4)
dv? 2 2 g ’

Ananorn4no auddepeHumpysa ypasHeHue t,2 + ()2 =0, conpsxénnoe k (2.7),
MBI TIOJTYIUM _

dz’(,b* _ 1
dv? 2

K§* + %qu = —T:t,. (3.4)

[Ipu BBIKJIAZKaX Mbl yIUTBIBaEM, 4To I, = I}, Tak Kak MocaeHsiss BeIUNYMHA Be-
mecTBeHHa (B cwiy Toro, uto Ijt,t, =—K/2). TouHO TakuM ke 0Opa3oM MbI
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nojiydyaeM ypaBHEHUA

dz
E__Kp-i- Kp (3.5
d2 k 1 _, 1

Y aHAJIOTUYHO A O’ TaKKe MOAyd4aeM OAHOPOAHbIE YPAaBHEHMS.

Jlnst ypaBuenuti (3.4), (3.4°) u (3.5), (3.5') audbdepeHnnanbHbie CTENEHH Ipa-
BBIX YacTed paBHBEI —1, a CTEIIEHM pOCTa paBHHI Hy/o. Tarke paBeH —1 cyie-
CTBEHHBIN MOPSAJOK MPOU3BOAHBIX B MPABOM YacTU. YTOOHI MOMYUYNUTh YPABHEHMUS
JUISL CTAPIIMX IIPOM3BOAHBIX U COOTBETCTBYIOIINE OIIEHKH, MBI 6yZIeM eHCTBOBATh
uHAyKnyed 1o |k|. PaccMOTpUM CIydaii, KOr/ia MOBBIIIAETCS TOPAAOK IIPOU3BOJ-
HOH I10 OJTHOM U3 TIEPEMEHHBIX & ,,,, Hanpumep 10 & 4. [ToI0XUM

(k) = (kl’ ccc knfl’ El’ ] Enfla kv’ kt) ktua Et: Etu); (k/) = (kl + 1, ceey Etu)-

foraa K=kl +1, (K= ke + 1, (K = [kl +2.

IIpeamonoxuM, 4To y Hac uMeeTca cucrema (3.3), (3.3') ana ¥, ), U - Hanee
MbI 6yzieM omycKaTh MHAEKC j 1 06o3Ha4YaTh § =&, 1 = te, [ty, Y* =tz [t,. Tud-
bepennupys (3.3) mo &, MBI TOAYIUM

¥ 1 1< 1 1, —,
a2 EK\I/(k/) + EK\II?k’) = EKg\II(k) — EKg\II(k) +P§. (3.6)
Haree,
K: = %4'%1'54'%1'5— %+—tv1/)*+—t Y. (3.7)

Mel BUAMM, YTO MHOXWTelb K; He HoBbimaeT AuddepeHIHaNbHYIO CTENEeHb,
a CTeleHb pocTa MoBhIIAET Ha 1. Tak Kak CTeleHb POCTa WIEHOB W) U \II’(‘k)
paBHa |k|, + 1, MBI moydaeM, uto AubdepeHIInaabHas CTelleHb MePBOTO U BTO-
poro wieHOB B mpaBoii yactu (3.6) paBHa |k| =|k’| —1, a cTemeHb pocTa paBHa
|kl +2=]k’|,+1. CyiecTBeHHbI} MOPSAAOK MONYyYEHHBIX MPOU3BOAHBIX paBeH 1
¥ |k|es = |k |es — 2.

PaccmoTpuM Tenepps NpousBOAHBIE MHOrowieHa P. Mel 3Haem, 4yTto P —3TO
cymma ‘-IJIeHOB Kaxc/:gbn?l 13 KOTOPHIX SABJAETCS MPOU3BEACHUEM MHOXKUTENIEH BU-
ma: @, (6)5 Y s Wy Y ey i (i) TA€ @ — dyHKIms ot & u t. TIpowus-
BOZIHBIE qnyHKLu/m a [alT MHOXKATENH 1 u 1, KaK B (3.7), TO eCTh OHU He U3-
MeHSIT AuddepeHIIUaIbHYIO CTelleHb U A06aBIAIOT 1 K CTEMEHU pocTa. Takke
OHM He YBEJIMYMBAIOT CYyIIECTBEHHBIN MOPSAOK MPOU3BOAHBIX. JuddepeHiupys
MHOXUTEND (t,)", MBI TTOTydaeM

[6)e = ()1 (6)e = r(6,) 1 (2 “)t, =
=r(t,) T (Wit, +Prte) = r(ty)r Y5ty =Y T (). (3.8)

37ech MBI WCIIONb30BAIX ypaBHeHUE reofieandeckux (2.7). Mbl BUAUM, YTO CTe-
IeHb POCTa IMOBBIMIAIOTCA Ha 1, a AuddepeHIaNbHasg CTeleHb U MaKCUMalb-
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HBIU CYIIEeCTBEHHBIN MOPSZOK ITPOM3BOJHON MOXKET MOBBICUTHCSA Ha 1 TOJNBKO ec-
mu |k| =0, To ecTb ecau Mbl AuddepeHIUpYEM TIPaByio YacTh ypaBHeHuil (3.4),
(3.47). Y nIpou3BOAHBIX, BXOAAIINX MHOXKUTENAMU B P, MyJTbTUHH/IEKCHI SIBISIOTCS
COOCTBEHHBIMU MOAMYIbTUUHAEKCAMU MynbTUHHZeKca (k), ¥ UX CyIIeCTBEHHBIH
MTOPAAZIOK, TI0 MHAYKTUBHOMY IIPEAIION0Ke M0, He 6osbie |k|,, — 1. Juddeperiiu-
Py TaKOH MHOXXUTENb, MBI IIOJyIUM, HaIpUMep:

—1
(Pl =nPl P

37ech Bce TpU MoKasaTensa — AuddepeHIuaabHasa CTeNeHb, CyIeCTBEHHBIN TOPsI-
JIOK ITIPOU3BOZHON U CTEIleHb pocTa — MOBBIIIAIOTCA Ha 1.
Cnydau guddepeHIIPOBAHMIH O APYTUM CYLIECTBEHHBIM IIepEMEHHBIM, B TOM

4UCIIe TIO by, t, 0, Lo, £y,0, AHAIOTMYHBL. PacCMOTPHM, HalpUMep, IIPOU3BOAHYIO 110
mepeMeHHOM t,. Bmecto (3.8) MBI moTydIrm

(@) ], = r(t,) ety +p*t,2) = r(t,) " (pjt,—p*T(t,)?). (3.8")

Ipu AuddepeHIMPOBAHUH TIO t,, o, COOTBETCTBEHHO, MOABIAETCA MHOKUTEMb P*'.

PaccmoTpum auddepennrposanue 1o v. Torga, aHaIOTUIHO TPUMEHABIINMCS
Bhime o6o3HauenusnM, (k') = ((k), 1,), |k'|es = |kles + 1. TIpu guddepennmrpoBanuu
wileHa EK W) B IpaBoii 9acTH, aHaJIOrM4HO (3.6) u (3.7), MoABNAIOTCA caraeMble

BUZA
—aK tU‘IJ(k) .
at

Jubdepennyianbias cTemneHb MHonyvyaercs paBHOH |k|, cremeHb pocTa paBHa

|k|, +1=1k’|, + 1, cylecTBeHHBII MOPSAOK MPOU3BOAHOM paBeH |k|os = |k’|.s — 1.
Jlna muoxuTens (t,)" moayduM

[(tv)r]v = r(tv)r_ltuz = _rr(tu)r+l'

3mech He MOBHICWINCh HU AuddepeHinanbHas CTelleHb, HU CTelleHb POCTa, HU
CYIIECTBEHHBIN MOPAAOK. IIpu AubQpepeHIMPOBAaHUM OCTANbHBIX MHOKHUTEJEH
B CJlaraeMbIX MHOTOWIEHA P Bce 3TM TPU BEIMYMHEI IOBHIIIAIOTCA Ha 1.

YV Hac ZiokazaHbl BCe YTBEPKAEHUS MPe/JIOKeHUS 4, KpoMme TocieaHero. Joka-
JKeM Telepb ero. Vi3 ypasuenwnii (3.4), (3.4'), (3.5), (3.5) Buguo, uro audpdepen-
[[MaJbHble MHOTOWIEHBI B IPaBBIX YaCTAX IMOaydaroTcsa AuddepeHImpoBaHreM
dyskumi K, thv u Tgtv 1o epeMeHHBIM &, &, v, to, fo, ty.0, ty0- IIpu 3TOM (CM. HU-
e yTBepKJeHue 5) B KoapduIeHTax BOSHUKAIOT IPOU3BoZHbIe 1o &, &, t, . MbI
OyZieM paccMaTpUBATh MYJIBTUHAEKCHI BUA

(Z) = (llz e ln—1> z1: ey ZTl—l: lt> zt))
N =L+... 4l g+ +...+ L+ +],.
Mel 6yzem mucaTh:

K
OME, .. on1E,  ONE, ... 9n1E, | okt ok

Ko =
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T
QUE, . oWE,  ONE, ... dn1E, | okt ok

Toy =
Mer GyzeM paccMaTpUBaTh ITPOU3BEAEHUS BUIA
ry iy 1, Ty =713 =T,
K(lll) cee K(ljl)l—‘(llz) cee F(ljz)r(113) cee F(ljg).
3mech (I ), s€{1, 2,3}, — MyTBTUMHIEKCHI, 1;, — HEOTPHUIATENbHEIE LeJIble YUCTIa.
JIJIsT TaKOTO TIPOU3BEAEHUS MBI OIIPEAETNM NOJHYH CeneHb Kak

ZmJ%HZZrk (Il | +1).

s=2 kg

YrBepkaeHue 5. Koagﬁg{iuuueﬂmbt MHozouneHos P, P* g (3.3), (3.3') asnsawomca

CyMMamMU cnazaemblx eudd
(t,)(E,)7 [K(r;lll) K( )ralz . r(r;; )r(f;s) r(,rjs)], (3.9)

20e 1.+ T, He 6osble NOHOL cmeneHu NPou38edeHUs 8 K8AOPAMHbLX CKOOKAX.

JlokasaTeabcTBO. MbI OyzeM JeticTBOBaTh MHAYKIHMEL 10 |k|, TO ecTh 1O cTe-
mmeHu mpousBoAHbIX B (3.3) (3.3'). Paccmotpum, HanpuMep, AuddepeHImpoBaHme
MHOTOWIeHa P no nepeMeHHo¥ & = &. J[oCTaTOYHO TIOKA3aTh, YTO €CTU OZHOWIEH
(3.9) ymoBneTBOpsET HalllEMY YTBEPXKAEHUIO, TO MOCJE ero AuddepeHIInpoBaHUA
k03¢ dULIMeHTH HoxyYeHHOro AuddepeHITaTIbHOTO MHOIOWIeHA YAOBIETBOPSIOT
TOMY JKe yTBeP:KAeHMIO0. Mbl BEIYHCIMIN IIpousBoAHyo [(t,)"1]: B (3.8). IIpous-
BOZIHAs TAKOTO MHOMKHUTEJIS Aa€T /[Ba C/laraeMbIX, B IEPBOM CJIaraeMOM t,, BXOAUT
B Koo duireHT auddepeHInaaIbHOr0 MHOIOWIEHA B TOM e CTEIEeHH Ty, M OCTa-
Ioleecs MPOM3BEAEHNE NMeET MIPEKHIOK IOJHYIO CTEleHb, a BO BTOPOM cJIara-
eMoM o0e 3TM CTEeIleHH IOBBHIAITCI Ha 1. AHAJOrMYHO pa3bupaercsa ciydai
[(,)"]z. C Apyroii CTOPOHEI, OTHAs IPOM3BOAHASA MHOKHUTEIS K;l ) TIO TepemeH-
Hoii £ paBHa (aHamoru4so (3.7))

Kr -1 (9Kgy 9K - (11),
( ) 86 + ot UTP - U

IlepBhiii WieH B KBaJ[PpaTHBIX CKOOKAX IOBBILIAET MOJIHYIO CTEIeHb Ha 1 ¥ He [TOBHI-
[IaeT CTeneHel 1, U 7. BTOPOi U TpeTuil WieHsl MOBBIIAIT Ha 1 06e cTerneHy —
IIOJIHYIO CTENEHb W CTEIEHU Iy WIU 7'y COOTBETCTBEHHO.

PaccMOTpHM IIPOU3BOAHYIO IO t,. [IponsBogHas MHOXHUTeRA (t,)" 6bLIa BbI-
yucieHa B (3.8'), a mosHas IpOU3BOAHAS MHOXUTEA K(r{';l) paBHa

oK, dK
;=1 @G, W) -
K(z b ( 5t t,p*+ % t,o |.
Cy4au Apyrux MHOXUTeNeH U MPOM3BOJHBIX [0 IepeMeHHBIM & WK to.vs tos tow

IIOJIHOCTBIO aHAJIOTYHEI. HaKOHeL[, paccMmaTpHrBasd IMpOMU3BOAHbBIE IIO U U HCIIOJIb-
3yAd YypaBHEHHE I'€OA€3NIECKUX, MBI II0/Ty4YaeM

[(tv)rt]v = rt(tv)rtiltvz = _rt(tv)rt+1¢*r
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3zech 0be cTeneHU — CTeleHb 7; M IOJHAs CTeleHb OCTAIOIIerocs Mpou3Bese-
HUs — IOBBIIAIOTCA Ha 1. [Ipyrue MHOXUTENU TakKKe IOBBINIAIOT 0be CTeleHn

Ha 1, HarlpuMep:
oK, oK
rh _ i —1 (C) WGy -
[K(ljl)]v = rhK(ljl) ( ot Wt s v -

Tereps MBI 3aKOHYKM /JOKA3aTeIbCTBO IOCAEIHETO YTBEPXKAECHUSA IIPEAJIONKE-
HysA. ECM B 3aMBIKaHWM pacCMaTPUBAeMOM KapThl HET OCOOBIX TOYEK, TO YTBEP-
JKAeHre o4eBUAHO. IIpeamonoxkum, uto (&, t) — norapudpmudeckas kapra (3.2).
U3 (3.2) crexyet, 410 W, — 0, koraa Im(A,,t) — . Tak YTO HaM HY>KHO OIIEHUTh
K03¢$UIIMEHTH MHOTOWIEHAa P TIpy 6OJIBINUX t.

HamoMHuM 0603HaYeHUs 13 [I0Ka3aTelbCTBA Mpeaiokenus 2. MeTprka, orpa-
HUYEHHAas Ha CJIOH, uMeeT popMy

n—1
6 =520 2 T w007 | eGP Jaras

37ech g — orpaHHWYeHHas IOJOXKUTeNbHAsA QYHKINA C OrpaHMYEHHBIMH IIPOU3-
BOZHBIMU II0 Wy,. Jlasiee MBI 0O603HaYaeM:

. 1
Im = e —ImOn0)

M umeeMm (em. (2.23), (2.24):

1

m=1onLl %= pE -

G=(E,0dtdi=g(E0 Y vk, T=5(ng—55 > Anyi  (310)
m=1 m

2 #ng 6N Ely—4E Al
gxyE otac g(X2)° '

Tak ke KaK U B IPeJIOKEHUY 2, WIEHB], BKIIOYAIOIIKe IPOU3BOAHbIE QYHKINH g,
cozepKaT MHOXKUTENH, IKCIOHEHIMAMbHO Mainble Tpu Im(A,,t) — . [lelicTBU-
TeJBHO, In g — 3T0 IazKas GYHKIUA W C OrpaHUYeHHBIMU IPOM3BOAHBIMU. Kax-
Jlasg TIpoM3BOJHAdA IO t JaéT MHOXUTENIU BUja

K =

(3.10)

d(ng) dw,, ot
ow,, dt O(e).

0603HaYUM BTOpOe caraeMoe B IpaBoi yactu (3.10) uepes I'! u BTOpOE Cia-
raemoe B IpaBoii yactu (3.11), yMHO«eHHOe Ha g, — 4epe3 K'. iHaykimeii o |1
MBI MOXKE€M YBUJETb, YTO

pOIL+3) pOIL+6)
Ty = Sy (ﬁ?l Ky = = is %)3
(X¥) (X5)

rae PGII+3) y pBI+6) _ onnopoamble MHOTOWIEHH OT ¥, cTemeHei 3|l +3 u
3|l| + 6 cooTBeTCTBEHHO. [[eHiCTBUTENBHO, €CJIU MBI AU depeHIpyeM, HaIpUMeD,
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[epBOe YpaBHEHMUE TIO & ,,, MbI IIOJTyIIM

pel+3) peIa) 2
1 — Ym _ _)’) ym
l—‘(l)’gm - ( (Z y'2)|l|+1 2(|l| + 1) (Z y2)m+2 ym) Z‘Sm )

[l IpOU3BOAHOM 1O t MBI ITOJTydyaeM

— L GlU+3) P(‘I 3
e =~ iy g 20 (P2 =200+ DI P ) o

B o6oux ciayuasix Mbl moaydaeM TpebyeMoe yTBep:kAeHMe, B KoTopoM |l| 3ameHe-
HO Ha || + 1. Ciyuaii K ananoruyes. [[ppHUMas BO BHUMAHUE, YTO TPOU3BO/IHbIE
nepBbix cnaraembix B (3.10) u (3.11) aKCIIOHEHI[MANBHO YOBIBAIOT, MbI TOIYIUM:

ITpl <C (Z yrﬁ) (MHD/Z, Koyl < (Z ym) 1 . (3.12)

C Apyroii CTOPOHEL,
-1/2
l=e12<c(Dy2) .

Vcnonbaysa (3.12) ¥ CyMMMpyA MO BCEM CTENEHAM, C KOTOPBIMU Y. Y2 BXOAUT
B (3.9), MBI MOJyYMM Hallle TTPeIoKEHIE. O]
B crepyromeM yTBEpKAEHUH MBI U3 BCeX ITeEpeMeHHBIX COXpaHsieM B 0603Hade-
HUAX TOJBKO JJINHY I'eoZie3ndecKoi v.
IIpegnoxenue 5. [Tycms 6 — Hekomopoe pewerue ypasHenus (2.13). Pewerue
cucmemst (3.3), (3.3) ¢ HauanvHbIMU Ye08UAMU

d\I/

YW =a, —2(w) =b, (3.13)

o * d\p;i(k) " ,

i) =a*, — = (vo) =b (313)
umeem 8uo0:

1 — —_
Yy = 5T+, Ty = (\Iﬁ—\If ),

20e

Ut(v) = 9( IO +[(b+b)6 (vp) — (a+a*)6,(v) ] f 0-2(t) dt) +

Vo
v

0 f 072(t) f O(t)(P+P*)(7)dr dt, (3.14)

Vo

U~ (v) =a—a*+(b—>b*)(v—uyp) +J f (P—P*)(7) d7 dt. (3.15)

Vo Vo
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JlokasaTe/bCTBO nonyqaeTCH mpocTeiM Beuncienuem. U3 (3.3), (3.3) wreay-
eT, 9To W =, 4 + U a0 BT =Y 00— \I/j*’(k) YZOBJIETBOPAIOT YPaBHEHUAM
d>wt d>w-
+ Kyt =PpP4p*
dv? S
B I1lepBOM YpaBHEHHH MBI Zie/laeM 3aMeHy repeMeHHoi W = U 1 mosydaeM ypas-
HeHUe Ajd V:

=P—P*.

&V p 1d0 d¥

= = 1
102 T dv =0-1(P+P*).

Orcroza cienyer, 4To

T, (v) = (b+b*)9(v0)—(a+a*)6,,(v0)+J O(t)(P+P*)(t)dT | 672(v).

Vo

I[Mocie HTErprpoBaHusa MbI norydaem (3.14) u (3.15). O
Tenepb paccMoTpuM mHpeobpasoBaHue oT KapThl (£31,...,E7 1 t;) k kapre
(&1,...,&%71 t,). BameTum, UTO reomesndeckas MOXET OCTaBUTh 06JACTb Vi,

MIPUMBIKAIONIYIO K 0COOOM TOUKe, TOJBKO Uepe3 IepecedeHre CJIos C TPaHUIIei.
ITo mepeceyeHye JIEXKUT B 00beJMHEHUN HEKOTOPBIX obacTel V;, He IPUMBIKAIO-
KX K 0c000# Touke. Tak YTO HaM He HYXXHO PacCMaTPUBATh MEPEXOZ OT KapTh
B obmactu Vj, K Apyroi KapTe TaKoro BH/Ja, U Mbl O6yZeM IpeAIosaraThb, 4To Bce
mepeceyeHuss 06JacTell OIpe/iesieHUs KapT PaBHOMEPHO OTZEJNEHBI OT OCOOBIX
TOYEK.

Kak u paHee, MbI OyziemMm 06031{aquTb qepe3 U HEKOTOPYIO bynxuuio ; wm W'
Msbr 6yzem o6osHadaTh yepes W' (U?) ¢pynxuuio ¥ B xapre (E1,t!) (coorsert-
cTBeHHO, (&2, t?)), aHamorn4Ho 6yzeM MOCTYIaTh U C APYTUMU GYHKIMAMU. Mbl
OyZeM paccCMaTpUBATh KOOPAWHATY t HA reoZie3UYecKOd Kak GYHKIHIO OT U, §
U Havya/bHBIX 3HaYeHMH to =t (vp), t, o =t, (Vo).

Ipeanoxenue 6. B npusedéHHbLX 8blile 0003HAUEHUAX PYHKUUS \II(Zk) umeem

8uo N o
B2y = (L+P) (¥, ¥, ¥, ¥), (3.16)

30ecb L — nuHelinas gyHkuus npoudgodusix gynwkyuti W, * Wl Wl nopadka |k|
u cmenernu pocma |k|, +1 (mo ecms ¢ makumu myasmuundexcamu (1), umo || = |k|
u ||, =lkl.), P — ouddepenuyuanvruiii mHoz2oumeH Jud@depeHuUanbHOT cmeneHu
He evtute |k| u cmenenu pocma He swvtwe |k|, + 1. Cywecmeenmbiil nopsi0ok 8x00st-
wux 8 Hezo npoudsodHbLx He evlute |k|.s — 1. Koagduuuenmst mHozounenos L u P
02paHUUeHbl Ha nepeceueHuu obaacmell onpedeneHus kapm &q,t; u &y, ty. Koag-
duyuenmbl AUHETIHOT PopMmbl L k momy dice y008emaopsm oueHkKe

lag| < ClKk. (3.17)

3decb a () — koagPuyuenm npu npoussodHoil ¢ myasmuurndexcom (1). Qucno une-
HO8 8 amoil uHeiiHoill opme He bonbute (n+ 1)K,
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[IpexxAe YeM TPUCTYNUTh K [JOKA3aTENbCTBY 3TOTO MPEATOKEHUS, 3aMETHM,
49TO mpeobpa3oBaHUs KOOPAMHAT yAOOHO pacCcMaTpUBATh /i JIOKAJBHBIX KapT,
a He 151 GyHKIuiA W. TT0STOMy HAM HY)KHO CHAYa/Ia OMHCAT CBA3b MEX/Y POH3-
BOAHBIMH 3THX GYHKINI ¥ TPOU3BOAHBIMU JIOKAJIBHON KOOPAUHATHI Ha Te0/ie3u-
4yeckoil. MbI 6yzieM UMeTh A€o C MHOTOWIEHAMH OT IIPOU3BOAHBIX GYHKUIN t WIN
t!, t2, ¢ koadduIMEeHTaMH, KOTOPhIE MOTYT GBITh GYHKIUAMHU OT t, &, HO HE CO-
Jiep>KaTh MPOMU3BOAHEIX OT t. MBI 6yZleM Ha3bIBaTh UX t-0uddepeHyuanbHbLmMu MHO-
2ouseHamu. B aToM ciydae HaMm nOTpeGyeTcss HEKOTOpask MOAUGUKAIIVS TOHATHIA
omnpezeneHud 3.

Onpegenenue 4. /s t-auddepeHnanbHOro ofHOWIEHA

atlh) - Loy Eiesy -+ Eiy
MBI OTIpEJIETUM

— Anddepennpanbhyo t-crenenb: max, i{|ki|, [kil};

— monHylo t-cTenens: y. nilk|+ D7 rilkgl;

— t-creneHb pocta: Y., iilkil. + 2. rilkile.

JluddepenrmanpHast crereHb CBOOOAHOTO WIEHA U CTElleHb pocTa (He cozmep-
Kalero GyHKIUY ¢ WK e€ TIPOU3BOAHBIX) PaBHBI —1 IO ONpeJeeHHo.

Crefiyiolye /iBa yTBEpKAEHHUA ONMCHIBAIOT TePexos 0T GYHKIMH W K t U 06-
paTHo.

YrBepaxgenue 6. ITycmob &, t —Hekomopasa kapma u tgy — npou3sooHas, 20e
(k) — mynemuundexc, kax 06bturo. MoxcHo npedcmasums t) 6 sude

oy = P(\IJ, p*, @, @*)

30ecy P — dugdpdpepeHyuanbHblil MHO2ZOWNEH, KOAPPULLEHMBL KOMOPO20 02paHUUe-
HbL 8 10601l obaacmu, omdenénnoil om ocobwix mouek. Ecau (k) ={k,}, mo P —
MHOZOUJIeH om t, ¢ ozpaHuueHHbiMU koddduuyuenmamu. Ecau (k) # {k,}, mo P
umeem 8uo ~

P=t¥4H+h, (3.18)
20e U —o0ua u3 gynxyuil U, ¥, U T+ u |k'|=|k|—1, |k'|, = |k|, — 1. Jugpdpe-
peHuuanbHasa cmenenv P; He gviwe |k|—1 u cmenens pocma He ebiwe |k|, — 1.
CyuecmgenHblil nopsadok NpousgooHbLx, exodsauiix 8 P He eviwe |k, — 3.

JlokasaTrenbcrBo. Pacemorpum cHavana caydait (k) = {k,}. Torga

aI’ al" -
tpe = L2 yh2 = _[F(tv)z]vk’2 = _(Etv + Etv) [(tv)z]v"*3 _r[(tv)z]vk*L

[To MHAYKUMM TIOyYaeM, YTO MOXKHO IIPEACTAaBHTb t() KaK MHOIOWIEH OT t,
C OrpaHUYeHHBIMU K03 HUIEHTaMHU.
ITycts Teneps (k) # {k,}. ImeeM 11 MHIEKCOB MUHWMAIbHOM JIJIHHEL:

tgl = tyll)l.

AHajloTUYHbBIE BbIpaXXE€HUA MMEEM JId APYT'UX IIPOM3BOJAHBIX IIEPBOr'O IIOpAAKA
II0 CyHIECTBEHHBIM II€pEMEHHBIM. B neBoit yactu CymeCTBeHHLIfI IIOPAZOK IIPO-
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M3BOJHON paBeH 2, B MpaBoi — auddepeHIInanibHas CTEMEHb U CYIeCTBEHHBIN
MOPSAZOK MPOU3BOAHON PaBHEI HYJIIO U CTEIIeHb POCTA PaBHA eJUHUILIE.

Temeps GyaeM zAeticTBOBaTh MHAYKIMEH 110 |k|. [IyCTh BHIMTOIHEHO CIEAYIOIIEE:
00 =99 /08, |k'|=|k|—1, To ecTs (k') = (k1,...), (k)= (k;+1,...). [IycTb

twny = tU‘I’(kH) + Py,

roe |k"|=|k'|—1, |k"|.= k'l — 1, auddepennuanpHas cTereHb P; He BHIIIe
|k’| — 2, cTemenp pocta He Bbile |k'|, —1 U CyIeCTBEHHBIN MOPALOK BXOAAIIMX
MIPOM3BOAHBIX He BhimIe |k’|, — 3.

Torga ~ ~
Ly = W en.g, +log, Vi + (Pre, -
Jlasiblile paccy»KAeHus aHAJTOTUYHBI IPOBEJEHHBIM IIPY J0KAa3aTelbCTBE MPeIo-
KeHud 4. Tax, N N R

toe Yooy = (Wit,)y ¥y = [t, 97, — T ()21 gy

JIuddepenipanbuas cTeleHb MpaBoi vactu paBHa max{l, |k”|} < |k|—1, cre-
meHb pocta paBHa |k”|, + 1< |k|,— 1, 1 cyliecTBEHHBII MOPSIAOK MPOU3BOAHBIX
He Bbime max{l, |k” |} < |kl — 3. JuddepeHnipoBanue BO3MOXHBIX cjlarae-
MBIX MHOTOWIEHA P; OBUIO IO CYINECTBY YK€ PAacCMOTPEHO IIPHU JOKA3aTeIbCTBE
npeiokenus 4. Ciydau, KOIZia MOBBIIIAETCA CTENEHb 10 APYTUM CyIlleCTBEHHBIM
IlepeMeHHbIM, aHaJIOTH4HbL. Pacemorpum ciyuait 9*) =0 g /gv. Toraa

taw = tv‘/l;(k”),v - 1—‘(tv)z\/l;(k”) + (Pl)v-

YV uineHa F(ty)z\fl(ku) mubdepeHnuanbHasn cremnedb pasHa |k”| < |k|—2, cremenb

pocra pasHa |k”|, =|k’|,—1=k|,—1 u cyIlecTBEHHbII OPSAOK MIPOH3BOAHOMN

paBeH |k”|. < |k|os — 3. TIpu aubdepeHIMpOBaHNY MHOTOWIEHa P; MOXET IIO-

BBICUTBCA Ha 1 TolbKO AuddepeHnranbHas CTENEHb U CYLIECTBEHHBIN IOPII0K

NIPOU3BOZHBIX. O
YrBepikaenue 7. Hmeemcs npedcmasieHue

—~ t(k') 1
\Il(k) = T + (ty)|k|+1 P) (319)

20e (k') — mynomuunoexc, |k’|=|k|+1, |k’|, = k|, + 1, P — t-OudppeperuuanbHubtii
MHo2ouweH, umerowuil t-ouddeperyuanviyro cmenens |k|+ 1, t-cmenens pocma
|k|. + 1, cywecmeenHblii nopsdok 8xo0swux npoudeodHsix He ebiie |k + 1.

JlokasaTenscrBo. [IpoBoguM uHAyKnumio 10 |k|. pu |k| =0 g ¥ =1, Ha-
mpuMep, P, = te /t,. Temepb ToIyYyaeM yTBEPXKAEHUE 0 UHAYKIMHU, AubdepeH-
LUpys paBeHCTBO (3.19) Mo CylecTBEHHBIM [TIEPEMEHHBIM U IO U. O

JlokazarenbCTBO NpejjioxeHud 6. JlocTaTOYHO Z0Ka3aTh CIeAyollee yTBep-
KEHUE:

Dynkyua t%k) Moxcem 6bims npedcmassena 6 gopme (L + P)(t1), 20e L — numneil-
HAs YHKUUA OM NPou3soOHbIX t1 makcumanvHoll cmenenu, paswoil |k|, u t'-cme-
nexu pocma, pasmoii k|, +1, a P(t') — t'-0udpdeperyuansruiii mHozounen dudde-
peryuansHoil t'-cmenenu ne eviwe |k|—1 u t'-cmenenu pocma me swuue |k, + 1.
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Mmnoeounen P umeem koadduyuienmsl, 0epaHuteHHble 8 paccmampusdaembvix 0baa-
cmax. Koagduyuenmot aumetinoii opmul L aeasiomea gyHkyuamu mouku u t}
8 coomgemcmayoujux moukax. ITo modynto amu koag@duyueHmst He NPessvILAOM
C'Kle 95 Hexomopozo C, u uucno uneros gopmot L He npesviwaem (n+ 1)K,

JlelicTBUTENIBHO, TOIZA U3 yTBEPXKJeHU 6 U 7 ¢ yuéToM aJJuTUBHOCTHU B IIPO-
M3BeZIeHUAX t-CTelIeHU POCTa U CTENEHU POCTa cleAyeT, 9To AuddepeHIanbHan
CTeNeHb U CTENMEHb pocTa B MpaBoi yacTu (3.16) yAOBIETBOPSAIOT Tpe6OBaHUAM
npegyoxxeHyA. CyllecTBeHHBIH MOPAZOK IIPOM3BOAHBIX, BXOAANINX B P, He BhIlle
|k|es — 1. C yuéToM yTBepXKAeHUH 6 U 7 MOJIy4aeTcs, YTO B NMPEJIOKEHUH 6 COOT-
BETCTBYIOIIN MOPSOK He Bhilie |k|,s—1

Tak Kak 3aMeHa KapThl OTOOpakaeT CJIOW B CJIOH, 3TO IpeoOpa3oBaHHUE OT
(&2,t2) k (&Y, t1) momxHO UMETh BU:

g =h(g?), t'=f(%8%,

rae h — romomopdHoe oTobparkeHue U f — romomopoHas dyHkuus. Tak Ke, KaK
U paHblie, MBI OyzieM 0603Ha4aTh YaCTHBIMU IIPOU3BOAHEIMU ITPOU3BOJHEIE STUX
GYHKIMM IO CBOUM IIepeMeHHBIM U HIDKHUMU HHJEKCAaMU — ITOJIHBIe IIPOU3BOJ-

HbIe (byHKuHI?I B TOYKAaX Ha Teofie3ndecKuX. PacCMOTpUM IIPOM3BOAHYIO IO TIepe-
MEHHEBIM U, t§, t30, §2, 83, 629, E2 ¢ MyanHHH,aeKCOM (k) ypaBHeHuUs

FR, 8, 20,82, 82) = 1 (0, £(8, £2), L (62, £, h(ED)).
3aMeTuM CHadaja, 4To
2., 20,63 = () 76l (0, £ ), L (63, €020, h(ED).

Teneps mpeanonoxum, 4to k, =0, To ectd |k| =|k|,. [T IpOM3BOAHOM tfk) MBI
MOJTYIM

6t2

d
Lyt = Y agthy+ P, (3.20)

[tl=lk],
3xech P; — t2-quddepeHnManbHbIi MHOTOWIEH, TAKOW YTO €ro MojHas t2-cTe-
neHb pasHa |k|, a zuddepennmanbHas t2-crenens He 6osbiue |k| — 1. AHaIOrUYHO
P, — o570 t'-auddepeHraNbHbIA MHOTOWIEH, TAKOM YTO €ro MoJHas t!-cTeneHb
pasHa |k|, a audpdepennuanbHas t2-crenedp He Gombiie k| — 1. Koadduuuen-
ThI () ABIAIOTCA IPOU3BeJeHUAMU |k|, cOMHOXUTeNel Brza

oh,  af af  &f " &’ f 2
ag]z’ £2’ tZ’ at2 62 1254 (atZ)Z v

1 UX COTPSDKEHHBIX, B3ATHIX B TouKe (tZ, £2). Bce 5TM COMHOXUTEM PaBHOMEDPHO
orpaHUYeHbl B pacCMaTpUBaeMBbIX 00IaCTAX, OTAEIEHHBIX OT OCOOBIX TO4eK (Ha-
TIOMHUM, YTO |t,| paBeH AJMHE eAUHUYHOTO KacaTeJIbHOTO BEKTOPA B Halllel MeT-
puke G ¥ 3aBUCUT OT TOYKU Ha re0fe3UvecKol, a He OT 3HadeHus v). Takum 06-
pasoM, 3TH k03bPUIMEHTHI 0 MO0 He TpeBocxoaaT Ckle ana nexoroporo C.
[pu kaxzoMm avddepeHIMpOBaHUN 110 OJHON M3 CYIIECTBEHHBIX IepEeMEHHBIX
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YUCJIO WIEHOB B popme L yMmMHOXaeTcsa He OoJblle YeM Ha YUCJIO IepeMeHHBIX
dyukmuu f mwioc 1, To ecTh Ha n+ 1. 3HauuT, UX yucio He 6ombie (n + 1)K,
Temepb, EpPexojs K CIydar mpousBobHoro (k), HETPYAHO YBUAETH, YTO Aub-
depeHIMpOBaHKE MO U He u3MeHsAeT KoadpduuueHToB Gopmsel L u t!- (cooTser-
CTBEHHO t2-) CTeneHei pocTa MHOTOYWIEHOB P, U P,. DTO 3HAYUT, YTO STH CTEIIEHH
pocra He npeBhmIaioT |k|, + 1. KoadduirieHTsI MHOTOWIEHOB P; 1 P, SABIAIOTCA
MHOTOYIEHaMH OT YaCTHBIX IIPOM3BOAHBIX GyHKIMIA hj, f, KOTOphle OrpaHMYeHBI
B paccMaTpuBaeMbIX obnacTaAx. Ilepexoas B MHorowieHe P; k kapte (§1, t1) u yuu-
ThiBas (3.20), MBI, 10 MHAYKIKH, CHOBA II0Jy9aeM MHOTOWIEH t!-CTeleHn pocTa
He Boimte |k, + 1. O

§ 4. JIoKA3ATEILCTBO OLIEHOK (0.3), (0.4)

JlamyM cHavasa HEKOTOphble OOlMe IMOsICHEHMs. Y Hac MMEETCs MCXOJHOe IIO-
6abHOE TpaHCBepCcalbHOE CeUeHHe U IOKAIbHOE TPaHCBEPCAIbHOE CeYeHe B Kap-
Te B OKPECTHOCTH JIAHHON TOYKKM MHOI00O6Pasvs YHUBEPCAJbHBIX HAKPHIBAOLIUX.
HaM Hy»>XHO OLIEHUTh IIPOM3BOJHEIE I10 JIOKAJTBHOMY CEUYEHUIO KAPThl K CPABHUTh
HX C TIPOM3BOAHBIMU 10 6a3ze. ITOT MEPEXOZ OIeHUBAETCSA ITPOU3BOAHBIMU 0TOOPA-
JKEHUA TocaeqoBanusA (TOJOHOMUM) OT 6a3bl K TpaHCBEPCATHLHOMY CEUEHHIO Kap-
TBI. A 5Ta IIPOM3BOAHAS OIIEHMBAETCA [TPOM3BOJHBIMI KOMIIO3UI[UU TPAHCBEPCAIb-
HbIX QYHKIMH mepexofa. Kakaas QyHKIUA Iepexoga MeXAy TPaHCBePCATbHBIMU
CEYEeHUSIMH B COCEJHHX KapTaxX MMeEeT OrpaHMYeHHBIE IPOU3BOAHEIE. 'eozesnye-
CKHUH MyTh OT 6a3bl K pACCMAaTPUBAEMOMY CEYEHUIO IIOKPBIBAETCS I[ETIOYKOM KapT.
[MpousBozHbie GpYHKIMIA ITepexosa OT 06as3bl K pacCMaTPHUBAEMOM KapTe JOMYCKAeT
OLIEHKY, DKCIIOHEHIIMAIBLHO 3aBUCAIIYI0 OT YKMC/Ia KapT B IIEIIOYKE — IO CYIIECTBY
OT JIJIVHBI Teofie3ndecKoii. C Ipyroii CTOPOHBI, TPOMU3BOAHBIE TI0 JIOKAJLHOMY cede-
HUIO KapThl CAaMU MMEIOT OIIEHKY, SKCIIOHEHIHAIbHYIO II0 YHCIY KapT B I[EIIOYKE,
TaK KaK TaKyl0 OIIEHKY MMEIOT WX HadaJbHble 3HAYEHWsS B OTMEYEHHOM TOYKE
KapThl. [loy4aeTcss CylepaKCIOHEHIMANbHASA OLEHKA [0 JJIMHE Ie0Je3N4eCKOMH,
KOTOpas Ipu mepexozie K kapre (u, r) memmsl 2 gaét onenku (0.3), (0.4).

[NpucTymas K IoApoGHOMY U3JI0KEHHUIO, 3aMETHUM, BO-IIEPBBIX, YTO CYLIECTBYET
HeKOTOpoe 3HaueHue O > 0, Takoe 4YTO /i 000 HeocobO0M TOUKU p HaMAETCA
HekoTopad obmacTb U; uin Vi, Takas 4To p IPUHAJIEKUT 9TOH 06/1aCTH U paccTo-
AHYNe B MeTpuKe G OT TOUKH p 20 rpaHulsl dU; (9Vj, cooTBeTCTBEHHO) bosble §.
DTO BepHO, B YaCTHOCTH, /I TI060M TOYKY, TPUHAZJIEKAIIEH [TepecedeHr 0 HeKO-
TophIX obnacreit U; u U; unu U; u V.

Temeps MBI pACCMOTPUM HEKOTOPYIO T€0/Ie3NYECKYIO ¥ C HauyaJoM B TOYKE Py
¢ xoopaunatamu (0, ug, o) B 6ase. [IycTh p — HEKOTOpass TOYKa Ha ITOU reo-
Je3ndeckoil ¢ xKoopauHaTamu (v, ug, {o). i1 KpaTKOCTH MBI GyZieM TOBOPHUTH
06 otpeske [0, v], He ymoMuHass ocTajbHble KOOpAWHATH. KpuBas y mpoxoguT
Jyepes HEKOTOPYIO NocjeoBaTebHOCTb obnacTei Uj, ..., Vi, ... Pa3obpém oTpe-
30K [0, v] Ha HEKOTOpOe KOHeYHOe Yucjio oTpeskoB [0, v;], ..., [vy, v] Tak, uTo
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KaXK/[BIii OTPe30K [v;, Vj11] JMEXUT B HeKOoTOpoH obnactu U; wim Vi, U KOOpAHU-
HaTe U; COOTBETCTBYeT OTMeYeHHas TOYKa p; Ha reofie3MdecKol, HaXoAAIaAcH
B IlepeceyeHUH JBYX TaKux obiacTeid, a MMEHHO, UMeIIUX HoMepa j U j + 1.
Janee Mbl OyzeM o603Ha4aTh 4epes V; ob1acTb, MMEIOLIYIO j-i HOMep B Hallei
Hoc/IeZloBaTeIbHOCTU. BeiGop obnacTeil V; M OTMeYeHHEIX TOYeK p; HEeOZHO3HA-
4eH, U ceiyac MBI ero yToyHuM. IlycTh y Hac BbIGpaHBEI 061acTH BIUIOTH 70 V;
U OTMedyeHHble TOYKU BIUIOTb JI0 pj_i. IIycTh p’ —IepBad TOYKa IepeceyeHusd
reoZie3auyecKoi y ¢ rpanunei dV;. 3zech uMeeTca B BUJY IOPAJOK TOYEK Ha v,
ceAylomyx mociae pj_;. COIIacHO HpeIecTBYIOIEMY 3aMeYaHHIO, MBI MOXeM
BBIOpaTh 061acThb Vi1 TakK, 4TO paccTOAHUE OT TOUKHU p’ 10 TpaHMIbI 9V, OyzeT
6onbiie 6. BeibepeM mocsie 3TOr0 TOYKY p; TakK, YTOOBI OHA JiexKasa JOCTaTOYHO
O/MM3KO K TOYKe p’,—TaK, YTO paccToAHHe OT He€ N0 rpaHuubl 9V, Oyzer
6osblite, HanpuMep, 6 /2.

IIpu TakoM BrIGOpe obnacTeil V; 1 OTMeYeHHBIX TOYEK CyLIeCTByeT HEKOTOpOe
d >0, Takoe 4TO U; — ;1 = d U, CJIeJlOBaTeIbHO,

N<Z. (4.1
d
JIeTKo BUZETD, YTO 3Ta OIleHKa 3aBUCHUT TOJBKO OT MOKPHITHA, HO HE OT reofie3u-
YeCcKoM.

Teneps 3adpuKcUpyeM HEKOTOPHIM MynbTUUHAEKC (k) U paccMOTpUM TOCIEAO-
BaTeJIbHOCTh \Tl(];(), Kaxzan GyHKUMA omnpeAeneHa B obnacty Vi, TPOM3BOAHBIE
GepyTcA o mepeMeHHBIM &7, t) =17 (v), t, o =t](v;). MbI mpuxUMaem, uTo 0=,
tg=0, t) o =el.

B crexyroiieM mpeyIOXKEHUN OLEHUBAIOTCA MPOU3BOZAHBIE MO TPaHCBEPCAb-
HBIM TIepEMEHHBIM U TI0 HaYaJIbHBIM YCJIOBUAM B JIOKQJIBHOM KapTe.

IIpegnoxenue 7. B sblilenpugedéHHbLX 0603HAUEHUSX 8bINOJIHAIOMCS OUeHKUL:

|G (0)] < Moo exp{blkles (Kl + Ds @)}, “.2)

20e My 3asucam monvko om (k), b ne 3asucum om (k). Zna dynkyuii p u p’
8 obnacmu V; 8bnonHAemcs OyeHKa

o) < Aexp{s(v)—s(v)}, [p' ()| < Aexp{s(v)—s()}, (4.3)

U QHANO2UYUHbBlE OUEHKU B8bINOAHSAOMCS 0N p*, p*, pl, pi. A
Jloka3aTenbcTBo. MBI OyZeM paccMaTpyBaTh TOJBKO CIy4ail GYHKIIMI \IJ(Jk).
OcTasbHblE CJIy9ad aHAJOTHUYHBL J[OCTATOYHO TOMYYUTh OLEHKU i GYHKUUM
W =Wy + Ty n Wy =), — T, (cM. npesnoxenue 5). COIIacHO peosKe-
HUIO 6 e L.
Yoo = =L +p
rae L — nuHeiiHas dopMa OT IMpousBOAHbIX GyHKuMIT U/, U (1 UX COMPSIKEH-
HBIX) cTeneHu |k| u cymiecTBeHHoro mopsigka |k|.,, ¥ MHOTOWIEH pji COZIEPIKUT
TOJIKO MPOU3BOJHBIE CYIIECTBEHHOTO IMOPAJAKA MeHbIe |k|,,, IPUYEM CTeleHb
pocTa 3TOro MHOTOWIeHa He Bhie |k|, + 1. B gacTHOCTH, \I/(Jk)i () :Ljilvj + pf|uj.



MOYTU KOMIIJIEKCHBIE CTPYKTYPBl HA YHUBEPCAJIbHBIX HAKPBIBAIOIUX CJAOEHUK 193

3aech Mbl 0603HAaYaeM 3aBUCUMOCTh GYHKLMIA L U p;° OT TOYKH HWKHUM UH-
JEKCOM, B OT/INYME OT MX 3aBUCHMOCTU OT IIPOM3BOAHBIX GYHKIMH U¥ OTHOCH-
TeJIPHO KOTOPHIX OHU SIBJSIIOTCS MHOTOWIEHaMH. 3aMEeTUM, YTO TOJbKO K03ddu-
LIMEHTH MHOTOWIEHOB LI ¥ p;° 3aBUCAT OT HOMepA j, HO He BHJ| 3TUX MHOTOYIe-
HOB. AHaJIOTUYHO \IJ()',;)iU(v) =L, + p]i|v ¢ HeKoTOpsIMH Li*, pi*. OGo3Ha4MM
Jepes {\Illkl} Habop QyHKIMI {\Il(l )s \IJU )s \Il(l s \I/(l )} AJIA BCeX MY/JIbTUHH/EKCOB
l;, I, 5, I5 cremenn |k|. O603Ha4MM depes (o kI, ,} aHaJIOTMYHBIH Habop {\IJU Y ...}
BBe/:LeM Taxxke obo3HaueHUA: {a'} = {\I/‘k| ()}, {7} = {\Il‘k| L)}

HamoMHUM Temeps, 4TO CyllecTBYeT pelileHue O ypaBHeHus (2.13), koTopoe
pu v > 0 uMeeT BU/,

0() =), 6,) =n')e", (4.4)

rze s — o710 GyHKuma u3 (2.19) u pyHKIMYU 1), 1)’ PABHOMEPHO OrPaHUYEHbI Ha JIIO-
6oi1 obactu v = ¢ > 0.

