ПРОГНОЗИРОВАНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ БОРТОВОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ ПРИ ВОЗДЕЙСТВИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НИЗКОЙ ИНТЕНСИВНОСТИ

В статье рассматриваются вопросы прогнозирования показателей надежности современной бортовой аппаратуры космических аппаратов. Показана целесообразность использования результатов испытаний аппаратуры и ее элементов на стойкость к воздействию ионизирующих излучений для прогнозирования показателей надежности. Обоснована возможность применения альфа-распределения времени наработки до отказа для прогнозирования показателей безотказности и долговечности КМП ГС. Приведены расчетные соотношения для оценки вероятности безотказной работы, среднего времени наработки на отказ и минимальной наработки. Показаны возможные пути повышения стойкости современной бортовой аппаратуры космических аппаратов путем использование специализированных способов защиты от воздействий ионизирующих излучений космического пространства. Данное научное исследование (№14-05-0038) выполнено при поддержке Программы "Научный фонд НИУ ВШЭ" в 2014 г.

Ключевые слова: надежность, стойкость, радиоэлектронное средство, интегральная микросхема, космический аппарат, ионизирующее излучение.

Практически повсеместное применение в отечественной аппаратуре электронной компонентной базы иностранного производства с одной стороны позволяет проектировать и выпускать аппаратуру, отвечающую современным требованиям, а с другой стороны создает ряд трудностей при ее проектировании, в частности при проектной оценке показателей надежности. Особенно это касается бортовой аппаратуры космических аппаратов, в которой широко применяются полупроводниковые компоненты коммерческого уровня качества, имеющие относительно низкую радиационную стойкость. Поэтому при прогнозировании показателей надежности такой аппаратуры необходимо учитывать и вероятность отказа таких компонентов из-за воздействий ионизирующих излучений космического пространства.

Расчет показателей надежности бортовой аппаратуры космических аппаратов (КА) проводится при ее разработке для подтверждения принципиальной возможности обеспечения требуемого уровня этих показателей и является одним из обязательных мероприятий, предусмотренных в ГОСТ РВ 20.39.302 [1]. Расчет надежности составных частей аппаратуры (электронных модулей 1-го уровня) должен проводиться по методике, приведенной в ОСТ 41 Г 0.012.242 [2], основанной на методе «α-характеристики», в частности вероятность безотказной работы \(P_e \) определяется по формуле:

\[P_e(t_{c,e}) = e^{-\lambda t_{c,e}}, \]
где Λ — эксплуатационная интенсивность отказов;
т_{cак} — срок активного существования (САС) КА.

\[Λ = \sum_{n=1}^{N} λ_n \]

где λ_n — эксплуатационная интенсивность отказов электрорадиоизделий (ЭРИ); N — количество ЭРИ.

В обеспечение этой методики для расчетов интенсивностей отказов (λ-характеристики) ЭРИ должны использоваться официальные справочники [3, 4], что обеспечивает выполнение требования ГОСТ 27.301 [5] в части воспроизводимости результатов расчетов.

При использовании указанных выше стандартов для учета особенностей бортовой аппаратуры космических аппаратов в математические модели λ введены два коэффициента:

K₅ — коэффициент эксплуатации, учитывающий степень жесткости условий эксплуатации на борту КА;

K₆ — коэффициент влияния инерционных излучений (ИИ), учитывающий степень жесткости внешних ИИ.

Вместе с тем, в РД 134-0139 [6] вслед за это указывается, что если в техническом задании требования по радиационной стойкости не заданы, то для расчета вероятности безотказной работы аппаратуры следует использовать соотношение:

\[P(t_{cак}) = P_2(t_{cак}) \cdot P_3(t_{cак}) \cdot P_4, \]

где P(t_{cак}) — вероятность безотказной работы при воздействии ИИ КП низкой интенсивности (дозовые эффекты); P₂ — вероятность безотказной работы при проникновении одноименной заряженной частицы с высокой энергией (одиночные эффекты).

Расчет P₃(t_{cак}) по методикам ОСТ 134-1034 [7] проводится «позитивным» методом и заключается в сравнении уровня стойкости каждого типа ЭРИ (предельно-допустимой дозы — Dₚₚₚ, приведенного в нормативно-технической документации (НТД) с уровнем радиационного воздействия на него (поглощенной доз электронов, протонов и суммарной дозы), определенного расчетным путем D_{нд}(t_{cак}). Уровень радиационных воздействий на ЭРИ зависит как от характеристик орбиты КА, так и от мест их размещения на борту КА, классификация которых приведена в ГОСТ РВ 20.39.305 [8].