CornacHo NpeIoKeHUI0 5, PyHKIMK \I'(k), \I/(k)v, \IJ(Jk_), \I/(j,:)’v, onpezieNéHHbIe
B obnacTu Vi1, UIMEIOT BUJ:

L ({@'D)+p;l,,
V) = 0(v) {T

v

+[ @ AP+ 1,) 0 W) — (L U D +p7 1) 6, (1) ] f 0-2(t) dt} +

Uj

+9(U)J 9_2(t)J 0(7)P*(1)drdt, (4.5)

LF({a’ D +pfl,,
fzf)lf(v) =0, (U)ij)

+[ (LU D+p*,) 0 W) — (L (/D +pit ) 6,(1) ] x

X {Gv(v)f 92(t)dt+01(v)} +

+0,(v) f 072(t) f O(t)P*(t)drdt+671(v) J 0(t)P*(7)dr, (4.6)

Wi ) = L (@D +p; by, + (L UB D +pf ) (v— v)+ffP (v)drdt, (4.7)
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v

W) = (LB D +p/ly,) +J P~ (t)dr. (4.8)
Uj
3mech PT, P~ — puddepeHnnanbHble MHOTOWIEHBI CTelleHU pocTa He Bbie |k|,+1,
cozieprkaliye TOIbKO TPOU3BO/AHbIE CYIIECTBEHHOTO MOPAAKA MeHbIIe |k, 1 6 —
pelieHvie ypaBHenus (2.13) Buzaa (4.4). MBI He IUIIeM aHAJIOTMYHbIE YpaBHEHUS
Ui Apyrux GyHKImi U (K)-
V3 (4.4) cienyioT OLEHKHU:

)9(1})
o)

< Aexp{s(v) —s(v)}, ‘G(U)Q(U)J ~2(t) dt| < Aexp{s(v) —s(v)},

< Aexp{s(v) —s()}, < Aexp(s(v) —sy)},

'e(u)ev(uj)f 0-2(t) dt

0,(;)
6 )

‘e(v,-)
6 (v)

< Aexp{s(y) —s(v)},

< Aexp{s(v) —s(v)}, (4.9)

016, (v) f 02(0) dt| < Aexp(s(v) —s(y)},

< Aexp{s(v) —s(v)}

6, (16, (v) f 672(1) dt

Ay HekoTtoporo A > 0. iMeeTcs Takke Oo4eBUJHAA OLIEHKA
v—u; < Aexp{s(v) —s(v)}. (4.10)

[Tyctb Teneps C — KOHCTaHTa u3 npegioxenus 6, C'=4(n+1)C. YuursiBas (4.1)

1 TO, 9TO $(V) MMeeT NMPOU3BOJHYIO, PABHOMEPHO OTPAHUYEHHYIO CHU3Y, TOTyIaeM
. ; InC’'+1n A)v,

(4(n+1)CA)’ < (C'A) < exp {(d—)"’} < exp{bs(y)} (4.11)

JIUIsT HeKoToporo b > 0.
BBezém 0603HAUECHUA:

197 @[] =

b,

o, Al

“‘1’|k\v(U)H— max {}‘I’a)v

5,1}

[lepexofs K 0KA3aTeIbCTBY IPEATOKEHU, TIPEATONOKUM, YTO JJIsi BCEX MYJIb-
trunzaekcoB (1), Takux uto |l| < |k|, |l]es < |k|os — 1, AT BCeX 1 BBITIOIHAIOTCSA
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OIIEHKU
[T, ()| < Mgy exp{b(ll]es (I1]e + 1))s @)}, (4.12)
TZle KOHCTAaHTH M(p) He 3aBHCAT OT i. [JokakeM, 4TO TOrzja
|P*(v)] < mgy exp {b(Ikles; — 1) ([kl. + Ds(v) },
j 1v; (k) es e J
151, | < M@ exp {b(Ikles — 1 (k] + Ds(v) },
|p/*1,| < My exp{b(lkles— 1) (k] +1)s () }
C HeKOTOpPOil KOHCTAaHTOM My, He 3aBHCALlel OT j. JleiicTBUTeNbHO, K03ddu-
IIMEHThl MHOTOWIEHOB P* paBHOMEDHO OrpaHMYEHBI HEKOTOPOW KOHCTAHTON
(npeanoxenue 4), a ko3dduuueHTH MHOTOWIEHOB p*, p’* paBHOMepHO orpa-
HWYEHBl B 00JIaCTH, OTAENEHHOU OT 0COOBIX Todek (mpeaoxenue 6). Takxke
YUCIO WIEHOB 3TUX MHOTOWIEHOB OrPAaHUYEHO HEKOTOPOM KOHCTaHTOH. IlycThb
y HAC €CTh WIEH, B KOTOPbI COMHOXUTEIAMH BXOJAT IPOU3BOAHBIE C MYJIBTH-
unziexcamu (l;), ..., (I;). Torza |l,|es < |k|es — 1 Ana Beex (1), p <, ¥ 9TOT WieH
OLIEHUBAETCsA KaK
ae? (K I150) < exp {b([kles— 1) Ikl + s (@)}

TakuM 06pa3oM, MbI TIOJIy4aeM OIEHKH:

0(v) f 072(t) J O(t)P*(7) dt dt < Bm, exp {b(lkles -1 (k|.+ 1)s(v)},
6, (v) J 072(1) f 0(t)P*(7) dt dt < Bm exp {b(kl.; — 1) (Ikl, + Ds@)},
6-1(v) J O(t)P*(t)dt < Bmy, exp{b(|k|eS -1 (k. + 1)s(U)}, (4.13)

f f P~(t)dt dt < Bmy, exp{b(|k|es—1)(|k|e + 1)5(1})},

vj b

v

f P~(t)dt < Bmg, exp {b(lkles -1 (k. + 1)s(v)}

Yj

¢ HEKOTOpOM KOHCTaHTOH B, He 3aBucameii oT j u (k). Takum o6pa3oM, IPHUHU-
Masi BO BHMMaHue oueHkHu (4.8), (4.10) u (4.13), MBI Ioy4aeM W3 ypaBHEHMI
(4.5)-(4.8):

Wi @) < (n+ 1)RCKA ([T ]|+ [[Fh @) expls ) — s} +
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+ Mgy exp {b(|klos — D (Ikl. + Ds(@) }, (4.14)
|90, @] < (- DReCHeA ([ @) +[[55 @)]) expls@) —s(w}+
+ Mg exp {b(kles — 1) ([l + Ds() }. (4.15)

3zech KOHCTaHTa M) 3aBUCUT TOMbKO OT (k).

3aMeTHM, YTO 3a UCK/II0YeHreM QYHKIUH @, PACCMOTPEHHON BO BTOPOM pa3-
Jeine, Bce GyHKINU @?k) HMMEIOT HyJIEBbIE€ HayaJIbHble 3HaYeHUs1. TeM caMbIM, y4u-
THIBas olieHKy (4.11), unaykiueii mo j momydaem us (4.14), (4.15):

[T W] < @(n+1)eCkA) My exp{[b(IKls — (Kl + 1) +11s()} <
< Mo exp {BL(IKles — 1) (1Kl + 1) + k, + 1]s(v) } =
= M(k) exp{b|k|es(|k|e + 1)S(U)} .

Jna I\IJ(jk)’UI MOJIyYaeM TaKyIo JKe OIleHKY. TeM caMbIM MBI ZIOKa3au OLeHKY (4.2).

YT06HI 0KA3aTh OLEHKY (4.3), 3aMeTHM, 4TO O, O* YAOBJIETBOPSIOT OZHOPOJ-
HoM cucteme (3.5), (3.5"). AHAJIOTMYHOMN cHUCTeMe yAOBIeTBOPsIOT p’, p*/. O6o-
3HaunM d4epe3 ||[R(v)|| Bemmunny max{p (v), p*(v), p,(v), p¥(v)}. C nomoursto
(3.14), (3.15) MeI nonmy4yaem B V;

IR@)II < MIIR(w)I| exp{s(@) —s(1;)}

JUIT HEKOTOPOro M. AHaJOTHYHYIO OLIEHKY uMeeM it po’. Ho HavdasbHBIE 3HA-
4eHud P, P*, Py, P; B Uj PABHOMEPHO OTpaHMYEHHI. JIeHCTBUTENBHO, TaK KaK
t(vy;) =to, moy4aem, 4To

ti, (1) .
Pw) =05 =0 P =,
(tv) t (U‘ t,2 (tv) to (U)
po) = 21,0 (52) @) =
. (tv)to(vj) t,2 _ (tu)to(vj)
Py (W) = O ((tv)z) () = W_F(Uj)-

HamomHuM, 9TO t, — 3TO BEKTOD, €IUHUYHEIN B HaIllel METPUKE U KacaTeIbHbIH
K Ie0Zie3N4ecKol, ¥ BCe 3TU BeIMYMHBI ABJIAIOTCA GYHKIUAMHU TOYKH B V;, oIpe-
JENEHHBIMY BEKTOPOM t, U TOYKOH t. DTU QYHKIUU PABHOMEPHO OTPaHMYEHBI
B 0601 061acTU, OTAENEHHOM OT 0COOBIX ToYeK. Takke paBHOMEPHO OrpaHUYe-
Hbl Haya/IbHBIEe 3HaYeHus p’, p*’, pl, pi. JlefiCTBUTENBHO, C TOYHOCTBIO [0 BTO-
poro mopsjKa 1o v —u; uMeeM t =ty +t, o(v —1;). [losTomy

1
t, ()

P'W) = p"' W) = py() =0, pJ) =

O4eBUZHO, YTO aHAJOTUYHEIE PACCYKAEHUS MPOXOAAT U JJI U-IPOU3BOAHBIX
3TUX QYHKUIMH. O
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Temepb MBI OIEHUM IIPOM3BOAHBIE IO «a0COMIOTHEIM» IepeMeHHBIM { = (¢, u).
MsI 6yzeM cHabKaTh 3TH GYHKIUU U COOTBETCTBYIOINE MYJIbTUAHIEKCH UHAEK-
coM a, Hanpumep, Mbl GyzeM 0603Ha4aTh Yj GYHKLHMIO t7 /b, U Y ja) IPOU3BOA-

i )

HyIO0 Ik|, j,a
o
Vi = k K k7 knn?  Akupy akery (4.16)
Fag, ... okl okl L 9kl dkvy gRuu
Ms! 6yznem o6o3Havath yepe3 {¥{},i=1, ..., n, Habop dyHKIMIL: Y], ..., Y5s_ 1, @
(maroMHUM, 4TO (¢ — QYHKIMA, ompeAenéHHas ypaBHenuamu (2.13), (2.14)) u
{@; 9} —nabop Y34, ..., Y%, a Takke U — IpOU3BOJIBbHYI0 QYHKIUIO U3 3TOrO

HabGopa. Mel He OyZieM BBOJWTh HOBBHIX OINpeJeNeHUN U /I IPOU3BOAHON BHA
(4.16) 6ynem monarats |k%|, =|k¢| —k, u |k%|.s = |k?|+ |k?|,, aHATOTUYHO CITy4aro
IIPOM3BOJHBIX II0 JIOKAJIBHBIM KoopAuHaTaM. Tak jke Kak 0ObIYHO, MBI OyZieM pac-
cMaTpuBaTh AudQepeHIIaabHble MHOTOWIEHBI, — KOIZIa HY)KHO OyZeT OTINYaTh
HX OT JIOKAJIbHOT'O CJIydast, MBI OyleM Has3blBaTh UX a-AudQepeHIInaaIbHbEIMU MHO-
rowieHamu. st HUX ompedeneHa auddepeHIManbHas d-CTeleHb W d-CTeleHb
pocra.
3aMeTHUM, 4TO
t

Ugi tu
e = Viu—¢ n +1Pit—v =

=Yiu—¢ (¢i,u+¢i?—;) +; (‘Pu‘*‘ﬂp%) =Yiu—PYip+Pipy

¥ aHAJIOTUYHO A/ (y,. TakMM 06pa3oM, OIEHKH /il TIPOM3BOAHBIX QYHKIUU
B TPaHCBEPCAJbHBIX HAMPABIEHUSAX CBOJAATCA K OLEHKAM IIPOU3BOAHBIX [ )
U Y*, ¥ MBI UX He OyZIeM OTAENbHO pacCMaTPUBATh.

Ipeanoxenue 8. Pyukyuu V' ydosiemeopsarom oyeHke

|08y ()] < Mgy exp {BIk?2(1k], + D)s()}, (4.17)

20e M 3asucsam monvko om (k), B ne 3asucum om (k).

Joka3saTenbcTBO. T10700HO OKA3aTENbCTBY MPEAIOKEHUS 7, HAM HY>KHO Olle-
HUTb OZIHOBPEMEHHO MPOM3BOAHBIE GYHKIMH f, Yi?, Yf, u ]},. Mbl ncrnomns-
3yeM TEepPMHHOJIOTUIO MPeIOKEHUA 7, KOTa UMeeM ZIeJI0 C JIOKaJIbHBIMU KapTa-
Mu. Mbr Takke GyzeM o6osHauath t) = t/(v), tlo = ti(v;). Byaem monarats, 4o

t’=f (&7, t/71). Ham nmoHazobuTcsa paccMaTpuBaTh IPOU3BEACHHA BUAA
b(y)M*7 " (y)M’ (v),

rae M%i~1 — q-quddepenrmanpHbiii ogHowieH ot dyukimit W41 a MJ — nud-
depeHIMaNTBbHEIA OfHOWIEH OT (yHKUMA W/, CyMMy Takux WIEHOB MBI GyzeM
Ha3bIBaTh CMeIIaHHBIM JuddepeHIHaTbHBEIM MHOTOWIEHOM. 11 Hero Mbl Oy-
JleM OMpEeZAEeNATh M0 OTAETbHOCTH a-NOPSJOK IIPOU3BOAHBIX WK CTEIIEHb POCTa
Kak a-guddepeHINaNbHOIO0 MHOTOWIEHA U j-TIIOPAAOK NIPOM3BOAHBIX W CTe-
TIeHb PocTa KaK AuddepeHIaIbHOro MHOrowieHa ot W/, JlokakeM ciezyolee
yTBepXAEHUE:
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Mpennoxenne 9. I[Tycms (k*) — mynsmuundexc. IIpousgodHas \/I\/‘(lia) Modcem
6bimb npedcmasJieHa 8 gude

e, ) = LG @), i W), ... ) + PV (v, 1), (4.18)

20e L— qiunelinaa @yHkyus om \I/(,;ﬁ)l(vj), \Ilgf,;}) (1) u ux conpsaMénHbIX, C KO-
apduyuenmamu, oyenusaemvimu kaxk Aexp{s(v) —s(v;)}, A ne zasucum om (k),
j, a P71 — cmewannwiii dudgepenyuanshblii MHozouneH, umerowuil duddepen-
UUANbHYIO a-cmeneHb He ebllte |k%|, a-cmenetsb pocma He sbiwte |k%|, + 1, a-cywe-
CMeeHHbLL NOPSA00K 8X00AUUX NPOU3BOOHBLX He 8blute |k®| . — 1. Jns duddepenuu-
ANbLHOTL j-CmeneHu U j-CreneHu pocma 8bNOJHAIMCA Me Jce OUeHKU, CYU,eceHt-
HbLil j-nopsidok npoussodHblx He ebiiue |k?|,s. Koadduyuernmot amozo mMHoz2oueHA
no modynio e 6onvue AVl dna nexomopozo A> 0, He 3asucauezo om j u (k?).
HokasaTenbcrBo. CHavyaja paccMOTpUM ciIydait |k| =0. B ob6mactu V; nmeeM:
t
a _ & —
1 tg

i

tl](z g-ai(vj)-i-tj O R O R R CORT o (uj)) =
v i=1
n— =i )
=Z¢J % (vj)+p*1t1 (v,)+p1t1 () +p*t] o W) +p7t ;. (), (419

le)w (v,)+p*1t1 W) +pit; W) +p"Jt) - W)+pFE ; (v). (4.20)

MBI He 6Gy/ieM IIHCATh AHATOTHYHbIE BBIPAXeHHs A7 Y Y7y o
Teneps, t/ = f7/(§/71, t771) B V;NV_;. BCHOMI/IHaH, 4TO

G =g, = e, o) =y ey
u
02 = g g,
MBI TIOJTy4aeM, 4TO BEMIMHEI tl (U)) t (U]) ..., T.€. Ko3QOULIUEeHTH Ipu p*/,
p7, ... B (4.19), (4.20), GyayT cyMMamu ‘{JIeHOB BUZIA
i} i} i .
(b @), (o 1rts—1) o (4.21)
af’ 1 P f 1
(atl 1 aJ t) 1) ), (a(tj 1)2 a) (t1)? )(Uj)’ (4.22)
n—1 —=. =i—1 n—1 = 1
af’ 05{ 92 fJ gJ
(Z 'Jj—l 7 )(Uj)’ (Z ri— 1f 1 tl ' (UJ) (4'23)
i=1 agi ¢ i=1 5 ot ag

1 nx COHpH)KéHHLIX.
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TakuM 06pa3oM, MOXKHO HamuCaTh:
1 1 1
VY = a7 () + i T () Fasy T () +
+a 3% W) + R = LY (4.24)

rae GYHKIMH a; MHeHHE 110 p’ (v), p*/(v), p”/(v), p*’/ (V) ¢ KosddunuenTamy,
ABNAIOIMMUCA CyMMaMH 4IEHOB BUZA

(). (e (o

U UX CONpPKEHHBIX. C APYroil CTOPOHHL, P*o 1).j Npe/ICTaBIAETCA B BUJE CYyMMBI
ciaraemMmoro

n—1 ) 85]

PIHORC)

P 07,

(3To mepBHIi WieH B paBoii yacty (4.19)) u wieHoB, MMHEHHHIX 1o p’ (v), p*/ (v),
p"7 (), p*’(v) c koadpduLeHTaMu, ABIAOIMMUCA CyMMaMH YWIEHOB BU/A
n—1

n—1 = i1 —. 1
afl o&] i 5’
(Z aEI ag, )(vj)’ (Zg aE ot 9, i 1) @)

i=1

U X COTPSTKEHHBIX.

AHaJIOTUYHbBIE TIPE/ICTABIEHUs MOMYyJarOTCa s 1/)‘11{1,. Koadduruentsr (4.24)
PaBHOMEPHO OTpPaHUYEHBI B OOJACTAX, OTAENEHHBIX OT OCOOBIX TOYEK, a JIis
MHOxuTeneir pl(v), p*/(v), p'(v), p*'’(v) BEMONHAETCA omeHKa (4.3). TakuM
obpaszom, /st GpopMel L BBHITIOMHSETCA OlleHKa mpeayioxenus 9. Jlanee, Mbl BU-
auM, 9to Py umeet guddepeHnnaabHyo a-CTeneHb U CyI[eCTBEHHBIH a-TOPSA0K
MIPOU3BO/HBIX, PaBHbIe —1, U a-CTeNeHb POCTa, paBHyIO Hym0. Ero aubdepen-
[[MabHasA j-CTENEHb U CYI[ECTBEHHBIN j-MOPSAOK MPOU3BOAHBIX PABHBI HYJIIO
U j-cTeneHb pocta pasHa 1. Marpuua (0&7/9() sABAA€TCA MPOU3BEAECHUEM MarT-
purn (0E7/0E7 ) o...0(d&1/dL). Bo Bcex mepecedeHUAX 06IacTel ONpeaeneHns
HAIIKUX KapT HOPMBI 3TUX MaTPUIL, PABHOMEPHO OrpaHUYeHbl HEKOTOPOU KOHCTaH-
Toii A. To ecTb K03pPULHEHTH MHOrowIeHa P, olleHHMBaioTcsa Kak Al. B To xe
BpeMs dopma I uMeet auddepeHITMaIbHbIe CTEEHU U CyIECTBEHHBIE TIOPSAKU
[IPOM3BOAHMIX (U j, ¥ a) 1 06e cTelleHu PocTa, paBHbIE 1.

PaccmoTpuM Telepb crapinue mnpousBogube. [t dyukiuu h(&S, t°) 6yzem
o603HayaTh yepe3 d)h 4acTHYIO IPOU3BOAHYIO 110 NepeMeHHbIM (&°, t°) ¢ My/b-
turHAekcoM (1). Yepes djoyh 6yzem 0603HaYATh YACTHYIO IPOU3BOZAHYIO 110 «abco-
JIFOTHBIM» IEPEMEHHBIM ¢ MyabTuuHAeKcOM (I?). [IokaXkeM, YTO B CIaraeMbIX MHO-
rowieHa P/~1J BeTpevaroTes TOMBKO MHOXHUTEH BI/I,ZIa \I/(l) ), {7 (W), &’ (vy),
A fl W), 0pT W), 94’ (1)), dqE (1)), \I/(la) (v) U UM cONpsiKEéHHBIE. MBI
BUJEJIM, 9TO 3TO BEPHO /I MPOM3BOJAHBIX HyJEBOro Hopszka. [lokaxkeM, 4YToO
npu JuddepeHIIPOBAHNY TTOABIAIOTCA MHOKUTEMN TOTO K€ BHAA, U IOIYTHO
OLIEHUM WX.
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[TycThb \Tf{ka) = \Tlgk,a) ¢, (catyaaii anddepeHIPOBaHNS IO APYTHM CYILECTBEHHBIM
mepeMeHHBIM aHamorudeH). [lpu atom |k4| = |k'?| + 1, |k%|, = k"], + 1, |k, =
= k"5 +2.

PaccmoTpuM anddepeHIIpoBaHNE PA3TUYHBIX COMHO)I(I/ITeJIef/'I TOSIBJISTIOIMX-
s B IPaBO#i 4acTU. 3aMeTHM, BO-IIEPBHIX, YTO MHO)KI/ITeJ'II/I \I/( (v]) MOSBJISIIOTCS
TOJIBKO Tipu AubdepeHIIMPOBAHUN MHOXHUTEIEH \Il(k,a) (v) B (1>opMe L u BXOZAAT
B ToJsty4atomnytocsi GpopMmy ¢ TeMu ke kodadpdurmentamu. TakuMm oO6pa3oM, CHOBA
11 opMBI L MMeeT MeCcTO OlleHKa mpeaioxeHus 9. Paccmorpum auddepeHIy-
pOBaHuUe ApYyTUX WIeHOB. Mbl nMeeM

Vg, ) = Z‘I’(z) é’(“)ac: (1’1)+‘I’(z)t1(v)t§1(l’i)+

+ \I}-(Il) ) (U)tg (U)) + \Il(l) t] (U)ty ¢q (l{]) +\Il(l) tl (U)Eljj’cl (U])'

j £

Teneps, Tak Kax t7, (v), &, (v;), ... ABAAIOTCA CyMMaMHU wieHoB Buja (4.21)-(4.23),
nosiydaeM, 4to AuddepeHIinaabHasg j-CTelleHb U j-CTeNeHb POCTa YBEINIUBAIOT-
¢ Ha 1, cyllecTBeHHBIN j-TIOpAZOK IIPOU3BOZAHBIX Bo3pacTaeT Ha 2, fuddepeHnn-
ayrbHadA a-CTeleHb U CyIeCTBEHHBIN a-TIOPSAJ0K ITPOU3BOJHBIX HE YBEIMUYUBAIOTCH,
a-cTelieHb pocTa yBenmuyuBaeTca Ha 1. [logpidtonirecsa MHOXUTEIU

aff aff  9*ifJ o2 f7

a1l A&’ (1) dg atiTt?
U MX CONPsKEHHBIE BCE BHIYMCJIAIOTCA B TOYKE U; U PABHOMEPHO OIDaHWYEHBI.

g’ ag!
¢ ) 00, (v)
*a,j—1,7-1 *a,j—1 i—1

ugl (U) =91, W)=y T ().
34ech j-CTelleHUW U CYIIeCTBEHHBIN j-TIOPAJOK INPOM3BOAHBIX HE H3MEHSIOTCH,

mubdepeHINaNbHAA A-CTETIeHb U CYIIeCTBEHHBIN a-IOPSJOK IIOBBIIIAIOTCA HA 1,
a-CTelleHb pPOCTa TaKKe IMOBHIMAaeTcs Ha 1. Terepb

r, t!

MHOXUTENN BUJa ———— oLeHUBaIOTCA Kak A’. lanee,

g™
[0wE )]y, = Z%g”g K

37ech cTeleHu POCTa U MOPAAKHU IIPOM3BOAHBIX HE U3BMEHAIOTCA, a HOHB]IHIOU.[I/If/'I-

ca KoapPUIMEHT oleHnBaeTcsa Kak MA/~! ¢ HekoTopeIM M, He 3aBUCAIIUM OT j.
Taxxe

[0 f W]y, = Zamnf (v)+a(z)tnf1tg ') =

1,i—
_28(1)5] lf 35 (UJ)+a(l)tJ 1f7 T,b*a] ti71.

34ech ,Z[I/Icl)cl)epeHU;I/IaJILHaH ]-CTeHeHb, j-CTemeHb poCTa U CyLIeCTBEHHBIU j-TIO-
PAZIOK TIPOM3BOJHBIX He BO3pacTaloT, AuddepeHIMaIbHasg d-CTelleHb U Cyllle-
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CTBEHHBIH a-TIOPAZOK NPOM3BOJHLIX He YBEINYUBAIOTCHA, d-CTElleHb POCTa yBe-
j—1

nvauBaerca Ha 1. Koapdunuent 6—21(15-) no mozyno He 6ompme MA~! ¢ M,
He 3aBUCAIIMM OT j. AHAJOIMYHO PacCMaTPUBAETCsl NMPOM3BOJAHASA MHOKUTES
T (v;). Janee, mpousBogHble MHOXUTeNEH )&’ (V) u gy 1 (v;) paBHBI
IPOCTO dge) 7, &7 (1)) ¥ 9y ¢, E/71 (). BAech cTenenu pocra u nopﬂ,aKH TIPOU3BOJ-
HBIX HE M3MEHsITcA. [IpOM3BOAHAA WieHa \Il(la) '(v;) pasHa \I/(la) 2 } (). 3nech
nopbimakTca Ha 1 auddepeHIManbHas a-cTeleHb W d-CTeleHb POCTa, a Cy-
IeCTBEHHBIN a-TIOPAZI0K MPOM3BOAHBIX MOBBIMIAETCA Ha 2. OcTaloch MOKa3aTh,
uT0 |03 &7 (1y)| < MAPV st HexoTOpBIX M, A, He 3aBucAmuX oT j. HarmoMHuM,
YTO HeTpUBHMAJIEH TOJNbKO CIydaif, korga B MyabTuuHAekc (I%) BXOAAT TONBKO
Ipou3BOAHbIE 110 {;, TaK Kak &/ ABNAIOTCA roJOMOPPHBIMU (QYHKIUAMU 3THUX
nepeMeHHBIX. MBI UMeeM

. 6(6@1)5 ) 651
I, 8’ (W) = Z e ag, W)
o 9%
Ortcroza aE!
day&’ (v) = Z I & (1) Z Z ag‘f‘ ),
Isl=re] i
rae iy, ..., | — HHZEKCHI, BXoZsIye B (s). Bce yacTHbIe IPOU3BOAHBIE /10 TIOPSA-

ka |k?| yrxumit £/ (& {_1. .. 5,1;:11) B TOYKaX U; PABHOMEPHO orpaHuyeHsl. OTcroga
crenyeT Tpebyemas OIfeHKa.

Cryuati 1nddepeHITMPOBaHUA TI0 U aHAJIOTHYEH U Aa€T Takue ke oneHku. OH
Ja)ke IPOIIE, TOTOMY YTO 37IeCh He BO3HMKAET HOBBIX MHOXUTENEH Tuma 9&/aC.
Takke He CJIOXKeH ciydait AuddepeHITMPOBaHUS TI0 U — OH aHaJIOTUYEH paccMaT-
puBaBmuMcs B § 3. [Ipu 3TOM He MEHAIOTCS CTENEHU POCTa, AuddepeHITuaIbHbIe
U CyIIeCTBEHHBIE CTETIEHN MOTYT MOBBIMIATHCA Ha 1. O

Teneps BepHEMCA K JOKA3aTebCTBY Npeanokenus 8. O603HaYUM

[ @] = max{[v [P @I}
Jlnsg dopmel L B IpeioKeHUN 9 UMeeTCsl OlleHKa
LT, @)})| < Aexp{s@)—s@}|TH @)|- (4.25)

IycTsb a > 0 TakoBo, uto (2A)7 <e®® (cm. (4.1)). ByaeM Temepb paccMaTpuUBaTh
P’~1J kak a-guddepeHIManbHbI MHOTOWIEH ¢ KO3POUIMEHTaMt, 3aBUCAIUMU
OT MIPOM3BO/JHBIX 10 JIOKATBHEIM MlepeMeHHBIM. [IpeanokeHue 9, npeanioxKeHue 7
U HepaBeHCTBO (4.1) AaroT i 3TUX K03bGUINEHTOB OIIEHKY

m ey exp{ [b1k|es (1K +1) +clk|]s () },

*aj

IZie M) HE 3aBUCUT OT j, b 1 ¢ He 3aBUcAT oT j U (k). YBenuuusad b, eciiu HyXHO,
MOXXHO CYUTATh, UYTO

blk| s (|, +1) +clk?|+a+1 < 2b|kY| s (|, +1). (4.26)
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Beibepem B = 2b. [IpeAnONoKUM, 4TO /i BCEX MYJIbTUHHAEKCOB (%), TaKUX 4TO
14 < k9, |19 < |k®|os — 1, UMEET MeCTO OIleHKA:
|88, @)|| < Mgey exp {Bli[2.(1%]. + 1)} . (4.27)
[TokaXkeM, YTO aHAJIOTHYHAS OIEHKA C TeM JXe B BBINOIHAETCA [JIs ||\T/‘(1ia)(v)||.
JleiicTBUTENLHO, BO-TIEPBBIX, MOYKHO HAMKCATH:
IPTH (v, 1)] <
< Mgay exp{ [bk®es (1] + 1) +clk?[]s(v) } exp{B(Ik%les —1)2(Ik%e + Ds(v)} -
Wuaykuueii no j ¢ yuérom (4.25), Beibopa a u (4.26), nonydaem
T8y @)]| < Moy (24) €@ x
X exp { [blk“|es(|k“|e +1) +clk?| 4+ B(|k%).s — 1)?(|k%. + 1)]5(1})} <
< My exp { (k] + 1) [B(Ik]e — 1)+ 2b[k? Js(0) } <
< Mey exp { (k%] + 1) [BIk[2 + (2b— B) k%, Js(v) } <
< Moy exp{B(k“|e +1)|k® gss(v)}.

TeM caMbIM MBI ZIOKa3aau oueHKy (4.27) musa (k). YBenwuuBasi B B yeThIpe pasa,
MOJIy4YUM OLIEHKY (4.17). O

ITepexo/ K KOOpAUHATaM U, r'. Terepb, YTOObI OKOHYUTH A0KA3aTENBCTBO TEO-
peMBI 1, MBI [OJDKHBI OLIEHUTD IIPOM3BOAHBIE IPABBIX YacTel BhipakeHui (2.33),
(2.34). PaccyxzeHusl aHAJOTHYHBI I0KA3aTeNbCTBY mpeanoxenus 3. Mol Oyzem
paccmarpuBaTh MyabTuuHAekch Buza (k) = ((k'), r/), rae (k') He comepsxut mpo-
M3BOJHBIX MO . IHAEKC a, o3Havatomui guddepeHnpoBatye mo abcomOTHRIM
[epeMeHHBIM, MbI OIlyckaeM. Ham Hy»KHO II0Ka3aTh, YTO I IIPOM3BOAHBIX C Ta-
KUMU MYJIbTUUHAEKCAMHU BBITTOMHsI0TCA orfeHkH (0.3).

PaccMoTpuM TIpou3BozAHbIe KO3ddUlMeHTa ;. YIUTHIBasA, 4TO @ = e’ — 1, MBI
MOJKEM HAITHCATh:

Sy = e +P(p,s), (4.28)
rae P —cymma WIeHOB BHAA € P ¢y ... pq,), Tae p < |k, || < |k|—1 ana Beex
@) u |lh|+...+ || < |k|. Juddepeniypys paBeHCTBO

g(r’ u} g) = g(]‘_e_S(U’u,g)J u? C) =V

mo u ¥ { B COOTBETCTBUU ¢ MynbTuUHAekcoM (k') U j pa3 mo v, moay4um:

(1) (su) e gger, v = P(g,9), (4.29)

re P — MHOTOWIEH OT MPOU3BOAHBIX GYHKIINI g U S, KOTOPBIM MBI MOXKEM TIpeJ-
CTaBUTh KaK CyMMY cJlaraeMbIX BUZA:

8ky), it - g(kp), ripS(1y), vit - S(lq), via 6_15, (430)
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/e IIpousBOAHEIE OT g GepyTes B Touke (1—e ™, u, ),
i+ lkm| < Tkl, |kl < [K'[—1
IUTS BCEX ipy, (Kp),

I=iy+...+i,, |ky|+...+kp|+ iz +...+]ip] < K]

kil +...+1kpl + 1+ + [l < (K.

[Tycth A > B, T7le B— KOHCTaHTa 13 MpaBo¥ yacTu HepaBeHcTBa (4.17). [TokaxkeM
110 UHAYKLWH, YTO

|8y, ri| < Mg exp {[Ak2(K'|+1)%+ s}

C HEKOTOpO# My, 3aBucAmeii oT (k). JlelicTBurenbHo, us (4.29), (4.30) ¢ yuétom
(4.28) u ipeoxKeHUA 8, TTOMyIAEM

gk, rile ™ < My exp{Alk|*|k’|*s} exp{Blk[*(|k'| +1)s} <
< M) exp{Alk[*(|k’[ +1)2s}.

To ecTh
|80, ril < Moy (1 —r)ARFURT1 4,

AHanornyHo auddepeHIUPYs paBEHCTBO
h(l _efs(u,u,g)’ u, g)sl} = 1:

HOIyYMM OIIEHKY
[Py, ril < Mgy (1—r)AIFORHD™,

Teneps onerka (0.3) creayet us BoipakeHus (2.33), ¢ y4€ToM TOTO, YTO 3HAMeEHa-
TeJIb PABHOMEDPHO OTIENEH OT HyJIA.

Joxkaxxem orneHky (0.4). Bcmomuum, uto U =tg/t, =—1+ 2e~°, cieaoBareib-
HO, 3HaMeHaTeJb 1pobu B (2.34) paBeH

2e7rg,+2—2e—2ie%g,.

Tak xak g, >0, 9TOT 3HaMeHaTe/Jb PABHOMEDPHO OTAENEH OT Hy/iA. HamomuuM,
aro c =ty /t, =1 /(1—iyp). Teneps onenka (0.4) ciesyeT U3 JOKa3aHHBLIX OIIEHOK
AN g, C U . O
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Finite cyclicity of some center graphics
through a nilpotent point inside quadratic systems

R. Roussarie, C. Rousseau

In this paper we introduce new methods to prove the finite cyclicity of some graphics through a triple
nilpotent point of saddle or elliptic type surrounding a center. After applying a blow-up of the family,
yielding a singular 3-dimensional foliation, this amounts to proving the finite cyclicity of a family
of limit periodic sets of the foliation. The boundary limit periodic sets of these families were the
most challenging, but the new methods are quite general for treating such graphics. We apply these
techniques to prove the finite cyclicity of the graphic (I 114), which is part of the program started in 1994
by Dumortier, Roussarie and Rousseau (and called DRR program) to show that there exists a uniform
upper bound for the number of limit cycles of a planar quadratic vector field. We also prove the finite
cyclicity of the boundary limit periodic sets in all graphics but one through a triple nilpotent point at
infinity of saddle, elliptic or degenerate type (with a line of zeros) and surrounding a center, namely
the graphics (Iéb), (HfS), and (DI).

References: 8 entries. UDK: 517.927.7. MSC2010: 34C07, 37G15. Keywords: Hilbert’s 16th
problem, finite cyclicity, graphic through a nilpotent point, center graphic, quadratic vector fields.
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1. INTRODUCTION

This paper is part of a long term program to prove the finiteness part of Hilbert’s
16th problem for quadratic vector fields, sometimes written H(2) < o, namely the
existence of a uniform bound for the number of limit cycles of quadratic vector
fields. The DRR program (see paper [2]) reduces this problem to proving that
121 graphics (limit periodic sets) have finite cyclicity inside quadratic vector fields,
and the long term program is to prove the finite cyclicity of all these graphics.

This program has been an opportunity to develop new more sophisticated meth-
ods for analyzing the finiteness of the number of limit cycles bifurcating from
graphics in generic families of C* vector fields, in analytic families of vector fields,
and in finite-parameter families of polynomial vector fields. In this paper, we fo-

This research was supported by NSERC in Canada.

© R.Roussarie, C. Rousseau, 2015
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cus on some graphics in the latter case: graphics through a nilpotent point and

surrounding a center inside quadratic systems. The general method is to use the

Bautin trick, namely transforming a proof of finite cyclicity of a generic graphic

into a proof of finite cyclicity of a graphic surrounding a center. This is possi-

ble in quadratic systems since the center conditions are well known: indeed all
graphics through a nilpotent point and surrounding a center occur in the stratum
of reversible systems. The systems of this stratum are symmetric with respect to
an axis, and are also Darboux integrable with an invariant line and an invariant
conic. In practice, the Bautin trick consists in dividing a displacement map V in
a center ideal, i. e. in writing it as a finite sum of “generalized monomials” times
non vanishing functions of the form
n
V() =Y am(1+hi(2), (11)
i=1

where each a; belongs to the center ideal in parameter space, m; is a generalized

monomial in z and h;(z) =o0(1) behaves well under derivation.

To compute the displacement map, we write it as a difference of compositions
of regular transitions and Dulac maps near the singular points. The Dulac maps
are calculated in C* normalizing coordinates for a family unfolding the vector
field. In this paper, we develop some general additional methods, which allow
to prove the finite cyclicity of the graphic (Ij,) (Figure 1(a)). In particular, for
the unfolding of this graphic, it is very helpful to be able to claim that all regular
transitions are the identity in the center case. This is possible if we exploit the fact
that the centers occur when the system is symmetric, and if we choose cleverly
the sections on which the different transition maps are defined. Also, in the center
case, the Dulac maps have a simple form since the system is Darboux integrable.

The methods can be summarized as follows.

e We highlight that the change to C* normalizing coordinates in the neighbor-
hood of the singular points on the blow-up locus can be done by an operator.
This allows preserving the symmetry in the center case when changing to nor-
malizing coordinates.

e We introduce a uniform way of calculating the two types of Dulac maps when
entering the blow-up through a much shorter proof than the one given in [9].

e Although each Dulac map is not Ck, we can divide in the center ideal its differ-
ence to the corresponding Dulac map in the integrable case.

e The method of the blow-up of the family allows reducing the proof of finite
cyclicity of the graphic to the proof that a certain number of limit periodic
sets have finite cyclicity. These limit periodic sets are defined in the blown-up
space. The ones obtained in blowing up a nilpotent saddle are shown in Table 2.
For all of them but one (the boundary limit periodic set), we can reduce the
displacement map to a 1-dimensional map, the number of zeros of which can
be bounded by the Bautin trick and a derivation-division algorithm on a map
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AP

g
.

(@) (5,) (b) (5,)

B
B

(o) (H, (d) (DI)

FiG. 1. THE GrapHics (11,), (I3,), (H3,) AND (Dly,)

of type (1.1). The boundary limit periodic set is more challenging, since we
need to work with a 2-dimensional displacement map, the zeros of which we
must study along the leaves of an invariant foliation coming from the blow-
up. We introduce a generalized derivation operator, which allows performing
a derivation-division algorithm on functions of the type

n

V@, p) =Y ami(1+hi(r, p), (12)

i=1
where h; are €*-functions on monomials and m; are generalized monomials
in r, p (see definitions in Appendix II). During this process, we have to take
into account that rp = Cst.
We have a partial result for every graphic, but one (namely (H3,)), through

a triple point at infinity:
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Theorem 1.1. Let us consider the graphics (I1,), (I%,), (H3,) and (DI,,) through
a triple point at infinity (see Figure 1). Then for any of them, the boundary periodic
limit set obtained in the blowing up has a finite cyclicity.

Theorem 1.1 is not sufficient to prove that the given graphic has a finite cyclicity
inside the family of quadratic vector fields. The reason is that, beside the boundary
limit periodic set, other limit periodic sets (see for instance Table 2 for (I},)) are ob-
tained in the blowing up and, as explained above, we have to prove that each of them
has also a finite cyclicity. We present here a complete result for the first graphic:

Theorem 1.2. The graphic (I},) has a finite cyclicity inside the family of quadrat-
ic vector fields.

As for the finite cyclicity of the other graphics (I},), (H3;) and (DI;,), we intend
to address the problem in the next future. The finite cyclicity of (H3,) should be
straightforward with arguments identical to those used for (Ij,). It will be done
simultaneously with the corresponding generic graphic (H3,). Some of the limit
periodic sets to be studied for (I},) will involve four Dulac maps of second type.
For these limit periodic sets, it is not possible to reduce the study of the cyclicity to
a single equation. Hence, new methods will need to be adapted to treat the center
case, when the periodic solutions correspond to a system of two equations in the
four variables ry, p1, 1y, P2, With r; 01 =v; and r,p, =v,. As for the graphic (DI,),
some of the limit periodic sets to be studied involve four Dulac maps of second type,
two of them through the semi-hyperbolic points P; and P, on the blown-up sphere.

The techniques developed in this paper can be adapted for studying the bound-
ary limit periodic sets of graphics of the DRR program through a nilpotent finite
singular point. The only new difficulty in that case is to show that the three pa-
rameters of the leading terms in the displacement map do indeed generate the
center ideal. We also hope to adapt them to study the boundary graphic of the
hemicycle (H3,): there, the additional difficulty is the two semi-hyperbolic points
along the equator.

Proofs of Theorems 1.1 and 1.2 are given in Section 3 and Appendix II, where
the detailed computations of cyclicity are found in Theorems 5.8, 5.12 and 5.13.
Theorem 4.1 in Appendix I, gives a statement about normal form for 3-dimensional
hyperbolic saddle points in a way adapted to this paper. Theorem 4.5 of the same
appendix gives a new proof for Dulac transitions near these saddle points, shorter
than the one given in [9]. Precise properties for the specific unfoldings deduced
from the quadratic family are proved in Appendix III. These properties of some
parameter functions are needed to obtain the results of finite cyclicity.

2. PRELIMINARIES
2.1. Normal form for the unfolding of a nilpotent triple point of saddle or

elliptic type. We consider graphics through one singular point, which is a triple
nilpotent point of saddle or elliptic type. A germ of vector field in the neighbor-
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(a) Saddle case (b) Elliptic case

F1G. 2. THE DIFFERENT TOPOLOGICAL TYPES

hood of such a point has the form
x=y,

2.1
y = xx3+bxy + nx2y + yO(x3) + 0(y?). 21)

The saddle case corresponds to the plus sign, and the elliptic case to the mi-
nus sign with |b| > 2+/2. In the elliptic case, we limit ourselves here to the case
|b| >24/2, which corresponds geometrically to a nilpotent point with hyperbolic
points on the divisor of the quasi-homogeneous blow-up.

The unfolding of such points has been studied by Dumortier, Roussarie and
Sotomayor, [4], including a normal form for the unfolding of the family. A differ-
ent normal form has been used in [9] for studying the finite cyclicity of generic
graphics through such singular points, when we limit ourselves to |b| >2+/2 in the
elliptic case. This normal form is particularly suitable for applications in quadratic
vector fields, where there is always an invariant line through a nilpotent point of
multiplicity 3.

A germ of C* vector field in the neighborhood of a nilpotent point of multiplic-
ity 3 of saddle or elliptic type can be brought by an analytic change of coordinates
to the form . 2

X =y+axs,
¥ =ylc+nx*+0(x?) +0(y).

This requires an additional change of variable and scaling compared to what has
been done in [9]. The point is a nilpotent saddle when a <0 and a nilpotent
elliptic point when a > 0 (see Figure 2). The case |b| =2+/2 corresponds to a=1/2.

For a#1/2, a generic unfolding depending on a multi-parameter A = (1, Uo,
Us, u) has the form

X =y+a(A)x>+u,,
5’ =W +‘u’3y+x4h1(x: 8) +J’(X+TIX2 +X3h2(xa A')) +y2Q(X’ Y )L))

where h;(x, A) =0(|A|). Moreover, hy, hy, Q are C* functions, and Q can be cho-
sen of arbitrarily high order in A.

(2.2)

(2.3)
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2.2. Finite cyclicity of a graphic.

Definition 2.1. A graphic I of a vector field X, i. e. a union of trajectories and
singular points, has finite cyclicity inside a family X if there exists N €N, ¢ >0 and
6 > 0 such that any vector field X, with || <& has at most N periodic solutions
at a Hausdorff distance less than ¢ from T'. If a graphic has a finite cyclicity, its
cyclicity is the minimum of such numbers N.

This means that when studying the finite cyclicity of a graphic I', we need to
find a uniform bound for the number of periodic solutions that can appear from
it, for all values of the multi-parameter in a small neighborhood W of the origin.
Typically we need to find a uniform bound for the number of fixed points of the
Poincaré return map or, equivalently, for the number of zeros of some displace-
ment map between two transversal sections to the graphic. With graphics contain-
ing a nilpotent singular point there is no way to make a uniform treatment for all
A€W, and we typically cover W by a finite number of sectors, on each of which
we give a uniform bound. The method for doing this is the blow-up of the family,
which was first introduced in [7], and next applied to slow-fast systems in [1].

2.3. Blow-up of the family. We take the neighborhood of the origin in param-
eter-space of the form S? x [0, v,) x U, where U is a neighborhood of 0 in u-space
and we make the change of parameters

(U1, Yo, t3) = (V3liy, V2, Vii3), (2.4)

where M = (U1, iy, U3) €S? and v€ [0, v,).

Note that S? is compact. Hence, to give an argument of finite cyclicity for the
graphic T, it suffices to find a neighborhood of each M = ({i;, i, {i3) € S? inside
S?, a corresponding v, >0 and a corresponding U on which we can give a bound
for the number of limit cycles. In our study, we will consider special values a, of a.
It is important to note that a(A) depends on A, and hence that a —a, is in some
sense a parameter in itself.

The way to handle this program is to do a blow-up of the family. For this,
we introduce the weighted blow-up of the singular point (0, 0, 0) of the three-
dimensional family of vector fields, obtained by adding the equation ¥=0 to (2.3).
The blow-up transformation is given by

(x,y,v) = (rx,r?y,rp), (2.5)

with r>0 and (¥, ¥, p) €S?. After dividing by r the transformed vector field, we
get a family of C* vector fields X,, depending on the parameters A=(a—ay, M, u).
The foliation {v=rp =Cst} is invariant under the flow. The leaves {rp =v}, with
v> 0, are regular two-dimensional manifolds, while the critical locus {rp =0} is
stratified and contains the two strata (see Figure 3):

e S! xR* is the blow-up of X, (for A =0);

o D;={x?+y*+p?=1]|p >0} for any €S2
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(a) The saddle case

(b) The elliptic case

FiG. 3. THE STRATIFIED SET {rp =0} IN THE BLOW-UP
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2.4. Limit periodic sets in the blown-up family. The vector field X, has sin-
gular points on r=p =0. For a # 1/2, there will be four distinct singular points
(occuring in two pairs) corresponding to ¥y =0 (for P; and P,) and y=(1—2a)/2

(for Py and P,): see Figure 3. Their eigenvalues appear in Table 1.

TABLE 1. THE EIGENVALUES AT P, (i=1,2, 3,4)

r P Yy
P | —a a | —(1—2a)
P, a —a (1—2a)
| 1/2|-1/2| -(1-20)
P, | —1/2| 12| (-20)

We will study the finite cyclicity of a graphic T joining a pair of opposite points P;
and P, in X, with i=1 or i =3. We consider a particular value Ay = (ag, My, Uo)-
Here is the strategy for finding an upper bound for the number of limit cycles that
appear for A in a neighborhood of A,. We determine the phase portrait of the
family rescaling (2.6) on Dj: this allows determining limit periodic sets I', which
are formed by the union of I with a finite number of trajectories and singular
points on D joining P; and P4, so that their orientation be compatible with that
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TABLE 2. CONVEX LIMIT PERIODIC SETS OF HH-TYPE
FOR A GRAPHIC WITH A NILPOTENT SADDLE

Sxhh2 Sxhh3
©
%
Sxhh5 Sxhh6

P

Sxhh8

Sxhh9 Sxhh10

of I'. The limit periodic sets to be studied appear in Table 2 for the saddle case.
They come from studying the phase portrait of the family rescaling
X = y+ax?+ i,
Lo (2.6)
Yy = tusyt+xy,
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obtained by putting p =1 and r=0. It then suffices to show that each limit peri-
odic set has finite cyclicity, i. e. to show the existence of an upper bound for the
number of periodic solutions of X, for A in a small neighborhood of A,.

2.5. Proving the finite cyclicity of a limit periodic set. Typically, the kind
of argument we will use for proving the finite cyclicity of a limit periodic set is
the following: we look for the zeroes of a displacement map between two sections.
The sections are 2-dimensional but, because of the invariant foliation, the problem
can be reduced to a 1-dimensional problem and the conclusion follows by, either
an iteration of Rolle’s theorem, or its generalization, namely a derivation-division
argument. The technique can be adapted to non generic graphics occurring inside
integrable systems: the proof in the generic case is transformed into a proof for
the corresponding graphic, using some adequate division of the coefficients of the
displacement map in the ideal of conditions for integrability.

To compute the displacement map, we decompose the related transition maps
between sections into compositions of Dulac maps in the neighborhood of the
singular points and regular C* transitions elsewhere.

2.6. Dulac maps. The Dulac maps are the transition maps in the neighborhood
of a singular point on r = p =0. They are computed when the system is in C¥
normal form. The normalizing theorem is Theorem 4.1 of Appendix I. There, it is
proved that the normal form is obtained by a normalizing operator .#; a crucial
property for this paper. The theorem establishes the existence of a parameter-
depending local change of coordinates of class 6* bringing the blow-up of (2.3)
in the neighborhood of one of the points P; into the normal form X}’ (up to t— —t)
written in normal form coordinates (Y, r, p) (provided that the eigenvalue in r has
a sign opposite to the two other eigenvalues). Using Table 1, we take o =2(1—2a)
near oy =2(1—2a,) for P; and P, when a;<1/2, and o =(2a—1)/a near oy =
=(2ap—1)/ay for P; and P, when a>1/2. The normal form XY is given by

(D) If 0y £ Q:

r=r,
XN: { P="P, (2.7)
Y =—(c+pa(»)Y.

(2) If op=p/q <, with (p,q) =1 when q#1:

YIIA\]: p = —p, (2'8)
Y=—(c+ ©a()Y + @, (v, IPYDY + pPny(v),

with 1, =0 when 0y, €N (g #1).
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The functions @, ®4, N4 are polynomials of degree <K (k) increasing with k,
with smooth coefficients in A and &4 (v, 0) =0.

We introduce the “compensator” function w(&, a), also denoted w, (&), de-
fined by

-1
o a)=w @ =] a @ 70 2.9)
—In&, a=0.

We propose in Appendix I a new computation of the Dulac maps previously
studied in [9]. There are two types of Dulac transitions. The first type of transition
map goes from a section {r=r,} to a section {p =py}, or the other way around.
This type of transition typically behaves as an affine map, which is a very strong
contraction or dilatation. The study of the number of zeroes of a displacement
involving only Dulac maps of the first type is reduced to the study of the number
of zeroes of a 1-dimensional map.

The second type of Dulac map is concerned with a transition map from a sec-
tion {Y =Y;} to, either a section {r =r,}, or a section {p =py}. We take v, =r1y00.

2.6.1. First type of Dulac map.

Theorem 2.2. We consider the Dulac map from the section {p = po} to the
section {r=ry}, both parametrized by (Y,v). Let & =G (0,v) =0 + p4(v) and
a=a(o,v)=a7(o,v) —0y. The Y-component of the transition map D, has the fol-
lowing expression:

@ If 0o Q: -
DAY, = (2)T. (2.10)
(2) If oy=p/q €Q with (p,q) =1 when oy ¢N:
DATY) = mpb (1) (3 a) + () T+ea@o, @I

with m, as in (2.8). In particular, n, =0 when oy € N.
The function family ¢, in (2.11) is of order

0 (vp+q°‘wq“ (%, a) |In v|)
and for any integer [ =2, is of class €2 in
(17, /L vl/lw(%, a), v, U, 0).

2.6.2. Second type of Dulac map.

Theorem 2.3. We consider the Dulac map from the section {Y =Y,}, paramet-
rized by (r, p) to a section {r =r,} parameterized by (Y, v). It has the form (r, p) —
— (D4 (r, p), v), with its Y-component, (D,(r, p), given by:

(D) If 0o €Q:

Du(r, p) = (%)EYO. (2.12)
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(2) If oo =p/q €Q with (p, q) =1 when oy N:
_ r\° r r\°
DA ) = ma®p? (1) (- a) + () Totdalr. p)), (2.13)

with 1, as in (2.8) (na =0 when oy ¢N).
The function family ¢4 in (2.13) is of order

p+qa ,q+1( I
O(r w (ro,a)ﬂnrl)
and, for any integer 1 =2, is of class €2 in

(rl/l, rl/la)(r—ro, a), 0, U, O').

3. APPLICATIONS TO QUADRATIC SYSTEMS

3.1. Quadratic systems with a nilpotent singular point at infinity.
Theorem 3.1. A quadratic system with a triple singularity point of saddle or elliptic
type at infinity and a finite singular point of center type can be brought to the form

X =—y+Box?,
y=x+xy,

with By > 0. For By # 1, the full 5-parameter unfolding inside quadratic systems is
given with B=Bg + U, inside the family

{ % = =y +Bx?+uy*+ (us + Bus)x,

(3.1)

. (3.2)

¥ =x+xy+usy*+(1—2B)usy.
For By =1, the full 5-parameter unfolding inside quadratic systems is rather given
with B=1+ uq inside the family

X ==y +(1+po)x®+ upy? + usx,
¥ = x+ (g + ps)x® +xy + sy

The parameter u, (resp. us) corresponds to a nongero multiple of the parameter U,
(resp. us) in the blow-up of the family at the singular point. There is no parameter U,
in this family since the connection along the equator is fixed.

Moreover for (3.1) we have:

(1) By > 1 for a nilpotent saddle; By =3/2 corresponds toa=—1/2in (2.2) (b=0
in (2.1)).

(2) By <1 for an elliptic point; the elliptic point is of larger codimension, type 1
(the singular points in the blow-up coallesce by pairs) if Bo=1/2 (corresponding to
a=1/2in (2.2),i.e., b=2+/2in (2.1)).

(3) The system (3.2) has an invariant line y =—1 if us— (1 —2B)us =0.

(4) If uy=us3=u4=0, the system (3.2) has an invariant parabola

—2B—-1 > _ _1 12
==X +(2B—1)usx 2B—i—(2B Dus. (3.4)

(3.3)
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The parabola
_ 1.2 1
y=3"3
is invariant for system (3.3) when o=y = 3 = 4 =0.
(5) The integrability condition is uz = 4= s =0, for which we have the follow-
ing graphics with return map
B>1: (1L,),
1/2<B<1: (I},),
0<B<1/2: (H},),
B=0: (H3,),
B=1: (DIy).
(6) The value of “a” in the corresponding normal form (2.3) is a=1—B, and the
parameters (5 and s correspond to U, and Uz up to a nongero constant.
Proof. We can suppose that the nilpotent singular point at infinity is located
on the y-axis, the other singular point at infinity on the x-axis, and the focus or
center at the origin. Then the system can be brought to the form

{ X = 810X+ 801y + 820Xx% + 511Xy, (3.5)

Y =7T10X+Yo1Y + 111Xy +Yo2)>

Localizing the system (3.5) at the singular point at infinity on y-axis by v =x/y,
w=1/y, we have

(3.6)

U= (611—Y0)V = 001w + (820 —y11)v* + (810 — Yo )vw — y1o0?w,
W =w(—Yo2—Yo1W — Y11V — Y10VW).

For the singular point (0, 0) of system (3.6) to be nilpotent, we should have
611 =702 =0. The point is triple if y,; #0.

We want the finite singular point to be a center, which corresponds in this case
to the system being reversible with respect to a line. Because of our choice of
singular points at infinity this line can only be the y-axis. Then &;y=170; =0.

By a rescaling and still using the original coordinates (x, y), we obtain the
system (3.1).

The change of coordinates W =—w + (B, — 1)v? brings the system (3.6) into
the equivalent form

V=W,
. 3.7)
{ W = (Bo—1)V3+ (2B, —3)VW +0(V3) +o(VW).

The classification of the nilpotent singularity at infinity follows.
A general unfolding preserving the singular point at the origin (which is sim-
ple) is of the form (after scaling of x, y, and t)

{ X = —y+Bx?+mox +mqy1xy + mgyy?, 3.8)

Y = X+Xy +no1y +nx? +ngzy?,
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with B close to By. We use a change of variable (X,Y)=(x+{,y, {,x+y) for
small {;, {,. The terms in XY in the expression of X and the term in X2 in the
expression of Y vanish precisely when

(2B—1)81 —mq1 (1 +8183) +28omgy +281n05(81 +{2) — 838, = 0,
(B—1)Zo+ A+ 3)ngx —{3nq +3mey = 0,

which can be solved for ({4, {5) by the implicit function theorem except for B, =1.
When By =1, we replace the second equation by the vanishing of the term in Y
in in the expression of ¥, namely

{1+ 8o—npr +myel1¢, = 0.

Again, we get a system that can be solved for ({;, {) by the implicit function
theorem. O

3.2. Finite cyclicity of the boundary limit periodic sets of (I% 4)» (Isp) and
(DI).

Notation 3.2. In the whole paper, * denotes a nonzero constant, which may
depend on some parameters.

Theorem 3.3. The boundary limit periodic sets of (I1,), (Iep) and (DIy,) (see
Figures 1 (a), (b) and (d) and 4) have finite cyclicity.

Proof. The finite cyclicity of the boundary limit periodic set is studied inside the
family (3.2) when By # 1, and we will discuss later the adjustment when By =1.

F1G. 4. THE BOUNDARY GRAPHIC THROUGH P; AND P, AND THE FOUR SECTIONS >; AND II;,
i=3,4, IN THE NORMALIZING COORDINATES
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Choice of parameters. We take as parameters

M = (ﬂ37 Uy, Us, az: BO_]-) = (MC, AHZJ BO_]-)’ (3‘9)
with (i, i) €S, and (By—1, U4, Us) in a small ball. The parameters
Mc = ({3, g, Us) (3.10)

unfold the integrable situation. We let I be the ideal of germs of C*-functions of
the parameters generated by {{is, U4, Us}.

Notation 3.4. (1) The symbol Op(M.) refers to a function in the parameter M
belonging to the ideal I.

(2) The symbol O (M) refers to a function of (X, M) which belongs to the
ideal generated by I inside the space of functions of (X, M). Depending on the
limit periodic set, we could have X = X3, where X5 is the normalizing coordinate
near P;, or X =(r, p).

The displacement map. It is better to consider the chart y =1 in the blow-up.
We take C* normalizing charts in the neighborhood of P; and P,. As discussed
above, these C* normalizing charts can be chosen symmetric one to the other
under the center conditions. The normalizing coordinates are (r, p, X;) near P,.
We consider sections X; = {X; = X,} and II; = {r =r,} in the normalizing charts.
The sections X; are parameterized by (r, p), and the sections II; by (x;, v).

Let V=D40S5—T o D; be the displacement map from X5 to I14: T and D5 follow
the flow forward, while S and D, follow the flow backwards.

Let us first give the proof when o;(0) ¢ Q. The Dulac maps are defined from
sections %; = {X; = X} to sections IT; = {r =ry}, with X, and r; fixed. Then the
Dulac maps D; have the form

Di(r) P) = (Ci(M)rEi3 rp) (311)

We can choose X, and ry so that C;(0) =1, i.e. Xyr, ° =1, and C5(M) = C4(M)
under the center conditions.
The map T has the form

T (X3, v) = (H(X3,7),7). (3.12)

Because of the symmetry of the sections, then H =id under the center conditions.
The planes r =0 and p =0 are invariant under the map S, which hence has the
form

S(r,p) = (rF(r, p), pF7'(r, p)), (3.13)

with F of class Ck, since v=rp is invariant. Moreover, it is known from [9] that
F(0,0) =1 when the sections ¥; are symmetric.
The displacement map then has the form

Ar, p) = (C4(M)r54F54 (r, p) —H(C5(M)r%:), v). (3.14)

Let V(r, p) be the first component of A. Then periodic solutions correspond to
zeroes of V.
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We now need to compute F and H.
Computation of H. The map H is C* in (x5, v). It has the form

H(X3,v) = X3+ £y(M) + &, (M)X3+0(x3) 0 (M), (3.15)

with £,(M) = 0p(Mc), &1 (M) =O0p(Mc).
For u, =3 =u4 =0, the system (3.2) has the invariant parabola (3.4). The
term U4x in x is without contact, which yields that

o(M) = #u4(1+0(M)) +0(u3) + O (us)O(M) =
= #4(1+0(M)) + 0 (3v) +O(us)O(M), (3.16)

where * denotes a nonzero constant. Lemma 6.1 in Appendix II shows that the
same is true for (3.3). Let us again take u, = us; = 4 =0. The divergence is then
(2B+1)x+ (1 —B)us. Proposition 6.2 in the Appendix II shows that

£1(M) = #us(1+0(M)) +0(f3v) + O (us). (317)

The center ideal. The equations (3.16) and (3.17) imply that we can take
{eo, €1, I3} as generators of the center ideal I..
Computation of F. The function F has the form:

F(r,p) = 1+xi30(1+0(p)) +0(r) O (Mc). (3.18)

Indeed, it is proved in Lemma 6.3 in the Appendix that the second derivative
of pF(0, p) is a nonzero multiple of ;. Moreover, the blown-up vector field is
integrable on r=0 for i3 =0.

Writing the displacement as a finite sum of terms. We need grouping all
terms of the displacement map into a finite sum of the form (1.2). We will see
that three terms are sufficient and show that

V(r, p) = —eo(M)(1+ho(r, p)) —
—C3(M)e; (M)r%s (1 +hy(r, p)) + 0377 p (1 +hy(r, p)).  (3.19)

We now explain how to group the different terms.

Notation 3.5. The symbol O(r?) used in the sequel, is for an unspecified 5 >0,
which may vary from one formula to the other.

Let us first consider the terms coming from H o D;. Remember that H is the
identity when we have a center. Moreover, the map H really takes place in the
initial (x, y)-plane, where the center ideal is generated by {ey, €1, u3}. Hence, the
higher order terms of H o D5 are of the form

r29s (EO(M)ko(’”, p)+e1(Mky(r, p) + usks(r, P))-

The first two terms contribute to hy(r, p) and h;(r, p), as contributions of order
O(r®). As for the third term, we use the fact that u; =rpji;. Hence, it contributes
to h,(r, p), also as a term of order O(r?). The term C5(M)r°: will be later grouped
with the corresponding term C,(M)r°+ coming from D,oS.
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Let us now consider the other terms coming from
D4 OS(T', p) = C4(M)r54F(r, p)a4'

Again we use that F is the identity when there is a center, i.e. all its terms are
divisible in the ideal I. One of them is the term xfi3r%4p coming from the term
xli30 of F. As mentioned above, all higher order terms r%+0(p) have coefficients
divisible by [i5. Also, all terms in r°pO(r) can be distributed in h,, h; and h,, as
terms of order O(r®). Hence, we only need to consider the pure terms in o(r%+). It
suffices to show that all such terms can be divided in {gy, £;}. This comes from the
fact that the computation of the pure terms in r can be done in the plane p =0,
and that the system restricted to this plane does not contain any term in 3. Since

G4—03 =v0p(Mc)f(v) = rpOp(Mc) f(v), (3.20)

with f of class Ck, we can replace everywhere &, by &3, up to terms of order
O(r?), distributed in hy, h; and h,.
We are left with the terms C5(M)r%: —C,(M)r%+. We write this as

C3(M)r%: = Cy(M)r%+ = (C3(M) — C4(M))r% + C (M) (r7 —1%+) =
= (C3(M) —C4(M))r% + C4(M)(G3—T4)r7:w(r, 03— T4). (3.21)

The difference C5(M)—C4(M) is Xory “*(1—15° °*). Using (3.20), the two terms
can be decomposed in sums of terms contributing to hy, hq, h,, as terms of order
o(rd).

Finite cyclicity in the case oy irrational. The displacement map V in (3.19) is
a special case of a universal family

ao(1+ho(r, p)) +ayr?(1+hy(r, p)) +arp(1+hy(r, p)), (3.22)

with hy, h; of order O(r®) and h, is of order O(p) + O(r?). Using that these three
functions are of order o(1), we show in Theorem 5.8 below that this family has
at most two small zeros along any curve rp =Cst for r, p <6 for some small .
This implies that, either V has at most two small zeros, or V is identically zero, in
which case we have a center.

Adjustment of the proof when o, = p/q with g > 1. The adjustments are
minimal. Indeed, the formula of the Dulac map is more complicated:

Di(r: P) = (ra(ci(M)+¢(r: P)): rP): (323)

with ¢ (r, p) as in Theorem 2.3. Hence, ¢ (r, p) produces in V new terms of order
0(r?), distributed in hg, hy, hy.

Adjustement of the proof when o, = p. Here the first component of D;(r, p)
has an additional term of the form

ki(r,p) = n)pPre (1. 0—p).
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All higher order terms can be distributed in hy, hy, h, and we need only consider
the term
E= K40S—(1+¢&;(M))k3 = (k40S—kK4)+E
with
E =x4(r, p) — (1 +&,(M))x3(r, p).

(1) We consider first the term x4 0S—k4. Let f =04—p. We have that

K4 (rF)—K4(r) = navPrh [Fﬂwﬁ(};—or) —wﬁ(r )] )

To

Let us consider G(r, p):

G(r,p) =FP (wﬁ(i—;) —wﬁ(rr—o)) +(FF-1wg (rr—o)

Since

we obtain that

6r,0) =—E (L) 400Dy (1) = E5 2 (L) +Beop (L)),

To o

FP—

FP—1

i.e.G(r,p)=— 1, and then K, (rF) —x4(r) =—mn,vPrf

As F=1+xl3p(1+pg(p)) +rOs(Mc), we have that

B _
g = #fisp (14 pg(p)) + 106 (Mo),

and then that

Kk4(rF) —x4(r) = —nyvPrf (xfisp (1 + pg(p)) +106(Mc)).

The term rOg(M¢)) gives contributions of order O(r®) in hg, hy, h,. Next, the
term *{3p (1 + pg(p)) gives the contribution —x*n,v?~1p(1+ pg(p)) in hy. If
p =2, this term is also of order O(rp), and it is of order O(p) if p=1.

(2) We consider now:

E = p?[ (00D —ns () (1 +&1 (M) (£, 73-p) +

#1007 =)o (L, a3 —p) + 1,007 (o (L o5 —p) —o (£, 0:-p)) |

To

The second term in the bracket is of the form

() (T3 = 0% (r, 55 —04)w( [, 75 —p).
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Using (3.20), this term can be distributed in hg, hy, hy, as terms of order O(r?).
A similar argument holds for the third term. Indeed, we introduce a compensator

Q)(g, a(i:;)(ga ﬁ), a# [))’

. (3.24)
T ey, a=p,

Q(€3 a, [5) = Qa,/a’ (g) =

allowing to rewrite this term as
T)4(V)r64(53_54)9(r£, 03—pD, 54_P)-
0
Again, using (3.20), this term can be distributed in hg, hy, h,, as terms of order O (r?).
This allows writing the displacement map as a sum of four terms
V(r, p) = —eo(M)(1+ho(r, p)) —Cs(M)e; (M)r?(1+hy(r, p)) +
+ 51317 p (1+hy(r, )) + K(M)rPpPeo( L, 05— p),  (3.25)
0
with hg, h; of order O(r%). Moreover,
K(M) =n4(») —n3(»)(1—&,(M)) = Op(Mo).
For p = 2, we conclude that the cyclicity is at most 3 by Theorem 5.12.
For p =1, we will prove in Theorem 5.13 that the cyclicity is at most 2. To this
end, we will use that 1,(0)=—n53(0)={i3 and then that K(M)=xfa3+0 (v)Op(Mc),
in order to rewrite V as:

V(r, p) = ~eo(M) (1 +ho(r, p)) —C(M)er (M)r%s (14 (r, p)) +
+xligrp(1+hy(r, p)) +sr™peo (1, 03— p) 1+ ha(r, p)),  (3:26)

with hy, h; and h; of order O(r?%). O

3.3. Finite cyclicity of the boundary limit periodic sets of (H i’3).

Theorem 3.6. The boundary limit periodic set of (H};) (see Figures 1(c) and 5)
has finite cyclicity.

Proof. The proof is very similar to that of Theorem 3.3. The graphic occurs in
the family (3.1) for B <1/2, which corresponds to 1/2 <a <1, but we prefer to
use the following equivalent unfolding inside quadratic systems (only parameters’
names are changed so that they play similar role as in Theorem 3.3)

X ==y +Bx*+ugy? + usx,
Y =x+xy+usy?+uqy.
The point P, (resp. P;) is replaced by P; (resp. P,). The quantity o; is now given
by o;=(2a—1)/a. The main difference with Theorem 3.3 is that the transition
from II, to II; is replaced by the composition T~' oD 'oT oD, oT,. The transi-
tions T, and T, are along the equator of the Poincaré sphere and hence preserve
the connection (no translation terms). The saddle points P, and P. have inverse

(3.27)
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F1G. 5. THE BOUNDARY GRAPHIC THROUGH P; AND P, AND THE FOUR SECTIONS X; AND II;,
i=1, 2, IN THE NORMALIZING COORDINATES

hyperbolicity ratios: 7,=1/7,=(1—B)/B < 1. Hence, it is better to consider a dis-
placement map

V:3y >, V=ToDjoTjoDy—D,oT,0D;08. (3.28)

The computation of S is the same as before.

Computation of T, and T,. T, and T, are regular C*-transitions with no trans-
lation terms. They can be computed in the coordinates (v, w)=(—x/y,1/y). The
transformed system in these coordinates is given in (6.1). The transitions take
place along w =0. Along this line, div= (3 —2B)v —2us. Hence, T/(0) — T/ (0) =
=0(u3) =vO({i3). This property is preserved in the normalizing coordinates.

Computation of T. The transition T in studied in (3.2). The line y =—1 is
invariant under u; = u4. Hence, the constant term is of the form

T(0) = &o(M) = *(us—vit3). (3.29)
Under the condition &, =0, we have div|,—_; = (2B +1)x + us —viis. Hence,
T'(0) = &, (M) = *us+0(uq) +O(»)O(113). (3.30)

The equations (3.29) and (3.30) remain valid in the normalizing coordinates, and
we call the corresponding coefficients &, and &;.

The Dulac maps D, and D,. We first localize the system (3.27) using coor-
dinates (u, z) = (y/x, 1/x). The normalizing coordinates are of the form (i;, 2),

ie{l,r}. Then,
c.(s, R gq,
0

GOz (146 M), 5o e

D;(z) = (3.31)

with ¢, a €*-function on monomials (see Appendix II).



224 R. ROUSSARIE, C. ROUSSEAU

The Dulac maps D; and D,. They are given in Theorem 2.2. Since the connec-
tion along the equator is fixed, then the coefficient n; vanishes identically when
op€N.

Hence, the displacement map V (r, p) has the form

V(r, p) = &(1+ho(r, p)) +x&r7* 7 (1+hy (r, p)) —*fir®* " p (1 +hy(r, p)).

(3.32)
This equation contains no resonant monomials since
_ _1-B—B?
Oo+T) = B(1—B) #1

as soon as B# % We conclude that the cyclicity is at most two by Theorem 5.8. [

3.4. Finite cyclicity of (I} +)- We now prove Theorem 1.2, i. e. that the graphic
(11,) has finite cyclicity inside quadratic systems (see Figure 1(a)).

Proof of Theorem 1.2. Such a graphic occurs for system (3.1) when By > 1,
and its deformation in quadratic systems is given in (3.2). As usual, we should nor-
mally consider all limit periodic sets of Table 2. It was shown in [9] that a graphic
through a nilpotent saddle point has finite cyclicity inside any C*-unfolding under
the generic conditions that the return map P along the graphic has a derivative
different from one and that the nilpotent saddle point has codimension 3. But the
only limit periodic sets of Table 2 for which we use the genericity hypotheses are
the boundary limit periodic sets which have been treated in Theorem 3.3, and the
intermediate and lower limit periodic sets of Sxhhl and Sxhh5.

For these limit periodic sets, we only have Dulac maps of the first type as in
Theorem 2.2. Hence, we can work with a 1-dimensional displacement map, which
we take as V: 33 — Iy, V=D40S—T o D3 (see figure 6). As before the sections
%; and II; are parameterized by the normalizing coordinate X; near P;, which are
chosen so that S and T are the identity in the center case.

The technique is to write V in the form of a finite sum

n
Vo) =407 (D i), (339)
i=1
for some & > 0. The parameters are the same as in (3.9) and (3.10). We write little
details since they are very similar to [8].

The intermediate graphics. For these graphics, the map V (x5, u) is C¥ in X5.
Under the condition u, =u3 =0 for a nilpotent saddle, (3.2) has an invariant
parabola for u4 =0, which is the only possible connection at a nilpotent saddle.
Hence, T has a constant term of the form *u4 + O(us3) + us0(M). The constant
term of the transition S has the form O({a3) since [, respects the symmetry, and
hence does not contribute to the breaking of the connection.

When oy ¢ N, this yields that the constant term &, in the displacement map has
the form &, =xu4+0 ()0 (l3) + usO(M).
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F1G. 6. INTERMEDIATE AND LOWER LIMIT PERIODIC SETS OF SXHH] AND SXHH5: THE FOUR
SECTIONS X; AND II;, i =3, 4, IN THE NORMALIZING COORDINATES NEAR P; AND P,

When oy =p €N, there are additional terms

napg(%)ESw(V—”o, as)—n4p€(%)64w(%,a4) =
= (N3 —M4)P% (%)03‘0(%: a3) +

o () o g v
+n4(as—ag)po (Vo) w(vo’ as a4)0)(v0> 053) +
—ao? () a2
+n4(as a4)Po(VO) Q(vo’ as, 014)- (3.34)
In this expression 13 — 14 = O0p(Mc) and a; — as = Op(M:)O(v). Hence, in all
cases we have
€0 = *pq + O (»)O(l3) + us0 (M) + O (v)Op(Mc). (3.35)
The linear term has the form v?:T(0) —v945’(0)). Moreover, S’ (0)] p=0 =1 pre-
cisely when i3 =0. Also, Lemma 6.2 shows that T’(0) — 1 =x%us + O (u4) + O (us).
Considering that 63— &4 =0(v), then

v9s = 9% (1+ (3 — T4 w(v,03—0F4)) = v (1+0()).
This yields
& =v% (x5 + 0 (us) + 0(»)0(fi3)). (3.36)
Now, because of the funneling effect, any nonlinearity on the side of T has

a high coefficient in v which damps it. Hence, the only significant nonlinearities
are on the side of S. We are sure that S is nonlinear when [i; # 0. This comes from
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the fact that the graphic belongs to a family of graphics. In the case of Sxhhl, this
family ends in a lower graphic with a saddle point and its hyperbolicity ratio T
is different from 1 precisely when fi; # 0, yielding that S(x3) =Cy + C1X] +0(x3),
with C; #0, for graphics near the saddle point, and hence that S is nonlinear on
the whole section 3. Then, for any graphic occuring for a value X3 o, there exists n
such that S™ (x3) =c, 3013 # 0. Hence, V(X3 0) =v4[c, 303 + O (v)Op(Mc)] = &,.
Moreover, for all graphics except a few isolated ones we have that n =2. The
same argument can be applied for Sxhh5 since the connection is fixed between
the two saddles and the product of their hyperbolicity ratios is different from 1
precisely when us; # 0. Hence, we have written V under the form (3.33) with
h;(x3) =x5 (14 0O(x3)). We conclude to finite cyclicity by means of Theorem 5.8.

The lower graphic of Sxhhl. The study is very similar and divided in two
cases. When [i; # 0, it was already shown in [9] that the lower graphic of Sxhhl
has finite cyclicity. This comes from the fact that the hyperbolicity ratio 7 at the
saddle point is non equal to 1 precisely when {5 # 0, in which case we conclude
to finite cyclicity because of the nonlinearity of S. Hence, the difficult case is the
neighborhood of {i; = 0 since, for this value, T = 1. In that case we reparameterize
the section Y5 by means of X3 = X3 —cy(M), so that X3 =0 corresponds to the
unstable manifold of the saddle point on the blow-up sphere. Then, as before, we
write V as a sum of terms:

V (X3, M) = éoho (X3, M) + l3X3w (X3, T—1)h3 (X3, M) + &, X3hy (X3, M), (3.37)

with h;(0, 0) #0. We conclude to finite cyclicity by means of Theorem 5.8.

The lower graphic of Sxhh5. Such a graphic occurs for i, > 0. Because the
connection is fixed between the two saddles, the map S can easily be computed
and has the form ¢y +c¢, X3 +0(x]), where

25
[ By -
a + U3

is the product of the two hyperbolicity ratios. Again, we reparameterize the sec-
tion X3 by means of X3 =x3 —co(M), so that X3 =0 corresponds to the unstable
manifold of the right saddle point on the blow-up sphere. This allows writing the
map V in the form

T=1-—

max(|7],1)
V(@)= Y EE(E, M)+ Haf5h. (55, M), T ¢N,
i=0
To
V(X3) = Z 51'??5}11' (%3, M) +ﬂ3i§°w(>?3, T—To)h. (X3, M), 7o €N,
i=0

with h;(0, 0) #0. We conclude to finite cyclicity by means of Theorem 5.8. O
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4. ApPENDIX I. HYPERBOLIC FIXED POINTS

We will consider germs of smooth family of 3-dimensional vector fields X,
at (0) € R3, with coordinates (u, v, y), which are quasi-linear of the form
u=u,
Xyt { V=", 4.1
.}./ = _O-y+F,u(u) U; y)>
where o is a parameter in a neighborhood of o, € R*, and u is a parameter in
a neighborhood of y, in some Euclidean space. Moreover, F, =O0(|(u, v, y)[?) at

the origin, for any value of the parameter (u, o). The system has the first integral:
v=uv.

4.1. Normal form. It is possible to find local normal form coordinates for X,
by a coordinate change preserving the coordinates u and v. More precisely, we
have the following normal form result:

Theorem 4.1. There exists a normalizing operator A defined on each pair
(X0, k), where X,, , is a family as above and k € N*, such that,

‘/V(XH,O') k) = (ak’ K(k), €15 Nis Gu,o’);
where
(u’ v) y) - (u’ U) Y = G“,,O' (u) U’ y)))
is a parameter-depending change of coordinates of class C* defined for |0 —0y| <&,
lu—uol <&, and [(u, v, y)| <ny, such that dG, (0, 0,0) =1d, which brings X,, »
to the following polynomial normal form of degree K (k):
D If oo £Q:
u=u,
XN o {V="1, (4.2)
Y =—(0+p,0M)Y.
(2) If oo =p/q€Q, with (p,q) =1 when q #1:
u=u,
XN, {v=-v, (4.3)
Y = _(U + Pu,o (V))Y + <I>H,U (V, quq)Y + Upnu,a (V):
with 1, , =0 when 0, €N (q#1).
The functions ¢, 5, ®, 5, Ny,e are polynomials of degree <K (k), with C* coeffi-
cients in (u, o) and &, ,(v,0)=0.

Proof. The proof is standard in the literature, and we only recall the main
steps.
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The degree K (k) can be determined algorithmically if one knows the eigenval-
ues {1,—1, —op}.

The number 6, is chosen sufficiently small so as not to introduce any new
resonant terms of degree <K (k) for some o € [0y — 6y, 0y + O ).

The first step is to bring the system to normal form up to degree K (k)

u=u,
Xp i { V=", (4.4)
£=P(o,u,u,v,2)+R(0,u,u,v, 2),

where P(o, u, u, v, z) is a polynomial in u, v, z of degree K (k) containing only
resonant terms, and R(o, U, u, v, 2) =o(|(u, v, 2)[K®)). This can be done by means
of a polynomial change of coordinate

K(k)
y=z+ Z ageriplzt.
i+j+0=2
i—j+0, ((—1)#0
Because this change of coordinate is tangent to the identity and contains no reso-
nant monomial, then it is uniquely determined.

The second step is to kill the remainder R in (4.4). For this purpose, we de-
compose R as R=R; +R,, with R; =0 (ulk®/2]) and R, = O(|(v, 2)|lK®)/2]), Each
part is killed by the homotopy method. The details are exactly the same as in [5].
Again, this step is algorithmic. O

4.2. Properties of compensators. This section is devoted to properties of dif-
ferent functions useful for the expression of the results, and in particular the
so-called compensators w, (&) and Q, g(&) defined in (2.9) and (3.24).

First, we introduce the analytic function

em—1

b O)

k() = { n o 17 (4.5)
1, n=0.

The following Lemma gives some useful properties of :
Lemma 4.2. The function « is an entire analytic real function satisfying

o <x(m) <er

2
for n>0. Moreover, k(1) >0, d—;(n) >0, and g—n';(n) >0, for all n€R.

Proof. Since
1 g nn +x nn
k(n) = 5( - H_l) - 20: GRSk
all the desired inequalities for 1) = 0 immediately follow from term-by-term com-
paring of power series with positive coefficients.
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Next, as
(m—1)e"+1

,',’2
any eventual root 11 <0 of j—K(n) =0 should verify 1—n =e™". However, denot-

b

mm=

ing 6 =—n >0, one immediately notices that for all such & the strict inequality
e®>1+6 holds.
Finally,

_ (n?—2n+2)e"—-2
= - ,

d*x
antV 7
and hence any eventual root 1 <0 of Zz—z (n) =0 should verify 1—n + %nz =e .
Though again, for any 6 =—n > 0 one notices from comparing of the power series
thate‘5>1+6+%52. O
The following lemma gives the relation of «w defined in (2.9) with «, and inter-
esting properties which can be easily deduced using this relation:
Lemma 4.3. We have that w(&, a) =—«k(—aln &) In &. The compensator w ver-

ifies the following estimates
D wE,a)<—néifa<0and w(&, a)<K—E*In& if a=0, and then

w(&, @) =0(g7 I &); (4.6)

)

w(&, a) > +o when (&, a) — (0,0). 4.7)
Proof. Using properties of k given in Lemma 4.2, it follows that:
M fa=0,i.e. —aln& >0, then w(&, a)=—«x(—aln &) In & is less than

—e @& pnE =& n¢&.

@) Ifa<0,i.e. —aln&<0, then w(&,a)=—k(—aln &) In & <—In & (indeed,
K is increasing, k(0) =1, yielding x (1) <1 when 1 <0).

The estimate (4.6) follows from these two inequalities. In order to prove (4.7),
we take any K > 0.

(1) If —aln & = —K, we have that k(—a ln &) = x(—K), as « is increasing, and
then w(&, a) =2 —«k(—K) In &.

(2) If —aIn £ <—K (in particular a <0), we have that

—aln& _ K
> 1—e

(& @) =

5

|al

from which (4.7) follows. O
In parallel with the compensator Q introduced in (3.24), we introduce the

symmetric function

x(n) —x(5)

“n—  "7°

dx _

>

A (n,86) = (4.8)
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This yields
QE&,a,B)=H(—aln&,—B1In&)In? &.
The useful properties of (&, a, ) are given by the following lemma:
Lemma 4.4. Q,3(§)=0(§77In? &), where y=max{|al, ||}, and Q, (&) = +,
when (&, a, ) — (0, 0, 0).
Proof. To prove the two claims, we just have to use the Mean Value Theorem
for the function ¢ : there exists 6 € [n, 6], such that # (), §) = —(9)

Let us begin by the first claim. Let us start with the case a = /3 Then
#(~aln g —BIn&) = d—K(e)

for some 8€[—fIn&,—aln&]. As -— (n) is an increasing function (see Lemma 4.2),
we have that

H(—alné&,—B1In&) < ﬁ(—a In &).

If a <0, we use that

N[ =

to obtain that Q, (&) < % In? £. If a >0, again using Lemma 4.2, we have that
dx _ _
2 — < alné — a
E(alng) <eeni=g,

and then that: Q, (&) <& In? £. We can summarize the two possibilities by
writing that Q, (&) <& —ldlIn2 £ as soon as a = 3 and & and |a| sufficiently small.
Using the symmetry of Q, (&) we can permute a and 3 in the above argument
to obtain finally that Q, 5(§) =0(&" In* §), where y =max{|al, |8]}.

We now prove the second claim. By symmetry on a and f3 it suffices to prove

the claim for a> 3. As above, we can write that Q, g(&) = d—K(Q) In? £, for some

0 €[ 1In&, —aln&]. Now, we want to bound Q, g from below Since dk/dn is
increasing, Q, g(&) = ﬁ(—fa’ In &) In? £. If B >0, we just use that

BmE) > T =3,
to obtain that Q, (&) > 5 ln E.If B <0, we have to compute

K (—pIE) = $£(BIE) = $Ean ).

As
dr ) (=D’ +1
%(T’) - nz >
we have that
(IBlIng—1)&F+1
1B In* &

(-BIng) =
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and then:
InE—1)&P+1
0,5(6) > LInE DL
yielding that Q, g(&) — +. This yields the conclusion. O

4.3. Transition along the trajectories. We want to study transition maps for (4.1),
in the region Q={(u,v,Y): u=0, v=0}CR3 near the origin. More precisely, let W
be a neighborhood of the origin in R3, and I1 C {u=u,}, for uy> 0, be a section.
The neighborhood W can be chosen sufficiently small so that the trajectory start-
ing at any point in W N {u> 0} reaches II for a finite positive time (in particular,
WNII=¢). We consider the transition T, , from the points in W N {u> 0} to the
section II.

We will compute T, in the ‘¢*-coordinates given by Theorem 4.1. In this
system of coordinates the family is the smooth family of polynomial vector fields
X;Z - (this means polynomial in (u, v, y) with smooth coefficients in (u, 0)).

We take IT={ug} x [0, vp] x [-Yp, ¥;] for some Yy >0, vy >0. On II, we re-
place the coordinate v by v =ugv, with v € [0, vy = uguy]. Then, we can write
T,ou,v,Y)= (17“,(, (u,v,Y),v=uv).

The expression of the Y-component 17%0 is given by the following Theorem:

Theorem 4.5. Let 6 =6(0,v) =0+ ¢, ,() and a=a(c,v) =06(0,v) — 0y,
where ¢, , is the polynomial family introduced in Theorem 4.1. The Y-component
of the transition map T, , has the following expression on W N{u> 0}:

(1) If o £0: )
?u,o(u, v,Y)= (ulo)aY. (4.9

(2) If oy=p/q<€Q with (p, q) =1, when oy ¢€N:

7 = u)? ( u)°
Voo, V) =m0 007 () o (ih ) + () (F+uouv)), (410
where 1), , is the same as in (4.3) (in particular, 1, , =0 when gy €N).

The function family ¢,, , in (4.10) is of order

0 (uerqO‘wq+1 (ulo’ a) [In u|)
and, for any integer 1 =2, is of class €2 in
(Y, ul/t, ul/la)(ulo, a), v, U, O').

Proof. The time to go from a point (u,v,Y) € W N {u> 0} to the section II
along the flow of Xﬁ’:a is equal to —In(u/ug). Expression (4.9) follows trivially
from the integration of the third line of the system (4.2).

Then, from now on, we will assume that oy € Q and we will study the inte-
gration of the system (4.3). The trajectory through the point (u,v,Y) is equal
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to (uet, ve™, Y (t)) where Y (t) is solution of the 1-dimensional non-autonomous
differential equation:

Y() =—cY(t)+ o (v, uPePY (£)N)Y (t) +ePvPn, ,(v), (4.11)

with initial condition Y (0) =Y.

In order to eliminate the linear term in (4.11) we look for Y (t) in the form
Y(t)=eOZ(t). As Y(t) =e7tZ(t)— &Y (t), and letting & = p/q + a, we obtain
the following differential equation for Z(t):

7= ®, o (v, e IMUPZ)Z +e*vPn, 5 (v), (4.12)

with initial condition Z(0) =Y. Note that the term in 7, , is only present when
g=1.

The 1-dimensional non-autonomous differential equation (4.12) is smooth in
(t,Z,o,v,u,v,u) and can be integrated for any time t € [0, — In(u/ug)]. If Z(t)
is the solution of (4.12) with initial condition Z(0) =Y, we will have that

Vo, 0,Y) = (%)52(— ). (4.13)

The above expression has to be studied for u >0 (we extend Y along {u=0}
by Y, (0, v,Y)=0). We first study the integration of (4.12).
To begin, it is easy to get rid of the term e*v?n,, ,(v) in (4.12). Let us consider

the analytic function
e —1
@(t,a):{ 7 > a#0,

t, a=

which verifies © =e%. We have O(t, a) =tx(at) and then w(&, @) =0(—1n &, a).
Putting Z(t) =vPn, ,(»)O(t, a) + Z(t), we see that Z(t) is the solution of the
differential equation

Z =&, , (v, urem1% (vPy, (MOt @) +2)?) (P10 (MO, @) +Z),  (4.14)

with initial condition Z(0) =Y.

As®, ,(v,0) =0, we can write &, , (y, &)=£&H, ;(v, &), where H,, , is a smooth
function. Now, let us notice that e** =0 =1+ a®. Moreover the map t — O(t, a)
is invertible (for any a). Then, we can change the time t by the time © in the
differential equation (4.14). We obtain the new equation

dZ _  oiia 7
do = U H©,Z,u,v,v,a,u, o) (4.15)
with

H=(1+a0) ") wrne+2)1H,,, (v, uP(1+a®) 1(vPnO +Z)q) ,  (4.16)

where n=mn,,(v). Let ¥(6, Y, u, v, v, a, u, o) be the solution of (4.15), with the
“time” ©. Up to now, © is seen as an independent variable; in particular it is inde-
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pendent from a. For t =—1In(u/ug), then © = w, (u/u,), yielding
uy _ u u

Z(— In u—o) = \I/(w(uo, a), Yu,v,v,a,u, (7) +vpnu)a(v)a)(u0, a), (4.17)

and then, the computation of 17“,0 (u, v, Y) reduces to the computation of
Ul w l,a Y u,v,u,o .
(o(ra) v v, 0)
One difficulty in the study of
u
\P(w(u—o, a), Yuv,v,a,u, 0)

is that w(u/ug, a) =+ if u— 0. To overcome this difficulty we will exploit the
fact that the right hand side of (4.15) is divisible by u?.

We first study the differential equation (4.15). We put u=U' and change the
time © by the time T =U® (and not just by u®, as it could seem more natural).
The equation (4.15) is replaced by the following equation

dZ

az _ mpi-1g( X 7 yp
Z=vu H(U,Z,U,v,v,a,,u,o), (4.18)

where H is given by (4.16). Let G be the right hand side of (4.18). It is smooth for
U > 0, but since it is function of al, it is not well-defined in a whole neighbor-
hood of the point {(7,Z,U,v,v, a,u,c)=(0,0,0,0,0,0, ug, 0y)}. Fortunately,
we only need to integrate (4.18) in a closed domain 2:

Definition of 9. The domain 2 is defined in the space (7,U, Z,v,v, a, u, o)
defined by

M Uel0,Uy], |a|<ag and T € [0, Uw(U!/ugy, )], where Uy, ap > 0 are cho-
sen arbitrarily small (the time 7 = Uw(U!/uy, @) corresponds to the time t =
=—In(u/ug) =—11n(U/uy)),

(2) (Z,v,v,a,u,c) €A, an arbitrarily small closed neighborhood of the value
(0,0,0,0, ug, 0p).

We want to prove that G is of class €2 on 9. We will first prove a technical
lemma about the partial derivatives of the function G. Let us denote by 9,,G any
partial derivative of G corresponding to a multi-index m= (m;, ..., m,) associated
to the variables 7, U, Z, v, v, a, u, o and the coordinates of u. The degree of m is
|m|=m; +...+m,;. We will note by &, a strictly positive number, which can be
made arbitrarily small by appropriately choosing U; and A. We have the following:

Lemma 4.6. Let be 0y =p/q as above. Let m be any multi-index such that
|m| <1—2. Then, for any & >0, there exists a domain 9 as above, such that on
the restriction to the domain 2 we have that

9,,G = O(UP—Imi=1-6) (4.19)

Proof. Recall that G=UP'H, where H is given by (4.16) and © is replaced by
7/U. The proof is straightforward, but rather tedious, and we just give the main
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steps. First, let us notice that on 2 we have that, for any s € Z:

(1+ a%) — (14 a@)° = esat = O(U~slal), (4.20)

Also, using Lemma 4.3, we have that:

% =0 = k(at)t < ety < UM |In U,

. . . T\~ (@t -5
These estimations imply that (1 + aﬁ) and 7/U have an order O(U™°). As

H is bounded on 2, we have that G=0(UP"179). This is the expected result for
m=0.

Next, we use the expression of the partial derivatives of G, in terms of the
functions ©, (1+a®)™ or (1+ a®) @D and the partial derivatives of H,,
evaluated on 2 (these partial derivatives are bounded on 2). We have for instance
that:

2 (1+a0) 7 = —qla%(l +a®) 1 = 0(U19).

As (1+a®) 2=0(U"?%), we remark that the order in U has discreased by one
unit (modulo an order in &).

It is easy to see that this observation can be generalized for any partial derivative:
the previous order in U decreases by one unity for each first order partial derivation
(modulo an order in 6).