Для КА с длительными САС, эксплуатирующихся на геостационарных орбитах, можно считать, что облучение ЭРИ идет с постоянной интенсивностью, т.е. процесс накопления дозы можно аппроксимировать линейной функцией вида:

\[D_{нд}(t) = D_{нд} \cdot t, \]

где D_{нд}(t) — поглощенная доза ЭРИ; D_{нд} — мощность поглощенной дозы ЭРИ в единицу времени; t — время.

Результатом оценки является коэффициент запаса ЭРИ по радиационной стойкости (K₆). Если K₆ ≥ 3, то P₃(t_{cак}) = 1, если K₆ ≤ 1, то P₃(t_{cак}) = 0, если же 1 < K₆ < 3, то для оценки значения P₃(t_{cак}) необходимо проведение испытаний ЭРИ на стойкость, причем сначала следует провести испытания до расчетного уровня дозы, равного D_{нд}(t_{cак}), а затем, желательно, до отказа, что позволит уточнить значение уровня стойкости данного типа ЭРИ.

Из вышепоказанного очевидно, что методика ОСТ 134-1034 [7] ориентирована на применение в аппаратуру КА радиационно-стойких ЭРИ, а применение ЭРИ с K₆ < 3 и их испытания должны проводиться в исключительных случаях. Однако применение в отечественных КА аппаратуры, в которой широко используется электронная компонентная база (ЭКБ) иностранного производства (ИП), значительную часть которой составляют КМОП ИС «комерческого» уровня качества с низкой стойкостью к воздействию ИП КП, уже привело к тому, что испытания таких ИС стали не исключением, а правилом. Причём эти испытания проводятся именно до отказа, т.к. в НТД (Data Sheet) данных по радиационной стойкости не приводится, а если и приводятся, то они крайне скудные [9].

Значение P₃(t_{cак}) по результатам испытаний определяется как:

\[P_3(t_{cак}) = 1 - Q' \]

где Q' — частота отказов ИС из-за воздействия ИИ низкой интенсивности.

\[Q = k(D_{нд}) \]

где k(D_{нд}) — число отказавших ИС, у которых D_{нд} ≤ D_{нд}(t_{cак}); K — общее число ИС, поставленных на испытания.

Применяя во внимание, что на рынке ЭКБ представлен широкий выбор схожих по функциональному назначению и характеристикам КМОП ИС различных производителей, очевидно, что одним из главных критериев при выборе конкретных типов ИС должны быть их показатели надежности и стойкости, что ведет к еще одной задачу — оценку их показателей надежности при воздействии ИИ низкой интенсивности на ранних этапах проектирования.

Один из возможных путей решения этой задачи является использование результатов уже проведенных испытаний ИС ИП на радиационную стойкость для...
Прогнозирование показателей надежности бортовой аппаратуры космических аппаратов при воздействии ионизирующих излучений низкой интенсивности

Рис. 1. Функция распределения предельной накопленной дозы

Прогнозирования показателей надежности сходных по функциональному назначению и конструктивно-технологическому исполнению КМОП ИС, относящихся к одной технологической группе.

Так, результаты испытаний КМОП ИС ПЗУ с технологической нормой 0,15 мкм производства компаний Xilinx, Texas Instruments, Cypress Semiconductor, Atmel, Analog Devices и др. показали, что для dПНД можно принять усеченное нормальное распределение:

$$f(d_{ПНД}) = \frac{C}{\sigma(d_{ПНД})\sqrt{2\pi}} \cdot e^{-\frac{(d_{ПНД} - m(d_{ПНД}))^2}{2\sigma^2}},$$

где f(dПНД) — плотность вероятности; m(dПНД) — математическое ожидание; σ(dПНД) — среднее квадратичное отклонение; C — нормирующий множитель.

Значение C определяется по формуле:

$$C = \frac{1}{F(D_{min,ПНД}) - F(D_{max,ПНД})},$$

где F(D_{min,ПНД}), F(D_{max,ПНД}) — значения функции нормального распределения.

Здесь следует отметить, что использование модели (3) позволяет также рассчитать оценку P2(t cac) ИС при известных m(dПНД), σ(dПНД) и DПНД(t cac):

$$P2(t_{cac}) = 1 - F(D_{cac}(t_{cac})) = 1 - \int_{d_{min,ПНД}}^{d_{max,ПНД}} f(d_{ПНД})\cdot d_{ПНД}$$

где F(dПНД) — значение функции нормального распределения при dПНД = DПНД(t cac).