Then, starting with G = O(UP"179) for m =0, the estimation (4.18) for any
multi-index m follows directly by recurrence from this fall of order (let us notice
that, in a symbolic way, we have: “6 + & =5"). O

End of the proof of Theorem 4.5. Lemma 4.6 says that each partial derivative
9,,G can be extended continuously on T =U =0 by giving it the value zero at
these points. Then, as the function G is smooth on 2 \ {t =U =0}, the restriction
of G to 9 is a function of differentiability class ¢'~2, on the whole domain 9,
including the points on {T =U =0}, when we give to each partial derivative of G
or order less than [ —2 the value 0 at these points. Let B be a closed neighborhood
of (0, 0, 0) in the (7, a, U)-plane, containing the closed set

{(r,a,U) | T € [0,—IU In(U/Up)], |al < aq, U € [0,U]}

that we have introduced above in the definition of 9. The closed domain 9 is con-
tained in the neighborhood A x B. Using the Whitney Theorem for the extension
of differentiable functions (see [6] for instance), we can find a €' 2-function G
on a A x B such that G |3 =G (here, this extension can also be easily constructed
by hand, in an elementary way).

For times 7 € [0, —lU In(U/U,)] the flow ¥(7,Z, U, v, v, a, u, o) of the differ-
ential equation (4.15): dZ/dt =G coincides with the flow ¥(t, Z, U, v, v, a, u, o)
of the differential equation dZ/dt = G. This equation is of differentiability class
€2 on A x B, as well as its flow .
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In particular, we have that
5 u ~ Ut
Z(—lnu—o) =\I/(Ucu(u—o,a),Y,U,v,v,a,u,a), (4.21)

is a ¢'2-function of (Y, U, Uw(U'/uy, @), v, v, a, u, o), i.e. is a €'~2-function in
the variables (Y, u'/!, u'ew(u/uy, a), v, v, @, 4, o), a function which is defined on
a neighborhood of the point (0, 0, 0, 0, 0, ug, 0y). We can replace a (outside w) by
its expression in (o, v) and v by uv to obtain finally that Z(— In(u/uy)) is a € 72-
function of (v, u!, u'ew(u/uy, a), v, u, o). As Z(0) =Y, we can write

Z(~In ui) =Y +¢0 (Y, u,v), (4.22)

where l
buo = @(Uw(g—o,a),KU,v,v, a, u,o)—Y (4.23)

is a ¢'~2-function of (¥, u'/!, u*'w(u/uy, @), v, u, o). Finally, collecting the differ-
ent terms in (4.13), (4.17), (4.22) and (4.23), we obtain the expression (4.10) in
Theorem 4.5, for the transition function 17“’0 (u,v,Y).

We can estimate ¢, , from the differential equation (4.14) for Z(t). Denoting the
right hand side of (4.14) by G(t, Z,u,v, v, a, 0, u) we have that G=0 (uPe 9% @1+1)
on the domain 2 defined above. As t<—In(u/uy) on 9, then ©(t, a) < w(u/uy, a),
yielding G = O (uP*9% w9 (u/uy, a)). From this estimate of the order of G, it fol-
lows that

Puo = Z(— In ulo) —Y = O(uPta%watl (uio’ Ot) [Inul),

which is the estimation in the statement of Theorem 4.5. O

4.4. Transitions between sections. Theorem 4.5 gives the expression of the
transition T}, ,= (v, ?W,), starting from any point (u, v, Y) in the domain Wn{u>0}
and landing on a section IT C {u =uy}, for some uy>0 (we can extend trivially
T, - to the whole neighborhood W by taking 17“,0 (u, v,0)=0). We apply this to
get Theorems 2.2 and 2.3 after changing (u, v) — (r, p).

Discussion of Theorems 2.2 and 2.3. A previous version of Theorems 2.2 and 2.3
was given in Theorems 4.10 and 4.14 of [9]. It is interesting to compare their proofs
and formulations with the proofs and formulations in the present paper.

(1) The proof in the present version is unified: Theorem 4.5 gives a formula for
a global transition from any point in a 3-dimensional neighborhood W, formula
which is easy to restrict on the two different types of section X. Next, the proof
of Theorem 4.5, even if it is based on the same normal form, is much shorter
than the proofs of Theorems 4.10 and 4.14 given in [9]. The reason seems to
be that in [9] the transition function Y and its partial derivatives are directly
estimated by a variational method. In the present paper, we have replaced the
1-dimensional non-autonomous differential system: Z = G, which is not defined
in a neighborhood of the point {(7,Z,U,v,v, a,u,c)=(0,0,0,0,0,0, uy, o)},
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by a differential equation: Z= G, differentiable on a neighborhood of this point.
As a consequence, we obtain almost without computation that the function ¢, is
differentiable (in terms of fractional power and a compensator of some variable).
In fact, the heavy computations made in [9] are replaced by an implicit use of the
Cauchy Theorem for differential equations.

(2) We can compare the statements in [9] and in the present paper. We restrict
the comparison to the only non-trivial case: oy € Q. The transition function called
here ?u,a is given by the formula (4.11) of Theorem 4.10 of [9]. We can observe
that it is quite similar to the above formula (4.20), up to the changes of notations.
The same remarks are valid for the transition of type II which is treated in The-
orem 4.14 in [9]. The only important difference is in the form and properties of
the function ¢, ,, which is called ¢ or 6 in [9]. We will comment on this in the
next items.

(3) The function ¢, , in Theorem 2.2 is of order

0 (vp+qawq“ (vlo’ a) [In vl).

This order has to be compared with the order given for the function ¢ in Theo-
rem 4.10 of [9] which is exactly the same order for a <0, but equal to

0 (vpcoq“ (V_t)’ a) [In vl)

for a> 0. This minor difference is probably due to the difference in the method of
proof. It is less easy to compare the order of ¢, , in Theorem 2.3 with the order
of 6 in Theorem 4.14 of [9].

(4) In Theorem 4.10 of [9], ¢ is a €~ -function of w(v/vy, a) and other vari-
ables. Since w — 4+ for v — 0, this means that the domain of ¢ has to be un-
bounded. This implies that it is not possible to deduce directly the order of the
partial derivatives of ¢. This order is obtained by using variational methods and
heavy computations. On the contrary, the formulation given in Theorems 2.2
and 2.3, permits a direct deduction of the order of any partial derivative of ¢, .
Let us show this on an example for a transition map of type I. Considering any
[ €N and observing that ¢, , is of order O(v?~?), we can write ¢, , =vP~¢,, ;,
where ¢, is a ¢P~3-function in (¥, /!, v w (v/vy, @), u, o).

As a consequence any partial derivative of ¢, , in terms of Y, u, o, of degree less
than [ —p—3, is of order O(vP~1/!), Taking into account that we can take [ arbitrar-
ily large, this order in very similar to the order obtained in Theorem 4.10 of [9].

5. ApPENDIX II. COUNTING THE NUMBER OF ROOTS

5.1. Differentiable functions on monomials. We come back to the notations
of Section 3: r, p are variables defined in a compact neighborhood A of (0, 0) in
the first quadrant Q = {r = 0, p = 0}. We will always choose A to be a rectangle
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[0,r1]1 %[0, p1], in order to have connected curves I, ={(r, p) € A |rp =0}. In the fol-
lowing definitions we will use also compensators w, and 2, 5, depending on other
parameters y, 5. We will often use the shortened notation w,, Q2,5 for w,(r/r),
Q, 5(r/r9). Moreover, changing r to r/ry, we can of course suppose that ry = 1.

We consider a multi-parameter A in a compact neighborhood B of a value A,
in some Euclidean space &. The neighborhood B will be chosen sufficiently small
to have the desired properties.

We also consider functions which are differentiable on real powers of r, p and
compensators in r. We give a precise definition of this notion.

Definition 5.1. (1) A primary monomial (monomial in short), is an expression
M=r9, pb riw,(r)s, r'Q, ,, ()% or w,(r)¢ where a,b,c,d, e and v, v, v, are
smooth functions of A. Moreover a, b, e are strictly positive and y(1¢) =11 (Ag) =
=v,(1) =0 (we can have y =a or 8 and (y;,y2) = (a, ). For instance, r?/3,
p'/®, wil, rQ, s are primary monomials but not r* or w?.

A monomial M defines a A-family of functions M (r, p, A) on Q={r=0, p =0},
M is smooth for r > 0 and, by Lemmas 4.3 and 4.4, it can be extended continuously
along {r =0}); we have that M(0,0,A,) =0 (i.e. M =0(1), in terms of some
distance of (r, p, A) to (0,0, A)).

(2) We say that a function f(r, p, A) on A x B is a €*-function on the mono-
mials Mj, ..., M if there exists a ¢*-function f(&;, ..., &;, A) defined on A x B,
where A is a neighborhood of 0 €R! such that f(r, p, A) = f(My, ..., M, A). If
the number of monomials and their type is not specified, we just say that f is
a ¢*-function on monomials.

Clearly, the space of ¥*-functions on monomials, defined on A x B is a ring.
The classical theorems of differential calculus (Taylor formula, division theorem
and so on) can be extended to these functions by applying them to the function f.
Since the differentiability class k is finite, there will be falls of differentiability
class in these operations: Lemma 5.3 is one example. For this reason, we will
consider functions f with the property to be €*-functions on monomials, for any
k eN (but with a choice of monomials and a size of the neighborhood A x B
that may depend on k). The functions v, (Y, u,v),vy,,(Y,v) and ¥, ,(u,v)
introduced in the statements of Theorems 4.5 are, 2.2, and 2.3 are examples of
@*-functions on monomials for any k, which use only the single compensator w,.
The functions h; entering in the expression of the displacement map V in Section 3
are using other compensators w,, and also Q, g.

5.2. Procedure of division-derivation for functions with 2 variables.

Notation 5.2. In this section, h(r, p, A) =0(1) will mean that h(0, 0, Ay) =0.

We want to bound the number of roots of an equation {V(r, p, A) =0} along
the curves I, ={rp =v| (r, p) €A}, for v> 0 and a neighborhood A x B sufficiently
small. The function V is expressed using ¢*-functions on monomials. To obtain
this bound, we will apply Rolle’s Theorem, and to this end we will use recurrently
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the Lie-derivative Ly of V by the vector field

—;9_,9
%—rar P (5.1

Hence, we need some properties of L, acting on ¢*-functions on monomials. It
is easy to see that:
Lgr® =ar9,
Lyp
Lyw, =—(1+yw,),
L%Qh,)’z = _(O‘)Yl + Yzﬂh,h)'

b:

—bpb,
P (5.2)

From this, it follows that

Lemma 5.3. If f is a €*-function on monomials, then Lq f is a €% '-function
on monomials and Lg f =0(1).

Proof. If M is any monomial, Lo M is a linear combination of monomials.
Then,

Lyf = Z g_gL%Mi:

is a ¢*!-function on monomials and, since each monomial is 0(1), this function
Lo f is also o(1). O
For the procedure of division-derivation we will need more general monomials
than the admissible ones:
Definition 5.4. (1) A general monomial is an expression

M Zrapbl_[wgi l_[ﬂ]d]
i J

where i and j belong to finite sets of indices. The coefficients a, b, ¢;, d;, as well
as the internal parameters of the compensators w;, ;, are smooth functions of A
(without any restriction on sign). Let a(A¢) =a°, b(1q) =b°.

(2) A general monomial is resonant if a® =b° (in this case the “polynomial”
part r“opbo of M reduces to the first integral v2"). Seen as a function of (r, P, A),
such a monomial is in general not defined for r=0 and p =0.

Remark 5.5. An interesting property is that if M is a general monomial, then
M~ is also a general monomial.

Notation 5.6. For convenience, if w; = w(r,y;) we will use the contracting ex-
pressions:

w=(w), 1= c=(c l_[ wi' = o, Z Yici = r¢.
i i

A first easy result, which will be the principal tool in the proof of Theorem 5.8
below, is the following:

Lemma 5.7. We consider an expression f =M(1+ h) where M =r%p®w® is
a general non-resonant monomial without Q-factor and h is a ¢*-function on
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monomials, of order 0(1). Then, on a sufficiently small neighborhood B, we can
write:

Lof=(@=b+yc)M(1+g), (5.3)
with g, a 6% !-function on monomials, of order o(1).

Proof. We have that Ly f =Ly M(1+h) + MLy h. Using the formula of deriva-
tion for w, we obtain that Ly M = (a—b+7yc+cw™')M. As M is non-resonant, we
have that a®—b°#0 and, if B is a sufficiently small neighborhood of A,, we will
also have that a—b +yc#0 on B. Then, we obtain that:

— (q— _col
Lo f =(a—b+7vc) (1+ a—b+yc)M(1 +h)+ MLy h.
We can write this expression as Ly f =(a—b+yc)M(1+g), with
co ' (1+h)+Lyh
a—b+yc

g=h+

It follows from Lemmas 5.3 and 5.7 that g is a €*~!-function on monomials, of
order o(1). O
We want to use the algorithm of division-derivation in order to prove the fol-
lowing result:
Theorem 5.8. Let V(r, p, A) be a function on AxBN{r>0, p >0}, of the form

1
Ve, A) = Y AMM+g(r, p, ), (5.4)
i=1
where:
(1) the leading monomials M; =r%pPiw® are general monomials, without Q-
factor (w=(w;);, ¢;= (d)j with jeJ, a finite set);
(2) the functions g; are €*-functions on monomials (k >1), and of order o(1);
(3) the functions A;(A) are continuous;
(4) the monomials M;M; ! for i # j are non-resonant, i.e.

a)—a)—b) +b? #0 fori# j. (5.5)

Then, if A xB is chosen sufficiently small,

i) either the function V has at most [ — 1 isolated roots counted with their
multiplicity, on each curve [, ={rp =v} CA;

ii) or V is identically zero.

Proof. We suppose that V is defined for A € B (some neighborhood of A;) and
we define the following closed subsets:

B, = {AeB| AW >AQ) Vj=1,..,1}.

Of course we have B =U;B;, and it is sufficient to prove the result for any
B; (and B sufficiently small). Then let us pick any i=1, ..., [. By reordering the
indices, we can suppose that we have picked i =1.
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The algorithm of division-derivation consists in the production of a sequence
of functions: Vo=V, V3, ..., Vi_;, such that each V; is a summation similar to V but
only on [ — j terms, and is defined on a smaller neighborhood A/ x B/ of (0, 0, A).

To define V;, we first divide V by M;(1+ g;) (a division step). This is made
on a neighborhood A! x B! C A x B chosen such that 1+ g;(r, p, A) #0 for all
(r, p, A) € Al x B'. On this neigborhood we consider the function:

K
V _ A1 5.
M1(1 +g1) - Al +; AlMlM] (1 +gl)7
where the function §;, defined by
~ 1+g;
1 +gi == 1 tg 5

is ¢* on monomials and of order o(1).

Next we apply the operator Ly (a derivation step). Since the monomials M;M; !
are non resonant for i # 1, we can apply Lemma 5.7 to obtain the following func-
tion V; on Al x B!:

l
= L — L —_bh. M.AM—1 1
Vl - L% [M1(1+81)] - Zz(al a bl +b1)A1M1M1 (1 +gi (}’, Z)):

with the function g!, 6* on monomials and of order o(1). The effect of the
derivation is to kill the first term A;, thus reducing by one the number of terms in
the summation. Except from this fact, the terms of the summation are completely
similar to the ones in V, but with the functions A; replaced by (a; —a; —b; + b;)A;,
and the monomials M; replaced by the monomials M;M; .

For the recurrence step of order j+1=1,...,k—1, we assume that we have

a function:
1 J

V=3 ([ T@—bi—an+bw) ) acOMM (48D,
i=j+1 S m=1
defined on some neighborhood A/ x B/ with functions g/, 6%~ on monomials and
of order o(1). As in the first step from V to V;, we divide V; by MjHMj_l(l +gj{r1),
which is possible on some neighborhood A/™! x B/*! c A’ x B/, and next apply the
differential operator Ly to produce a function

1 j+1
Vir= . (]_[(ai—bi—am+bm))Ai(A)MiMj:11(1 +gi*),
i=ji+2 S~ m=1

where the gl-j *1 are €71 on monomials and of order o(1).
Performing the [ —1 steps of the recurrence, we end up with a function

Vier = (@ —bj—ay +b1) ... (@ —b— a1 +b_1) AL A MM, (1 + gD),

where gl is %! on monomials and of order o(1).
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As gll =0(1), and at least ¥€° on monomials, we can choose a last neighborhood
Al x Bl c A1 x B!, such that the function 1+ g/ is nowhere zero on it. We re-
strict now A € W, =B!NB,. On this set we have the following alternative: A;(1) #0
or A;(A)=...=A;(A) =0. In the last case, the function V is identical to 0 and has
no isolated roots.

Then we just have to look at values A where A; (1) #0. For such a value of A,
the function Vj_; itself is nowhere zero on Al x W. Consider now any curve [,
in Al Recall that the derivation Ly of a function G corresponds to the derivation
of G along the flow of & and that [, is an orbit of this vector field. Then, as V;_; is
equal to the derivation of Vi_,, up to a non-zero function, Rolle’s Theorem applied
to Vi_,, implies that the restriction of this function to [,, has at most one root (let
us notice that [, is connected!). The same argument based on Rolle’s Theorem
can be applied by recurrence to obtain for each j <I, that the function V;_; has
at most j— 1 roots, counted with their multiplicity. Finally, the function V has at
most [ — 1 roots counted with their multiplicity on I, NAl, for A€ W,.

We obtain the result by considering in the same way the different subsets B;. [

Remark 5.9. (1) Even if V is a summation on admissible monomials, it is clear
that, in general, the division step may produce general monomials. This is the
reason why we begin with general monomials in (5.4).

(2) Using the first integral rp =v, we can rewrite the leading monomial M; in
the form M;=vPir%bi <, We call M;=r% b a reduced monomial. The sum (5.4)
may be written in reduced form, with p; =a; —b;:

l
V(r,p, A) = D v APt (1+g(r, p, A)). (5.6)
i=1

(3) The non-resonance condition (5.5) in Theorem 5.8 is equivalent to the
condition that the p;(Ay) =p? in (5.6) are two by two distinct. Up to a change
of indices and a reordering, we can suppose in this case that p? <pJ ... <p). Let
us note that some of p? may be negative, and also that one of them may be equal
to zero.

5.3. The results of finite cyclicity for the boundary limit periodic set. We
now want to apply Theorem 5.8 to the displacement function V in the text. We
write 03 = 0y + a. After putting this function in the reduced form (5.5), we have
the following.

(1) In the case oy € N, the function V is given in (3.19) and we have the
sequence of monomials: {1,r%*% r%=1*e} This allows applying Theorem 5.8,
yielding that the boundary limit periodic set is at most 2.

(2) In the case oy =p €N, the function V is given in (3.25) or (3.26), and the
sequence of monomials is: {1, rP*%, rP=1*@ ra¢, }. We have two resonant leading
monomials when p # 1, and even 3 when p =1. Theorem 5.8 does not apply in
none of these cases.
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Hence, we give a direct proof for oy €N, using exactly the same procedure
of derivation-division as in Theorem 5.8, but based on a more refined estimation
than the formula (5.3) used to prove Theorem 5.8. Recall that the parameter was
called M in this context. It will not be sufficient to consider the leading reduced
monomials for M = M,, and we will have to look more precisely at the form of
certain remainders.

We need the following result:

Lemma 5.10.

Lo [r*w,(1+0(r%))] = —r*(1+0(r%)). (5.7)

Proof. We have that

Loy [r®w,(14+0(r%))] = Lo [r*wa](1+0(r%)) +r*w,0(r?).

Now, Ly [rt*w,]=ar®*w,—r*r~*. Asr *=1+aw,, we have that Ly [r®w,] =—1%.
Since r*w,0(r?) is of order O(r%) (for a smaller §), we obtain (5.7) by grouping
the terms. O

Remark 5.11. The formula (5.7) is wrong in general if we replace the remainder
by the more general remainder o(1). Let us consider for instance the expression
f=r*w,(1+p). We have that

Ly f =—1%(1+p)—r%wep = —r*(1+p + wep).

The term w,p is not of order o(1).

Let A, B be neighborhoods defined as above. First we have the following result
when oy # 1:

Theorem 5.12. Consider the case 0y =p €N, with p # 1. Then the cyclicity of
the boundary limit periodic set is at most 3, namely for sufficiently small neighbor-
hoods A and B, the equation V(r, p, M) =0 has at most 3 roots, counted with their
multiplicities, on each curve L, C A.

Proof. Recall that the displacement map V is given by

V(r, p) = *€o(1+hg) +%e1rP (1 + hy) +*UgvrP 1% (1 + hy) + *K (M)vProw,.
(5.8)

The sequence of leading monomials in (5.8) does not verify the condition of non-
resonance. To overcome this difficulty, we will use that there is no remainder in
the last term, and that hy is of order O(r?). For h; and h,, it will be sufficient to
know that they are o(1).

As in the proof of Theorem 5.8, we define the partition B=B; UB, UB; UB,
in terms of the coefficients in (5.8). At each step we will have to restrict the size
of B. We will not recall it.

As the three last leading monomials in (5.8) are o(1), the cyclicity is trivially O
when M € B;. We suppose now that M € B, UB3; UB,. Using (5.7), we obtain:

L%% = xe1rPTE (1 + gq) + *UgvrP 12 (1 + gy) + K (M) vPre.
0
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Now, the sequence of leading monomials {rP*%, rP~1*@ ra} verifies the condi-
tion of non-resonance and we can apply Theorem 5.8 to L,V /(1 +hg). Then, this
function has at most 2 roots, and the function V itself has at most 3 roots, when
MeB,UB; UB,. O

Finally, we have

Theorem 5.13. Consider the case 0y—1. Then the cyclicity of the boundary limit
periodic set is at most 2.

Proof. We can start with the formula (5.8) which is valid for any p € N. More-
over, for p=1 we have that

KM) =n4(») —n3(») (1 +¢1) = *lis + O () O0p(Mc).
This is a direct consequence of the fact that the linear part of the system at the
points P; and P, is given, up to a constant, by #=r, p =—p, y=—0 (¥ +i3p).
Then, we can split the last term in (5.8) as the sum i3 vr*w, + vr*w,0 (v)Op(Mc).
The second term gives contributions of order O(r%) in hy, h; and h,, and produces

a remainder h; of order O(r?) for the last leading monomial r%w,.
Then, for p =1, the displacement map V takes the form:

V(r, p) = *eo(1+hg) +xer1 (1 + hy) + *3vr® (1 + hy) + *3vr%w, (1 + hs).

(5.9

The sequence of leading monomials in (5.9) does not verify the condition of
non-resonance. To overcome this difficulty, we will use that hy and h; are of or-
der O(r?%). It will be sufficient to know that h; and h, are o(1).
As in the proof of Theorem 5.12, the cyclicity is O if |ey| = max{|e,|, |Ts|}.
Otherwise, let us consider Ly V/(1+ hy). Using (5.7), we have that

Lo HLh = xe 71T (1 + ) + #l3v[ar®(1+hy) + 1%L -hy] +*asvr* (1 + g3),
0
with g5 of order O(r®). Grouping the different terms, we obtain

Ly

o = e (L+.g1) +#iTap (1 +*a+g4)],
+h,

where g4 =xah, + Ly h, + g3 is of order 0(1). Now, the sequence of leading mono-
mials {1, p} verifies the condition of non-resonance and we can apply Theorem 5.8
to r~17%L,-V/(1+ hy). This function has at most 1 root, yielding that V itself has
at most 2 roots, if |go| <max{|e;], |3} O

6. ApPENDIX III

Lemma 6.1. The parameter function €, in the expression of the displacement
map V has the form (3.16) for system (3.3).

Proof. Since the system has an invariant parabola for yy =, = s =pu4=0, it
suffices to make the calculation for ug =y =3 = s =0. The system is integrable
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when u, =0, with integrating factor (1 + y)3. Hence, it suffices to show that the
following Melnikov integral is a nonzero multiple of u,4. Indeed,

=)

X =18 X = O
Haliayys 7 | SHaineys & = e

_1.2 1 —
Y=

Lemma 6.2. The parameter function &, in the expression of the displacement
map V has the form (3.17) for both systems (3.2) and (3.3).

Proof. It has been proved in [3] (see for instance Theorem 3.5) that it suffices
to show that f div dt = xu5 along the invariant parabola when all parameters but
us vanish. Two different calculations are needed for the cases (3.2) and (3.3). In
the first case, the invariant parabola is given by (3.4). Then,

X
. . 2B+1)x+(1—B
div dt = lim ( )x+( s dx =
0 —> —y +Bx?+Bugx
—X,

1+B(Xo+ (B—1)us)® +0(us)
1+B(Xy—(B—1)us)?+o0(us)

= lim [(ZB +1)In

) ®
+2B32(B—1)us (arctan(\/E(Xo + O(,us))) —arctan(\/ﬁ(—XO + O(,us))) ) ] =
= 2B%2(B—1)mps +o(us).-
The second case of (3.3) is easier since the invariant parabola y = %xz + % is
independent of us. Then

f divdt = f 2;15)% =2mUs. O

1.2, 1 —o0
y—2X +2

Lemma 6.3. The second derivative of the map S=pF(0, p), where F is defined
in (3.18), is a nongero multiple of [s.
Proof. We first localize the system (3.2) at the nilpotent point at infinity using
the coordinates (v, w)=(—x/y, 1/y): after multiplication by w, this yields
v =w+1—B)v?—uy—usv +vw((3B—1)us + uy) + v2w, 61
W =vw—pusw — (1—2B)usw? + vw?. 6.1)
A similar localization can be done for (3.3). We now consider the blow-up (v, w) =
= (rx, r?) for w> 0, and we consider the restriction of the blow-up system to the
(p, X)-plane for r =0 (after multiplication by 2),

p=—px—psp) =P(p,X),
x =2+ (1-2B)x%—2fi,p? —i3xXp = Q(p, X).



FINITE CYCLICITY OF SOME CENTER GRAPHICS 245

Note that this system is the same for (3.2) and (3.3). The singular points occur
at x == with 8 =+/2/(2B—1). We localize at P; using xs =8 —Xx and at P,
using x4 = 3 + X. Hence, the system at P, is obtained from that at P; through
(x3, 8) = (—x4, —B). The map is between two sections {X; = X} in the normal
form coordinates x; near P, and we take X, small. The section {x;=X,} (resp.
{X3 =X,}) has equation x = f4(p) =—xo + O(p) (resp. X = f3(p) = xo + 0 (p)).
A formula for the second derivative was given in [9] (Proposition 5.2), namely

s”(0)=S’(0)[ (@5 ©(%) o ron-H0 (5 )0 500) +

£4(0)

+ J (PH (0, x)— /Q/ )exp( Jx (%’;)(O, x) dx)dx}. (6.2)
£3(0) £3(0)

Here, S’(0) =1. We call the three terms in the bracket 2I;, 2I, and I5. Let us first

consider I5.

—X
8B—5

Iy = 4f15(2 + (1 —2B)x2) 20~ zmju Bx2)(2+ (1—2B)x2)20-28) dx. (6.3)

Xo

There are two different cases for f/(0) depending whether B, = 3 or not.

The case By = =. In this case, the singular point has equal eigenvalues and
a Jordan normal form for nonzero [i;. Hence, the change of coordinate to normal
form is tangent to the identity and f;(0), f;(0) = O(fi3)O(X,). Also the integral
part of I5 in (6.3) is equal to

2
—2(%.7(0 +X0) #0

The result follows in that case.
The case B, # % In this case, the change of coordinates to normal form is
given by

%=~ (xa— 52550) + 00, X))

for Py (resp. x=—f + (J?4 + %p) +0(|(p, X4)|?) for P,), yielding

2 +2I, = i Xo

/ _ ﬁ3 4
f0) = 3 M33=2B 2+ (1—2B)x2’

As for the integral part in I3, it is given by
2 =8 1 5—8B 3. 2B—1 4
£ .9220@2B-1) — et .2,
3 2”le°[ 32F1(2’2(1—2B)’2’ 2 x0)+

5-8B 5. 2B—1_,
+Bx02F1(2 2(1—2B)’ 2° 2 XO)}’ ©4)
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where ,F;(a, b; c; 2) is the Gauss hypergeometric function defined by

(@), (b), 2

2F1(a) b’ (o8 Z) = (C)n m;

i=0
with (a)g=1, (a),=a(a+1)...(a+n—1). The function ,F;(a, b; c; 2) is analytic in
the whole plane, except for a singularity at z=1. Moreover, ,F;(a, b; c; 0) =1 and
I'(c)I'(c—a—>b)
T(c—a)(c—b) 2
r@r(a+b—c) _ I o1
ETORORS oFi(c—a,c—b;c—a—b+1;1—23) (6.5)

for z€ (—1, 1). This yields that near z=1
_ T(@T'(c—a—b) , I'()T(a+b—c
T T'(c—a)T(c—Db) I'(a)T(b)

In the two hypergeometric functions appearing in (6.4), the exponent of (1 —2)
in (6.6) is

oFi(a,b;c;2) = Fi(a,b;a+b—c+1;1—2)+

+(1—z)ca?

d1—z)—b.  (6.6)

oF1(a, b; c; 2)

3

o an3 <0, B>?2,
20-28) | 5, p<3

> 4'

Hence, the first (resp. second) term in (6.6) is dominant when B < % (resp. B> %).
We treat the two cases.

The case B < % For 232_ lxg close to 1, the bracket part of (6.4) is close to
3 4B—3 5 4B—3
F(E)F(zu—zs)) ZF(E)F(2(1—23)) _
_ - 2 -
r(1)r(1B_le) 1"(1)1*(13_;3 +1)

3 4B—3
_ F(E)F(2(1—213)) (_3 3(1—23)B 2)

— — X0
r(1)r(1B_2lB) 2(B-1)
since I'(x + 1) =xT'(x). We let x5 = ﬁ — &, with 6 >0 small. Using that

3 1
r(3)=3v%
the integral part of I5 in (6.3) is close to
4B—3
_SﬁF(Z(l—ZB)) 2B—1

2 F(lB__zig) 2(B—1)

(2_35)3 BO ;é 1:

A

4B—3
3ﬁr(2(1—23)

=)

Bx2+0(B—By),

vy
o

Il

[
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The coefficient is nonzero for § >0 as soon as By # 1 (resp. Bo=1) and 1B —_21B

(resp. —%) is not a negative integer, which is the case for B> 1/2. This shows
- 1

that I; grows as (2+(1—2B)x2)2(1-2B) while 2(I;+1,) grows as (2+(1—2B)x3) .
Hence, I5 is dominant when B<3/4, and 2(I; +1,) + I3 =x[i3 #0 when B<3/4.

The case B> % For 2B2— lxg close to 1, the bracket part of (6.4) has two parts
Jj and J{:
F( 4B—3 )
,_ _3v¥m ‘\2(1-2B)/ 2B—1
1-2B
4B—3
Jé/ — (1_2B2—1x8) 2(1-2B) X
3 3—4B 5 3—4B
F(E)F(z(l—zm) 21" 2 r(2(1—23))
x| —3 + Bx +0(8) | =
TORE= S RORE=. N
2)°\2(1—2B) 2)°\2(1-2B)

_ 3(1_2B=1 52025 _‘2(1-2B)/
_2(1 x)

1 (Bx2—1+0(5))—

(
(
4B—3 F(—3_4B )
)

5—8B
F(2(1—23)

4B—3
3 __2B—1 5\ 2(1-28B)
3_43(1 ; x2) (1+0(5)).
This yields the corresponding parts I; and Ij for I3, considering that 6 =2+
+ (1—2B)x3:
1
I} = «x[i3J56 2(-2B) |

_ 4x _
Iy = —fly5—4z6 " +0(D).

Considering that

1

20-28) € (—1,0).
1

Then 2([1 +Iz)+[3=*‘a362(1_23) (1+O(6))#0 O
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INTRODUCTION

Let X be a complete curve of genus g over C and D be a reduced divisor
on X: D=[x;]+...+ [x,] is equivalent to the data of n distinct points on X.
Set N:=3g—3+n; if N> 0, which we will assume along the paper, then N is the
dimension of the deformation space M, , of the pair (X, D).

Let (E, V) be a rank 2 logarithmic connection over X with polar divisor D. In
other words, E — X is a rank 2 holomorphic vector bundle and V:E — E®Q}(D)
a linear meromorphic connection having simple poles at the points of D. By con-
sidering the analytic continuation of a local basis of V-horizontal sections of E,
we inherit a monodromy representation

pv: m1(X\D) — GL,(C)

(which is well-defined up to conjugacy in GL,(C)).

Given a deformation t — (X;, D,) of the complex structure, there is a unique de-
formation t — (X;, Dy, E;, V;) up to bundle isomorphism such that the monodromy
is constant. For t varrying in the Teichmiiller space T,,, we get the universal
isomonodromic deformation (see [9]). Considering the moduli space .#,, of
quadruples (X, D, E, V), isomonodromic deformations define the leaves of a N-

dimensional foliation transversal to the natural projection
Mg — Mgn; (X,D,E,V) — (X, D).

The corresponding differential equation is explicitly described in [13] (via local
analytic coordinates on M,,) and is known to be polynomial with respect to
the algebraic structure of .#,, (it is the non-linear Gauss — Manin connection

© K. Diarra, F. Loray, 2015
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constructed in [25, Section 8]). In the case g =0, we get the Garnier system
(see [23]), and for n =4, the Painlevé VI equation. Solutions (or leaves) are gener-
ically transcendental and it is expected that the transcendence increase with N
(see [8, Introduction] for instance). However, there are some tame solutions.

Algebraic solutions of Painlevé VI equation were recently classified in [2,14].
Some algebraic solutions are constructed in [5] for the Garnier case; see the dis-
cussion in the introduction of [6] for higher genus case.

Some solutions, called “classical”, reduce to solutions of linear differential equa-
tions. They are classified in the Painlevé case in [27]. In the Garnier case, such so-
lutions arise by considering deformations of reducible connections (see [21,24]):
they can be expressed in terms of Lauricella hypergeometric functions.

There are also “tame solutions” coming from simpler isomonodromy equations
(e. g. with lower n or g). In [21], it is proved that, one way of reducing n (when
g=0) is to consider those deformations having scalar local monodromy around
some pole. There is another way of reduction, by using ramified covers, and this
is what we want to investigate in this note.

1. KNOWN CONSTRUCTIONS VIA RAMIFIED COVERS

Ramified covers of curves have already been used to construct algebraic solutions
of the Painlevé VI equation (see [1,7]) and Garnier systems (see [5]). But they have
also been used to understand relations between transcendental solutions.

1.1. The most classical case is the quadratic transformation of the Painlevé VI
equation (see [12,19,22,26]). We consider a deformation t — (E,, V,) of a rank 2
connection on P! with simple poles at (x;, x5, X3, x4) = (0, 1, t, ©). At a pole x;, we
consider eigenvalues 6}, 6 of the residual matrix and call exponent the difference
0;:= 61 — 6?2 (defined up to a sign). To be concrete, if all 6} + 62 =0 and the
connection is irreducible, then E, is the trivial bundle except for a discrete set of
parameters (see [3]) and the connection is just defined by a two-by-two system.
If moreover exponents satisfy 8, =60,, =1/2 then after lifting the connection on
the two-fold cover

Pl > Pl X— X2
we get a connection (E?, ﬁto) having 6 simple poles at
X=0, £1, £/t and «

(see Figure 1).

Those two poles at ramification points X =0, « have now integral exponents
and therefore scalar local monodromy —I. These singular points are “apparent”,
i.e. can be erased by a combination of

e a rational gauge (i. e. birational bundle) transformation,

o the twist by a rank 1 connection.
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1
]P5E

NI~ 8

0
1

exp: = 0, 0,
2

F1G. 1. QUADRATIC TRANSFORMATION’S COVER

This can be done taking into account the deformation, and we get a new defor-
mation t— (E,, V,) of a rank 2 connection with 4 simple poles ¥==1 and £+t
on the Riemann sphere PL. This new deformation is clearly isomonodromic if the
initial deformation was. Taking into account the exponents, we get a rational two-

fold cover
1

t> E
between moduli spaces that conjugates isomonodromic foliations. The map Quad is
called quadratic transformation of the Painlevé VI equation.

1 2:1
Quad: #o4(3, 01,00 5) — Moa(61, 01,6, 6)

1.2. When exponents satisfy 6, =6; =6, =1/2, we can iterate twice the map
(after conveniently permuting the poles) and we get the quartic transformation
11 1\ 41

E: E: eh E) - ‘//10,4(913 GtJ Gt’ Gt)

Finally, if we consider the Picard parameters 6, =6; =6, =6,, =1/2 for Painlevé
VI equation, we can iterate arbitrary many times the quadratic transformation.
There is also a cubic transformation in this case (see [22]).

QuadoQuad: ./ 4 (

1.3. For Picard parameters
(1111
(90) 91; 9[‘5 900) - (25 27 9° 2)
of Painlevé VI equation, one can modify the construction above as follows. Con-
sider now the elliptic two-fold cover ramifying over the 4 poles of (E,, V;)

b Xe = {y2 = x(x—1(x—0)} = PL;  (x,y) > x

and lift-up the connection on the elliptic curve. After birational gauge transforma-
tion, we get a holomorphic connection (E,, V,) that generically split as the direct
sum of two holomorphic connections of rank 1. This means that, for these param-
eters, Painlevé VI solutions actually parametrize isomonodromic deformations of
rank 1 connections over a family of elliptic curves. This allow to solve this very
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special element of Painlevé VI family (originally found by Picard) by means of
elliptic functions (see [11,15,20]). By the way, we get a birational map
1111 ~
//50,4(57 5293 5) — /ﬂl,o
that commutes with isomonodromic flow.

1.4. This map has been extended to Lamé parameters in [16,17] as a birational

transformation
Lamé: Mos(5, 5, 3, 02) —> M11(20..—1)
. 0,4 229792 Y® 1,1 4]
also commuting with isomonodromic flow (see Figure 2).

exp: 1 11y
P33 3

FIG. 2. LAME’S COVER
1.5. In [10], a 2-fold ramified cover commuting with isomonodromic flow
111111 2:1
//50,6(5, 57509099 5) — Mo
has been constructed by lifting connections on the hyperelliptic cover
2:1
Prsit Xose = (V2 =x(x—Dx—r)(x—s)(x—)} — P (x,y) > x

(see Figure 3).

X
o111 11
&p- 5 3 2 2 2 2

FiG. 3. GENUS 2 COVER
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1.6. However, for higher genus g > 2 hyperelliptic curve, the similar map

Mozgiz (30 3) = Mg

has small image: not only the deformation upstairs is reduced to the hyperelliptic
locus (having codimension g —2), but even for a fixed hyperelliptic curve, the
image has codimension 2(g—1) in the moduli space of connections.

2. RESULTS

In this note, we classify all “interesting” maps that can be constructed between
moduli spaces like above, using ramified covers of curves. Let us explain.

Let (X, DV, E, V) be a logarithmic rank 2 connections and ¢ : X — X be a ram-
ified cover. Let D? denotes the set of critical points of ¢ while DV denotes the set
of poles of V; they will be not disjoint in many cases. Consider now the universal
deformation t — (X,, D,) of the marked curve (X, D) where D is the union of
D? and DV. There is a unique local deformation t — (X,, D,, E,, V,, ¢.) where
t— (X, DY, E,, V,) is isomonodromic, and t— (X,, D, V,) is topologically trivial
(we just deform the critical locus D[ ). Fibers of the map t — (X;, DY) are algebraic
deformations, so-called Hurwitz families.

The main remark is that the lift to X, of the connection:

t— (Et: et) = ¢): (E, Vo)

is isomonodromic along the deformation. By applying rational gauge transforma-
tion and twisting with a rank 1 isomonodromic deformation, we may assume that
(E., V) is an isomonodromic deformation of logarithmic sl,-connexion, free of
apparent singular points. In fact, this is possible whenever V, has an essential
singular point, i. e. with monodromy. Let D, be the (reduced) polar divisor of ¥V,
after deleting apparent singular points. Last but not least, assume that

e the connection (E,,V,), or equ1valent1y (E,,V,), has Zariski dense monodromy,

o the deformation t — (X,, D,, E,, V,) induces a locally universal deformation

t— (X,, D,) of the marked curve.

These are the so-called “interesting” conditions. The second item means that
we get a complete isomonodromic deformation after the construction. We thus get
a complete parametrization of a leaf of the isomonodromic foliation. All examples
listed in Section 1 are examples of such constructions. It is easy to construct many
examples where all conditions but the last one are satisfied. However, the last
condition, saying that we get the complete deformation, is so hard to realize that
we are able, in Section 3, to classify all examples. This is our main result in this
note. Besides the known examples, we have the following three new cases.

2.1. Let s— X, ={y?=x(x—1)(x—s)} the Legendre family of elliptic curves
and let t — (E;, V;) an isomonodromic deformation of a rank 2 connection with
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F1G. 4. RULED DEFORMATIONS VIA UNCOMPLETE ELLIPTIC COVER

N =

poles located at x =0, 1, t, ». More rigorously, we should say ¢ — (E,, V,) where f
belongs to the Teichmiiller space, given by the universal cover T —P.\ {0, 1, o}
in this case, and t denotes the projection of  on P\ {0, 1, ©}. Now, assume that
exponents of V, take the form
(60, 61, 6, 0.) = (5. 3.6.3).

Therefore, after lifting on the elliptic curve, we get a connection with 3 apparent
singular points and two copies of the singular point at x =t. By gauge transfor-
mation, we finally get a connection (Es,t, %s,t) with only two simple poles, but to
get a sl,-connection we need to shift one of the two exponents (see Figure 4). We
finally get a rational map
11,51
222’702

Each isomonodromic deformation thus obtained is parametrized by a combina-
tion of a Painlevé VI solution (variable t) and a rational function (variable s). We
get a 2-parameter space of such tame isomonodromic deformations; they form
a codimension 2 subset in .#;,(0, 6 —1), the image of the map above, which
is saturated by the isomonodromic foliation. The leaves belonging to this set are
ruled surfaces parametrized by a Painlevé transcendent. One should recover the
Lamé case of Section 1 by restricting the isomonodromic foliation to the locus s =t.
We postpone the careful study of this picture to another paper.

]Pslx‘//l()A( 6 ) —>//11’2(9,9—1).

2.2. Consider now the family of genus 2 curves given by
(5,0) =» X, = {y? =x(x—1D(x—s)(x—t;)(x—t3)}, s€C, t=(t;,t;) €C?
together with the hyperelliptic cover (see Figure 5)
st Xse = PL o (x,y) > x.

Let t — (E,, V,) be an isomonodromic deformation of a rank 2 connection on P}
with poles located at five among the six critical values, namely x=0, 1, ty, t,, .
Assume that all exponents of V, take the form 0,=6, =60, =6, =0, =1/2.
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F1G. 5. RULED DEFORMATIONS VIA UNCOMPLETE HYPERELLIPTIC COVER

After lifting the connection to the curve X;,, deleting apparent singular points
by gauge transformation, we get a sl,-connection on X, with a single apparent
singular point located at x = . This provides a rational map

1 1
P} x //50,5(57 s E) = M1 (1)

conjugating isomonodromic foliations. Here, the only singular point is apparent
and it is not possible to delete it. We can just choose to place it at x = oo; it is irrel-
evant for the deformation. Again, isomonodromic deformations obtained by this
way are parametrized by rank 2 Garnier solutions ((t;,t,) variables) combined
with a rational function of s. Again, the corresponding leaves of the isomon-
odromic foliation are uniruled and form a codimension 2 set.

2.3. Finally, consider the Legendre family t; — X, = {y*=x(x—1)(x —t;)}
of elliptic curves and let t = (t1, t) — (E;, V;) an isomonodromic deformation of
arank 2 connection with poles located at x =0, 1, t{, ty, ©. Assume that exponents
of V, take the form

111 1
(90: 91: Qtl: 0[2, 900) = (E: E; 55 9: E)

After lifting and applying gauge transformation, we get a sl,-connection on the
elliptic curve X, with two simple poles over x =t, having same exponent 6. This
gives us a rational map

111 1
<I>9: \%0,5(5’ E; E’ 9’ i) - ‘%1,2(63 6)

conjugating isomonodromic foliations (see Figure 6). We study this map from the
topological (i. e. monodromy) point of view in Section 4 and deduce

Theorem 2.1. The map ®4 is dominant and generically two-to-one.

In other word, almost all rank 2 logarithmic connections with two poles on an
elliptic curve is a pull-back of a rank 2 logarithmic connection on P!; in particular,
such connections are invariant (up to gauge equivalence) under the hyperelliptic
involution permuting the two poles. This construction can be thought as inter-
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Fi1G. 6. THE TWO PUNCTURED TORUS

mediate between the genus two case and the Lamé case of Section 1. This is
a reminiscence of the hyperelliptic nature of the twice-punctured torus.

2.4. Classification. We prove in Section 3 the following

Theorem 2.2. Let t— (X,, D,, E, V,) be an isomonodromic deformation of log-
arithmic sl,-connections. Let qbt X, — X, a family of ramified covers. Assume that
the pull-back deformation t — (X,, D,, E,, V,) after deletlng apparent singular points
is locally universal, i. e. the corresponding map t — (X,, D,) is locally surjective. In
particular, the deformation has dimension = 3 - genus(X,) — 3 + deg(D,). Then we
are in one of the following cases.

e The monodromy of V, (or equivalently ¥,) is finite, reducible or dihedral.

o The deformation t — (X,, Dy, E;, V,) is actually trivial, and we get an algebraic
isomonodromic deformation by deforming ¢,. Up to gauge transformation, we
are in the list of Doran [7] or Diarra [5]. In particular, (X;, D, E;, V) is a rigid
hypergeometric system (X, =P!, deg(D,) =3) and deg(¢,) <18.

e The deformation t— (X, D;, E,, V,) is non trivial, X, =P', deg(¢,) =2 or 4,
and we are in one of the constructions described in sections 1.1, 1.2, 1.4, 1.5,
2.1,2.2 and 2.3.

2.5. Complement. In the last section, we complete the picture of Section 2.3
when 6 =1/2 by constructing a rational map

v //112(1 1) — Map

that conjugates isomonodromic foliations. In order to explain, consider the “bi-

elliptic cover”

~ Ty
Xet > X,
1,42 2

.

X, — P!

¢ x
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Fi1G. 7. BI-ELLIPTIC COVER

where ¢;: X; > P! is the elliptic two-fold cover branching over x=0, 1, t;, ®, for
i=1,2, and the remaining part of the diagram is the fiber product of ¢; and ¢,.
In particular, th,tz has genus 2 and each 7;: th,tz — X; is a two-fold cover branch-
ing over the two points ¢;1(t;) (where {i, j} ={1, 2}). By the way, ¢: befz — Pl
is a 4-fold cover ramifying over all five points x =0, 1, ty, t, .

The map @4 of Section 2.3 comes from the elliptic covering 7t;, while the map ¥
above, from ¢ in the bi-elliptic diagram. In Theorem 5.2, we characterize the

image of ¥ and
1

Yod;: .//10,5(%, ey E) - -/ﬂg’o
2
in terms of the monodromy representation. Mind that, contrary to the previous
constructions, we do not get complete isomonodromic deformations (of holomor-
phic sl,-connections on genus 2 curves) but isomonodromic deformations over
the codimension 1 bi-elliptic locus in the moduli space M, ;.
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This last construction was inspired by [18], where isomonodromic deforma-
tions of dihedral logarithmic sl,-connections are constructed in .#;5(1/2,1/2)
as direct image of rank 1 holomorphic connections on the bi-elliptic cover X, ,,.

3. CLASSIFICATION OF COVERS

Here, we follow ideas of [5, 6], replacing connections by their underlying orb-
ifold structure a la Poincaré.

Let ¢: X — X be a ramified cover where X is a genus g hyperbolic orbifold
with n singularities of order 2<v; <...<v, < (i.e. having angle a; =27/v;).
Pulling-back by ¢, we get a branched orbifold structure on X: orbifold points
have angle a@ =27k /v where k is the branching order of ¢ (i.e. ¢ ~2¥) and

e v=v; over i" orbifold point of X,

e y=1 over a regular point.

Denote by g the genus of X, and by b the number of branching points on X.

The volume of X with respect to the orbifold metric is given by

aire(X) = 2n(2g—2) +Z n(2m—a;);
i=1
we get the analogous formula for X with respect to the pull-back metric (even
if a; need not be < 27) and aire(X) =d - aire(X) where d =deg(¢). This yields
(after division by 27)

d-(2g—2+znl:(l—%)) < 2§—2+an:(1—%)—b. )
i= j=

If branching points are simple (with branching order 2) then we get an equality.

We want to classify cases for which, by deforming simultaneously X and ¢, we
get the local universal deformation of X. The dimension of the deformation space
of X is given by 3g—3+n =0 (positivity follows from hyperbolicity). For X, since
we are more involved in the differential equation than in the orbifold structure, we
do not take into account the branching points in the deformation, and dimension
is given by 3¢ —3 + 1. The dimension of deformation of the ramified cover ¢ is
given by the number of “free” critical values (outside orbifold points) and thus
bounded by b. We thus want

3g—3+n+b=>3g—3+n0. @
On the other hand, it is reasonable to ask
0<3g—3+n<3g—3+n 3

first because equality 3g —3 +n =0 corresponds (in the hyperbolic case) to hy-
pergeometric (g, n) = (0, 3) that was treated in [5,6]; right inequality just tells us
that we are looking for reductions of isomonodromic equations. Throughout the
paper, we will also ask d = 2 not to deal with trivial covers.
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Let us first roughly reduce (1) combined with (2). In view of this, let us denote
by v=v, the maximum orbifold order (that might be infinite). Then

S-1)s e (o)),

i=1 !

By the same way, we have

We thus get
d—2 ~. n 3,1
— a—2 Tcdl2+1)=
(2d—3)g+ 3 n+g+v\d(2+v) 2. 4)
In fact, we have implicitly assumed n # 0. In the case n =0, we automatically
get 1=0 and inequality becomes (2d —3)g + g < 2d — 2; however, we must have
2 < g < g (hyperbolicity and growth of genus by ramified covers) that gives us

(2d —2)g < 2d —2, contradiction.

3.1. First bounds. From the classical Riemann — Hurwitz formula, we neces-
sarily get g=>g. After (4), we thus get

(2d-2)g<d(3+1)-2<2d-2.

Therefore, we promptly deduce g < 1. But when g=1, the rough inequality (4)
must be an equality, yielding g=g=1 and thus (still following Riemann — Hur-
witz formula) n=n=0 and b=0. This case is however non hyperbolic. We can
therefore assume g =0 from now on. In particular, n = 4 from (3), and in case n =4,
hyperbolicity implies v = 3.

We can also assume that either v < d, or v= . Indeed, as soon as v>d, all
points of the fiber ¢~1(p,) are orbifold; we can therefore modify the orbifold
structure of X, replacing v by o, without modifying the numbers n and n of
orbifold points, and thus without changing dimensions involved in our problem.

Assume v= . Then (4) gives

d—2 ~ 3d
- = < -
5 n+g 5 2
and thus

n—2—§ n—2
< <
d<2t =5 <2l=2

n
Since d = 2, we promptly deduce g <1, and more precisely, we are in one of the
following cases:
e d=2, g<1 and n arbitrary,
e d=3,g=0andn=4or5,
e d=4,g=0and n=4.
In particular, we get d <4 in this case.
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Assume v=2; in this case, n =5 because of hyperbolicity. Then (4) gives
n ~ 1 ~ 1 _2n
d(3-2) <n-2-g-J <n-2-g-L1 <2

where right inequality follows from (3) 3g+7n = n. This gives us

4 n—3
< Z.
d 3 n—4
(because n=5) and therefore d =2. Taking into account (4), we get

<3

g+ <2
This gives us the following possibilities:
e g=2and n=0,
e g=landn<2,
e g=0and n<4.
Assume finally 3<v<d. Then (4) yields

n 1 1 ~ n n v—3~
n_ _2)<n—2—5-ggp—o_Y—2
d(2 2+2 v) n—2-¢ v n—2 v v 8

where right inequality again follows from (3) 3g+7n>n. We deduce
(n—2)vy—n
(n—3)y—2"
For each n> 4, right-hand-side is an increasing function of ¥ with asymptotic
n—2
n—3
when v — «. Since v < « here, we get d <3 and thus d =2; by the way, v<d <2
and this case is empty. For n =4, right-hand-side is 4 whatever is the value of .
Taking into account (4) for n=4 and d =3, 4, we get

e g=1,n=1 (and v=3),

e g=0and n=4.

d<2

2 <3

3.2. Degree d =2. Here, ¢ branches over 2g + 2 points; recall that g <2. At
any orbifold point p;, except when v; =2 and ¢ branches over p;, we can assume
v; = oo, In other words, we have say

e n; points with v; =2 over which ¢ branches,

e n,=n—n; points with v; = (over which ¢ needs not branching).

In the case v=2, i.e. n=n; and n, =0, we have already seen that g <2, and
thus n < 2g + 2 < 6. By hyperbolicity, we must have n =5 and we get only two
possibilities: X is an orbifold with 5 or 6 conical points v; =2 and ¢: X — X is
a genus g =2 branching over all conical points. We get examples of sections 1.5
and 2.2 respectively.

Let us now assume n, 70 and thus v=c. Coming back to (1) more carefully,
together with (2), we get

n+2n,+g <2+n
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but since n=n; +n,, we finally get
ny +§ < 2.

Using hyperbolicity assumption (and n = 3), we find the following solutions:

e g=1,n,=1and 3<n; <4,

e g=0,n,=2and n; =2.

In the first case, we decompose

e n, =4, ¢ branches precisely over these 4 points and =2,

e n; =3, ¢ branches over these 3 points and one free, and =2,

e n, =3, ¢ branches over 4 orbifold points and n=1.

We respectively get examples of sections 2.3, 2.1 and 1.4. In the second case,
¢ branches over the two orbifold points of order 2 and n =4 and we get example
of Section 1.1.

3.3. Degree d =3. We can assume orbifold points of 3 types:

e v;=2 and ¢ branches at the order 2 over this point; therefore, the preimage
consists in one regular point (critical for ¢») and a copy of the orbifold point.

e v, =3 and ¢ branches at order 3 over this point; therefore, the preimage
consists in one regular point (critical for ¢).

e y;=o and ¢ is arbitrary over this point; the preimage consists in 1, 2 or 3
copies of this point.

Denote by n,, n3 and n., the number of these points respectively, n,+ns;+n.=n.

A combination of (1) together with (2) yields (with above notations)

g+n+n, =g+n,+ns+2n, <4

This gives us n =4 and g =n, =0. But in this case, the only orbifold points
up-stairs have order 2 and there are at most 4 such points. This contradict hy-
perbolicity assumption.

3.4. Degree d =4. We can assume orbifold orders of 4 types:

e v;=2 and ¢ branches at least once with order 2 over this point; then the
preimage consists of one regular point (critical for ¢) and either a second
one, or two copies of the orbifold point.

e v;,=3 and ¢ branches with order 3 over this point; then the preimage con-
siste consists in one regular point (critical for ¢) and a copy of the orbifold
point.

e v;=4 and ¢ branches with order 4 over this point; then the preimage con-
siste consists in one regular point (critical for ¢).

e ;= and ¢ is arbitrary over this point; therefore, the preimage consists in
1, 2, 3 or 4 copies of this point.

Denote by n,, ns, n4 and n., the number of these points respectively,

n2+n3+n4+nm =n.
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A combination of (1) together with (2) yields (with above notations)
~ n
g+n,+2n5 +2n, +3n, + ?2 <6

(here, 71, is the number of orbifold points of X over the n, points of order 2). By
hyperbolicity, we get n =4 and, when n=4, at least one of the orbifold points is
not of minimal order 2, yielding n+n, +n3+n,=5.

Assume first n,, # 0; then, inequalities allow the only possibility n =4 with
(ny, n3, n4,n,,)=1(3,0,0,1), g=0 and 1, =0. We get the quartic transformation
for Painlevé VI (see Section 1.2).

Let us now assume n,, =0. Recall that we want 3g—3+n=3g—3+mn,+n;>1
if n=4 and =2 if n=>5. From these inequalities, the only possibility is n =4
with (n,, ns, n4, n,,) =(3,1,0,0), g=1 and n, =0. The covering ¢ branches only
over the 4 orbifold points, is totally ramified at the order 2 over the 3 points
of order 2 and has a single order 3 branching point over the point of orbifold
order 3. Its monodromy, taking values into the symmetric group X4, is generated
by 3 double-transpositions (ij) (kl), {i, j, k, [} ={1, 2, 3, 4}, whose composition has
order 3. However, in 4, double-transpositions form a group (together with the
identity) and cannot generate an order 3 element: such a cover does not exist.

4. FROM THE FIVE-PUNCTURED SPHERE TO THE TWICE-PUNCTURED TORUS

Fix distinct points 0, 1,t, A, » €P!, and consider the elliptic cover
¢: X = {y*=x(x—Dx-}>PL  (xy)—x;
denote by {t;, t5} := ¢ ~1(t) the preimage of the fifth point (mind that we change
notations). The orbifold fundamental group of P\ {0, 1, t, A, «} is defined by
T = (70, 71, oo Tas Yoo | ToN1¥eNaTw =18 =72 =73 =72 = 1).

On the other hand, the fundamental group of the twice punctured torus X; \ {t;, to}
is given by _
I':= (a, ﬁ) 51; 52 | aﬁ = 51ﬁa52>'

The elliptic cover induces a natural monomorphism ¢, : T-r identifying T with
an index two subgroup of I': the subgroup generated by y; and words of even
length in letters yq, 11, Y2, Y- In fact, a careful study of the topological cover yields
Lemma 4.1. The morphism ¢, is defined by
¢ () =¥1Y Tas
¢*(/3) = ?A : ?oo,
¢>k (51) = ?t:
$.(82) = Voo v v
One easily check the compatibility between relations defining T and T.



RAMIFIED COVERS AND TAME ISOMONODROMIC SOLUTIONS ON CURVES 263

Proof. If peP'\ {0,1,t, A, »} denotes the base point used to compute the
fundamental group on the sphere, denote by p and p’ the two lifts on the elliptic
curve. For i=0, 1, A, «, the loop y; lifts as paths (half loops)

e ¥;: from p to p’,

e ¥/ from p’ to p.

On the other hand, the loop ¥, lifts as loops

e 7. based at p,

e 7/ based at p’.

Then, carefully drawing the picture, we get

a=1-Y T

B =77

51 = rft:

62 = :)\;oo Yt/"),ozl
We check that these loops indeed satisfy aff =6, ad, by using relations

Yiryi=1 fori=0,1,A,
and those which lift as yy0y; 0y;:07; 07, =1 namely
TooriotiomaoY, =1 and Fpoyiof/oyzo¥s =1.

We get the result by projection on P}. O

Lemma 4.2. The unique elliptic involution of X, that permutes t; and t, acts as
follows on the fundamental group:

ae—al, B, e

We note that the relation aff =6, a0, is indeed invariant by the involution.
Proof. We have to take care that the base point p is not fixed. In fact, the
involution permutes p and p’ and acts on ¥; lifts as follows

Y=y, fori=0,1,t,A, .
In particular, if we denote
{ a =YY
B =73 Yo
then involution acts on these loops as
a—a and f — f’.

We bring back these new loops to the base point p by conjugating (for instance)
with ¥,,, which gives us

ae Yo d ¥ BV BT, e Ve VTR
We thus get §; «— &, and, by a direct computation, using relations between 7;
and ¥/, we check that a <= a™! and 8 1. O
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In order to prove Theorem 2.1, it is enough to prove that the map ®4 is domi-
nant, generically two-to-one. By the Riemann — Hilbert correspondance, it is equiv-
alent to work with the corresponding spaces of monodromy representations. Let

us denote by %, the space of monodromy representations for %, s (%, %, %, 0, %) :
MoM;M,M;M.,, =1
'%9:: (MO:MDMDMA:MOO)ES]—Q(C)S; tr(Mi):O fOI'i:O,l,),,OO /N:
tr(M,) =2cos(m0)
where the equivalence relation ~ is the diagonal adjoint action by SL,(C) on
quintuples. Recall that, in SL,(C), we have

tr(M) =0 & M2=-]
and the corresponding PSL,(C)-representations are actually representations
' — PSL,(C).

On the other hand, consider the space %, of monodromy representations for the

space /#;,(0, 0)
_ AB = D,BAD,
Ro = { (A, B, Dy, D) € SL,(C)*%; [~.

tr(D,) = tr(Dy) = 2 cos(nH)

The natural map ¢3: %y — %, induced by ¢+ is described by
Corollary 4.3. We have ¢3(My, My, M,, M, M..) = (A, B, D1, D,) with

A = M MMj,
B=M,M.,
Dl = Mt)

Dy = M MM

Proof. From Lemma 4.1, we know that AB==+D;BAD,; we just have to check
that we have the right sign, and thus a representation

71 (X \ {t1, t2}) — SL,(C)

and we must have tr(D,) =tr(D,) =2 cos(n8) (=tr(M,)). O
We now want to prove that the map ¢;: Zg — Ry just defined is generically
one-to-one. This follows from the
Theorem 4.4. Let A, B, D1, D, € SL,(C) such that

AB = DlBADz and D17 Dz 7é +].

Assume moreover that the subgroup (A, B) generated by A and B is irreducible, i. e.
without common eigendirection. Then there is a matrix M € SL,(C), unique up to
a sign, such that

MAM™'=A"!, MBM~'=B"'! and MD,M~!=D,.
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Moreover, M?=—I and (A, B, D1, D;) = ¢% (Mo, My, M;, M, M...) for

M, = —AM,
M, = ABD;'M,
M, =D,

M, = —BM,
M<>o =

First recall well-known results concerning SL,(C).

Lemma 4.5. Two matrices A, B € SL,(C) generate a reducible group if, and only
if, tr[A, B] =2 where [A, B] = ABA™'B~! is the commutator.

Proof. If A and B have a common eigenvector, then we can assume <A, B>
is triangular and the commutator will be a unipotent matrix, thus having trace 2.
Conversely, assume that A and B have no common eigenvector. Therefore, an
eigenvector v for AB will not be eigenvector for A or for B. If ABv =yv, then in
the base (v, —yBv), matrices take the form

_fa -1 (0 1)y
A_(l 0) and B_(—Y b)’

where a =tr(A) and b=tr(B). We check that

_[(a®+b*+y*—abc y*(a—by)
a8 = (7R °

and thus
tr([A, B]) = a>+b%>+c?—abc—2, c=y+y~! =tr(AB).
Finally, these matrices A and B have a common eigenvector if, and only if,
a’?+b%>+c?—abc—2 = 2. O

Lemma 4.6. Let A, B, A’, B’ €SL,(C) and assume tr[A, B] # 2. There exists M €
€ SL,(C) such that MAM~' = A’ and MBM~' =B’ if, and only if, tr(A) =tr(A"),
tr(B) =tr(B’), tr(AB) =tr(A’B’).

Proof. This is a consequence of formulae from the preceding proof. O

Corollary 4.7. If tr[A, B] # 2, then there exists M € SL,(C), unique up to a sign,
such that MAM~'=A"! and MBM~'=B~1. Moreover, M2 =—1I.

Proof. It suffices to notice that tr(A) =tr(A™!) and tr(AB) =tr(BA) for all ma-
trices A, B€ SL,(C). We deduce, under our assumptions, that

tr(A) = tr(A™Y), tw(B) =tr(B™1), tr(AB) =tr(A~'B7).

Therefore, there exists an M satisfying the first part of the statement. But M? has
to commute to A and B. Thus M? must fix all eigendirections of all elements of the
group (A, B). There are at least three distinct such directions and M? is projective-
ly the identity: M? ==I. But M = %] is impossible since MAM 1 =A"1#A (A#=+I
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otherwise (A, B) would be reducible). Thus M? #1 and M? =—I. If matrices A
and B are given in the normal form like in the proof above, then M is given by

y2—1 a—by
M=% 21 2y . ®)
ay=b  y*-1
2 2y

O

Proof of Theorem 4.4. We want now to prove that the unique (up to a sign)

matrix M satisfying MAM~! and MBM™! also satisfy MD;M~! =D, and thus
MDy;M~'=D; (M?=—I). From relation AB =D,BAD,, this is equivalent to

AB = D,BAMD,;M~! < (BAMD,)?>=—I < tr(BAMD,) = 0.
Rewrite the relation AB=D;BAD, into the form
[A, B] = D;BAD,A'B™! = D,D} with D} = (BA)D,(BA)™".
Note that
(BAM)? = BAMBAM = BAB"'A~'M? = —BAB~1A~! = —[A, B]"!

and therefore (BAM)?D; =—(D5)~! and tr((BAM)?D;) + tr(D,) = 0. Now, recall
that in SL,(C) we have universal relations

tr(M; M) +tr (M M5 1) = tr(M;y) - tr(M,).
Applying this to M; =BAM and M, =BAMD;, we get
0 = tr((BAM)?D;) +tr(D;) = tr(BAMD,) - tr(BAM).

But, tr(BAM) # 0 otherwise (BAM)?=—[A, B]"'=—1, i.e. [A, B] =1, that would
contradict irreducibility. Thus tr(BAMD;) =0, what we wanted to prove. Finally, we
easily check that matrices M; given by the statement are indeed inverting preceding
formulae of Lemma 4.3 by using relation AB=D;BAD, and properties of M. [

5. BIELLIPTIC COVERS

Let us now assume 6 =0 and rewrite

~ [A, B] = C,Cy
‘%1/2 = {(A, B’ Cl: CZ) € SLZ(C)4; } ~

tr(Cl) = tr(Cz) =0
where we have modified generators of the fundamental group for convenience:
Cl = Dl and C2 = (BA)_1D2 (BA)

This is the monodromy space of those connections on the elliptic curve X, having
logarithmic poles with exponent 1/2 at t; and t,. Let us now consider the 2-
fold ramified cover m: X, ; — X, ramifying over t; and t, and let us study the
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associated map 11
T*: .//ll’z(i, E) - %2,0

on the monodromy side of the Riemann — Hilbert correspondence. Denote by
R = {(A1,B1, A1, By) € SLy(C)*;  [Ay, B1l[Ag, Byl =1}/~

the space of monodromy representations associated to .#;,. Then we get a map
71 R/ — R’ which is given by (see also [18]).
Lemma 5.1. We have *(A, B, C1, C;) = (A4, By, A1, By) with

A=A,
B, =B,

A, = C1AC,
B, = C{'BC;.

Conversely, we can characterize the image of ©* as follows
Theorem 5.2. Let Al: Bl: Az, B2 S SLZ (C) such that

[A1, B1][Az, Bo] = 1.
Assume that there exists a matrix M € SL,(C) such that
MA,M~' = A,, MB,M~'=B, M2?=-I.
Then (A4, B;, Ay, By) =1*(A, B, Cy, C,) for

A:Al)
B =By,
CIZM’

Cy = M7'[A;, B1].

If moreover tr[A;, B;]#2 then (A4, B, Ay, By) is in the image of mo ¢, i.e. comes
from a representation of the 5-punctured sphere.

Remark 5.3. From Lemma 4.6, we see that existence of M is almost equiva-
lent to tr(A;) =tr(A,) =:a and tr(B;) =tr(B,) =: b. To apply the Lemma, we just
need to prove that the two traces c; := A;B; coincide for i =1, 2. But the relation
[A1, B1][A,, B,] =1 implies that the two commutators are inverse to each other,
and thus share the same trace. By the commutator trace formula in the proof of
Lemma 4.5, we get (c; —c,)(c; + ¢y —ab) =0. The image of * has codimension 2
in Z’. We also see that generic fibers of 71* consist in 2 points.

Remark 5.4. If we fix A; and B; generic, we obtain:

(1) the set {M €SL,(C); M?=—I and M conjugates [A,, B;] to its inverse}
has dimension 1,

(2) the set {A;, B;, M~'.A;.M, M~'.B;.M} has also dimension 1 up to conju-
gacy.

Thus we can freely choose (A, B;) in the image of 7*.
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[TOCBAMEHUE

ABTOpBI TOCBAMAIOT 3Ty paboty HOmuio CepreeBudy VITbAIIEHKO, KOTOPHII SB-
JieTca AJA Hac IPUMepOM 3aMeydaTebHOTO PYKOBOAMUTEA HaydyHOU mIKobl. OH
BHUMATEJIbHO CJIEJUT 33 KaXKAbIM U3 CBOUX YYE€HUKOB, YMeJO HAIyTCTBYET U Ha-
MpaBJIAeT UX MO XU3HKU. HaM MocyacTIMBIUIOCh OKYHYThCA B Z0OpyIo aTMochepy
aTol 1IKoiel. [0 celi IeHb HAC CBA3BIBAIOT HE TOJIBKO MOJIE3HbIE B3aUMHO obora-
IIarolyie HaydyHble KOHTAKTHI, HO U MCKpPEHHe Jpy)Keckue OTHolleHusA. C orpoM-
HOM 6J1aTOJapHOCTHIO BCIIOMUHAIOTCS BBICTYIUIEHMS Ha ceMuHape y FOmus Cep-
reesuuya B MI'Y, ero xejiaHue MOHATb U JOHECTU A0 ayAUTOPUU pe3yIbTaThl JO-
kiazumka. Korza nMesnach BO3MOXXHOCTb, OH BcerZia Iocelan Hallu JOKJaJbl
Ha KOH(}epeHIUAX U ceMUHapax, NoA6aZpruBal CBOMMU METKUMU 3aMeYaHUIMU.
Xouercsl HafesAThCsA, YTO U BIpeAb HANIM HAy4Hble U JKU3HEHHBIE IyTH OyZAyT
HMeTb MHO)XeCTBEHHEbIe IlepeceyeHuUs .

BBEZEHUE 1 ®OPMVYJIMPOBKA PE3VJIbTATOB

B cwty TecHO! B3aMMOCBSI3M MEXJY AMHAMHYECKON CUCTEMOU U eé ¢hyHkuyuetl
JIanynoea (HempepbiBHOM GyHKIMeEH, He Bo3pacTarolieii BZIob TPAeKTOPHi CHUCTe-
MbI), KaueCTBEHHOE MOBEeIeHNEe CHUCTEMbI BO MHOTOM OIIPEAENAETCI CTPYKTYPOM
eé ¢yukuuu JiamyHoBa. Oco6eHHO CHIBHO 3TOT 3GQeKT MpOsABIIeTCs B CIydae,
KOIZla cucTeMa obJaziaeT aHepzemuueckoll yHkyueil, TO eCTb TIaAKol GyHKIMeEH
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Pa6ora BbINIOJHEHA IIpy GUHAHCOBOH moazepxke Poccutickoro poHza GyHAaMEHTaNIbHBIX UCCIIe-
poBaHui (rpantsl 13-01-12452-o¢u-m, 15-01-03687-a) u Poccuiickoro HayyHoro ¢oHza (rpaHT 14-41-
00044). B gaHHOII Hay4HOM paboTe KCIONB30BAHbI PE3yAbTAaThl MPOEKTa «/[MHAMHYECKUE CHUCTEMEI
U VX IPWIOXKEHUA», BEIIOJHEHHOIO B paMKax [IporpaMmsl ¢yHZaMeHTaIbHBIX HcclefoBaHuil HITY
BIIIS B 2015 1.



272 B.3.TPUHEC, M. K. HOCKOBA, O. B. [IOYMHKA

JlarmyHOBa, MHOXXECTBO KPUTHYECKUX TOYeK KOTOPOU COBIIaZjaeT C LIeIIHO peKyp-
PEHTHBIM MHOKECTBOM cHUCTeMBI. KpoMe Toro, GyHKIMSI — 06bEKT MHOTO Gosee
VAOOHBIN [T M3y4YEHUsI, YeM OJHOTIAPaMETPUYECKOE CEMENCTBO OTOOpaKEHUM
MHOr006pa3usi, I03TOMY eCTECTBEHHO BCTA&T BOIIPOC O CyIIeCTBOBAHUY SHEPreTH-
yeckol QYHKINU Yy AUHAMUYeCcKoH cucreMbl. Hanvmuume ¢yHKIMY JIanyHoBa Y JIio-
601t AuHaMUYeCcKol crcTeMsl okasaHo K. Komnu [3] B 1978 r., aToT dakT 6bLT Ha-
3BaH M03Xe GpyHAaMEHTATbHOM TEOPEMOI JUHAMUYECKUX CUCTEM (CM., HATIpUMeED,
[20, Teopema 1.1, c.404]). CyuiecTBOBaHUE 3HEPTETHYECKON QYHKIMU Y JIIOOOTO
TOTOKa ciefyeT u3 pab6othl B. Bumbcona u [ix. Mopke [24]. Kackaap! saxe c pe-
T'Y/SIPHOM AWHAMUKOM He 06/1aai0T B 00IeM CIydae SHEPreTUIeCKor GpyHKIMeH.
Takue mpumeps! mocTpoeHsl B paborte [I. [TukcroHa [14], a Takxke B.3.T'puneca,
®. Jlayaenbaxa, O.B.Ilounnku [6], B mociaegHell Takke HaWAEHBI AOCTATOYHBIE
YCJIOBUA CYIIeCTBOBAHMSA dHepreTrdeckoi ¢yHkmu Mopca i TpEXMepHBIX Kac-
kazoB Mopca — Cmetina. Tem 6osiee yAUBUTENbHBIM ABJIsETCA GaKT HATUIYSA SHEP-
reTu4eckod GYHKIUYM Y HEKOTOPBIX AMCKPETHBIX JUHAMUYECKUX CUCTEM C XaOTH-
YeCcKUM TIOBeZIeHNeM, JOKa3aHHBIN B HacTosMel paborTe.

Bonee getanbHo. Iycts f € Diff' (M) — C-rnagxuit suddeoMopduam 3aMKHYy-
TOro n-MepHoro (n = 2) MHoroobpasus M, cHaG:kEHHOTO0 HEKOTOPO PUMaHOBOM
MeTpukoit d. MHOXecTBO A C M, NUHBapHaHTHOe OTHOCUTENBbHO f, HasblBaeTcA
eunepbonuueckum, eciu orpanudenue TyM kacarenbHOro paccioeHus TM MHO-
roo6pasua M Ha A MOXHO IIpe/ICTaBUTh B BUZle CyMMbl YUTHU E @ EY\ df -uHBapu-
aHTHBIX ogpaccaoenuit E3, EY (dim ES +dim EY =n, x € A) U CyIIecTBYIOT TaKHe
koHctaHThl C; >0, C, >0, 0<A <1, yTo

ldfm™ ()| < CA™Mlv||  ana v € E3,
lldf 7™ )| < C,A™||v|| mna v € EY, m> 0.

T'unepbosnyeckass CTPYKTypa MOPOXKAAET CYIeCTBOBAaHUE TaK Ha3bIBA€MBIX
ycmotliuugblx U HeEYCcmoluugblX MHOTOOOpasuii, KOTOphle OOBEAUMHAIOT TOYKH
C OJJMHAKOBBIM ACHUMIITOTUYECKUM TIOBEJIEHUEM IIPU TOJOXKUTENbHBIX M OTPUIIA-
TeJIbHBIX COOTBETCTBEHHO uTepanusx [10,22]. /st 060kt TouKu X € A CyIIeCTBY-
eT MHbeKTHBHad UMMepcusa J3: R® — M, obpas xotopoit W = J:(R®) Ha3biBaeT-
¢ ycmotiuusbiM MHO2000pasuemM mouku X, TaKas YTO BBITIOJTHSAIOTCA CIEAYIOIINE
CBOMCTBA:

(1) LW =E3;
(2) Toukwu x, y € M mpuHaAJIE)KAT OAHOMY MHOTOOGpasuio W (x) Torga u Toib-
ko Torzga, korga d(f™(x), f*(y)) — 0 mpu n — ;
(3) fFW3) =W
(4) ecm x, y €A, To mubo W =W, mbo W NW; =&;
(5) ecnu Touku x, y € A 61usku Ha M, TO W, WyS Cl-61u3Ku Ha KOMIAKTHBIX
MHOKeCTBaXx.
Heycmoiiuusoe mHo2000pasue W' Todku x € A ornpezesAeTcs KaK yCTOHIMBOe MHO-
roo6pasue oTHOoCUTeNbHO guddeomopdusma 1. HeycToiumBble MHOrOOOpasys
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061aJa10T aHaJIOrMYHBIMU cBoicTBaMu. C yuéToM cBoiicTBa (3) yCTOMYMBBEIE U
HEYCTOMYMBbIE MHOTOO6PAa3usl Ha3bIBAIOTCI UHBAPUAHMHBIMU MHO2006DA3UAMUL.

Touka x € M Ha3sbIBaeTcs Hebyncoarowlell, eciu s Jr0O0H €€ OKpeCTHOCTU
U(x) u moboro HarypanbHOro uncia N Hahaércsa ng € Z, |ng| = N, Takoe 4To
fM(x) € U(x). MHuoxecTBO Hebaykzaromux todek aubdeomopdusma f OGyzem
obosuavath yepes NW(f). ludpdeomopdusm f ydosnemaopsem axcuome A (vnu,
YTO TO JKe caMoe, ABjsieTcsa A-Ouddeomopdusamom), eciu MHOkecTBO NW (f) -
mepbovecKoe U mepruogndecKre TOYKH BCIOAY IUIOTHH B NW (f).

Cwmeiin [23] gokasai ciefyrolee yTBepKaeHNe, U3BECTHOE KaK meopemd o cnek-
mpansHom pasnonceruu. Ilycts guddeomopdusm f € Diff' (M) yzosreTBopser
akcuome A. Torga mMHoxecTBo NW(f) mpencraBisfieTcsa B BUZe KOHEYHOTO 0OB-
€IMHEHUS IONAPHO HEIEPeCEeKaIoIUXCs 3aMKHYThIX MHBAPUAHTHBIX MHOXKECTB
A4, ..., Ay, HA3BIBAEMBIX OA3UCHBIMU MHONCECMBAMU, KAKIOE U3 KOTOPHIX COZep-
JKUT BCIOZAY IUIOTHYI0 op6uTy. [Ipu 5TOM 06BeMIIIONEe MHOTO06pasre M MOXKHO
Ipe/ICTaBUTh CJIEAYIOMINM 00pas3oM:

k k
m=w; =Uwi.
i=1 i=1
rae
wi=Ume mowp=Jwe
XEN; XEN;

BasucHoe MHOXXeCTBO Ha3bIBAETCS HEMPUBUAIbHbIM, ECJTU OHO He SIBJISIETCS TTepPU-
O[INYECKOM OpOUTO# (B YaCTHOCTH, HE SIBJISIETCSA HEIOABUKHOM TOYKOI).

B cwly TpaH3UTHBHOCTH f Ha KaXJ0M 0a3MCHOM MHOXECTBE /\;, OTpaHUYEHUs
paccioenuti E5 o E}(i Ha A; UMEIOT IIOCTOSHHYIO Pa3MEPHOCTb BO BCEX TOUKAX X € A;.

KoMmmakTHOe f-MHBapuaHTHOEe MHOXXeCcTBO A C M Ha3bIBAaeTCs ammpakmopom
mubdeomopdusma f, eci OHO UMEET TAKyH0 KOMITAKTHYIO OKPECTHOCTh Uy, UTO
f(Ua)CintUy 1 A=(") 50 f¥(Ua). Peneanep onpesesnsieTcs Kak aTTpakTop Ans f 1.

B cuy [16], 6asucHoe MHOXKeCTBO A auddeomopdrama [ ABIsIETCS aTTPAKTO-
poM (pemesuiepom) Torza u TONbKO TorAa, korsa A=|J ., W4 (A=, ., WE).

ArtpakTop A A-muddeoMopdusma f Ha3BIBAETCA pACMAUBAIOWUMCA AMMPAK-
mopom, ecyiu ToIoJIornyeckas pasMepHocTs dim A paBHa pa3MepHOCTH HEYCTOH-
yuBoro MHoroobpasua WY, x € A. Penetep auddeomopdusma f HasbiBaeTcs
CHCUMAIOWUMCSA, ECITA OH SIBJIAETCA PACTATUBAIOMIUMCS aTTPAKTOpOM Ayt f L.

JiBa zuddeomopdusma f, g € Diff! (M) Ha3EIBAIOTCA MON0N02UUECKL CONPANCEH-
HbIMU, €CJTH CYIIeCTByeT roMeoMopdusM ¢ : M — M TakoH, 4To @ o f =go .
Juddeomopduam f € Diff' (M) HasbiBaeTCa cmpyknypHO YCmOUuUBbIM, €CIIH CY-
IIecTByeT Takasd ero okpectHocts U(f) C Diff! (M), uTo mo6oit auddeomopdusm
g€ U(f) conpsxkén f. Eciu moTpeboBaTh, YTOOBI COTPATAIOIINI TOMEOMOPYU3IM
6bUI GIM30K K TOXIECTBEHHOMY B C°-TOIOJIOrHMH, TO MOIyIUM ONPEeAeeHNE 2py-
6020 muddeomopdusma. Termeps U3BECTHO, YTO TIOHATHUS «TPYOOCTH» U «CTPYKTYP-
HOM YCTOHYMBOCTH» SKBHUBAJIEHTHBI, XOTS J0Ka3aTENbCTBO 3TOTO GaKTa BecbMa
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HeTpuBHAIBHO (cM. 0630p [1], rme o6CcyKAar0TCsA pa3TuYHbIE OIPEAEIEeHHs U CO-
OTBETCTBYIOIINE PE3Y/IBTATHI).

[Tpu GOPMYIUPOBKE YCIOBUM CTPYKTYPHOU YCTOMYUBOCTH OGOJIBIIYIO POJIb UT-
paeT yCJIOBHeE, KOTOPOe Ha3bIBAIOT CHJIBHBIM YCIOBHEM TpaHCBepCcalIbHOCTH. [TycTh
W;, W, C M — iBa UMMeEPCUPOBAHHBIX MHOT000PAa3Hsi, UMEIOIINX HEITyCTOE Mepe-
ceueHue. Ilo onpezenenuro, Wy, W, nepecexaromcsa mpanceepcanbHoO, €CIU AJid
moboit Touku x € Wy N W, KacaTenbHOe mpocTpaHcTBO T, M TopoXkgaeTcs Kaca-
TeJbHBIMU noAnpocrpancTsamu T, W; u T, W,. B yactHOoCTH, eciu Wy, W, niepece-
KaloTcsa TpaHcBepcanbHo, To dim T, W, +dim T, W, = dim T, M.

ToBopAT, uTo A-guddeomopdusmM yoossemeopsiem CUNbHOMY YCA08UI MPAHC-
8epCanbHOCMU, €U 1A MOOBIX Touek X,y € NW(f) muorooGpasusa Wy, Wit
HMMEIOT TOJBKO TpaHCBepcalbHBIE IepecedeHus. M3BectHo [11,19], uto guddeo-
MOPOU3M CTPYKTYPHO YCTOWYMB TOTZA W TOJNBKO TOTZA, KOTZAA OH SBJAETCA
A-mndpdpeomMopdr3MOM U YAOBIETBOPAET CUIHBHOMY YCIOBUIO TPAHCBEPCATBHOCTH.
HeobGxoauMocTs gokasan Mase [11], zocTtaTouHocTh — PoGuHCoH [19].

B HacTos1Iel paboTe paccMaTpruBaeTcs Kiaace G CTPYKTYPHO YCTOMYMBBIX Aud-
dbeomopdusamoB Ha 3-MHOTOO6pa3uu f: M — M, HebMy:Karoliee MHOXECTBO KO-
TOPBIX COZEPKUT ABYMEPHBIU pacTATUBalouuiica aTTpakTop (2. B sTom ciydae
(cMm. mpeaoxxenue 1) MmHOroo6pasue M audbdeomopdHo TpEXMEPHOMY TOPY U at-
TpakTop {2 — eIUHCTBEHHOE HETPUBUAJIbHOE 6a3UCHOEe MHOXKECTBO AubdeoMop-
¢usma f. [JTaBHBIM pPe3y/IbTaTOM HACTOSAIIEH pabOTHI ABJAETCSA CIeAYIOIUN GaKT.

Teopewma 1. /[ns 06020 dugppeomopdpusma fEG cyujecmayem aHepzemuueckast
PyHkyus, asrsarowascs gynkyueil Mopca sHe 6a3ucHo20 MHoxcecmaa €.

§ 1. IUHAMUYECKUE CBOWCTBA U®PEOMOP®U3MOB KJIACCA G

B 3TOM pasziesie Mbl U3JIOKUM HEOOXOAUMYIO IS TOKA3aTeIbCTBA TEOPEMBI 1
nndpopmanuio o guHamuke audpdeomopdusma f € G, ciexysa pabore [7]. 3ame-
THM, 49TO BCe pe3y/bTaThl paboTel [7] chopmynrpoBaHbl Al MHOTOO6pa3us pas-
MEPHOCTH N 2 3 M ciIy4as, Korga ) SBIsSeTcs OPUEHTUPYEMBIM Ga3UCHBIM MHOe-
creom!. OpHako B paboTe [25] Z0KasaHO, 4TO B Clydae HEYETHOrO n GasHCHOE
MHOXECTBO () fIBJISETCS OPUEHTUpPYeMBIM. [103TOMY Be3dze Hinke, GOPMYIUPYA
BBDKMMKY Pe3yabTaToB paboTsl [7] aia ciaydas n =3, Mbl He TpeGyeMm OT £ Jo-
MTOJTHUTENBHO OBITh OPUEHTHPYEMBIM.

[lyctp f € G 1 Q) — ABYMEPHBIA pacTATUBAaOMUNACA aTTpakTop Auddeomop-
¢usma f. Torza dim Wi =1 ana mo6oit Touku x € 2, 4TO MO3BOJIAET BBECTH 000-
3navuenue (z, y)* ([2, y]®) Ans oTKpeITOH (3aMKHYTO#) AYyTH YCTOHYMBOTO MHOTO-
obpasua WS, orpaHuueHHOM ToYKaMu y, 2 € W.

! BasucHOe MHOXECTBO A HA3HIBAETCA OPUCHMUPYeMbLM, €CIIU I OGO TOYKH X € A U MOGHIX
uxcupoBaHHBIX 4ucen a >0, f> 0 uHAekc mepecedenus W, (x) N W[;,‘ (x) Bo Bcex ToYKax mepece-
YyeHUs oAuH U TOT ke (+1, 6o —1). B mpoTUBHOM ciiyyae Ga3MCHOE MHOXECTBO A Ha3bIBAETCA
Heopuenmupyembvim (CM., Hapumep, [9, c. 622]).
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MHOKeCTBO W)f\x COCTOMT U3 ZIByX KOMITOHEHT CBSA3HOCTU. XOTS OBl OfIHA U3
9TUX KOMIIOHEHT MMeeT HeIlycToe IlepecedeHre ¢ MHoOxkecTBoM (2. Touka x € ()
Ha3bIBAeTCA S-2PAHUUHOLL, €C/IH OZIHA U3 KOMIIOHEHT CBA3HOCTU MHOXKecTBa WS \x
He IepecekaeTcs ¢ (2, 6yzeM 0603Ha4aTh TaKylo KOMIIOHEHTy depe3 W:2. MHo-
XKeCTBO [ 'paHMYHBIX TOYEK MHOXeCTBa {) He IIyCTO Y COCTOUT U3 KOHEYHOIO
YHCIa TIEPUOANYECKUX TOYEK, KOTOPhIe pPa3OUBAIOTCSA HA ACCOUUUPOBAHHblE TIAPEI
(p, q) Touek OAWHAKOBOrO I€pPUOAA TaK, YTO 2-c8A3KA B,, = Wpu u Wq“ ABJISIETCS
JOCTYKMMOM M3HYTPH IPaHULEN ? KOMIOHEHTHI CBA3HOCTH MHOXecTBa M \Q.

s xaskzoit mapsl (p, q) acCOIMMPOBAHHBIX IPAHUYHBIX TOYEK MHO)KeCcTBa {2
IIOCTPOUM TaK Ha3bIBaeMYIO Xapakmepucmuueckyio cdepy.

ITyctsb B, — 2-CBA3Ka aTTpakTopa £, COCTOAMLIas U3 ABYyX HEYCTOMYMUBLIX MHO-
roobpasuii Wp“ u Wq“ aCCOLIMMPOBAHHEIX I'PAHUYHBIX TOYEK P U § COOTBETCTBEH-
HO, U My, — IIePHOJ ToYeK p, q. Toraa aa moboi TOUKH X € Wp“\p CyllleCTByeT
€IVHCTBEHHAadA Takad TOYKa y € (Wq“ N W), uaro ayra (x,y)° He mepecekaeTca
¢ MHOXXecTBOM §2. OTpeeiM oToOpaskeHre

&pq: Bpg\{P, q} = By \{p, q},

nonoxus &,,(x) =y u &,q(y) =x. Torna
gpq(VVpu\P) = un\q u gpq (un\q) = VV;\p;

T. €. oTOOpaxkeHue & ,; MepeBOAUT APYT B pyra IPOKOJIOThIE HEYCTOWYMBEIE MHOTO-
06pasus 2-CBSI3KH U ABJIAETCSI WHBOMonMeH (& gq =1id). B cuty TeopeMbl 0 Helpe-
PBIBHOI 3aBHUCHMOCTH MHBApUAHTHBIX MHOT0OOODA3uii Ha KOMIIAKTHBIX MHOXe-
cTBax oTobOpakeHue &, ABNAETCA rOMeOMOPGU3MOM.

Orpanuuenue fMa |w;; VMeeT POBHO OZIHY TUIIepOOINIECKYIO OTTATKUBAOLIYIO
HEeTIO/JIBIDKHYIO TOUKY P, TIO3TOMY CYIIEeCTBYeT TaKOW IMIaJKUM 3aMKHYTBIM 2-AUCK
D, CW}, uto p €D, Cint(f™(D,)). Toraa MHOXeCTBO Cpq = Uxeapp (x, &pg (2))°
roMeoMOpQHO 3aMKHYTOMY AByMepHOMY LmuHzApy S! x [0, 1]. MHoxecTBO Cpy
Ha3BIBAIOT CEA3bLEAIOWUM YUAUHOPOM. OKPYKHOCTb & (0D, ) orpanndunsaetr B Wy
ABYMepHbI 2-1ucK Dy Takoi, uTo q € D, Cint(f™4(D,)). MHOXeCTBO Sy =D, U
U Cpq UD, romeoMopdHO AByMePHOM chepe, KOTOPYIO Ha3hIBAIOT XAPAKMepucmu-
ueckoil cepoil, COOTBETCTBYIOIEeH cBAsKe By, (cm. puc.1).

[Monoxum T(f) =NW(f)\Q u ocHOBHBIE JHHAMHYECKHE CBOicTBa Auddeo-
Mopdusma f € G chopMmyaupyeM B BUAE MPeIOKEHUA (CM. pUC. 2 AJISA JYIILIETO
ITOHMMAaHUA).

pepnoxenne 1. I[Iycms f: M — M — duppeomopdusm uz knacca G. Toeda
umerom mecmo caedyroujue paxmut:

2Iycte G C M — OTKpBITOE MHOMXKECTBO ¢ TpaHuuel 9G (9G = cl(G)\ int(G)). IMogMHOXeCTBO
6G C 9G HaseiBaeTcs: docmuxcumoll usHympu epauyell obractu G, ecnu i 060N TOYKH X € 6G
HAWAETCS OTKpPHITAst Ayra, MOJHOCTHIO Jiexkaas B G U Takas, YTO X sIBJISETCS OAHOM M3 €€ KOHI[EBBIX
TOYEK.
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Puc. 2. [lvra [,

obBemmowee MHo2006pasue M zomeomopdro mpéxmepromy mopy T3 [7,
TeopeMma 5.1];

Ka)x/lasd XapaKTepUCTUIecKas cpepa S, orpaHuuuBaet 3-map Q,, TaKOH,
gro T(f) C U(p,q)crn Qpq [7, Teopema 5.1];

[UIS1 KQKIOM acCOIMUPOBaHHOM naphl (p, q) rPaHUYHBIX TOYEK CYILIECTBY-
eT HaTypajbHOe YHuciIo k,, Takoe, 4To T(f) NQ,, cocTouT U3 kj,, mepu-

OMYECKNX NCTOYHUKOB A, ..., akpq u kpq — 1 ceanoBBIX TMIEPUOANIECKUX
TOYE€K O, ..., O'kpq_l, YepeayrIimxca Ha HpOCTOI‘/)I ayre [7, cjlecTBUE 52]
kpg—1 k

— WsD 3.
g =Ws2U | w3 ul Jws uwsz;
i=1 i=1
nepecedenre W} NQ,q, i=1,..., kpq —1, coCcTOUT B TOYHOCTU U3 OZHOI'O
JBYMepHOTO AucKa [7, Teopema 4.1].
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§ 2. CYIIECTBOBAHUE DHEPTETUYECKOU ®YHKIIUU
B BACCEMHE OZJHOMEPHOTI'O ATTPAKTOPA
FPAZIUEHTHO-IIO/IJOBHOTO 3-AN®®EOMOPO®U3MA

B 5TOM paszesie Mbl IPUBOAUM pe3y/bTaThl paboThl [5] u kuuru [8], Kacarou-
ecsi KPUTEpUsI CyLECTBOBAHUA dHepreTndeckoit GpyHKImu B HacceliHe ogHOMEp-
HOT'O aTTPAKTOpPa I'PafUeHTHO-TI0A00HOTO 3-Anddeomopdusma.

B 1978 r. K. Koy [3] zmokasan cymiecTBoBanue dyHkuuu JIAmyHoBa AJs 060-
ro moroka (kackaza), 3aZJaHHOTO Ha IVIaJKOM 3aMKHYTOM OPHUEHTHPYEMOM N-MHO-
roobpasuu N, TO eCTb HENpePhIBHOM QYHKIMH, KOTOpas CTPOro yOBIBaeT BJOJb
OpOUT BHE LIETTHO PEKYPPEHTHOI'O MHOXKECTBA U IIOCTOSTHHA Ha KOMIIOHEHTAaX 3TO-
ro MHOecTBa. s auddeomopdusmos Mopca — CMeiina® 1ienHo pekyppeHTHOe
MHOKECTBO COBITIaZIaeT C MHOXKECTBOM MEPUOAUIECKUX OPOUT, TaK YTO B ITOM CITy-
yae TpeZCTaBJIsIeTCs eCTECTBEHHBIM McKaTh yHKIMIO JIamyHoBa B Ki1acce ¢yHK-
it Mopca. B 1977 r. [I. [lukctoH [14] onpegenun ¢yHKIuO JIAmyHoBa A gud-
deomopduszma Mopca — Cmeiina g: N—N kak oyHkuuio Mopca ¢ : N—R, Takyto
910 ¢ (g(x)) < ¢ (x), ecnu x — 6aykgatomas Touka, 1 ¢ (g(x)) = ¢ (x), ecnu x —
mepuoAndeckas Touyka. Takasd GYHKIUA MOXET OBITh MOCTPOEHA, B YaCTHOCTH,
¢ MOMOIIBI0 TTepexoia K HaJCTpOiKe Haj 3agaHHBIM auddeomopduzmom Mop-
ca— Cmeiina 1 JanbHERIITUM TPUMEHEHNEM pe3y/IbTaToB paboTsl K. Meitepa [12],
MIOCTPOUBIIETO dHEpPreTryecKyo ¢yHkunio Mopca — BoTTa /i pOU3BOJBHOTO
notoka Mopca — Cmeiina.