Типовой вид функции F(dПНД) приведен на рис. 1.

На рис. 2 показана схема формирования функции плотности вероятности dПНД по результатам испытаний.

Следует отметить, что использование такой схемы формирования функции плотности вероятности dПНД по результатам испытаний также позволяет уточнить значение σ(dПНД) для конкретного типономинала ИС данной технологической группы, если для нее известна DПНД. Как правило, DПНД представляет собой нижнюю «5σ-границу» (см. рис. 2). Тогда, в предположении постоянства m(dПНД) и коэффициента вариации (v), значение σ можно получить из уравнения:

$$D_{ПНД}^* = \frac{\sigma(d_{ПНД})}{v} - 3\cdot\sigma(d_{ПНД}).$$

где D_{ПНД}^* — предельно-допустимая доза данного типономинала ИС; v = σ(dПНД)/m(dПНД); σ(d_{ПНД}) — среднее квадратичное отклонение d_{ПНД} данного типономинала ИС.

Рис. 2. Схема формирования функции плотности вероятности dПНД по результатам испытаний
Концу из рис. 2 испытания проводятся при $D_{нл} = const$ в течение времени $t_{ох}$. Однако, исходя из (1) можно найти такие значения $D_{нл}$ для каждой (k-ой) ИС, при которых их отказы будут происходить при одном и том же значении $D_{нл}/d_{нл} = 1$:

$$D_{нл} = \frac{d_{нл}}{t_{ох}},$$

где $d_{нл}$ — предельно-допустимая доза k-ой ИС; $t_{ох}$ — время до отказа k-ой ИС из-за воздействия ИИ низкой интенсивности.

На рис. 3 показаны полученные с использованием (5) временные зависимости $D_{нл}(t_{ох})/d_{нл}$. Плотность вероятности наработки до отказа ИС

$$f(t) = \frac{C \cdot \beta}{t^2 \cdot \sqrt{2 \cdot \pi}} e^{-\frac{(t-a)^2}{2}},$$

где α, β — параметры распределения.

Параметр α — это относительная скорость изменения определяющего параметра (коэффициент однородности скорости изменения определяющего параметра).

Параметр β — это относительный запас долговечности.

График функции плотности вероятности α-распределения показан на рис. 4.

Значения параметров α и β можно определить по соотношениям, приведенным ГОСТ 27.005 [10]:

$$\alpha = \frac{m(V_o)}{\sigma(V_o)}; \quad \beta = \frac{\Pi_{ПП} \cdot t_{cм}}{\sigma(V_o)}$$

где $m(V_o)$ — средняя скорость изменения определяющего параметра; $\sigma(V_o)$ — среднеквадратичное отклонение скорости изменения определяющего параметра; $\Pi_{ПП}$ — предельное значение определяющего параметра.

Значения $m(V_o)$, $\sigma(V_o)$ и $\sigma(V_{ох})$ можно определить по при известным значениям $m(d_{нл})$, $\sigma(d_{нл})$ и $D_{нл}(t_{ох})$. Однако, при этом следует учитывать следующие особенности. Дело в том, что в отличие от <<классического>> схемы формирования модели α-распределения, где предельное значение определяющего параметра $\Pi_{ПП}$ является детерминированной величиной, а скорость его изменения — случайной (см. рис. 2), в данном случае скорость накопления дозы ($D_{нл}$), в соответствии с (1), является детерминированной величиной, а предельно-допустимая накопленная доза ($d_{нл}$) — случайной (см. рис. 1). А это приводит к тому, что если в качестве предельного значения определяющего параметра принять $D_{нл}(t_{cм})$ (детерминированную величину), то при ее увеличении $P_{2}(t_{вв})$ так же будет возрастать, что противоречит заданному смыслу (т.е., чем больше будет доза, накопленная за время $t_{вв}$, тем меньше будет вероятность отказа ИС за то время).

Поэтому, чтобы избежать этого противоречия, следует принять:

$$m(V_o) = D_{нл} \quad \Pi_{ПП} = m(d_{нл})$$

Тогда значения параметров α и β будут соответственно равны:

$$\alpha = \frac{D_{нл}}{\sigma(d_{нл})}; \quad \beta = \frac{m(d_{нл}) \cdot t_{см}}{\sigma(d_{нл})}$$

Рис. 5 иллюстрирует адекватность приведенного выше обоснования.