Ecmu ¢ —oarto oyukuua JlanyHoBa A audpdeomopdusma Mopca — Cmeitna
g: N — N, 1o mobasi meprogudeckas TOYKa [3 ABISAETCI MaKCHUMyMOM OTrpPaHU-
YEeHHA ( Ha HEyCTONMBOe MHOroobpasne Wy ¥ MUHMMyMOM OTPaHMMYEHHSA @
Ha ycToiunBOe MHorooGpasue Wj. EC/ 3Th SKCTPEeMyMBI ABJAIOTCS HEBBIPOXK-
JEHHBIMM, TO WHBapUaHTHbIE MHOro00pa3us TOYKU [3 TpaHCBepCAaJbHBI BCEM
Pery/lsApHBIM MHOXKeCTBaM YPOBHSI (¢ B HEKOTOpOH okpecTHocTH Up Touku f3.
®yukiusa JisnyHoBa ¢ : N—R ana audpdeomopduzma Mopca — Cwmetina f: N—N
HasbIBaeTcsa gyHkyuell Mopca — JIsanyHosa, eciy aobas meprogudeckas Touka f3
SIBJIIETCA HEBBIPOXKAEHHBIM MaKCUMyMOM (MHHMMYMOM) OTpaHUYeHUs ¢ Ha
HeycToiumBoe (ycToitunBoe) MHOroobpasue wg (W,;).

Cpeau ¢yukumii JianyHosa ana auddeomopdusma Mopca — Cmeidina g GyHK-
1uu Mopca — JIamyHOBa 06pasyloT OTKPBITOE BCIOAY IUIOTHOE B C*-TOMOJIOTUU
MHOK€ECTBO.

Ecnu 8 — kputndeckas Touka GyHKImu Mopca ¢ : N — R, To, COIJIacHO JieMMe
Mopca (cm., Hanpumep, [13]), B HekoTopoit okpectHoctu V() Touku B cyiue-
CTBYET JIOKaJbHasg CUCTEMa KOOPAWHAT X, ..., X,, Ha3blBaeMasi KoopouHamamu

3 Tudpdeomopduam g: N—N HaseBaeTes duddeomopdusmom Mopca — Cmeting, ecim ero HeGIyx-
Jaroiee MHOXKeCTBO NW (g) COCTOMT U3 KOHEYHOTO YKC/Ia THUIEPOOTNIECKUX TIEPUOAMIECKHX TOUEK
(NW (g) =Per(g)), nHBapuaHTHBIE MHOT0OO6pa3Ks KOTOPHIX IlepeceKaloTCss TPaHCBEPCATIBHO.
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Mopca, Taxas uTo x;(p) =0 a4 Kaxxzgoro j=1,n u ¢ uMeeT BUZ
— 2 24,2 2
e(x)=pB)—x3—...—xg+ x5, +...+ X7,

rae b —ungexc* Touku . Ecnmu ¢ — dyHkiys JianyHoBa A aubdeomopdusma
Mopca— Cwmetina f: N — N, To, B cuy [14], as 110601 IepUOANIECKOM TOUKH
/3 € Per(g) BrmONHAETCA paBeHCcTBO b=dim Wj'.

Ecnmu ¢ — dyskius JisnyHoBa ansa auddeomopdusma Mopca — CMeiina g, To
nmobas mepuoanvdeckas Touka auddeomopdusma g ABMAETCA KPUTUUECKOH TOY-
Kol oyHKIMU . ObpaTHOe, BooOIIe rOBOPs, HeBepHO: GYHKIMA JIAITyHOBA MO-
JKET UMeTb KPUTUYECKUE TOYKU, KOTOPble He ABJIIIOTCA NePUOAUIECKIMH TOYKa-
mu ans g. [.[uxcron [14] ompenenun anepeemuueckyro gynkyuio ans aubdeo-
Mopoduzma Mopca — Cmeiina g kak ¢pyHKIuio Mopca — JISIIyHOBA (0, MHOXKECTBO
KPUTHUYECKUX TOYEK KOTOPOH COBIAZaeT C MHOXKECTBOM IIepUOJMYECKUX TOYeK
muddemopousma g. OH fokazai, 9to aoboit gudpdeomopdusm Mopca — Cmeiina,
3aZlaHHBIM Ha IMOBEPXHOCTH, 00JIaZlaeT SHEPreTUIeCKON QYHKITMEN, OHAKO CyIIe-
crByer npumep auddpeomopdusma Mopca — CMeiiia Ha TpéxmepHoi cdepe S3,
He UMeoIIero sHepreTrndeckor pyHkuuu. B pabore B. 3. 'puneca, ®. Jlayzenbaxa,
O. B.Tlouunku [4] gokasaHo, uto dyHKIWA JIAMyHOBa B IpuMepe [IMKCTOHA UMe-
eT He MeHee IIeCTH KPUTUYECKUX TOUeK.

Hanomuuwm, uro suddeomopdusm Mopca — Cmeitia g: N—N Has3bBaeTcs 2pd-
OueHmHo-no006HbIM, eCITH 1A 000 Taph! neproadeckux Touek B, v (B #y) us
yCJIOBUA W/;‘ nwg # @ cnepyer, uyro dim WﬁS <dim W;. Crenyrolee onpeseseHne
BbIJIEJISIET IS TPaZIieHTHO-TTOZI00HBIX ArddeomopdraMoB kaace yrkimii Mopca —
JIAmyHOBA C ZIOTIOJHUTENbHBIMUA CBOMCTBAMH, aHAJOTUYHBIMU CBOHCTBaAM (YHK-
i, BBeg€HHBIX C. CMeittom [21] a1 rpagneHTHO-TIOA0OHBIX BEKTOPHBIX IIOJIEH.

®dyukuusa Mopca — JIAMyHOBA ( A TPaZieHTHO-TToA06HoT0 Anddeomopdus-
Ma g HasbIBaeTcsA camouHdekcupyrelics IHepzemuueckoll yHkyuell, eIy BBITIOI-
HAIOTCS CJIEAYIONTNE YCIOBUSA:

1) MHOXXeCTBO KPUTHYECKUX TOYEK (QYHKIIMU ( COBIIQ/IaeT C MHOXXECTBOM
Per(g) nepuoanyeckux Todek Auddeomopdusma g;
2) ¢(B)=dim W' ana mo6oii Touxu f3 € Per(g).

3aMeTuM, YTO MOHATHE QYHKIMU JIAMyHOBAa KOPPEKTHO OIpeZeNIeHO Ha JIo-
60M g-WHBapUAHTHOM ITOAMHOXeCTBe MHOroobpasus N.

Crenyromye pacCMOTPEHHUA OTHOCATCS TOJIBKO K TPEXMEPHBIM MHOTO0OPA3UAM.

[lycts g: N — N — rpagueHTHO-IOA00HbIH Auddeomopdusm, Lt (Q1) — moa-
MHOXXECTBO MHOXECTBA BCEX CEJIOBBIX TOYEK C OZHOMEDPHBEIMU HEYCTOMYMBLIMU
WHBAapHAHTHBIMH MHOT006pasaMHU (CTOKOBBIX TOYeK) U MHOXKecTBO At=WE UuQ™*
SIBJISIETCS 3aMKHYTBIM U g-MHBapuaHTHbIM. Torga A' sABjsieTcs aTTpakTopoM Aud-
deomopdusma g. Muoxecrso Wi, =| J pre(ruar) We+ ABIAETCA g-MHBAPHAHTHBIM

4 Mndexcom kpumuueckoti mouku 3 Ha3LIBAaeTCA YMCIO OTPHUIATENBLHBIX COBCTBEHHBIX 3HAUEHHUl
e (p).
X; 0X;

MaTpuIbI 3
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U HasblBaeTcs bacceilHom o0HomepHozo ammpakmopa At. Obo3Hauum udepes ct
YHCIO0 KOMIIOHEHT CBSI3HOCTH aTTpakTopa A, uepes rt — uuciio ceAsioBeIx TOUEK
U depe3 st —umcio cTokoBhix Touek B A'. IMomoxkum 6(A*T) =ct +rt —st. Ar-
TpakTOp A1 Ha3bIBAETCS MeCHO BJ103CeHHbIM, ECIIU OH 00aJjaeT OKPECTHOCTHIO
P* co ciefyomuMu CBONRCTBaMMU:
1) g(P*)Cint Pt
2) P gBiasercs AU3BIOHKTHBIM OGBbeMHEHUEM CT pydYeuHBIX TelI°, CyMMa
POZIOB KOTOPHIX paBeH & (A™);
3) Ana moboii ceanoBoil Toukn ot € Xt mepeceuenne WS, NP* cocrouT U3
OZIHOTO JByMEPHOI'O WCKa.

Ipeanoxenue 2. CamouHdeKcUPYIOWAsCS IHepeemuueckas PyHKUUs P+ ougd-
peomopdusma g cywiecmeyem e bacceiine Wy, ammpakmopa A* moz0a u mosvko
moz0a, K020a OH S8JIIEMCSL MECHO BJONCEHHBIM.

TecHo 8n0JceHHDbL penessiep A~ TpaaueHTHO-TIoZo6GHOTO Auddeomopdusma
g: N —> N u ero 6acceiiH OIpeAENAOTCS KaK TECHO BJIOXKEHHBIM aTTpakTop AT
u ero 6acceitn A guddeomopdusma g L. Tpu sToM GYHKIUA Q- (x)=3—p 4+ (x)
OyzeT caMOMHAEKCUpylolneiicsa ¢yuxkuuel aupdeomopdrsma g B GacceitHe pe-
nesuiepa A~.

B ymomsiHyTOM TIprMepe [TMKCTOHaA HeGiyxzaaroumiee MHOXecTBO g: S° — S°
COCTOUT B TOYHOCTU U3 UYETHIPEX HEMOABMIKHBIX TOYEK: OFHOTO MCTOYHUKA d,
JBYX CTOKOB 7, Wy, OAHOIO ce/yia . OZHOMEPHEBIN arTpakTop AT aToro aud-
dbeomopdusma COBIAZAET C 3aMBIKAHUEM YCTOMYHUBOTO MHOTO00Opasus celjia o
u 6(A*) =0. IIpu atom 060t TPEXMEPHBIN mIap, cofep:kaiuii arTpaktop At
B CBOel BHYTPEHHOCTH, IlepecekaeT W He MeHee 4eM IO TPEM KOMIIOHEHTaM
cssHocTH (M. puc. 3). Takum o6pasom, aTTpakTop At He SBIAETCS TECHO BJIO-
JKEHHBIM W, B CHJTY MIpeAJOKeHus 2, B 6acceiiHe ofHOMEPHOTO aTTpakTopa [1ukc-
TOHA HE CYIIECTBYeT SHEPreTUIECKON GpYHKIINU.

Qe

Puc. 3. ITpuMEP [IMKCTOHA

5 Pyueunsim menom poda § >0 HaseIBaeTCs KOMITAKTHOE TPEXMEpPHOE MHOT00GpasHe C KpaeM, Mo-
JIy4eHHOe U3 3-IIapa MOIAapHBIM OTOXKZECTBJIEHHEM 285 JBYMEDHBIX I[IOIIAPHO HE IePeCeKarolIuXCs
JIVICKOB Ha TpaHMIle Iapa IIOCPeACTBOM MEHSOIET0 OPHUEHTAINI0 OTOOpaKeHUsA.
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§ 3. [IOCTPOEHUE DHEPTETUYECKOU ®YHKIIUU
A1 JTUO®OEOMOPO®U3MOB U3 KJIACCA G

JlokazaTenbCTBO OCHOBHOM TEOpeMbI 6a3UpyeTcs Ha peioxkenusx 1 u 2. Paso-
O6bEM IOCTPOEHUE SHEpPreTUYecKoW GyHKuMM Ana f € G Ha IIard, B KOTOPHIX
6yZeM UCIOIb30BaTh 0003HAUEHUS MPEAbIAYIINX Pa3/iesioB.

Ilar 1. [Tycts (p, g) — mapa acCOIMMUPOBAHHBIX TPAHUYHBIX TOYEK IepHoza
m,, 6asucHoro MHOXecTBa 2. [TonoxuM

my,—1 kpq—1 k,

A;q: U fj U W;iU U Woslf

Io IOCTPOEHMIO MHOXECTBO A ABJIAETCA peneiepoM Auddeomopdusma f u
o (A;q) = 0. [TokaxkeM, YTO OH SIBJIAETCSA TECHO BJIOXKEHHBIM. JIJIs1 3TOTO JOCTa-
TOYHO IIOKAa3aTh, YTO CyllecTByeT 3-map P TaKoH, 4to f~ Mra (Pp_q) CintP
¥ niepecederue P; N W[ COCTOMT B TOYHOCTU U3 OAHOTO ABYMEPHOTO AUCKA /I

J
kaxzoro ceana o, jE€{1, ..., k,,—1}.
B cuny nipeasnioxkenus 1, 3-map Q,, epecekaeT JByMepHOe HEYCTOMYMBOE MHO-
roo6pasue ceana o;, j €{1, ..., k,;— 1}, B TOIHOCTH 11O OAHOMY IByMEPHOMY

aucky. VickoMblid 3-11ap Pp_q nosydaeTcs us Q,, BAABIMBAaHUEM BHYTPb [JHCKOB
D,, D, u conaxvBaHueM YIJIOB (cMm. puc.4).

Puc. 4. OKPECTHOCTb Pp‘q

o u -

B cuwny nipeayiokeHus 2, B 6acceliHe A, Pemenepa Ap, CYLIECTBYeT CAMOMH-

JeKCUpyIomascsa aHepreTudeckas GyHKIUA @ - auddeomopdusma f. [Tomoxum
pPq

bpq = inf{(pA;q (2), z € W%q}.
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Omnpezenum GyHKIMIO g, (byg, 3] — (0, 3] creayromum obpasom: ecu by, >—,

TO ITIOJIOXKVM
@by )(3—x)  (B—bye)(—2)

&pq (x) =92 xby 3 Xbyg 5
a ecy b,; =—00, TO MOIOKUM
Gpq (X)) = 237%3%72,

ITo mocTpoeHuIo GpyHKIMA g,, ABIAETCA GECKOHEYHO IVIaZIKON U MMeeT IIOI0XKHU-
TeJIbHYIO ITPOM3BOJHYIO, TIPU 3TOM gp,(2) =2, g,4(3) =3 u limx_ﬂ,pq 8pq() =0.
— —_—
PaccMOTPUM CyNePIOSUIIMIO Ppg = gpq Pa- - TIOCKONBKY grad ¢, =g, grad ¢ A
U reccuanbl App, U Apy-4 CBA3aHBI COOTHOLIEHUEM
D

Appg = gpq - (grad 4 ) - (grad wa ) +81 - Apa
bynKIUA @, ABIAETCA SHEpPreTHYecKol QpyHkuuer Mopca a1a f B 6acceline WX;q.
[onoxum
A= a4 wi= U wy
(p,q) cTy (p.q) Ty

1 0603HaYMM 4epe3 Y- QYHKIMIO, COCTaBIeHHYI0 U3 QYHKIMIA ¢p,q, (P, q) C Iy.
OmnpezenyiM Ha MHOT006pasuu M GyHKIUIO ¢ bopMynoi

v(2) ={

Ilar 2. IlycTh d — puMaHOBa MeTpUKa Ha MHOroobpasuui M, a paccTosHUeE
MeX/ly MHOXXeCTBAaMU OIIpeZiesifieTcss Kak MTHOUMYM pacCTOSHUN MeXJy dJeMeH-
TaMM 3TUX MHOXXECTB, TO €CTh

VX,YCM d(X,Y)=inf{d(x,y):x€ X,y €Y}

pa-(2), ecmmz € Wi

0, ecmu z € Q.

s c € (0, 3] momoxum

a(c) =min{1,d?*(¢1(c),Q)} u [J’(c)=max{1, maggs]) |gradcp(x)|}.
xe€ ([,

[To moctpoenuto pyuxuuu a(c) u B(c) ABAAIOTCI HEMTPEPLIBHBIMY, TIPUYEM o (c) —
Hey6piBaroman Ha (0, 3] u cymectByer Takoe 3Hadenue c* € (0, 3], uro a(c) MoHO-
ToHHO Bo3pacTaer Ha (0, c*], a 8(c) — HeBo3pacTarommas. Toraa dyukiusa a(c) /B (c)
sABjIseTCA HeybbIBaromeii Ha nmoayunrepsaie (0, 3] u lim._,¢ a(c)/B(c)=0.
B mare 3 mMbI mocTpouM C2-mazkyio ¢yHrnuo g: [0, 3] — [0, 3] Takyro, uTo
a) g’(c) >0 ana moboro ce< (0, 3];
6) g(c)<alc)/p(c) mna moboro ce (0,1/2];
B) g'(c)<a(c)/B(c) pna moboro ce (0,1/2];
r) g(2)=2wug(3)=3.
[MokaXkeM, 4TO CYIEPIIO3UIUA ) = g\ ABIAETCA MCKOMOUN SHEPTreTHYeCKOM
byHKITHETH.
[MockonbKy grady =g’ -grad ¢ u reccuanbl AY ¥ Ay CBSI3aHBI COOTHOIIEHHUEM

Ay =g”-(grad ¢) - (grad )T+ ¢’ - Ay,
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TO GYHKIMS 1) ABJISETCS dHepreTUudecKol ¢yHkImel Mopca /i f Ha MHOXKECTBe
M\Q. TlokaxeMm, 94TO QYHKIMSA 1) ABIAETC IIaAKON Ha M.

Tak xak Ha MHOXkecTBe M\ QyHKIMA 1) SBIsSETCA IIaAKOM 110 MIOCTPOEHMUIO,
HaM OCTaJIOCh TIOKa3aTh, YTO GYHKIUA 1) — IaZiKkasd Ha MHOXecTBe (2.

PaccMOTpyM IIPOM3BOJIBHYIO TOYKY a € ) u JyokanbHyio Kapty (U,, h,), raoe
hg: U, = R® — nuddeomopdusm, oTobpaxkaromuii HEKOTOPYO OKPeCTHOCTh® U,
Touku a B R3, mpuuém Touka a mepexoaut B Touky O(0,0,0). CHavana IOKa-
xeM auddepenrmpyemocts. Ecmu dyukums ¢, = (h;1(x)) auddepenuupyema
B Touke O, To PyHKIUA Y AudpdepeHpyeMa B Touke a. [Ipu 3ToM yHKIUA
Y, mubdepeHunpyema B Touke O U UMEET YaCTHBIE TIPOU3BOZHBIE, PABHBIE HYJTIO
B 3TOH TOYKe TOT/Z]a U TOJIbKO TOTZA, KOTza

PO
A 6,00~

rae s(x, y, z) ER3 u p — eBrIMzOBa MeTprKa B R3, onpenenéunas Gpopmysnoi

p(s1,82) = \/(xl —x2)%+ (01— ¥2)? + (31— 22)?
i s1(x1, y1, 21), S2. (X2, Yo, 25) €ER3. TIpoBepka paBeHCTBa

i e _

im =0
s—0 p(s,0)

Y 3aBEPIIUT JI0Ka3aTeNbCTBO AubdepeHIINPYyEMOCTH.
Beeaém Ha R3 MeTpuky d, ciexyromum o6pazoM:

dq(s1,82) = d(ha_l (s1), ha_l (s2)) Amst sy, sy € R3.

B cuny [18] (sexuus 15), MeTpuKku p U d, SKBUBaJEHTHB B HEKOTOPOM KOMITaKT-
HoO# okpectHOCTH U(O) Touku O, TO €CTh CYIIECTBYIOT KOHCTAHTHI 0 < ¢j < Cy,
TaKue YTOo

Vs1,82 €U(0) c1dqa(s152) < p(s1,52) < cadqy (81, 82).
Jst s € U(O) monoxkum w =h;1(s) u c=¢(h;'(s)) = ¢ (w). Toraa
-1
lim Ye® _ P(h'(s)) y Yw) o sew))

s=0 p(s,0) 550 cid(h;'(s),a)  w—acd(w,a) ~ woacdw,a)

o g(c) . a(c) < T d*w,a) _ ..  dw,a) _
o ul;lina c;d(w, a) < uljlina B, dw,a) oy cd(w,a) ul;lgla cq 0.

Tenepb NOKaXeM, 9TO YacTHbIE IPOM3BOAHBIE (VY q)y, (Ya)y, (o), HepepbIBHBL
B Touke O, TO eCThb

lim () =0, m@) ) =0 u lim@)6) =0,

6 OkpecTHOCTB BEIGEPEM TaKHM 06pa3oM, 4ToGhI s BceX X € U, BEIIOMHATOCH ¢ (x) <1/2.
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YTO 9KBUBAJIEHTHO lim, _,; [grad v, (s)| =0. O6ozHa1nMm vepes Jy-1 Axo6naH 0To6-
paxenus h7!, yepes [|Jp-1 || — ero HOpMYy, OAYMHEHHYIO €BKIMAOBON HOPME BEK-
Topa B R, u 4epe3 B — TaKylo KOHCTAHTY, 9TO l7n2 ()|l < B Aanst Beex TO4EK s
B HEKOTOPO# okpecTHoCTH Touku O. Toraa

lim [grad 1, ()] = lim ;71 (s) - g'(c) - grad ¢ (w) <
< lim (171 ()] - 18" ()] - Igrad ¢ (w)] < lim B- [3( ) -|grad ¢ (w)| <

2
< lim B. LW

a4 | — T g2 _
Jim B g o)) |grad <p(w)|—ul}131aB d*(w,a) = 0.

IIar 3. Iloctpoenne ¢ynkumu g. [oaoxum y(c) = a(c)/B(c). ITo mocTpoe-
HUIO Y SIBJISIETCA TIOJNIOXKUTENbHOM HeyObIBatolel Ha moayunTepBaie (0, 3] dyHk-
et u lim._,o a(c)/B(c) =0.

[TocTpouM Takyio C2-rmaaxyio gyrkuuto g: [0, 3] — [0, 3], uto

a) g’(c)>0 ansa moboro ce (0, 3];
6) g(c) <y(c) pna moboro ce (0, 1/2];
B) g'(c) <vy(c) ana moboro c< (0,1/2];
r) g(2)=2wu g(3)=3.
B03bMEM OTKpPBITOE MOKPBITHE MotyuHTepBana (0, 3] MHOKeCcTBaMMU

Uy={xeR:1<x<3}, U2={x€R x<3},

1
2
<

1 =} i=45,.,

Us={xeRr:iz<x<3}, U={reRr:5<x<z3

U CIeAylolee JOKAIbHO KOHEYHOe pasOHeHue eMHUIBI’, IOAYMHEHHOE 3TOMY
TIOKPBITUIO:

exp{&}, ecm x € (1, 3);

O_Z(x) — (x—l)(x—3)
0, ecmm x ¢ (1,3);
_ [1=05(x), ecmx€(2,3];
O'l(x)_{o’ ecau x ¢ (2, 3];

7HyCTb JIaHO OTKPBITOE IIOKPBITHE TOIOJOIMYEeCKOIo IIPOCTpPAHCTBA M OTKPBITBIMU MHOXKeCTBa-
mu U,. Pasbuenuem eduHuysl, noOUuHEHHbIM nokpuimuto {U,}, Ha3piBaeTcss Habop mIagKux GpyHKIMI
oyt M — R, 0651aal0MKX CIEAYIONUMU CBOHCTBAMHU:

e A Beex v Supp(oy) C U, ansa HexoToporo a (rae Supp(oy) — 3aMbIKaHHe MHOKECTBA, Ha KOTO-
poM YHKIMSA OTIMYHA OT HYJIA);
e 0<o0, <1mHaM,;
e VYx €M umeem ZY o,(x)=1.
Ecimu a1 10608 Touku x € M CyIIecTBYeT Takas OKpecTHOCTb W, 4To mepecedeHue W N Supp(ay)
HEeIyCTO He 6oJsiee YeM /i KOHEYHOT'O YHC/Ia MHAEKCOB ¥, TO TaKOoe pa3breHNe eJMHUIB Ha3bIBAeTCs
JIOKAIbHO KOHEUHbLM.
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- (=5) | somre (25 22

Vi=4,6,... oi(x)=] (x—%)(x_%) 272 oid
0, ecnu x ¢ (%, %),
1—0, 1(x), ecmuxe [2%3 %)

Vi=3,5... 0x)=4 1—0u(x), ecnnxe(%,%);
0, ecm x ¢ (515, 355 )-

[onoxum & =y(1/272) ana Bcex i =3, 4, 5, ... IlycTb

5 2
Cy = f (Z giai(x)) dX, C3 = f (Z SiO'i(X)) dX,
J V=2 =3
3— 2—
T e
[ o1(x) dx [ 0200 dx
2 1

Omnpegenum GyHKIMIO g GopMysoi
f (Z 8iO'i(X)) dx, ecmuc € (0,3];
g(c) = 4 i=1

0, ecau ¢ =0,

Y TIOKa)KEM, YTO OHA ABJSIETCS MCKOMOI, TPOBEPUB YCIOBUS a)-T).
a) TlockombKy

©

g) =) 00,

i=i*
/
mosydaem, uto g’(c) > 0 ayst moboro c € (0, 3].
6) TloceIoBaTENBHOCTD {€;} HEBO3pACTAIONIAs TIO TOCTPOEHUIO. 3aMETHUM, YTO
st mo6oro c € (0, 1/2) cyimecTByeT eIUHCTBEHHBIN HOMEP ¥, TAKOH 4TO

1 1
ce (F F]
Torga 0(c) #0 u o;(c) =0 mna Beex i ¢ {i*, i* + 1}. 3 Bribopa mapaMeTpoB &;
[IOJIy4aeM ILIE[TOYKY HEPaBEHCTB

C C C
© © ©

gld) = f (Z siai(x)) dx = f (Z siai(x)) dx < f (Z si*oi(x)) dx =
0 0 0

i=1 i=i* i=i*
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C C

_— Of (i oi(x)) dx < & f (2 ai(x)) dx =

i=i*
0

C

1
=g J ldx =¢gpc < gp = Y(F) < 7(0).
0
B) Jlns g’(c) cpaBegivBa cieAyromias OleHKa:

)

g0 =Y 00 < e >, 0y(0) =& <7(0).

i=i* i=i*

r) 13 BBIGOpA €1, £, CITeAyeT, uTo g(2) =2 u g(3) =3.

BiarogapHocTU. ABTOPBI BBIP@XXAIOT OTPOMHYIO MpHU3HATeabHOCTh B. B. Unc-
TSIKOBY 32 Upe3BbIUaiHO MOJIe3HbIe 06CYKAEHMUS.
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Symmetric band complexes of thin type
and chaotic sections which are not quite chaotic

I. Dynnikov, A. Skripchenko

In a recent paper we constructed a family of foliated 2-complexes of thin type whose typical leaves
have two topological ends. Here we present simpler examples of such complexes that are, in addition,
symmetric with respect to an involution and have the smallest possible rank. This allows for constructing
a 3-periodic surface in the three-space with a plane direction such that the surface has a central symmetry,
and the plane sections of the chosen direction are chaotic and consist of infinitely many connected
components. Moreover, typical connected components of the sections have an asymptotic direction, which
is due to the fact that the corresponding foliation on the surface in the 3-torus is not uniquely ergodic.

References: 25 entries. UDK: 515.162. MSC2010: 57R30, 37E05, 37E25. Keywords: band complex,
Rips machine, Rauzy induction, measured foliation, ergodicity.

On the occasion
of Yu. Ilyashenko’s 70th birthday

1. INTRODUCTION

Our motivation for this work came from the problem about the asymptotic
behavior of plane sections of triply periodic surfaces in R3 posed by S. P. Novikov
in [18] in connection with conductivity theory in monocrystals. The physical mod-
el where such sections appeared was studied by I. M. Lifshitz and his school in
1950-60s. The surface in the model is the Fermi surface of a normal metal and is
defined as the level surface of the dispersion law in the space of quasimomenta,
which topologically is a 3-torus. The Fermi surface of a metal can also be consid-
ered as a 3-periodic surface in the 3-space.

The model is designed to study the conductivity in a monocrystal at low temper-
ature under the influence of a constant and uniform magnetic field H. According
to the model the trajectories of electron’s quasimomentum are connected compo-
nents of the sections of the Fermi surface by planes perpendicular to H.

Novikov suggested to study plane sections of general null-homologous surfaces
in the 3-torus and asked what asymptotic properties the unbounded connected com-
ponents of such sections may have. The problem can be considered as one about
a foliation induced by a closed 1-form on a closed oriented surface, but as such it is
very specific as there are serious restrictions on the cohomology class of the 1-form.

We thank our anonymous referee for careful reading of our paper and a number of helpful remarks.
The first author is supported in part by Russian Foundation for Basic Research (grant no.13-01-12469).
The second author is partially supported by Lavrentiev Prix and by the Dynasty Foundation.

© I. Dynnikov, A. Skripchenko, 2015
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The first result in this area was obtained by A. Zorich who discovered what is
now called the integrable case [23]. It was shown later by I. Dynnikov that gener-
ically either the integrable case occurs or there are no open trajectories (trivial
case) [7].

For non-generic vectors H whose components are dependent over Z, S. Tsarev
constructed examples that do not fit into the trivial or integrable case, though min-
imal components of the induced foliation on the Fermi surface were of genus 1,
see [8]. A situation in which the foliation has a single minimal component of
genus 3 and H is completely irrational was discovered by I. Dynnikov in [8]. Such
examples are now referred to as chaotic.

Physical implications from different types of dynamics of the trajectories for
the conductivity tensor are discussed in [15,16].

After the work [9], where the construction of [8] was reformulated in different
terms, it became clear that the main instrument for studying chaotic examples
coincided with a particular case of an object that was well known in the geometric
group theory and the theory dynamical systems under the name of band com-
plex, which is a measured foliated 2-complex of certain type. The theory of such
complexes was developed by E.Rips, see [3]. In a sense, constructing examples
with chaotic dynamics in Novikov’s problem is equivalent to constructing band
complexes of thin type consisting of three bands.

Several years ago A. Maltsev drew first author’s attention to the fact that a Fer-
mi surface of any monocrystal is alway centrally symmetric. So, it is natural to
single out the case when our surface has such a symmetry. For the corresponding
band complexes this means that they must be invariant under an involution flip-
ping the transverse orientation of the foliation. Symmetric band complexes of thin
type, which give examples of chaotic dynamic on a centrally symmetric surface,
are constructed by A. Skripchenko in [19].

The behavior of chaotic trajectories in Novikov’s problem is not well understood
in general. One of the interesting questions is how many trajectories may lie in
a single plane. In the theory of band complexes of thin type this is related to the
question about the number of topological ends of a typical leaf. A single topolog-
ical end would imply a single connected component of a typical chaotic section,
and two topological ends would imply infinitely many components (see [9], [20]).
This question about possible typical leaf structure of thin type band complexes is
also interesting on its own.

Before recently only examples of thin type band complexes had been known
in which almost all leaves had exactly one topological end [3,4,20]. In [10] we
described the reason for that, which was the self-similarity of the known examples,
and constructed examples of thin type band complexes having two-ended typical
leaves. Those examples did not obey any symmetry, and it was not clear for a while
whether additional symmetry would be an obstruction for a band complex to have
two-ended typical leaves.
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Here we show that not only symmetry but also a certain degeneracy is not an
obstruction (see Theorem 1). Quite surprisingly, the phenomenon can be observed
for band complexes that are related to the so called regular skew polyhedron
{4, 6|4}, a surface for which the set of all chaotic regimes was explicitly described
by I.Dynnikov and R.de Leo in [6]. Our construction here appears to be even
simpler than in [10].

We also analyze the corresponding chaotic dynamics on the surface in the
3-torus. We show that the induced flow, though being minimal, decomposes into
two ergodic components (see Proposition 5). This appears to be a reason for the
existence of an asymptotic direction of the trajectories in R®. In principle, the
proofs of these facts, which are given in Section 3, are self-contained and do not
use any band complexes. However, band complexes provide for a more intuitive
way to understand the origin of the construction, and we start the exposition from
introducing them.

2. BAND COMPLEXES

We start by recalling basic definitions.
Definition 1. A band is a (possibly degenerate) rectangular

%A =1[a,b]x[0,1] cR?, a<0b,

endowed with the 1-form dx, where x is the first coordinate in the plane R2. The
horizontal sides [a, b] x {0} and [a, b] x {1} are called the bases of the band; the
band is degenerate if a=b. The value (b—a) is called the width of the band.

Definition 2. A band complex is a 2-complex X endowed with a closed 1-
form w obtained from a union D of pairwise disjoint closed (possibly degenerate
to a point) intervals of R, called the support multi-interval of X, and several
pairwise disjoint bands %; = [a;, b;] x [0, 1] by gluing each base of every band
isometrically and preserving the orientation to a closed subinterval of D. The
form w is the one whose restriction to each band and to D is dx, so, we keep
using notation dx for it.

The 1-form dx defines a singular foliation &x on X whose leaves are maximal
path connected subsets of X the restriction of dx to which vanishes. Singularities
of Zx are such points p € X that the restriction of Zx to any open neighborhood
of p is not a fibration over an open interval. It is easy to see the set of singular
points is the union of vertical sides of all the bands. Leaves containing a singularity
are called singular, and otherwise regular.

A band complex Y is called annulus free if all regular leaves are simply connected.

Definition 3. The dimension

dimg {J dx; ¢ € H;(X, sing(X); Z)},
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where sing(X) is the set of all singularities of J, is called the rank of a band
complex X and denoted rank(X).

Remark 1. Our definition of a band complex is less general than appears in
geometric group theory as an instrument for describing actions of free groups on
R-trees (see [3] for details). Band complexes also appear as suspension complexes
for a generalization of interval exchange transformations (more precisely, it is an
analogue of Veech’s construction of zippered rectangles, see [21]).

Definition 4. Let Y; and Y, be band complexes with support multi-intervals
D; and D,, respectively. We say that they are isomorphic if there is a homeomor-
phism f:Y; —Y, (called then an isomorphism from Y; to Y,) such that we have
f*(dx) =dx. If, additionally, ¥; has minimal possible number of bands among all
band complexes isomorphic to Y, and we have f(D;) C D,, then the image f (%)
of any band 2 of Y; is called a long band of Ys.

Definition 5. A band complex X is symmetric if there exists an involution
7: X — X such that it takes bands to bands and we have 7*(dx) =—dx.

Definition 6. An enhanced band complex is a band complex Y together with
an assignment of a positive real number to each band. This number is called the
length of the band.

A band of width w and length £ is said to have dimensions w x £. The product
wl will be referred to as the area of the band. The length of a long band £ is the
sum of the lengths of all bands contained in 2.

Each band £ of an enhanced band complex Y will be endowed with the mea-
sure uy obtained from the standard Lebesgue measure on 9 C R? by a rescaling
so as to have the total measure of 4 equal to its area.

Two enhanced band complexes Y; and Y, are isomorphic if there exist an iso-
morphism Y; — Y, that preserves the lengths of long bands.

Definition 7. Let Y be an enhanced band complex with support multi-interval D.
A free arc of Y is a maximal open interval J C D such that it is covered by one of
the bases of bands, and all other bases are disjoint from J.

Let J be a free arc and 98 = [a, b] x [0, 1] be the band one of whose bases
covers J under the attaching map. Let (c, d) C [a, b] be the subinterval such that
(c,d) x {0} or (c,d) x {1} is identified with J in Y. Let Y’ be the band complex ob-
tained from Y by removing J from D, and (c, d) x [0, 1] from £ thus replacing %
with two smaller bands %’ =[a, c] x [0, 1] and 8" =[d, b] x [0, 1] whose bases
are attached to D by the restriction of the attaching maps for the bases of 23. If this
produces an isolated point of D such that only one degenerate band is attached
to it (which may occur if a=c or b=d), the point and the band are removed. We
then say that Y’ is obtained from Y by a collapse from a free arc, see Fig. 1.

If Y is an enhanced band complex then the lengths of 9’ and %" are set to
that of #.

Definition 8. An annulus free band complex Y is said to be of thin type if the
following two conditions hold:
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0L

Fic. 1. COLLAPSE FROM A FREE ARC

]

(1) every leaf of the foliation Zy is everywhere dense in Y;

(2) there is an infinite sequence Y, =Y, Y, Y, ... in which every ¥;, i =1, is
a band complex obtained from Y;,_; by a collapse from a free arc (such
a sequence is said to be produced by the Rips machine).

Remark 2. Again, we use a particular case of a more general notion of a band
complex of thin type, which need not necessarily be annulus free. For a full de-
scription of the Rips machine see [3].

From the general theory of the Rips machine [3] one can extract the following.

Proposition 1. Let Y be a band complex made of three bands. Then the following
conditions are equivalent:

(1) Y is of thin type;

(2) all leaves of Fy are infinite trees that are not quasi-isometric to a straight
line;

(3) there are uncountably many leaves of Zy that are not quasi-isometric to
a point, to a straight line, or to a plane.

The first example of a band complex of thin type was constructed by Levitt [14].

In [11] D. Gaboriau asked a question about possible number of topological ends
of orbits (or, equivalently, leaves) in the thin case. It was noted by M. Bestvina
and M. Feighn in [3] and D. Gaboriau in [11] that all but finitely many leaves of
a band complex of thin type are quasi-isometric to infinite trees with at most two
topological ends, and shown that one-ended and two-ended leaves are always
present and, moreover, there are uncountably many leaves of both kinds.

In [10] we constructed the first example when almost all orbits are trees with
exactly two topological ends. However, due to the physical origin of our problem
we are also interested to see if such band complexes exist among symmetric ones.

Below we construct an example with the required symmetry and, in addition,
the highest possible level of degeneracy (all singularities are contained in just
two singular leaves). The rank of the complex in our example is equal to 3, the
smallest possible as one can show.

More precisely, we have the following

Theorem 1. There exist uncountably many symmetric band complexes Y such that:

(1) Y consists of 3 bands;
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Fi1G. 2. THE BAND COMPLEX Z (iD,{)

(2) Y has rank 3;
(3) Y is of thin type;
(4) almost any leaf Fy is a 2-ended tree.
This theorem will be derived from Proposition 2 below and use the construction
of the band complex Z (w £) we now proceed with.
We use notation ¢, ¢/, ¢, i, i’ and @y for

Wy w1’ Wik
(61 £y £y 54), (E/ 6, 4 i;), (Ekl by lis £k4); wy |, | wy |, and | wy |,
2%} w! Wsj

3

respectively. All the coordinates of these columns and rows will be positive reals.
Let Z(, £) be an enhanced band complex shown in Fig. 2. It consists of four
bands %, $B,, %B;, and B, having dimensions wy x£, Wy x€,y, w3 x L3, and wyxLy,

respectively.
1
0. @®
0

Now we define:

We identify matrices and the linear transformations they define.
Denote: R, = (O 00)
Lemma 1. Let {, (' € (R,)*, @, i’ € (R,)? be related as follows:

[A(k) = Z', = B(k)iD’

A(k) =

== O O
= O O -

’S Kk k
0 5 B(k): 1 O

0 1
k—1

OO =O
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(%/

By

k—1

F1G. 3. RUNNING THE RIPS MACHINE

where k is natural number. Then the enhanced band complex Z (i0/’, ) is isomorphic
to one obtained from Z (i, ) by several collapses from a free arc.

Proof. It is illustrated in Fig.3, where the result of the collapses is shown.
One can see that the obtained band complex is isomorphic to Z (&', I ), and %/,
i=1, 2, 3, 4, are the new bands. O

Lemma 2. Let kg, kq, ko, ... be an arbitrary infinite sequence of natural numbers.
Then there exists an infinite sequence iy, i, Wy, ... of points from (R,)3 such that

W; = B(k;) ;41
Such a sequence is unique up to scale.

Proof. Let K =R3 be the positive cone in the three-space and let K’ = {0 €K;
ws <w; +wy}. For any k, [, m€N we have

B(k)B(l)B(m) = B'(k,l,m)B”,

where
k(I-1D+1 k(iI(lm—1)+m) 2k—1
B'(k,l,m) = -1 I[((m—1)+1 1
0 m—1 1
and

— =N
[ —
_ O

B”:(

is a constant matrix. One can verify that
B"(K) cK', B"(K')cK’, B'(k1,m)(K)cCK

for any k, [, meN. It follows that the linear map B” restricted to K’ is a contrac-
tion in the Hilbert projective metric (e.g., see [17] for the definition and basic
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properties), and the linear map defined by B’(k, [, m) does not expand in this
metric for any k, [, m €N. Therefore, the intersection

(BUk1) ... Blks:) (K)
i=1

is a single open ray in K’. The claim follows. O

Remark 3. In [10] a flaw occurs in the proof of Lemma 14, where a similar
argument is used. A 6 x 6 matrix B(m,n) depending on two parameters arises
there. The decomposition of B(m, n) that is given there does not work as proposed.
One should use the following decomposition instead:

B(my, ny)B(my, ny) = B'(my, ny, my, ny)B”,

where
1 1 1 1 1
1 3 3 1 1
B’'=13 3 1 1 1
2 4 5 2 2
1 2 3 2 1

The matrix B” has only positive entries, so it defines a contraction of the positive
cone (R,)® with respect to the Hilbert projective metric. It is a direct check that
the matrix B'(m4, n,, m,, n,) has only non-negative entries, so, the corresponding
linear map does not expand the Hilbert metric.

Let ZO =(1,1,1,1), and let @, be as in Lemma 2. Define recursively

i1 = ;- AKy). 2

Proposition 2. For any sequence kg, k1, ks, ... of natural numbers the band com-
plex Z(iy, {,) defined above is annulus free and of thin type.

If, in addition, for all i =0, we have k; .1 = 2k;, then the union of leaves in
Z(iy, £,) that are not two-ended trees has zero measure.

Proof. First, we show that Z (i, EO) is annulus free. One can see from (1) and
(2) that all entries of /; grow without bound with i. On the other hand, the length
of any loop contained in a leaf of 7, ; ) is preserved by the Rips machine and
should remain fixed. Therefore all the leaves of Z 7,1, are simply connected.

Now verify that Z (i, 0) is of thin type. The COI’ldlthI‘l (2) of Definition 8 is
satisfied by Lemma 1 and by construction of iy, so we need only to check that any
leaf of 7, ., is everywhere dense. By Imanishi’s theorem (see [13] and [12])
the converse would imply the existence of an arc connecting two singularities
of Zy through the regular part of a singular leaf. Such an arc can get only shorter
under a collapse from a free arc, which is inconsistent with the infinite grow of
all band lengths.

Now we prove the last claim of the Proposition. Denote for short:

A =A(k), B;=B(k), Z=Z(,l).
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It follows from Lemma 1 that Z;,; can be identified with an enhanced band com-
plex Z; obtained from Z; by a few collapses from a free arc. So, we think of Z; ;
as a subset of Z; and, hence, of Z,,.

Denote by Sy the total area of Z;:

S =Zi‘c'7jfi,
where
1 0 O
0 1 0
C= 0 0 1
1 0 O

We claim that under the assumptions of the Proposition we have
lim S; > 0. (3)
1—

Indeed, it can be checked directly that the matrix
2
(ac—(1- k—i)CBl-)BiH

has only positive entries for all i = 0 since they can be expressed as polynomials
in k; and (k;,; —2k;) with positive coefficients. Therefore,
Siv1— (1 - k%)Si =¢; (AiC— (1 - ,%_)CBi)BiHLT)Hz >0,
which can be rewritten as
S > (1- ,%_)Si-

Since k; grows exponentially fast with i, we have Y ., kg < oo, which implies (3).

By definition of a collapse from a free arc the measure Uz,,, (see Definition 8)
coincides with the restriction of uy , and hence of uy , to Z;;,. So, lim;_,,, S; equals
Uz, (ﬂl Zi). By general theory of band complexes (see [3]) the subset [, Z; C Z,
has an empty intersection with one-ended leaves of Z; . Therefore, the union
of two-ended leaves of Z; has positive measure. Lemma 2 implies “a unique
ergodicity” for &z, and hence ergodicity of &, with respect to the transverse
measure |dx|. This means that any measurable union of leaves of #; has either
zero or full measure with respect to u . We conclude that the union of two-ended
leaves has full measure. O

Proof of Theorem 1. Let Z(i) be a band complex with support interval D =
= [0, w; + w, + ws] and three bands %,, B,, %B; whose bases a glued to the
following subintervals of D:

By: to [0, w] and [wy + ws, wy +wy +ws],
%2: to [O, LUz] and [wl + w3, wy +LU2+1,U3],
Bs: to [0, ws] and [wy + wy, wy + wy +ws].

So, the band complex Z(i) can be obtained from the enhanced band complex
Z (i, £) by collapsing the band %, and forgetting the lengths of the bands. More
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precisely, there is a continuous map v : Z(@, {) — Z (i) that preserves the 1-form
dx and takes the bands %, 8,, %5 of Z(ib, Z) to the respective bands of Z (i)
and takes 93, to a subinterval of D. Clearly the map 1) takes leaves to leaves and
preserve the quasi-isometry and homotopy class of each leaf. It is also clear that
Z () is symmetric with respect to the involution that flips the support interval D.

It follows from Proposition 2 that there are uncountably many choices of pa-
rameters i for which almost all leaves of Z (i) are two-ended trees. O

3. PLANE SECTIONS OF THE REGULAR SKEW POLYHEDRON {4, 6 | 4}

We recall briefly the formulation of Novikov’s problem on plane sections of
3-periodic surfaces. Let M be a closed null-homologous surface in the 3-torus
T3 =R3/L, where L =73 is a lattice, and let H = (H;, H,, H;) € R® be a non-zero
vector. We denote by p the projection R3 — T3, and by M c R3 the Z3-covering
p~ (M) of M. We also fix a smooth function f: T2 —» R of which M is a level
surface, M ={xe€T3; f(x)=c}.

Non-singular connected components of the intersection of M with a plane of
the form

I, = {x e R%; (H, x) = a}, @)
where (, ) stands for the Euclidean scalar product, are trajectories of the following
ODE: .

x =V f(x)xH, (5)
where f: f op. Their image in T2 under p are leaves of the foliation %;; on M
defined by the kernel of the closed 1-form

n= (Hl Xm +H2 de+H3 dXB){M' (6)

Novikov’s question was about the existence of an asymptotic direction of open
trajectories defined by (5). As shown in [7] the foliation %, typically does not
have minimal components of genus larger than one. For open trajectories this
implies that they are typically either not present (in which case we call the pair
(M, H) trivial) or have a strong asymptotic direction (then the pair (M, H) is called
integrable), which means that, for a certain parametrization (not related to the
one prescribed by (5)), they have the form

x(s) =sv+0(1), (7)

where v € R® is a constant vector. There is also a special case discovered by
S. Tsarev (see [8]) when minimal components of %;; have genus one but the tra-
jectories have an asymptotic direction only in the usual, not the strong, sense, i. e.
with o(s) instead of O(1) in (7). In Tsarev’s case, the vector H is not “maximally
irrational”, i. e. dimg(H;, Hy, H3) = 2.

It is, however, possible that %,, has a minimal component of genus > 1 (as
shown in [8] the genus cannot be equal to 2, so “>1” actually means “> 3” here),
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see [8]. In this case, the pair (M, H) is called chaotic since there is a priori no rea-
son for open trajectories to have an asymptotic direction. If the system is chaotic
and uniquely ergodic, then, as A. Zorich notes in [24], trajectories, indeed, cannot
have an asymptotic direction. Particular chaotic examples [8,9,19] are known in
which almost all planes of the form (4) intersect M in a single open trajectory,
which, in a sense, wanders around the whole plane [20].

Chaotic pairs (M, H) can be characterized in terms of any of the foliations Zy ,
Zn, induced by the 1-form w = H,; dx; + H, dx, + H3 dx3 on the submanifolds
N_={xeT? f(x)<c}, N, ={xe€T? f(x)>c}, of which M if the boundary.
Namely, the following can be extracted from [8]:

Proposition 3. A pair (M, H) is chaotic if and only if &y _ (or, equivalently,
on Zy,) has uncountably many leaves that are not quasi-isometric (in the induced
intrinsic metric) to a point, to a straight line, or to a plane.

Since only quasi-isometry class of the leaves matters, one can replace N_ by
a foliated 2-complex Z embedded in N_ so that every leaf of Z embeds in a leaf
of N_ quasi-isometrically. In the genus 3 case, such a 2-complex can be chosen
among band complexes made of 3 bands.

This is how band complexes are related to Novikov’s problem in general. Be-
low we demonstrate this relation explicitly in very detail for a single surface,
which was also the main subject of [6], where the set of all H’s giving rise to
the chaotic case was described. It appeared to be a fractal set discovered earlier
by G. Levitt [14] in connection with pseudogroups of rotations and arose also in
symbolic dynamics (see [2]). It is shown by A. Avila, A. Skripchenko, and P. Hubert
in [1] that the Hausdorff dimension of this set is strictly less than two.

Our 3-periodic surface M is going to be the one consisting of all squares of the
form

{i}yx[j,j+1] x [k, k+1],
[, j+1] x{i} x [k, k+1],
[, j+1] x [k, k+1] x {i}

with i, j,k€Z, j+k=1 (mod 2).

The fundamental domain of M is shown in Fig.4. The lattice L is set to 2Z3.
One readily checks that M =M/L has genus 3. The surface M is known in the
literature as the regular skew polyhedron {4, 6|4}, see [5].

The reader may protest here since the surface M is PL but not smooth. However,
for any fixed H, on can smooth it out so as too keep the topology of the foliation
Zu unchanged. In order to do so it suffices to C°-approximate M so as to keep
the positions of the two monkey saddle singularities of %, fixed (if Hy, H,, H3 >0,
they occur at points (0, 0,0) and (1, 1, 1) (mod L)) and to avoid introducing new
singularities.

Remark 4. Our settings here are in a sense opposite to those of [9], where the
vector H is fixed and the lattice L and the surface M are being varied.
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FiG. 4. A FUNDAMENTAL DOMAIN OF M

Proposition 4. The band complex Z(iD) introduced in the proof of Theorem 1 is
of thin type if and only if the pair (M, H) is chaotic, where

2H = (U)2+UJ3, wl+U.)3, wl+IU2). (8)

Note that due to the cubic symmetry of the surface M the pair (M, H) is chaotic
if and only if so is (M, (|H,|, |H,|, |[Hs3|)). If all H;’s are positive but don’t have the
form (8) with positive w;’s, i. e. don’t satisfy the triangle inequalities, then the pair
(M, H) is integrable (see [6]).

Proof. For n€Z? we denote:

by D(n) the straight line segment connecting n with n+ (1, 1, 1);

by e;, e, e3 the standard basis of Z3;

by #(n), i=1, 2, 3, the parallelogram with vertices

w;
wq + W, + Wy

M+2e+——(1,1,1), 2n+2e,

w; +w, +ws;

2n+ (1— )(1, 1,1), 2n+(1,1,1),

see Fig. 5;
by Z the union
U (cmyusAamusmusm)
nez?
see Figs. 6, 7;
by Z the projection p(Z) C T3;
by 6f, the unit cube [0, 1] x [0, 1] x [0, 1];
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(1,1,1) (3,1,1)

wlj_zi(l’ 1,1) (2,0,0)+
1wyt ws wy
wrwy i, b
1wy +ws

(0,0,0) (2,0, 0)

F1Gg. 5. THE sTrIP S4(0, 0, 0)

FIG. 6. THE 2-COMPLEX Z

by &y (n) the cube @, + 2n;
by &;(n), i=1, 2, 3, the cube &, +e¢; + 2n;
by N_ the union
| (@) vz (n) ues, (n) U (n)) ;

nez?

by N, the subset N, shifted by the vector (1,1, 1);
and by N_ (respectively, N, ) the projection p(N_) C T® (respectively, p(N,)).
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F1G. 7. THE SURFACE M AND THE 2-COMPLEX Z CUT BY A PLANE II,

One can readily check the following:

N_NN,=3dN_=9N, =M, N_UN, =T5;

D(n) ctBy(n) and F(n) C,(n) ULE;(n) UtH,y(n +e¢;) for all ne Z3;

the two sides of each (n), i=1, 2, 3, n€Z3, that are not parallel to (1,1, 1)
are orthogonal to H;

the intersection IT, N&Z,(n) is non-empty if and only if so is II, N D(n);

the interiors of all the cubes &@;(n), i € {0, 1, 2, 3}, n € Z® are pairwise disjoint;

each @@;(n), i=1, 2,3, n€Z3 shares a face with t@,(n) and with &@,(n +¢;),
and the rest of the boundary of &7;(n) is disjoint from all other cubes &f;(m),
j€{0,1,2,3}, mez?;

the boundary of the polygon I1, N (n), i=1, 2, 3, has non-empty intersection
with those of I1, N&Z,(n) and II, NcZ, (n +e;) which are not empty;

the intersection II, N S;(n), i=1, 2,3, is a straight line segment connecting
I,ND(n) and Tl,ND(n+e;) if I, ND(n) #D#TI,ND(n+e;), and otherwise
empty.

Thus the intersection I, N Z is a graph T, with the set of vertices

m.n( | pm).

nez?
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islands

1, N &%, (n)

Ha n @1 (Tl)
I, N &, (n)

\ - <
\ \ ™ bridges - I \

)
)
R

F1G. 8. THE INTERSECTIONS II, NN_ aND I1, nZ

The intersection I1, N N_ has the following structure. It contains the union of
disjoint discs (some may be degenerate to a point)

m.n (| )

nez?

in each of which there is a single vertex of ;. We call these disks islands.
The whole intersection I1, N N_ is obtained from the union of islands by attach-
ing disks of the form I, N&Z;(n), i=1, 2,3, n € Z3. Among such disks there are
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some whose boundary has a single connected component of intersection with an
island. We call such disks capes. An island with all adjoint capes attached is still
a disk containing a single vertex of T},.
The boundary of any disk of the form IT, NG (n) that is not a cape has exactly
two connected components in common with islands. We call such a disk a bridge.
One can see that two islands are connected by a bridge if and only if the
corresponding vertices of T, are connected by an edge, see Fig. 8. Since all islands,
capes, and bridges have uniformly bounded diameter the inclusion of any compo-
nent of I, into the corresponding component of I, N N_ is a quasi-isometry.
Connected components of II, N N_ and of T, project under p onto leaves of
Fn_and Z, respectively. The claim now follows from Propositions 1 and 3. [
Proposition 5. Let kg, k1, ... be a sequence of natural numbers such that the
series Z?ZO kl converges. Let iy, iy, W, ... be defined as in Lemma 2 and

1
1 -
H== 1 wy.
2 ( 0)
Then:

(1) the pair (M, H) is chaotic;
(2) the foliation Z,; is not ergodic with respect to the transverse measure ||
defined by the 1-form (6), there are two ergodic components;
(3) almost all connected components of the sections II, NM have an asymptotic
direction, which is, up to sign, common for all of them.
Proof. The first claim follows from Propositions 2 and 4. It is also a corollary
to Lemma 3 below.
Let £ be an oriented simple arc transverse to %,; such that a=f 1> 0. For
any be A(O, g] we denote by & (b) the initial subarc of & such that f coy = b.
Let &1, &5, &5 be the transversals of Fy;, starting at (0, 0, 0) composed of the
following straight line segments

=)
—_ O =

g,: [(0,0,0), (0,0, 1)]U[(0,0,1), (0, 1, )],
£,:[(0,0,0), (1,0,0)]U[(1,0,0), (1,0, 1)]U[(,0,1), (1,1, 1],
£,5: [(0,0,0), (0,1,0)]U[(0, 1,0), (1,1,0)]U[(1,1,0),(1,1,1)],

and let §i=p(€i), i=1,2,3. We have

Wy + W
N=wo+t——5 > n= | N = wy+wy+Ws,

&1 &, &3

so we have f& n>wp foralli=1,2,3.
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Let R(k) be the matrix of the following linear transformation of R®:
xl\ ( (k—=1)(cy + x5+, + x5 +x9) +x;

X, Xg

X5 Xy + X

X, X5+

X5 | — X1+ Xy + X3+ Xy

Xe (k—1) (a5 + x5+ 27+ x5+ X9) + X, + X5+ X7
X7 X5

Xg X, + X3+ Xg

x9) & (k—=1)(oc; + x5+ x5+, +xg) + x4

Lemma 3. The first return map defined on

E1(wy) U (wr) UEs(wy) ©)
by the foliation %, (for a proper orientation of leaves) endowed with the invariant
measure |n| is an interval exchange map with permutation

(1234’ 56 789)

376 |481]925 (10)

and vector of parameters
Xi = (W — wy —wsy, Wi, Woyi— Wy, Wy,
.
Wy, Wy;— Wy, Wi, Wy, Wy—Wy—ws)'. (11)

Let u be another invariant transverse measure for Zy, and let j; be the vector of pa-
rameters of the corresponding interval exchange map induced on the union of transver-
sals (9) (with the same numbering as for X;). Then for all i=0,1, 2, 3, ... we have

Vi1 =R(k)J:, Yi€V. (12)

Any sequence Yy, 1, ... €R?. satisfying (12) defines an invariant transverse measure
for Fy.

We refer the reader to [22] for a detailed account on interval exchange trans-
formations and on the Rauzy — Veech induction. Here we use a slightly modified
version of the standard construction by taking a union of three transverse arcs in-
stead of just one. That’s why we subdivided each row in (10) into three blocks that
correspond to &;(wyy), E2(wik), and E5(wy,) (not in this order if k#0 (mod 3)).

Proof. Note that by definition of i we always have wy;>wy+ws, and wy>wsy,.

For k=0 the claim of the Lemma is obtained by a direct routine check. The
surface M is cut into 9 strips each foliated by arcs. Preimages of the strips in R3
are shown in Fig. 9.

Let X€V and y =R(k)X, k €N. We claim that we can run the Rauzy — Veech
induction starting from the permutation (10) and the vector of parameters y so
that to obtain after several steps an interval exchange map with the same per-
mutation and the vector of parameters X. Relations (14) guarantee that, for any
i=1, 2,3, the sum of parameters corresponding to the ith block is the same for
the top and bottom rows of the permutation.
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_Ei+2e 2,1,1)

(27 _2’ 0) 53_2(62_63) 5

2 (1, 1, _1)
2 6

&1—2(ey+e3)

Fi1G. 9. CUTTING M INTO 9 STRIPS

The procedure will be slightly more general than usually since we are using three
transversals instead of one. This simply means that we can exchange the blocks
synchronously in both rows, so, the process is not uniquely defined by the initial data.
Fig.10 shows how the Rauzy — Veech induction can be run. The transition between
any two subsequent lines is the result of several steps of the ordinary Rauzy — Veech
induction with the same winner or just a permutation of blocks. Each line displays
the current permutation, the vector of parameters, and relations (if any) used to
obtain the subsequent transition.

After reordering parameters in the last line we get the original permutation
with the same subdivision into blocks.

It remains to check that vectors X; defined by (11) (written as columns) satisfy

X; = R(ki)X i1 (13)

for all i =0, which is straightforward. O
Let V be the subset of R? defined by the equations

X1+ X4 —Xg = X5—Xg = X7 —Xo. (14)

It is invariant under R(k) for any k> 0.
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(1327364|4 81 | ; 2 g) (15 Y25 35 Y45 ¥5 Yo ¥7> Y8 ¥o) Y=gt (k=102 +5)
(132 ; 4|4 81 |; 2 g) (15 Y25 Y35 Yas Y5 Yo ¥7> Y8 X4) Ys=X1HXp X+
(1 oy 4‘2 2 ?‘9 285) (1> Y2, Y35 Yar X1+ X2 +X3, Y6, ¥7, Y8, Xa)

(9 25 ) 1327364‘451 : ?) (1, Y25 Y3, Y4 X1+ X2+ X3, Y6, Y7, Vs X4) Yo=Y1+X2+x3

(972 ); 3 2 411|5 9 6) (15 Y25 Y35 Yar X1 +Xo +X3, X0+ X5, Y7, Vg, Xa)  Yg=X+X3+Xg

(;2 H § 2 411| ) (1 Y2, Y3, Yas X1+ + X3, X +3, Y7, X6, Xa)

(i z ‘ g 2 g‘; i 2 AD (15 Y25 Y35 Yas X1+ X2+ X3, X2+ X3, ¥7, X6, X4) - 1=(k—1)(y2+y3+y4)+x7
(i g ‘ ; 2 g‘é g 2 ‘11) (37, ¥2, Y35 Yas X1+ X0+ X3, X0+ X3, ¥7,X6,X4)  Ya=X3+X7

(451 8)97) 2 g) 1327364) (x7, Y2, ¥3, X3, X1 +Xo +X3, X0+ X3, ¥7, X6, X4) Y2 =Xg, Y7=Xs

(451 8 ) 7982654|; 5 2) (37, Xg, ¥3, X3, X1 + X3 + X3, Xg, X5, X, X4) Y3 =X+

(47 ) 798265 ‘é 67) (X7 Xs, X9, X3, X1 X X5, X5, X5, X, Xg)

(45 98 ’ 798265 ; é g) (7, Xg, Xg, X3, X1 +Xp+23, Xp, X5, X6, Xs)

(é 2 §)4 )7 oy 4) (7, xg, X9, X3, X1 + X2 +X3, X2, X5, Xg, X4)

(; 2 §)5461489|9 2 5) (7, Xg, Xg, X3, X1, X2, X5, X6, X4)

5649| 78 |123

(4 18 ‘925‘367) (x7, x5, X9, X3, X1, X2, X5, X5 X4)

F1G. 10. RUNNING THE RAUZY — VEECH INDUCTION

For i 2 0 denote
Vi = R(ko)R(k1) ... R(k)(V), Voo =( |V
i=0

We obviously have VO VD V; D
Lemma 4. The subset V,, has the form

. = {al+67; a, >0, (a,p) # (0,0)} (15)
for some non-collinear ii, U € V. They can be chosen so as to have X, =1+ U.
Proof. The matrix R(k) can be written in the form R(k) =kR’+R” with R/, R”
not depending on k, in a unique way. By explicit check we get (R")*= (R’)2. Since
the series Zl 0% converges this implies that the limit

R = lim R R RUei) _ gy (r+ klR”) (r+ klR”) (R %R”)
0 1

i—o0 kO kl kZi*l i—®o 2i—1

exists and satisfies the relation
R-(R)?>=R. (16)
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The product of six matrices of the form R (k) with k > 0 has only positive entries.
This implies (V;U{0}) D V,,¢ and

V,U{0} =V =K.
i=0
Together with (16) this gives
V,,u{0} = R(V) = RR'(V).
Denote:
i, =(1,0,0,0,0,1,0,0,0)", @, =(0,0,0,0,0,0,0,0,1)".
One easily checks the following

R'(V) ={ail, +fB0,; a,f 20}, Ri, =0, RU,=1uU..

Thus, (15) holds for @ =Ril.,, and ¥ =R0,.
The matrix R(k) is invertible for all k, so we can set iiy =1, Uy =0
iy = kR(k) ™'y,  Tyyq = kR(k)7'g; fori=> 0. 17)
We will have
lim ty; = lim Upj4y = Ue, lim Uy = lim ty;yy = Us,
11— 11— [—o00 11—
which implies that @ and U are not collinear.
Now X, €V,,, s0, X, is a non-trivial linear combination ati + 7. From (13) and
(17) we have
- 1 - -
Xoi = —5ig— (aily; + BUy).
j=0 "J
From the definition of i; (see Lemma 2) it follows that
lim 22 = lim 2% =
i—o Wi i—o Wy
if k; — . Together with (11) this implies
‘)_éi = wli((17 03 0’ OJ 07 1’ OJ 07 1)T +O(1)) = wli(ﬁ% + 500 +O(1))’ l — @,

hence a =f3, and by rescaling X, we can make a=f=1. O

We can now finalize the proof of Proposition 5. It follows from Lemmas 3
and 4 that &), admits two invariant ergodic transverse measures, y and v, say,
that correspond to the vectors i and U from Lemma 4, and, for an appropriate
normalization, we have |n|=u +v. Let ¢, ¢, € H;(M; R) be the asymptotic cycles
of u and v, respectively (see [25] for the definition), and &,, &, the respective
ergodic components of Z,.

Denote by ¢ the inclusion M < T3. Since 7 is a restriction of a closed 1-form
in T3, we have

ey te) =1u(n*) =0€ H (T, (18)

where n* € H; (M) is the Poincaré dual of the cohomology class of 1. We claim
that ,(c,) #0#t,(c,), which implies the assertion of the Proposition about the
existence of an asymptotic direction.
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Indeed, suppose on the contrary that t,(c,) =0. Then for any 1-cycle c on M
that is null-homologous in T® we must have ¢ —~ ¢, =0.Let c=&,—&3, where &5 5
are oriented transversals of & introduced in the proof of Proposition 5 (see Fig. 9,
where initial portions of &, 3 are shown). The cycle ¢ is homologous to zero in T3,
so we must have f g, M= fés w. Similarly, we must have f g M= f g M= f&s u, where

£, =p([(0,0,0), (0,0, D]U[(0,0,1), (1,0, D]U[(1,0,1)U(1,1,1)]),
&s = p([(0,0,0), (0,0, 1D]U[(0,0,1), (0,1, DIU[(0, 1, Du(L, 1, D).
We have

JM:LIZ+U3+U4+U5+U6, fu=u2+u5+u7+u8+u9,

= = (19)
Ju=u2+2u3+u4+u6+u7, fu=u2+2u3+u6+2u7.
P &s
So, il must satisfy the relations:
Us+ug =ug+uy, Us=1uz+u;, Us=1U7. (20)

It must also satisfy (14) (with x; replaced by u;). The subspace in R° defined by
all these equations is invariant under R(k)*!. Therefore, they must hold true also
for ii,,, but the first relation in (19) does not. Contradiction.

It follows from (18) that t,(c,) =—t.(c,), which implies that the asymptotic
direction of trajectories for &, will be opposite to the one for &,. O

The hypothesis on the sequence (k;) in Proposition 5 is much weaker than in
Proposition 2. One can show that it can be weakened in Proposition 2, too, by
deducing it from Proposition 5, but the argument will be less straightforward.

We expect that all thin type band complexes with three bands give rise, through
the construction of [9], to a chaotic dynamics in Novikov’s problem with almost all tra-
jectories having an asymptotic direction, but don’t see a rigorous proof of that so far.
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On symplectic dynamics near a homoclinic orbit
to 1-elliptic fixed point

L. Lerman, A. Markova

We study the orbit behavior of a four dimensional smooth symplectic diffeomorphism f near a ho-
moclinic orbit T" to an 1-elliptic fixed point under some natural genericity assumptions. 1-Elliptic fixed
point has two real eigenvalues outside the unit circle and two on the unit circle. Thus there is a smooth
2-dimensional center manifold W€ where the restriction of the diffeomorphism has the elliptic fixed
point supposed to be generic (no strong resonances and first Birkhoff coefficient is nonzero). Then
the Moser theorem guarantees the existence of a positive measure set of KAM invariant curves. W¢
itself is a normally hyperbolic manifold in the whole phase space and due to Fenichel results every
point on W€ has 1-dimensional stable and unstable smooth invariant curves smoothly foliating the
related stable and unstable manifolds. In particular, each KAM invariant curve has stable and unstable
smooth 2-dimensional invariant manifolds being Lagrangian ones. Stable and unstable manifolds of
W€ are 3-dimensional smooth manifolds which are assumed to be transverse along homoclinic orbit T".
One of our theorems present conditions under which each KAM invariant curve on W*¢ in a sufficiently
small neighborhood of I" has four transverse homoclinic orbits. Another result ensures that under some
Moser genericity assumption for the restriction of f on W* saddle periodic orbits in resonance zone
also have homoclinic orbits in the whole phase space though its transversality or tangency cannot be
verified directly. All this implies the complicated dynamics of the diffeomorphism and can serve as
a criterion of its nonintegrability.

References: 42 entries. UDK: 517.925/.926.4 + 517.938/.938.5. MSC2010: 37J10, 37J30, 37J45,
70H07. Keywords: 1-elliptic fixed point, homoclinic, invariant curve, peridoic orbits.

1. INTRODUCTION AND SET-UP

Any tools that can help to understand, if a given Hamiltonian system is integrable
or non-integrable and therefore has a complicated orbit behavior, are of the great
importance. There are well known criteria based on the Melnikov method [10, 26,
29,33, 37], but they are mainly applicable for systems being nearly integrable.

There exists other class of criteria based on the study of the orbit behavior in
definitely non-integrable systems: if we know that some structures in the phase
space are met only in non-integrable systems, then we may take the existence of
such a structure in the phase space of a system under consideration as a criterion
of its non-integrability. Such criteria are most efficient, if the structures mentioned
can be rather easily identified. To this type of criteria one can refer those based on
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a partial support from the Russian Foundation for Basic Research under the grants 13-01-00589a
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and Education (project 1.1410.2014/K, target part) and from the Russian Science Foundation (project
14-41-00044).
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the existence of homoclinic orbits to the different type of invariant sets, the most
popular are those related with homoclinic orbits to different types of equilibria,
periodic orbits and invariant tori [4, 8,12, 23-26, 28, 30]. Surely, non-integrability
criteria are not the unique goal of the study: a much more interesting and hard
problem is to describe possible types of the orbit behavior in the system near such
the structure and its changes when parameters of the system vary.

In the paper we study a C"-smooth, r = 6, symplectic diffeomorphism f on
a C”-smooth 4-dimensional symplectic manifold (M, 2), Q is C*-smooth non-
degenerate 2-form. We assume f to have an l-elliptic fixed point p, that is, dif-
ferential Df, has one pair of multipliers e** on the unit circle and a pair of real
multipliers u, u=!, u# +1. Below we suppose u to be positive and 0 < u < 1.
We call such fixed point to be an orientable 1-elliptic point. The fixed point with
negative u, u~! we call to be non-orientable. The non-orientable point becomes
orientable, if one considers f2 instead of f.

Near an 1-elliptic fixed point there is a C"!-smooth 2-dimensional invariant
symplectic center submanifold W¢ corresponding to multipliers e*'® [22,34]. The
restriction of f on W¢ is a C"~!-smooth 2-dimensional symplectic diffeomorphism
and p is its elliptic fixed point. We assume p to be of the generic elliptic type [2],
that is, strong resonances are absent in the system (a# 7t/2, 27t/3) and the first
coefficient in the Birkhoff normal form for f|y. does not vanish. In this case we
shall call an 1-elliptic fixed point to be a generic 1-elliptic fixed point. Then the
Moser theorem [36] is valid for the restriction f|y. near p, this gives a positive
measure Cantor set of closed invariant curves on W¢ which enclose p and are ac-
cumulated to it. The needed minimal smoothness for a symplectic diffeomorphism
is 5 due to [38]. This explains the inequality r = 6.

Center manifold W¢ is a normally hyperbolic invariant manifold in the sense
of [15,21] and has its local C"*-smooth 3-dimensional stable manifold W and
local C"!-smooth 3-dimensional unstable one W, since two other multipliers
u, w1 are lesser than 1 and greater than 1, respectively (these two local 3-di-
mensional manifolds for the fixed point p are simultaneously center-stable and
center-unstable manifolds, respectively, this explains our notations). These mani-
folds can be extended till the global ones by the action of f~! and f, respectively.
The extended manifolds will be denoted as W and W<“.

Each invariant KAM-curve y on W¢ can be considered as being saddle one,
since it has local 2-dimensional stable and unstable manifolds which can be also
extended till global manifolds W*(y), W¥(y) by the action of f, f~1. Topologically
these manifolds are local cylinders, both being Lagrangian submanifolds in M [1].
The existence and smoothness of these manifolds relies on the results of [14,15]
and will be proved in Appendix.

Fixed point p has also two C"-smooth local invariant curves through p being its
local stable W (p) and unstable W% (p) manifolds [22]. Their extensions by the
action of f~! and f are C"-smooth invariant curves W*(p) and W¥(p), respectively.
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Our first two assumptions in the paper concern the existence of a homoclinic
orbit to p and its type.

Assumption 1 (Homoclinic intersection). Curves W“(p) and W*(p) have an
intersection at some point q, thus generating a homoclinic orbit T to fixed point p.

Assumption 2 (Transversality condition). Manifolds W*(p) and W(p) are
transverse at point q and, hence, along T.

Later on in the Section 3 we will construct linear symplectic scattering map S
which acts on tangent plane T,W¢ and describes in the linear approximation an as-
ymptotic behavior of orbits close to I" after one-round travel near I'. The restriction
of differential Df,, on symplectic invariant plane T, W C T, M is a linear symplectic
2-dimensional map with two eigenvalues e**, and, therefore, this plane is foliated
into closed invariant curves of the map. Every such a curve is an ellipse, all of them
can be obtained from the one multiplying their vectors at positive constants. Fix one
such ellipse E C T,W¢. Then its image S(E) is also an ellipse (usually not from the
foliation) with the same center at the origin and of the same area with respect to
the restriction of 2-form 2 on this plane. Thus, the intersection E N S(E) consists of
either four points (a generic case) or these two ellipses coincide (a degenerate case).
In the first case the intersection of two ellipses is transverse at every of four points.

Assumption 3 (Genericity condition). The intersection E NS(E) is transverse
and therefore consists of four points.

It is evident that this assumption does not depend on the explicit choice of the
ellipse E. This condition allows one to select a generic case and provides the mean
to verify this.

Our first result is the following theorem.

Theorem 1. Let a 4-dimensional symplectic diffeomorphism f with 1-elliptic fixed
point p obeys Assumptions 1, 2, 3. Then there is a sufficiently small neighborhood U
of homoclinic orbit T such that every closed invariant KAM-curve on W¢(p) NU
possesses four transverse homoclinic orbits in U.

Intersection of invariant manifolds of the diffeomorphism f in the neighbor-
hood of homoclinic orbit are sketchy represented on Fig. 1. It is worth remarking
that for our case center manifold W€, as was mentioned, is normally hyperbolic
two-dimensional invariant manifold on which the restriction of f is a twist map.
Thus our results on existence of transverse homoclinic orbits to invariant KAM-
curves are connected with the study of Hamiltonian dynamics near low-dimen-
sional invariant whiskered tori initiated in [13] and extended in many recent
papers (see, for instance, reviews [8,11,27]).

Before going to the proof, let us recall some related results for Hamiltonian vec-
tor fields [18,19,23,24,30,32,35]. Homoclinic orbits to a saddle-center equilibrium
for a real analytic Hamiltonian system with two degrees of freedom, namely, for
restricted circular three body problem, were found numerically in [31] and proved
to exist analytically through asymptotic expansions in [32]. The problem on the
orbit behavior of a real analytic Hamiltonian system near a homoclinic orbit to



312 L.LERMAN, A. MARKOVA

F1G. 1. INVARIANT MANIFOLDS IN THE NEIGHBORHOOD OF HOMOCLINIC ORBIT

a saddle-center equilibrium was first set up and partially solved in [30], though
it was earlier discussed in [7]. In particular, the existence of four transverse ho-
moclinic orbits to every small (Lyapunov’s) periodic orbit on the center manifold
of the saddle-center was proved in [30] using the Moser normal form and the
needed genericity condition was found first in [30]. In [18] under an additional
assumption that a homoclinic orbit to a saddle-center belongs to some invariant
symplectic 2-dimensional submanifold (that is generically not the case), the gener-
icity condition was reformulated in terms of the related scattering problem for the
transverse 2-dimensional system linearized at the homoclinic orbit. It was first
discovered in [35] and in a more refined invariant form in [19] that in a generic
1-parameter unfolding of reversible 2 d.o.f. Hamiltonian systems that unfolds
a Hamiltonian system with a symmetric homoclinic orbit to a symmetric saddle-
center equilibrium, there exists a (self-accumulated) countable set of parameter
values near the critical one such that for a point of this set the related Hamiltonian
system has a homoclinic orbit to its symmetric saddle-center. Usually these latter
orbits are multi-round with respect to the initial homoclinic orbit. Several applica-
tions, where non-integrability of a system under consideration was proved using
this method, can be found in [6, 20]. A partial extension of results to the case
of Hamiltonian systems with n degrees of freedom, n = 3, having a center-saddle
equilibrium (one pair of pure imaginary eigenvalues and the remaining ones with
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nonzero real parts) with a homoclinic orbit, was given in [24]. Here the scattering
map was extended onto the case when the center manifold is 2-dimensional but
the dimension of transverse directions is 2(n—1).

In fact, the results we discuss here refer to a 3 d.o.f. Hamiltonian system on
a C*-smooth symplectic manifold with a smooth Hamiltonian H such that X has
a periodic orbit € of the center-saddle type. The latter means the multipliers of this
orbit (except for the common double unit) are a pair e*'* and a pair of reals u, u=!,
w # £1. Such periodic orbit has 2-dimensional stable and unstable invariant mani-
folds through ¥, they both belong to 5-dimensional level H = H (¥). If these mani-
folds have an intersection along some orbit I', then this homoclinic orbit tends to &
as t — £oo. Choose some cross-section N to the flow through a point p € ¢ in 5-di-
mensional level H=H (%). We get a four-dimensional symplectic (w.r. t. the restric-
tion of 2-form Q to N) local Poincaré diffeomorphism f: N — N with fixed point p
of the l-elliptic type (corresponding to %4) defined in a neighborhood U C N of p.
Intersection of stable and unstable manifolds of ¥ with N give smooth local curves
through the fixed point, the traces of I' in N form a countable set of homoclinic
points accumulating at p. Fix one homoclinic point g_ € U on the unstable curve and
one homoclinic point g, €U on the stable curve. Choose some small neighborhoods
V_cUofq_and V, cU of q, on N. Flow orbits define a symplectic map F: V_—V,,
F(q_) =q., that we call as global one. Then a symplectic first return map defined
as f for points which belong to U \ V_ and as F for points in V_ is a map we discuss.

The local center manifold W¢(%) for periodic orbit € is of dimension four, it
contains the symplectic cylinder filled with periodic orbits (continuations of €
onto close levels of H) and if conditions of Theorem 1 hold, then the restriction
of the system on W¢(%) has a positive measure set of invariant 2-dimensional
tori with Diophantine rotation numbers. When we fix the level H=H (%), then
its intersection with the center manifold is 3-dimensional. Every torus & has sta-
ble and unstable 3-dimensional manifolds which intersect each other along four
transverse homoclinic orbits to the torus within 5-dimensional level H=H(%).

2. CONSEQUENCES OF THE TRANSVERSALITY CONDITION

Due to Assumptions 1 and 2, two smooth 3-dimensional manifolds W (p) and
W< (p) intersect transversally at a homoclinic point q and thus along a smooth
2-dimensional disk ¥ containing g. This disk is symplectic w.r. t. 2-form « being
the restriction of 2-form  on X. Indeed, in Section 4 it will be proved that in
normalized coordinates in which Q=dx Ady +du Adv disk (more exactly, some
its finite iteration under f) will have the following representation:

x=®(u,v), y=0.

This implies that ¥ is symplectic w. . t. 2-form w =du Adv. The following lemma
is valid:
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Lemma 1. If Assumptions 1 and 2 hold, then ¥ and W%(p) are transverse at ¢
within W (p) and, therefore, W“(p) and W (p) are also transverse at q.

Proof. To prove this lemma, we use some symplectic coordinates (x, u, y, v),
Q=dx Ady +duAdv, in a neighborhood V of point p in which manifolds W
and W are straightened, that is they are given as x =0 (for W4) and y =0
(for W), In addition, in these coordinates local stable manifold W*(p) is given
as y =u=v =0 and local unstable manifold W%(p) is done as x=u=v =0. The
existence of such coordinates is proved in Appendix 7.1. We also assume thatg€V.
Since orbit T through q is homoclinic, then there is an integer N > 0 such that
f™(q) €V for all n>N. Denote g, the point f™N(q) €V and let [“ be the tangent
to WH(p) at q;. Denote L :Dfé\l’: Ty, M — T, M, then L(I*) is transversal to T,W<
in virtue to Assumption 2 (transversality condition). Set D = L(T,, W) N T,W<,
D is 2-dimensional plane. One needs to prove that [* (the tangent to W*(p) at q)
does not belong to D, that is intersects D at only one point. For linear symplectic
map L the following matrix representation holds:

where a, b, ¢, d are 2 x 2-matrices. Since W, W are straightened in coordinates
we use, tangent spaces to W, W4(p) at g; and tangent spaces to W<, W*(p)
at g are written as follows:

—~
=
|

T, W = , T,We =

SIS )
<O 8K
ok oo
O O O K|

Transversality of L(I*) and T, W< is expressed as dq; #0 in matrix L. Indeed, one
has L(I*) = (b11y, ba1y, d11Y, d21y)T (vector-column). Transversality of L(I*) and
T,W< means that determinant

b, 1 0 0O
by 0 1 0 _
d, 0 o o 91
dy 0 0 1

does not vanish.
The plane D is given by the set of solutions of the system (1):

X = au +b11y + blzv,
a

22U+ byyy +byyv,

@

u
0= CioU + dlly +d12U,
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If I C D then in the system above 1 =0, v =0 for all (u, v). Expressing y from the
third equation in (1) and inserting into other equations we get a parametric repre-
sentation of plane D (with parameters u, v). Consider separately subsystem (2):

a22u+b21y +b22U =1u,
2
C22u+d21y+dzzv =. ( )

Due to inequality dq;; # 0 we can express y = (—cjou —dqyv)/dy; from (1) and
insert it into (2):

{ dy1a9U + byy (—c1ou —dipv) +dy1byv = 1,
dy1Coou +dyy (—Cou —dyov) +dy1dgv = 1.

@)

Let us calculate the determinant of the system (3). To this end, we rewrite it in
the following form:

u(d1azs —barc12) +v(boadis —bndin) = 1,
{ u(dy1can—doyc12) +v(dyadry —dardie) = 0.
This determinant is calculated as follows:
A = (d11a22 —ba1€12) (d22d11 — d21d12) — (baad1y —ba1di2) (d11€a2 —daic12) =
= d%lazzdzz —dy10a2d21d12 —ba1€12da2d11 +barc1adaidin — d%1022b22 +
+Dbyadi1daic1z +ba1d1ad11620 —bandiaciaday =
= d%1022d22 —dy10a2d31d12 —ba1C12d20dy; —
—d},Ca2byg +boadi1daic1p +byrdiadiscoy =

= d%1 (ag2das —Conbra) +di1€12(baada —baidas) +diadin (ba1con — azada).

Matrix L is symplectic, therefore the following identities hold (see, for instance [17]):

aTc=cTa, bTd=d™, dTa—bTc=E= ((1) (1))

The first identity is equivalent to equality:
a12€11 +A22C21 = C12d171 +C22d21-
Similarly, the second matrix identity is reduced to equality:
biady1 +bgodsy = digb11 +daobo. 4)
The third matrix identity gives the following relations:
di1a11 +da1a9 —b11c11 —barcay = 1,
di1a13+d21a32 —b11¢12 —ba1can = 0, ®)
d12a11 +d22a21 —b1ac11 —bazcay = 0,
d12a13 +d23a93 —b1ac1a —bagcay = 1.
Now, taking into account relations (4), the second and the fourth equalities in (5),
the expression for A can be transformed as follows:



316 L.LERMAN, A. MARKOVA

A = d% (1+bypc12—d12a12) +d11¢12(b11d12—b12d11) +d12dy1 (d11a12—br1c12) =
= d}, +d2,byyc12—d% d12a15 +dq1C1ob11d1 —d3 crabin +
+d%,dypa15—dradq1biic1n = d3y # 0.

Thus, linear system (3) has a unique solution (u, v) at the given (u, v). So, u =0,
U =0 only if (u, v) =(0, 0) and [* intersects D at the unique point. O

The Assumption 1 says that f is degenerate since generically two smooth curves
in a 4-dimensional manifold do not intersect. This assumption selects a codimen-
sion 2 set of diffeomorphisms in the space of all C"-smooth symplectic diffeo-
morphisms on M. Indeed, when a diffeomorphism with a homoclinic orbit to an
1-elliptic fixed point is perturbed within the class of smooth symplectic ones, for
a perturbed f’ the fixed point p’ persists and its type is preserved. Therefore, due
to transversality condition, the intersection of perturbed W< (p’) and W*(p’) per-
sists as well, but the intersection point does not give generically a homoclinic orbit
to p’: with backward iterations of f’ the orbit through the intersection point can
be either a heteroclinic orbit connecting p’ and some invariant curve on W¢(p’) or
some other orbit wandering near W¢ (recall that there are instability regions on
We<(p’), the orbit returns to W¢(p’) staying within 3-dimensional W< (p’), thus it
is locked between unstable 2-dimensional manifolds of invariant curves on W¢(p’),
since they locally divide W< (p’)).

Nevertheless, if we turn to the related 3 d. o.f. Hamiltonian system with a pe-
riodic orbit ¥ of 1-elliptic type (or it can be called to be of the saddle-center
type), then such an orbit belongs to a smooth symplectic cylinder of periodic
orbits of the same type. So, if ¥ has a homoclinic orbit, then for the related close
levels of Hamiltonian on the cross-section to 6 one gets a one-parameter family
of symplectic Poincaré maps. Thus, if Hamiltonian itself depends on a parameter &
in a generic way, then first return map for ¢, derived by a homoclinic orbits to
it, unfolds to a two-parameter family of symplectic maps and hence any close
smooth 1-parameter family of smooth Hamiltonians also has a 1-elliptic periodic
orbit with a homoclinic orbits to it. Thus, this phenomenon is generic for generic
1-parameter unifoldings of a Hamiltonian with such the structure.

Now we return to the problem under study. In a neighborhood of homoclinic
point q let us consider 2-dimensional symplectic disk * through g being the trans-
verse intersection of extended 3-dimensional center-unstable manifold W< (p)
with 3-dimensional center-stable manifold W (p). Below we shall prove the exis-
tence of smooth stable and unstable manifolds for any KAM-curve on W€ lying in
a sufficiently small neighborhood of p. All stable manifolds belong to W and
all unstable manifolds belong to W<. Hence, they intersect with X. The first
statement concerning this intersection is the following:

Lemma 2. Disk ¥ contains two Cantor sets of smooth closed curves w,(y) and
w, (y) being, respectively, traces of the related stable W*(y) and unstable W*(y)
manifolds of invariant KAM-curves y € W€. For a fixed invariant curve y integrals
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of 2-form w over disks D“(y) and D*(y) bounded by w,(y) and w(y), are equal:

w=| w.
D*(y) D*(y)

Proof. The existence of stable manifold W*(y) and unstable manifold W*(y)
of invariant KAM-curves y € W¢ will be proved in Appendix.

The transversality condition implies the intersection of W with W near ¢
to occur along a smooth 2-dimensional disk . For every invariant curve y in W¢
its stable manifold being extended by f~! in a finite number of iterations reaches
a neighborhood of g and transversely intersects ¥ within W (y) along closed
curve w;(y), the trace of W*(p) is point q itself. Traces on % of W¥(p) and W4(y)
in W (p) are respectively point g and curve w, (y).

Consider now a piece-wise smooth 2-dimensional surface made up of a piece of
the lateral side of the cylinder W*(y) between W¢ and X, the piece of W¢ bounded
by y and disk X. Integration of the form Q over this surface is reduced to the dif-
ference of integrals over the disk in W¢ and that over disk in ¥ bounded by w;(y),
since the integral over lateral side is equal zero (it is a Lagrangian submanifold).
This gives the equality of integrals in the statement of the Lemma. Similarly, we
get equality of the integral over disk in W¢, bounded by v, and the integral over
disk in %, bounded by w, (7). O

3. LINEARIZATION AND SCATTERING MAP

The genericity Assumption 3 is formulated using scattering map S. In this Sec-
tion we will construct this map which acts on tangent plane T,W¢. Scattering map
is an analog of the scattering matrix for a Schrédinger type equation [42]. For the
problems of the homoclinic dynamics related with non-hyperbolic equilibria this
map was first introduced in [23]. Far-reaching extension of this map for a normal-
ly hyperbolic manifold in a Hamiltonian system was obtained in [11].

Consider first the linearization of the family of diffeomorphisms f" at homo-
clinic orbit

I'={qn, n € N| qn1 = f(qn), 90 = q}.

This linearization is a sequence of linear symplectic maps
Ly =Dflr, m: Ty M = T, M

and hence lim L, = Df,, as |[n| — . Since f"(q) — p as n— %o, there exists an
integer N large enough such that given a neighborhood V of p one gets f*(q) €V
for all |n|=N.

In neighborhood V we choose a symplectic chart where fixed point p is the
origin, then map f is in the standard form “linear diffeomorphism plus higher



318 L.LERMAN, A. MARKOVA

order terms”. After a linear symplectic change of variables the linear part of the
map can be transformed to the block-diagonal form:

X| =ux+...,
n=uly+.., ©)
u;\ _ (cosa —sina) (u
(vl) _(sina cosa)(v)+""
with 0 < u <1, dots mean terms of the order 2 and higher. In these coordinates
the linearization of this discrete dynamical system at the homoclinic orbit T is
given as follows:
Ent1 = UEn + Py,
N1 = .U'_lnn +Qnlhn; )
Ant1 = Raxn + Wiln,

where £, = (&n, s Xn) ' = Ens N> X x2) T is coordinate 4-column vector in the
tangent space at the point q, = (X, Y», Un, Un); R, denotes the rotation matrix

through angle a: )
cosa —sinay.
R = sina cosa/’

P,, Q, are 1-row matrices, W, is (2 x 4)-matrix. Since P,, Q,,, W, are of at least
order 1 at (0,0,0,0) and (x,, y,, u,, U,) decay exponentially fast to (0,0, 0, 0)
as |n| — =, for these matrices the following estimates hold for |n| = N and some
positive C depending on N and on size of the neighborhood V:

Il < Cpt,  llQull < ™, Wl < Cuf,
where 0 < u<u; <1. Take |n|= N and denote

E 0
Sn = (02 Rna)’
where E, is 2 x 2 identity matrix.

Consider now the case n= N and perform in the system (7) a sequence of
nonautonomous (with “time” n) symplectic changes of variables ¢, =S,_nY'n,
where ¢, = (En, > Xn), and consider (7) in the rotating coordinate frame. This
change of variables allows one to exclude asymptotically the rotation in coordi-
nates y, = (x}, x2) and prove that in new coordinates each invariant bounded
sequence for the linear system obtained from (7) has a limit as n — .

After the change system (7) casts as follows (we hold previous notations for

variables):
Env1 = uEn +F.,,

M+ = M_lTln + Gngn; (8)
Ani1 = Xn+Holn,

where F,, G, are again 1-row matrices and H,, is (2 x 4)-matrix. For these ma-
trices estimates similar to those for matrices P,, Q, and W, are valid. Sequence
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{(€1> N> xn)} is called the solution of the system or the invariant sequence, if
equalities (8) are satisfied for all n€Z,. The following lemma is valid.

Lemma 3. There is an integer N >0 large enough such that for any given £E° €R,
2+ €R? a unique solution {(&,, Nn, xn)}, 1= N, exists for the system (8) such that
for this solution the boundary conditions are satisfied: Ey=E&°, xn — x4, |Exl =0,
[Nal =0 as n—+w.

Proof. Similar to [24], instead of system (8) consider a system of difference
equations (9):

n—1

En = prNEH Y TR,
s=N

{ Nn =— Z .u's+17nngs: (9)

Xn = X+_ZH5gs-

Note that any solution of this system obeys the boundary conditions in the state-
ment of the lemma. Let us show first that the solution of the system (9) is also the
solution of the system (8) and vice versa. Indeed, the following equalities hold:

n n—1
e = BN Y B L a4 Y L, ) Fal = i+ Fali
=N s=N

M1 = _Z‘U’s_nGsCs = GnCn_GnCn_Z uG s =

s=n+1 s=n+1

= Gplp+u! (—ZMS“*”GSCS) = N+ Gl
s=n

An+1 = X+_ZHS§S = x+_ZHsgs +Hn§n = Xn+HnZ:n'
s=n+1 s=n
So, if the sequence {(&,, Nn, ¥n)} solves (9), then it satisfies (8). The converse
assertion is given as n — « by the consecutive application of (8) to an initial point.
Thus, one needs to prove the existence of solutions for system (9). To do
this, we use the contraction mapping principle. Denote B the Banach space of
sequences ¢ ={(&,,, Nn, ¥»)} uniformly bounded on [N, +) with the norm

11l = sup (1€l Ml lxall)-
n=N

Right hand sides of (9) define operator T: T[{]={ on B. At the first step let
us verify that T is defined correctly, that is T[B] C B, here y., £° and N are
considered as parameters. Recall that for F,,, G,, H, the following estimates are
valid: ||F, ||, |GAll, [|H,|| < C¥™, 0 <v< 1. Here C depends on N, but is finite for
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a fixed N. Denote k =max{u, v} < 1. Then one proceeds as follows:

n—1
18l < KPNEOHIZI| D KM ICKS = kM NEO +[||CK (n—N),
s=N
+1— — 1— 25 1— K2
17l < ||:||Z:<s 1kt = Clglhe Sk = il el 14 [ty

s=n

1Zall < llx+ 11+ ClE]] Z K = [zl +CllE -

s=n

Thus, the sequence { is uniformly bounded on [N, +), so the operator T is
defined correctly.
Next we prove T to be a contraction map:

n—1
L =82 < N0 —LaliC D xm ke = (|4, — LallCr™ (n—N),
s=N
it 2n
_ J _ — K
Ih—Tal < ||<1—cz||c;:<5+1 " = |51 = ol 1_— =

= 16— Gall S5 <1y —Lall £55,
178 =221 < 11E2— czncZKs:ncl Call 25 < gy = Call =

These estimates show that T is contracting for N large enough and n = N. Thus,
for any fixed E°€R and y, €R? there is a unique solution

g(goj X+) = {gn (50’ X+)} = {(gn(g(); X+): T’n(goi X+)! Xn(‘g(); X+))}

for the system (9) such that &y(E°, y,) =&°. The estimates above also show that
€], Inn| and ||y, — x+|| tend to zero as n — . O
For the further purposes one needs to prove some linearity relations for solu-
tions of system (8).
Lemma 4. Solutions {(E°, y,) of the system (8) satisfy the following linearity
relations:

I (&0, x+) +E(EG, 0) = (&G + &G, x4+

II. £(&,0)+ (&G, 0)=4(&5+£5,0), C(a€6,0)=aC(€6,0);
mr. (0, ay+Bx)=al(0, x})+ B, x
Proof. To prove the first equality consider the function

Ay = {A1(n)} = C(&, x+) +C(8G, 0) = (€ +&q, x+) =

n(E0, 2+) + &0 (&0, 0) =&, (&G + &5, 2+)
=3 | M (&6, x+) + (&G, 0) =1, (& + &0, 24)
Xn(gf): X+) +Xn(€6/’ O) —Xn(€6+§6/; X+)
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This function is a solution of the system (9) with boundary conditions (0, 0).
Indeed, consider the following systems with boundary conditions (&, x.), (&3, 0)
and (&) +&}, x+), respectively:

f n—1
En(Eh, 24) = WNEC+ D SR (8D, 24),
s=N
{ M8 22) = = D G (B x4, (10)

n By 22 = Ao = D HL (€, 1),

f n—1
Ea(£5,0) = prNEL+ D ISR (£, 0),
s=N

{ na(E5,0) == w1 Gl (&7, 0), (1)

& 2n(E4,0) =y — Y HZ(5,0),

n—1
gn (56 + 56/: X+) = Hn—NgO + Z ‘un_l_stCs (56 + 56/: X+),
s=N
VM€ +86 2:) == D Gl (Ep+E0, 14, (12)

An(Eo+ &0 1) = He— D HL (G +EG, 14).

s=n

Summing related equalities from (10), (11) and subtracting (12) we get:

En(E0 24) +EnEG, 0) —En(E0 + &0, 24) = "N (€ + €6 — (EG +E) +
n—1 n—1
+ 2 T (L 1) + L (EG 0) = L€+ £ 24)) = D TR A (),

s=N s=N
Tn (%: X+) +Mn (56/; 0) _nn(‘gé) + 56/, X+) =

= = D G (G (8 1) + 85 (€ 0 & (€ +E¢, 1) =

s=n

+ 00
== > TG (s),
s=n
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X (&0 X)) + 1 (EG50) — xn (&G +E0, x4) = (re +0—x4) —

=D H (L8 1)+ Lo(E5, 0) = Lo(Eg + &4, 7)) — D H A (5).