Как видно из рис. 5, плотности распределения (защитрихованные
ПРОГНОЗИРОВАНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ БОРТОВОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ ПРИ ВОЗДЕЙСТВИИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НИЗКОЙ ИНТЕНСИВНОСТИ

Рис. 5. Плотности вероятности отказов ИС при \(m(V_{01}) = m(d_{III}) \) и \(m(V_{01}) = D_{III} \)

области) отказа при \(P_{III} = D_{III} \) и безотказной работы при \(P_{III} = m(d_{III}) \) равно.

При использовании модели (5) расчет \(P_{III}(t_{acc}) \) ИС при известных \(a, \beta \) и \(C \) проводится по формуле:

\[
P_{III}(t_{acc}) = 1 - \int_{0}^{t_{acc}} f(t)dt.
\]

Кроме того, следует отметить, что использование модели отказов (5) позволяет, в отличие от (4), получить оценку не только \(P_{III}(t_{acc}) \), но и оценку среднего времени наработки до отказа \(T_{0} \) ИС при воздействии ИИ низкой интенсивности:

\[
T_{0} = \frac{1}{\beta} \int_{0}^{\infty} f(t)dt.
\]

Еще одним важным аспектом применения модели (5) является возможность оценки такового показателя долговечности ИС, как минимальная наработка \(T_{M,N} \). Это является особенно важным, так как при оценке этого показателя КМОП ИС в инженерной практике допускаются методическая погрешность, причины которой подробно рассмотрены в [11, 12]. Заметим только, что в соответствии ГОСТ РВ 20.39.303 [13] КМОП ИС относятся к изделиям общего назначения вида I (высоконадежное комплектующее изделие межэтапового применения), непрерывного длительного применения, невосстанавливаемое, неосвобождаемое, переход которого в предельное состояние не ведет к катастрофическим последствиям, и оставляется, стареющее при хранении. Критерием предельного состояния таких изделий является максимально-допустимое значение интенсивности отказов \(\lambda_{III} \).

При использовании модели (5) значение \(T_{M,N} \) КМОП ИС при воздействии ИИ низкой интенсивности равно времени эксплуатации \(t \) аппаратуры \(K \), при котором плотность распределения \(f(t) \) впервые достигает критического значения \(f_{III}(t = T_{M,N}) = \lambda_{max} \) [14]. Значение \(\lambda_{max} \) можно определить исходя из требуемого значения \(\lambda_{max} \) КМОП ИС. На рис. 6 показана связь между значениями \(\lambda_{max} \) и \(T_{M,N} \).

Тогда значение \(T_{M,N} \) можно найти из уравнения:

\[
\lambda_{max} = \frac{\beta}{(T_{M,N})^2} \cdot e^{\frac{\beta}{(T_{M,N})}}
\]

разрешив его относительно \(T_{M,N} \).

Заметим, что точное значение \(T_{M,N} \) можно получить при \(\lambda_{III}(t = T_{M,N}) = \lambda_{max} \), разрешив уравнение (8) относительно \(T_{M,N} \):

\[
\lambda_{max} = \lambda_{III} = \frac{f(T_{M,N})}{1 - F(T_{M,N})},
\]

где \(F(T_{M,N}) \) — значение функции распределения наработки.

Итоговое значение минимальной наработки КМОП ИС получают на основе соотношения ОСТ 4.012.013 [16]:
6. РД 134-0139-2005 Методы испытаний и оценки стойкости РЭА КА к воздействию ЭЧ КП по одиночным сбоем и отказам.
7. ГОСТ 134-1034-2012 Методы испытаний и оценки стойкости бортовой радиоэлектронной аппаратуры космических аппаратов к воздействию электронного и протонного излучений космического пространства по дозовым эффектам.
8. ГОСТ РВ 20.39.305-98 КСОТТ. Аппаратура, приборы, устройства и оборудование военного назначения. Требования к стойкости к воздействию поражающих факторов ядерного взрыва, ионизирующих излучений ядерных установок и космического пространства.
10. ГОСТ 27.005-97 Надежность в технике. Модели отказов. Основные положения.
15. ОСТ 4.012.013-84. Аппаратура радиоэлектронная. Определение показателей долговечности. Двусторонняя печатная плата. Жаднов В.В. Патент на полезную модель RU 135219 27.11.2013.
16. Артюхова М. Оценка стойкости ИС для бортовой космической аппаратуры. / М. Артюхова, В. В. Жаднов, С. Полесский. – Электронные компоненты. – 2013. – № 1. – с. 72-76.