The equalities obtained imply that A; satisfies (9) with boundary conditions
(&% x4+) = (0,0). Since the solution of (9) with given boundary conditions is
unique, then A; =0 and therefore the relation I is valid.

Relations IT and IIT are proved in a similar way, if instead of A; one considers
A, and Aj, respectively:

Ay = {(aky+BEG, 0) —al (&g, 0) —BL(EG, 0),
Az = (0, ayi +Bxi)—al(0, x1) =B, x).

Lemma has been proved. O
Similar constructions are done for n <—N.

3.1. Geometry of linearized map. Now let us present a geometrical interpre-
tation of the results obtained. To do this, we introduce a countable set of linear
symplectic spaces X, |[n| > N, with coordinates (&, n,, x., x2), and linear sym-
plectic maps %,: X, = X,,41, n = N, defined by (9). If we fix y, and vary &,
Eo=E&L+ &0, &0 €R, then due to Lemma 4, the related solutions of (9) define
an affine straight line in Xy (in fact, they are initial points of these solutions)
and hence in any X,,, n> N. These straight lines have the characteristic property
that any solution which passes through this line in X,, decays exponentially as
n—ow: £ —0, 1,0, ||x,.— x+|| = 0. In addition, if we fix not y, but only
the value 2] = y? + y2 =||x. ||, then in every X,, n> N, we get a 2-dimensional
cylinder C;f (I) formed of those straight lines in X, through which solutions asymp-
totically satisfy to ||y, — x|/ — 0, each straight line on C;(I) corresponds to the
unique point on the circle 2] = y2 + y2 (an asymptotic phase). Varying I, £, defines
a linear 3-dimensional subspace £ F of bounded solutions in Xy, and hence in X,
which in turn foliates on the cylinders C;' (I). Such a cylinder shrinks to the straight
line C;(0), as I — O, this straight line just corresponds to solutions with y, =0.

Now let us turn to the initial linearization problem along homoclinic orbit I" for
diffeomorphism f. To derive results described above, we performed the sequence
of linear changes of variables that allowed us to prove for any bounded solution
the existence of an asymptotic phase. In the initial coordinates all objects found
preserve: for any point g, in the related tangent space T, M we have 3-dimension-
al subspace of bounded as n— « solutions £ (we preserve the same notations
for similar objects) which are foliated into cylinders C; (I) (it is worth mentioning
that the value of I does not change when returning to the initial coordinates),
foliations into straight lines, etc. It is evident that in fact £ is nothing else as
tangent space T, W*.
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The same picture takes place for X,, with n <—N, the only difference is that
one needs take limits as n — —o. Here we also have cylinders C;, straight lines,
3-subspaces £, =T, W, and so forth.

For tangent space T,_y)M and T, )M we have linear symplectic map

S = szNZ Tq(_N)M - Tq(N)M

calculated at the point q(—N). This map transforms £, to a 3-dimensional sub-
space in T, M which transversely intersects the straight line C(0) =13, being
the tangent space to W*(p).

3.2. Scattering map. Now we are ready to construct the scattering map
S: T,We — T,We.

Take any point s € T,W°. Fixing this point defines the unique straight line in
Ty,-nM of the foliation defined in £_y = T, _nyW whose points are asymp-
totic to s as n — —. Let us apply linear map Df?" to points of this line. We
get the straight line in T, )M which is transversal to 3-plane £y = T;n,W* due
to transversality condition. Thus, the line obtained intersects this 3-plane at the
unique point through which a unique line of the foliation defined in plane ¥y
passes. Denote s; € T,W¢ that unique point which is the limit as n — o for all
sequences starting on this line. We set S(s) =s; (Fig. 2).

Let us verify that S is a linear map. It is clear that S(0) =0. Indeed, for s=0
the corresponding straight line in 3-plane £_p is the tangent line to W* in tan-
gent space Ty_n)M. Its image under ¥ = Df?N is a straight line in T,y M which
is transversal to T,,W® due to Assumption 2 and intersects it at the origin

=)
L,we x+w\
X o

FIG. 2. SCATTERING MAP CONSTRUCTION
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of TynyM. Through the origin the unique line from the constructed foliation pass-
es: the tangent line to W* which corresponds to s; =0 in T,W*.

Denote [, that straight line in £_y which consists of points through which
solutions pass tending to s as n — —o. Using the linearity relations I and II we get
the following representation for the solutions of system (8):

Cn(E% Ax-) = £n(0, Ax-) + £ (€%, 0) = A8, (0, x-) +¢,(£°,0)  for any A € R.

To find the image S(As) we act by Df?N on Al + ¥ (here I¥ is the tangent line to
WH at point g(—N)). In %y we get two vectors, through each such vector a unique
straight line passes: these lines are Al; and [, respectively (I3 is tangent line to
W* at point qy). Thus, S maps As to As; +0=As;. Similarly, for the sum s’ +s”
we get relations for corresponding y’, x”:

Cn(E0% x4+ x) = (8240, x/ + 1) =
= {n(E°,0)+ 8, (0, x/ + x/) = £n(E°,0) + £, (0, x1) + £, (0, x).

In this case we act by Df?N on Iy + [y + 4.

The next proposition characterizes map S.

Proposition 1. Map S: T,W¢— T,W¢ is symplectic.

Proof. Choose any two vectors in the symplectic plane T,W¢. These vectors
define two straight lines from the foliation in £_y. Take then two vectors vy, v,
in Z_N=TynyW corresponding to these lines: origins of vectors coincide with
zero point of Ty )W and ends of the vectors belong to corresponding line.
Skew-scalar product being the restriction of 2-form Q on tangent space £_y, does
not depend on vectors we choose. Indeed, difference of vectors corresponding to
the same line is vector lying in [* which is zero vector for skew-scalar product
(such vectors shrink exponentially in backward iterations). &-images of these
two straight lines are two straight lines in T;yM which are transversal to sub-
space %y. The intersection of the lines with ¥ gives two vectors T (v), T (v,),
whose origins coincides with zero of £y =T,n)W*, for specified vy, v,. Since &
is linear symplectic map, then the skew-scalar product is preserved. Now we have
two straight lines from foliation in ¥y and again skew-scalar product of vectors
corresponding to different lines does not depend on exact vectors we choose. But
this product is equal to skew-scalar product of vectors v;, v, and does not change
in forward iterations. Therefore skew-scalar product in limit in T, W¢ equals to
skew-scalar product of initial vectors in T, W¢. O

Linear symplectic map S we call the scattering map.

4. HOMOCLINIC ORBITS TO INVARIANT KAM-CURVES
To prove Theorem 1 we assume for diffeomorphism f Assumptions 1, 2 and 3 to

hold. Thus, according to Section 2 manifolds W< (p) and W*(p) intersect at ho-
moclinic point g transversally, and therefore along a symplectic 2-disk ¥ (we may
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regard g =q, and disk © to belong to a neighborhood of fixed point p). The
idea of the existence proof for homoclinic orbits to invariant KAM-curve y € W¢
is the following. Let V be a sufficiently small neighborhood of point p. For each
KAM-curve y C WeNYV its action is defined according to the Stokes theorem as the
integral of 2-form Q over that disk in W¢ whose boundary is curve y. Curve y has
its local stable manifold which can be extended by a finite number of iterations
of map f~! till the manifold reaches the neighborhood of homoclinic point g
staying inside of W< (p). Therefore, this manifold intersects transversally within
We(p) disk X along a closed curve w;(y). Similarly, unstable manifold of the
same curve y under the action of f reaches the neighborhood of g staying inside
We4(p) and hence intersects X along a closed curve w, (y). Two obtained curves
on X have the same value of action as follows from Lemma 2. Thus, two disks
in ¥ bounded by w;(y), w,(y) are of the same area and have common point ¢
lying inside both of them. Hence, the intersection of curves w;(y) and w,(y) is
not empty and consists of at least two different points, homoclinic orbits to y pass
through the intersection points (see Fig. 3).

(N
9,

1) (2 3)

F1G. 3. POSSIBLE INTERSECTIONS OF W*(y), W"(y) oN &

The problem here is that we do not know a precise information on this intersec-
tion: how many points does it contain, if the intersection is transverse or not, etc.
All these questions are relevant for the further study of nearby dynamics. In the
case of an integrable diffeomorphism (when an invariant w.r.t. the diffeomor-
phism f smooth function exists) these two curves coincide, since both of them
belong to the same level of the invariant function whose restriction on % near q
usually forms a connected closed curve.

Provided that our Assumptions hold, we shall prove for any KAM-curve on W¢
in a sufficiently small V with a given value of action I, the intersection to consist
of exactly four points and it is transverse at each of these points. To prove this
we shall connect intersection properties for curves w,(y) and w,(y) on ¥ with
intersection properties of related ellipses E and S(E) with the same action I in
tangent plane T,W¢. The genericity Assumption implies that these ellipses have
the same center and the same area and intersect transversally at exactly four
points. This property will be carried to the intersection of w, (y) and w;(y).
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To prove the intersection of these curves is as in Fig. 3 (left panel), we trans-
form f in neighborhood V of fixed point p to the normal form (15) (see Appen-
dix 7.2) up to the third order terms and consider first the truncated map. For this
map two local functions xy and u?+ v? are local integrals up to sixth order terms,
but what is more important for our goals, circles x=y =0, u?>+v?=c on W¢ are
invariant curves for any positive ¢ small enough and stable and unstable manifolds
of these curves have the representation y =0, u?+v2=c and x=0, u?+v?=c,
respectively. Since the whole map differs from the truncated map by terms of the
fourth order and higher, then for a given positive constant ¢ small enough invari-
ant manifolds of KAM-curves for the truncated and full maps are at least C>-close
in V, due to Fenichel theorems. According to these theorems [15], as diffeomor-
phism is C"-smooth, then invariant cylinders of KAM-curves are C"~!-smooth (see
Appendix 7.3). Also we shall suppose, without loss of generality, that both points
g_=q(—N) and g, =q(N) belong to V.

For diffeomorphism (15) for n = N, due to properties of functions ¢, 1, sys-
tem (8) has the linearization matrices for f along the homoclinic orbit

p(l+..) Pn qn T
0 ut(1+..) 0 0
0 I, cosa+... —sina+... |’
0 Sp sina+... cosa+...

where dots and p,,, gy, 7, L, S, mean terms tending to zero exponentially fast as
n— +o. The form of this matrix implies that 3-dimensional plane 1 =0 in the tan-
gent space at homoclinic point ¢(N) under the action of this linear map is trans-
formed to 3-dimensional plane 1 =0 in the tangent space at homoclinic points
q(N +1) = f(g(N)), etc. As Lemma 3 implies, for a fixed I, (y1)?+ (y?)?>=2I,
we get in Ty(y)yM a cylinder in 3-dimensional plane 1 =0, consisting of solutions
for the system (8) which asymptotically tend to the circle (y')?+ (x¥2)?=2I in
T,W¢. Intersection of this cylinder with tangent plane to X, at point q(N) is an
ellipse. Similar cylinders and ellipses are obtained, if one considers linearization
of diffeomorpsim along homoclinic orbit for n <—N as n— —oo.

Global symplectic map ¢ = f2N transforms a neighborhood of homoclinic point
q(—N) to a neighborhood of homoclinic point g(N). In normalized coordinates (15),
homoclinic points have coordinates:

q(—=N) =(0,1,0,0), q(N) = (xo,0,0,0).
Therefore, symplectic map ¢ has the following local representation
.)?—XO = F(X, Y=y u, U),

y = G(X, Y—JiL U):
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dxAdy+dundd =dxAdy+dundv,

and all functions F, G, P, Q vanish at the point (0, y;, 0, 0). Transversality condi-
tion at point q(N) means the tangent vector to W, that is (1,0, 0, 0), be trans-
verse to tangent plane to W being ¥-image of 3-disk x =0. This implies that

determinant 3(G. P, Q)
det (—)
A=y u,v)

calculated at point (0, y;, 0,0) does not vanish. In virtue of Lemma 1 the same
transversality condition holds at g(—N): tangent vector to W% (i.e. (0,1, 0, 0))
and tangent plane to W (¥-pre-image of y =0) are transverse, this is equivalent
to the inequality G, #0 at (0, y;, 0, 0). 2-Disk X=X, at these coordinates is the
intersection of ¥-image of local 3-disk x =0 near point g(—N) and local 3-disk
¥ =0 near q(N). Then one has a representation for ¥_ = %~1(%,) in the form
x=0, y—y; =%¥(u,v), and for X, in the form x=®& (@, v), ¥y =0. In particular,
since map ¥ is symplectic and the restrictions of symplectic 2-form Q2 to symplectic
disks ¥_ and X, are du Adv and du Adv, respectively, then the restriction %5, of
map ¥, Y : ©_— X, is symplectic and has the form

ﬂ=a11u+a12U+..., l7=a21u+a2211+..., (13)

where dots mean terms of the second order and higher, matrix

is symplectic, here this means to be uni-modular: det A=1. In fact, matrix A de-
pends on integer parameter N, A= Ay, since our choice of the homoclinic points
q(—N), q(N) and hence ¥._, 3, , and related tangent planes to them depends on N.
But for any N large enough the representations for these tangent plane are similar
and coordinates of them are coordinates on T, W¢. As N — o the related tangent
planes to X, (N) tend to T,W¢. This implies

Lemma 5. For N large enough matrix Ay is not a rotation matrix.

Proof. To prove Lemma we shall show that its conclusion follows from the
transversality Assumption 2 and genericity Assumption 3. As follows from Lem-
mas 3, 4, Ay tends to matrix A., being the coordinate representation of scattering
map S. O

Consider symplectic disk X_ through the point q(—N). In normalized coor-
dinates it has a representation x =0, y =¥(u, v). Hence the tangent plane to
it at ¢(—N) has a representation £ =0, n=ay! + by?. This implies this plane
to intersect transversely any Lagrangian cylinder C, (I) and these intersections
form a foliation of the plane into ellipses. Similar foliation into ellipses exists
in the tangent plane to %, through the point q(N), it is generated by intersec-
tion of this plane with cylinders C;(I). Differential of the global map ¥ = f2¥
is a linear symplectic map and its restriction to ¥X_ is a linear symplectic map
Ly: TyenyZ— = Tyon 24 If we fix I, then related ellipses E_(I), E.(I) in X_, X,
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respectively, have the same area and Ly(E_(I)) intersects E, (I) at four different
points transversely, due to Assumption 3.

Let us fix a sufficiently small neighborhood of fixed point p on the center
manifold W¢. Its smallness is controlled by a parameter ¢. To this end, follow-
ing [36], we introduce symplectic polar coordinates on W¢= {x =y =0} in the
neighborhood of fixed point

u=ev2lcosO, v=¢evV2sinb.
Then we get a symplectic map on W¢:
I=1+0(%), 0=0+a+vell+0(e3). (14)

According to the Moser theorem [36], there is an I, > 0 such that for ¢ small
enough and any given I, 0 <I <I,, such that the number a + 2ve?I is Diophantine,
there exists an invariant curve which is £2-close in C? topology in the space of
curves I =r(0) to curve u® + v? = 2¢2I. The map (14) is the restriction of the initial
map on a neighborhood of p in W¢ and normalized up to the third order terms.
Thus each invariant curve on the center manifold has two invariant Lagrangian
cylinders being its stable and unstable manifolds, they are C?-close to cylinders
u?+v?=2¢%I, y=0, or x=0, respectively, of the truncated map.

Let us verify that traces of W*(y), W"(y), corresponding to invariant KAM-
curve y on T,W¢ with action 2¢2[ also intersect on X, transversally along four
points. To this purpose, we consider the restriction of ¢ on Y_ near point q(—N)
with values on disk X, near point q(N). Fix in V some neighborhood of p on W¢
defined by & small enough, and let ¥ be some KAM-curve in this neighborhood.
This defines some I. The restriction of ¢4 on X_ is a two dimensional symplectic
map (13). Since the coordinates on X~_ and X, are (u,v), after the change of
variables (14) where ¢ and I are considered as parameters, we come to the system
for intersection points of w*(y), w4(y). Taking into account that these manifolds
of the same KAM-curve, we get the value I be the same and then we have:

ev2I cos O = eay; V21 cos 0 + a5 v/ 21 sin 0 + 0(e2),
ev2I sin 0 = gy v2I cos 0 + £ay, v/ 21 sin 6 + O (£2).

Dividing the equations on €+ 21, squaring both sides of each of the equalities and
sum them we get the equation for 6 corresponding intersection points:

1 = (aq; cos 0 +ay, sin 8)2 + (ay; cos @ +a,, sin 0)%+ 0 (¢).

This equation have precisely four simple roots, if matrix A is not a rotation ma-
trix [30]. Therefore, due to implicit function theorem, traces of cylinders of trun-
cated map on disk X intersect transversally along four points. This implies that
C?-close traces of cylinders of full map, that is curves w,(y) and w(y), also
intersect transversally along four points. Theorem 1 has been proved. O
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Results given in Theorem 1 are of much more wider applications than it is
formulated there. Indeed, let us fix some invariant KAM-curve y on W¢ being suf-
ficiently close to fixed point p. Its stable and unstable invariant cylinders intersect
each other at four transverse homoclinic orbits as stated in Theorem 1. It is well
known that every such KAM-curve is a limit of other KAM-curves in C2-topology
and their invariant stable and unstable cylinders are also close in C2-topology
on compact sets (under our assumptions of smoothness for f). Let us fix KAM-
curve y; being sufficiently close to y. Their C2-closeness implies the transverse
intersecting of W*(y) and W!(y;) along four heteroclinic orbits (their traces on &
are transversely intersecting each other close “almost ellipses”) and vice verse, the
same is true for W¥(y) and W*3(y;). Thus, there are many heteroclinic connections
between different close KAM-curves. The dynamics which follows from this pic-
ture is not completely understood as for the case of homoclinic orbits to a periodic
orbit. As was mentioned before, first contribution here was done in [13] for some
model problem. More details was found in [8,11], nevertheless, a complete picture
is not understood. Some more details will be presented in the next Section.

5. HOMOCLINIC ORBITS TO SADDLE PERIODIC ORBITS ON W*¢

As is well known, a sufficiently smooth 2-dimensional symplectic diffeomorphism
near its generic elliptic fixed point O (some Birkhoff coefficient in the normal form
does not vanish) is a twist map with respect to action-angle variables given by
symplectic coordinates of the Birkhoff normal form. In particular, this implies the
existence of a positive measure Cantor set of invariant KAM-curves with Diophan-
tine rotation numbers accumulating at p [36]. For our case as such diffeomorphism
we have the restriction of f onto W¢(p). Since W¢ is a smooth normally hyperbolic
invariant submanifold for f, the Fenichel results [14,15] are applicable that gives
smooth foliations of W and W into smooth curves (see Appendix). These smooth
foliations allow us to define two smooth maps F,,: W¢— X, F,: W¢— 3.

Let us fix some invariant KAM-curve y with a Diophantine rotation number.
Near such the curve there is a positive measure set of other smooth invariant
curves accumulating at y in at least C2-topology. Another consequence of the twist
condition is by Poincaré-Birkhoff theorem that for any rational rotation number
[/n with incommensurate integers [, n there are at least two n-periodic points.
Generically, these two periodic orbits are one elliptic and another hyperbolic.
Moreover, if this diffeomorphism satisfies some additional genericity condition
(sometimes, this is called as the Moser genericity [16]), then stable and unstable
separatrices of the hyperbolic orbit intersect transversely along related homoclinic
orbits in W¢. This allows, in particular, to construct a “fence” made up of stable
and unstable separatrices which divorces one invariant curve from another one.

This can be done in the following way. We assume, for simplicity, n =2, thus
the related periodic orbits are 2-periodic. Let us fix one hyperbolic 2-periodic
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F1G. 4. A FENCE ON X MADE UP OF STABLE AND UNSTABLE MANIFOLDS
OF A SADDLE PERIODIC ORBIT

point m, and let m; be the second point of this orbit, m; = f (m;). Suppose that
unstable manifold W%(m,) for the restriction of f on W¢ transversely intersects
stable manifold of W*(m;) and stable manifold of W*(m,) transversely intersects
unstable manifold of W¥(m;). In this case, due to so-called lambda lemma [39],
the topological limit of W% (m,) contains the whole W%(m;) and vice versa. Thus
we get some closed invariant set §, made up of these curves and their closures.
Similar set § is formed by stable manifolds (see Fig.4).

Take §, and for every its point consider the related unstable leaf of the unstable
foliation in W*. Then map F,, transforms set §, to the homeomorphic set in Z.
Similar set in X is obtained from §; using F;. Now choose any invariant KAM-
curve in W¢ in a neighborhood U where Theorem 1 applies. Choose a sufficiently
close invariant KAM-curve y; such that on X related traces w*(y), w*(y;) intersect
transversely traces w“(y), w“(y;). Then we have on % two annuli: A, bounded
by w?(y), w*(y;) and A, bounded by w4(y), w*(y;). These annuli intersect each
other in such a way that each boundary curve of one annulus intersects every
boundary curve of another annulus transversely. Since the restriction f, of f
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on W¢ is a twist map, then invariant KAM-curves v, y; have different rotation
numbers p, p;. Thus there are periodic orbits inside the annulus between v, v;
corresponding to some rational p < p, < p1, P« =p/q. If f. is Moser generic, then
the half of these periodic orbits are hyperbolic Birkhoff g-periodic and its stable
manifolds form a fence §, in A, C 2. This fence separates A, in the sense that if
we take two points on different boundary curves of A, then any path going from
one point to another one will cut §,. The same holds for §, in A,. This implies

Theorem 2. The sets J,, §, intersect, hence there are Poincaré homoclinic orbits
to a saddle hyperbolic periodic orbit on W*.

It is clear that in fact there are countably many such Poincaré homoclinic orbits.
Of course, it is impossible to assert that they are transverse or tangent since this
cannot be caught by such considerations.

6. MULTIDIMENSIONAL EXTENSION

The problem we have studied possesses a multidimensional extension. The tool
to get this extension are essentially the same, so we present only the related set
up and formulations. In a smooth symplectic manifold (M, Q) of dimension 2n + 2
we consider a symplectic diffeomorphism f that possesses a fixed point p of the
elliptic-hyperbolic (2, 2n)-type. The latter means this point has the linearization
operator with the only pair of complex eigenvalues on the unit circle exp[+ia]
and remaining 2n eigenvalues are off the unit circle and thus are met either in
real pairs iy, Ui ', |uxl <1, or in complex quartets p,,, exp[*ik,,], p;.} exp[*ik,,],
Km # 0, 7. Here one has k +2m =n. Such a fixed point has locally a smooth two
dimensional center manifold W¢ corresponding to the pair exp[+ia] on which p
is an elliptic fixed point and we assume henceforth it to be of generic elliptic
type. Besides center manifold, through fixed point other smooth manifolds pass:
n-dimensional strong stable W* and strong unstable W ones, as well as (n +2)-
dimensional center stable W* and center unstable W ones.

Analogs of three Assumptions 1-3 are

Assumption 4 (Homoclinic intersection). Manifolds W4 (p) and W*(p) have an
intersection at some point q, generating thus a homoclinic orbit T to point p.

Dimensions of stable W* (n) and center unstable manifold W (n+ 2) are
complementary, this allows one to impose

Assumption 5 (Transversality condition). The intersection of manifolds W*(p)
and W (p) at point q is transverse.

Below we shall show that the linearized along the homoclinic orbit I" the se-
quence of linearized map generates the linear symplectic scattering map

S: T,W® — T,W-.
We assume this map being generic that means as above that the foliation into
ellipses on the tangent plane T, W¢ generated by the linearized map Df,, has the
property: any ellipse E of this foliation satisfies
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Assumption 6 (Genericity condition). The intersection E N S(E) is transverse
and consists of four points.

If these three conditions hold then the analog of the main theorem is valid.

Theorem 3. Let a C"-smooth, r = 6, symplectic diffeomorphism f on a C*-smooth
2(n + 1)-dimensional symplectic manifold M with an elliptic-hyperbolic fixed point of
the type (2, 2n) obey Assumptions 4-6. Then there is a neighborhood U of homoclinic
orbit T" such that every closed invariant KAM-curve on W€ possesses four transverse
homoclinic orbits in U.

To prove this theorem we again first study the linearized nonautonomous
problem given by the linearization of f on the homoclinic orbit I". Also, in or-
der to avoid possible complications, one assumes in addition that orbit I" leaves
from p and enters to p along leading direction in W* and W* (one or two dimen-
sional).

Then, as above, we construct scattering map S acting on T,W¢ and assuming
Assumptions 4-6 to hold we prove the Theorem. This proof uses again that the
transverse intersection of W and W* near a homoclinic point g €T" occurs along
a 2-dimensional disk X which belongs to both of them. Hence (n + 1)-dimensional
stable and unstable manifolds of any invariant KAM-curve y € W¢ when continu-
ing by f in W, W<, respectively, intersect again 3. along closed curves w?(y),
wk(y). Genericity Assumption 6 implies this intersection to happen transversely
at four points through which homoclinic orbits to y pass.

7. APPENDICES

7.1. Straightening invariant manifolds. In some neighborhood of the fixed
point the symplectic diffeomorphism under consideration can be in the form (6).
In this form 1-dimensional stable manifold W* is given as a smooth curve tangent
to the x-axis (at point p) and 1-dimensional unstable manifold W is given as
a smooth curve tangent to the y-axis. Center stable W and center unstable W<
manifolds are given as graphs of the functions y =F(x, u,v) and x=G(y, u,v)
being tangent at p to 3-dimensional planes y =0 and x =0, respectively. Let us
first straighten the curves W, W*:

Lemma 6. Let in linear symplectic space (R*, Q=dx Ady +du Adv) a smooth
curve (x, y(x), u(x), v(x)) through the point (0, 0, 0, 0) is given, such that y’(0) =
=u’(0) =v’(0) =0. Then this curve can be transformed by a symplectic transforma-
tion (x,y,u,v)— (&, n, v, w) into the &-axis.

There are many of such transformations, for instance, this is one of them:

E=x,
n=y—y0)—v(x)(u—u(x))+u (x)(v—-v(x)),
v =u—u(x),

w=v—v(x).
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All other transformations in a neighborhood of p we perform holding straight W*
and W*". At the next step we straighten W and W<:

Lemma 7. In some neighborhood of point p there exist symplectic coordinates
(x, y,u,v), Q=dx Ady +du Adv, such that submanifolds W, W in these coordi-
nates become flat, that is they are given as y =0, x =0, respectively.

Proof. In principal, this lemma follows from the related result of the theory
of symplectic manifolds (the relative Darboux theorem) [3]. But for the reader’s
convenience, we present a direct proof. We follow the lines of the proof of the
Darboux theorem given in [1].

In coordinates (6) W is expressed as y =F(x, u, v), where

F(0,0,0) = F,.(0,0,0) =F,(0,0,0) =F,(0,0,0) = 0.
Center unstable manifold W in the same coordinates is given as x =G(y, u, v),
G(0,0,0) = G,(0,0,0) = G,(0,0,0) = G,(0,0,0) = 0.

Take function p; =y —F as a Hamilton function and consider the related Hamil-
tonian flow. Since x =1 then in a neighborhood of p small enough submanifold
x=G(y, u, v) is transversal to flow orbits. We take this manifold as a cross-section
to the flow. Denote q;(x, y, u, v) the time needed for the flow orbit through the
initial point (xy = G (¥, Uo, Vo), Yo> Ug, Up) to reach the point (x, y,u,v). Then
g1 =0 for points on the cross-section and p; =0 on W* since it is a level of the
Hamiltonian. The Lie derivative of q; w.r. t. the vector field X, is equal to 1. There-
fore, Hamiltonian vector fields with the Hamilton functions p;, g; are commute
and independent in a neighborhood of p. Thus, orbits of R?-action generated by
these two commuting Hamilton functions give a smooth foliation into 2-dimen-
sional orbits near p and its leaves are transversal to 2-dimensional submanifold
being joint level of functions p; and g;. Next we take joint level p; =q; =0
that is just locally W¢. We introduce any local symplectic w.r. t. the restriction of
2-form £ on W€ coordinates (p,, g») near p. These coordinates are extended onto
a neighborhood of W¢ setting (p,, g») constant along the whole 2-dimensional
orbit of the action through the point on W¢ with coordinates (p,, q,) on it. O
Remark 1. If W$ and W" were previously made straighten, then one has

F(x,0,0) =0, G(y,0,0)=0

and straightening W<, W preserves W*, W straighten.

7.2. Normal form near 1-elliptic fixed point. Here we shall derive the nor-
mal form up to the terms of third order for a smooth symplectic 4-dim diffeo-
morphism f in neighborhood V of its fixed 1-elliptic point p. Without a loss of
generality one may assume o € (0, 7).

Proposition 2. In some neighborhood V of fixed 1-elliptic point p there exist sym-
plectic coordinates (x, y, u,v), Q=dx Ady +duAdv, such that diffeomorphism f
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has the following form in these coordinates:
( Xn+1 = .U'xn(]- + aXnYn + b(urzl + UT%) + 013);
Y1 = Y (1 —axy —b(uf +v7) + 03),

Upp1 = Uy cos(a+v(u2 +v2)) —u, sin(a+ v +v2)) —
{ . (15)
- Kxnyn (un sma + Un COs a) + L10(‘)(}1) yTU un: Un):

Unt1 = Up sin(a+ v +v2)) +v, cos(a + vz +v2)) +

k + Kxnyn(un Cos a_UTl Sin a) +¢(xn; yn; un’ Un):

where v# 0, functions @, 1 are of the fourth order and higher at the origin, 03 means
terms of third order and higher at the origin. In these coordinates manifolds WS, W
coincide with x-axis, y-axis, respectively, that is the following identities hold:

¢(x,0,0,0) = ¢(0,y,0,0) =1(x,0,0,0) = (0, y,0,0) =0.

Proof. At the first step we straighten manifolds W, W in the neighborhood
of p (see Appendix). As the result, first two relations in (6) are transformed to the
form:

Xpr1 =X (U F-2)s Yosr = YUt .00,

Next we apply the standard normal form method for symplectic maps (see for
instance [3]). We shall use such symplectic coordinate transformations which hold
W<, W be straightened. Next we use complex coordinates instead of u, v in order
to diagonalize the linear part of the third and fourth relations. Monomials of the sec-
ond order and those of third order other than resonance monomials can be killed.

Resonance relations for the set of eigenvalues (u, u~!,e*, e7*) and integer
vectors (my, my, ny, ny) have the form:

Mml—mz—leia(nl—n2) =1, uml—m2+1eia(n1—n2) =1,

‘uml—mZeia(nl—nz—l) =1, ‘uml—mZeia(nl—n2+1) =1.

These relations can be rewritten in the following way:

m; =my+1, a(ny—n,y) =2nk, keZ, (16)
my =my+1, a(n;—n,) =2nk, kez; 17)
m; = my, a(ny—ny,—1) =2nk, ke<Z; (18)
my; = my, a(ny—ny+1) =2nk, ke€Z. (19)

From these relations for integers vectors (m;, ms, ny, n,) such that
|m|+|n| =m;+my+n;+n,=2,3

we derive that if |m| + |n| =2, then resonance relations (16) and (17) are absent,
resonance relations (18) and (19) are the same as for the case of 2-dimensional
elliptic point: a =2m/3. Thus, according to our assumptions (that p is 1-elliptic
fixed point of generic type for f|y.) resonant monomials of second order can
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be removed. If |m|+ |n| =3, then for resonance relations (16) we get resonant
monomials x?y, corresponding to 2-dimensional saddle point of symplectic dif-
feomorphism, and x(u? + v?). For relations (17) we get xy? and y (u? + v?). Under
an assumption that strong resonances are absent in the system, relations (18)
and (19) show resonant monomials xyu, xyv, u(u?+v?) and v(u? + v?) cannot
be eliminated. The last two present in the normal form for a diffeomorphism in
a neighborhood of an elliptic point. Taking into account that the transformation
to the normal form should be symplectic we get (15). O

7.3. Invariant foliations and their smoothness. In this subsection we verify
the conditions from [14,15] which guarantee the existence and smoothness of
stable and unstable invariant foliations within manifolds W<, W, respectively.
In particular, these conditions imply the existence of stable and unstable smooth
invariant manifolds for KAM-curves on the center manifold W¢. Homoclinic orbits
to KAM-curves belongs to intersection of these manifolds. Note that this fact does
not follow immediately from the Hirsch—-Pugh-Shub theorem [21] and we use
the theory developed by Fenichel [14,15]. Let us recall the definition of weakly
overflowing invariant set according to [14]:

Definition 1 (N. Fenichel, 1974). Let U and V be open subsets of some C!-mani-
fold M;, 1<I< o, and let F: U —V be a C!-diffeomorphism. A set A C U is called
weakly overflowing invariant (under F) if A C F(A).

Let TF: TU — TV be the map induced by F on tangent spaces. A sub-bundle
E C TM, |, is called weakly overflowing invariant if E C TF(E).

Let us choose any invariant KAM-curve on W¢ in a sufficiently small neigh-
borhood of p. Then the closure of subset in W¢ bounded by this KAM-curve is
weakly overflowing invariant set under diffeomorphism f. Denote this compact
set as A. Here we assume M; =W and consider f|,,. To apply expanding family
theorems one need to show that there exists weakly overflowing invariant sub-
bundle E Cc TM;|,. It will be proved using contraction mapping principle. Recall
that locally near p manifolds W, W are straightened (i.e. x=0 on W and
y=0 on W) and (y, u, v) are coordinates on it. Then the restriction f on W<
has following form:

Yn+1 = “71yn +h(_yn: Up, Un)yru
Uny1 = Uy COSA—Uy, sin a+g1 (ym Un, Un)’

vn+l = un Sin a+ Ul’l cos a +g2 (.yn: un’ Un):

where functions g;, g, are of second order in (y, u,v), h is first order function.
Now let us change variables (¥, Uy, U,) = (W, Up, Up):

Yn = Yo
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In new coordinates the diffeomorphism will have the form (we keep old notations
for variables):

Yn+1 = ‘u_l.)’n +h(Yns Un, Un) Y
Uns1 = Un +81(Vn, Un, Un), (20)
Unt1 = Un +g2(yn: Up, Un);

At any point m € A differential Df has the following representation (recall A C W¢
is given as y =0):

ut+h(m) 0 0
Dfn = g,(m)  1+g,(m) g, (m)
&2, (m) &, (m) 1+g, (m)

Since we work in one coordinate chart (y, u, v), we will denote (1, y;, x>) as coor-
dinates in the tangent space to a point m. Now consider any orbit (..., m,, My41,...)
of flwe, m=mgy, which belongs to A (that is to W¢). At each point of this or-
bit choose in T,, M; a straight line through the origin in the tangent space be-
ing transversal to plane 1 =0. Such straight line can be given parametrically:
(M, pam, gaM), N €R, functions p,, and g,, smoothly depend on m in A. Differential
Df,,, transforms this line to another line in Ty(;,)M;:

N = (U +h(my))n,
gly (mn) + (1 +glu (mn))pn -"-glU (mn)qn

Pni1 = L+ h(m,) ) (21
&, my)+gy, (my)p, + (1+g,, (),
Aner = T h(m,) '

R.h.s. of the second and third relations define an operator in the Banach space of
uniformly bounded sequences ¢ = {(p,, ¢,)} with norm ||{|| = sup,,cz(|pal, 1gn])-
Indeed, operator will transforms a uniformly bounded sequence ¢ to the bound-
ed one, as all derivatives (g; J’,, (g, (g, i=1,2, calculated at m,, are small
(functions g;, i=1, 2, are of second order at zero):

g1, (M) + 1+, (m)]- 111+ gy, (m,)] - <]

P.q| <

|pn+1| |H_1+h(mn)| )
. 18, (M) + s, () 11 +11+ g5, (m,)] - 1]
Qn1l = T +h(m,,)| '

To prove the operator is contracting, consider following inequalities:
11+g,, (my)|-Ip, —pal + g1, (M) lg, — g2l <
S

lu~ +h(m,)]

< (11 +g1, (my) 1+ gy, () IS =&
lu™ +h(m,)|

|f)r11+1 _f)r21+1| <

3
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182, (M)l - Py =Pyl + 1+ 85, (mo)l 19, gzl _

lu™t +h(m,)| h
< (g, M) +11+ g, (mHD) I =2l
S

lu™' +h(m,)|

|Qr11+1 _q121+1| S

Quantities such as
11+8,, (M) +181, (m,)|
eftlu™" +h(m,)|

are less than 1 uniformly in n, if we are working in a neighborhood of p small
enough, so that the operator is contracting. According to contraction mapping
principle there exists a unique fixed point of the operator, namely some sequence
{(pi,q:)}. This sequence (as the point in the related Banach space) depends
continuously in m € A. The straight lines corresponding to this sequence, as m
varies along A, form weakly overflowing invariant sub-bundle E C TM|,.

Next we choose a vector bundle NCTM,|,, complementary to E, that is TM; |, =
=E®N. We set N=TA. According to [14] for m€ A, any v, €E and W, €N let

Uy = Df *(m)vy, w_y = nVDf*(m)wy,

where 7tV is projection to N (note that in our case N is invariant under Df, so one
can just let w_, =Df *(m)wy). Let us also define two numbers

a*(m) = inf{|v_k|/ak —0ask —> o Yy, € E},
a>0

p*(m) = inf{lv_k|/|w_k|/pk —0ask— o Yy, €E, wy € N}.
p>0

The number a*(m) is an asymptotic measure of the growth of vectors in E under
the action of Df 7!, and p*(m) is an asymptotic measure of the ratio of the growth
of vectors in E to the growth of vectors in N under the action of Df ~!.

Recall one more definition and formulate expanding family theorem [14] for
reader’s convenience.

Definition 2 (N. Fenichel, 1974). The pair (A, E) is called an invariant set with
expanding structure for f, if A is compact and weakly overflowing invariant, E is
weakly overflowing invariant, and a*(m) <1, p*(m) <1 for all meA.

Theorem 4 (Expanding Family Theorem, N. Fenichel, 1974). Let M; be C'-man-
ifold, 1 <1< o, and let F: M; — M, be a Cl-diffeomorphism. Let (A, E) be an in-
variant set with expanding structure. Then there is a family of Cl-manifolds WE(m),
m €A, invariant in the sense that

F7Y(WE(m)) = WE(F~! (m)).

The manifold WE(m) is C!-diffeomorphic to the fiber E,,, and is tangent to E,, at m.

Let us show that in our case a*(m) <1, p*(m) <1 for any m C A. Take any
Up €E, it has the coordinate representation: vy = (1o, p§no, q4Mo). Vector v_; will
have the representation: v_; = (n_g, p*, M-, 9%, N—«). Taking into account first
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equality from (21) one gets:
Y7o
1+ph(m_,)’
S = p*no
27 1+4ph(m_y) — (1+ph(m_y)A+ph(m_,))’
n_. = peng
T (A+ph(m_y) ... A+uh(m_))”
Now consider the ratio

|U—k| _ |T)—k|\/1+(Pik)2+(Qik)2 _ Mk|ﬂo|\/1+(Pfk)2+(ka)2

ok ok T a1+ ph(m_y) ... A+phm_ )|

N-1=

Quantity |ng| \/ 1+ (p*,)?+ (q*,)? is bounded. Function h is of the first order, m,
lies in small neighborhood of fixed point p. Let us define 6, =sup,,c; |h(m,)|. This
value is of order of size (radius) of neighborhood and hence is small enough. The
following estimates are valid:

w1+ (@5 +(a5)% _ ol _ 5ol v/ 1+ (2% + (g7
a*(1+p6))* T aF(1—p&))*
Quantity in the r. h. s. of inequality (22) tends to zero as k— if u/(a(1—ué;))<1,

thatis a> u/(1—ud1). On the other hand, quantity in the L. h. s. of inequality (22)
tends to zero as k — « if a>u/(1+ud). Thus, we get:

. u p
ar(mo) & |:1+,u61’ 1—u51] <L

(22)

The inverse map for Df;,, has following representation:

w

—_— 0 0
1+ uh(m,)

1 +ll (mn) 12 (mn) 4 (23)
l3 (mn) 1 + 14 (mn)

Df; 1 =

my

where dots, [, L, 3 and 14 are of at least first order functions. Take any wy €N, it
has the form: w, = (0, ¢y, dy), and let us consider k-th iteration of w, under DF~':
w_;. = (0, c_y, d_4). From (23) one gets that coordinates of w_; change as follows:

= Q+LMmgi1))egen +la(mgi1)d i1,
d_i = ls(M_y1)cgerr + (T + 14 (M_gi1))d i1

Denote
&, =supsup |;(m,)], i=1,4.

i nez
This quantity is also small enough and of the order of the size of neighborhood.
Next estimates are valid:

le_il < (4 02)lcpes1|+02ld gl = legra| + 62 (lc_gsa | +1d—s1 D),
|d_i| < Oalcyia |+ (A +82)|dyes1| = |dgesq| + 62 (lcia| + d—pes1 ),
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and, so:
el +1del < lecgqal +1d g1 | +265(Icgeqr | +1dgeia]) =
= (lecgr1l +1d 1) (1+265) <
< (leciral HldogesaD (1 +268,5)% < ... < (el +[do]) (1 +285)%.

Then one gets:
V0eP+1d_? < v2(max{le_il, [d_[})? < V2 max{lc_g|, |d_]} <
< V2(lei] +1d_) < V2(lco| +1do) (1 +28,)".

On the other side:
el =2 (1—=62)legeqrl = Oald i1l = legsr| = 02 (lerra |+ |d 11D,
ld_x| = (1—=62)|d 41l —Oalcry1l = ldgeq1| — 2 (lcria |+ [des1l),
and, consequently,
el +1d il = legesrl +1d g1l =282 (le_pa| +1dpei1]) =
= (lecgp1l +1d111)(1—265) =
2 (legesal +1djes2) (1—285)2 = ... = (lco| +|do ) (1 —25)".

The following inequalities are valid:
(lcol +1do) (1 —=282)* < le_ye| + 1d—| < 2 max{lc_l, [d_«l},

S0,

leol + |do

max{|c_gl, [d_[} = (1-25,)"

and
lcol +1do|
Ve +1d > = v/ (max{lc_g], |d_|)?* = max{lc_, |d_|} > u(1+25 )k,
Now let us evaluate
ol uFInoly/1+ (P52 + (q7,)?
lw_ilp® k|1 +ph(m_y)) ... (1 +ph(m_))|VIe P +]d_ 2
Next estimates are valid:
ol o uFnoly/1+ (p5, )% + (q,)?
|w_k|pk Pk(l +H51)k\/§(|co|+|do|)(1+252)k’
vl 26Inoly/1+ (1) +(g8)°
[w_ lp* — p*(A—ud1)*(lcol +1do)) (1 —28,)%"

The expression in the r. h. s. of the first inequality in (24) tends to zero as k tends
u
(1+uo6,)(1+26,)°
ity in (24) tends to zero as k tends to « if p >

(24)

while expression in the r. h. s. of the second inequal-
w
(1—u6,)(1-26,)"

p*(m) € [(1+‘u51)(1+252)’ (1—H51)(1_252)] <1

to « if p >

Thus, we get:
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Then expanding family theorem holds and for each point m € A there exists 1-di-
mensional manifold (a curve) in M; being tangent to corresponding layer in E.
The collection of these curves is invariant under f~!. In particular, collecting these
manifolds for points of an invariant KAM-curve defines its unstable manifold.

Now we want to have smoothness properties for the expanding foliation ob-
tained. Let us apply smoothness theorem for invariant sets with expanding struc-
ture to prove that these manifolds smoothly depend on m, [15]. For this purpose
we define the quantity 7* according to [15]:

T(mo) = inf {7 : [Ju_|/|w_x|]"|E_| — O as k — inf
Vv, €E, wy €N, & € T, A=N}.

Theorem 5 (Smooth Invariant Bundle Theorem, N. Fenichel, 1977). Let U and V
be open subsets of a Cl-manifold M,, and let F: U —V be a C'-diffeomorphism,
2<I< . Let A be a compact, properly embedded, C'-manifold with boundary, over-
flowing invariant under F. Let (A, E) be an invariant set with expanding structure.
If1<U'<1—1, and v*(m) <1/l for all m€ A, then E is a C!'-smooth vector bundle.

Taking into account estimates found before, one gets for diffeomorphism (20)
and any vector £, = (0, ¢y, dy) €N, &_,. = (0, c_, d_;), following inequality to be
valid:

Iv el ( e Inoly/ 1+ (p2)* + (g7,)° )T —
Ve =+ 1d g ]* <
R |(1+ph(m_) ... L+ ph(m_) |V P +1d el 1

Tk T

< pG
(1—p6,)™(1—26,)

V2(|eol + 1do ) (1 4 25,)%, (25)

here C; is constant which can be easily calculated. The r. h. s. of (25) tends to zero
as k — oo if

In(1+26,)
In[(1—pu6,)(1—-26,)]—Inu

Quantity 7, is small enough of order §,. On the other hand,

> 0.

TZ2T,=

[v_i|” “chzT |C0|+|do

> Kk
|w_k|‘r|€7k| (1 +‘u61)7k(1+262)7k (1 26 ) (26)
The r.h.s. of (26) tends to zero as k — o if
T = Ty = 1n(1_252) T, < 0.

In[(1+u6,)(1+26,)]—Inu’

Therefore, 7*(mg) € [T,, T1], so vector bundle E is C” smooth, where ' <1/7,
r'<r—2.

Existence of stable manifold W*(y) and its smoothness can be proved in a sim-
ilar way.
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